复合材料的连接ppt课件
合集下载
复合材料及其在飞机结构中的应用 ppt课件
ppt课件
12
CC22643020.ppt
ppt课件
13
CC22643020.ppt
远程轰炸机
ppt课件
14
B2轰炸机复合材料38%
ppt课件
15
RTM整体 CoRTM整体
尾翼
进气道
三维编织 π型加筋
进气道 纤维铺放
Z-pin X-Cor
π型连接前机
设备
身整体结构
大型整体机翼蒙皮
F-35战斗机复p合pt课材件料用量36%
Systems
CP-07 CP-08
Propulsion CP-06
CP-01
CP-05 CP-04
CP-02
CP-03
Airframe
开展性能演化和疲 劳机理研究,为结 构可靠性奠定基础
Composites
Workforce by Challenge Problem
ppt课件
计划指出:由于缺
乏对材料蜕变、损 伤演化和疲劳等内 在物理机制的理解, 不能有效预测服役 环境下结构可靠性。 导致复合材料部件 设计依赖经验和安 全系数过大等方法
ppt课件
42
CC22643020.ppt
装袋与固化 (13%)
修边 (6%)
模具 (12%)
铺贴 (46%)
NDI (15%) 铺层切割
(8%)
制造成本
材料和制造 50%
降低成本的潜力
紧固件和装配 50%
总成本
ppt课件
43
降低成本的途径
制造方法
低成本高质量的铺贴 (特别是大型复合材料制件) 和高精度可重现
60年代 70年代
85%
《复合材料结构设计》PPT课件
传统机械按键结构层图:
按键
PCBA
开关键Байду номын сангаас
传统机械按键设计要点:
1.合理的选择按键的类型,尽量选择 平头类的按键,以防按键下陷。
2.开关按键和塑胶按键设计间隙建议 留0.05~0.1mm,以防按键死键。 3.要考虑成型工艺,合理计算累积公
差,以防按键手感不良。
§4.3 层合板与层合件设计
4.3.4 变厚度层合板设计
20
§4.2 设计选材与设计许用值确定
4.2.2 设计许用值的定义与确定原则
金属材料设计许用值以应力表示,称设计许用应力 ;复合材料 结构的设计许用值选择应变,称设计许用应变。
确定设计许用值的一般原则: ★ 结构的拉伸设计许用值主要取决于含孔试样的许用值,结
构的压缩设计许用值主要取决于含冲击损伤试样的许用值。 ★ 薄蒙皮或薄面板蜂窝夹层结构设计许用值的确定,还需根
§4.4 夹层结构设计
4.4.1 夹层结构的破 坏模式与设计 准则
(1)夹层结构破坏模式
37
§4.4 夹层结构设计
4.4.1 夹层结构的破坏模式与设计准则
(2)夹层结构设计准则
◆ 在设计载荷下,面板的面内应力应小于材料强度,或在设计载荷下,面 板应变小于设计许用应变;
◆ 芯子应有足够的厚度(高度)及刚度 ; ◆ 芯子应有足够的弹性模量和平压强度,以及足够的芯子与面板平拉强度; ◆ 面板应足够厚,蜂窝芯格尺寸应合理; ◆ 应尽量避免夹层结构承受垂直于面板的平拉或平压局部集中载荷; ◆ 胶粘剂必须具有足够的胶接强度,同时还要考虑耐环境性能和老化性能; ◆ 碳纤维层合面板与铝蜂窝芯子胶接面要注意防止电偶腐蚀问题; ◆ 对雷达罩等有特殊要求的夹层结构,面板、芯子和胶粘剂选择必须考虑 电性能、阻燃、毒性和烟雾等特殊设计要求。
复合材料结构设计
力的比值)
2、层合板极限强度
导致层合板中各铺层全部失效时的层合板正则化内力(层合板逐层失效)
层间应力
强度:复合材料层合板抵抗层间应力的能力与基体强度
为同一量级
产生原因:
1、横向载荷 2、自由边界效应
自由边、孔周边等处存在层间应力集中
后果:易导致分层破坏
飞机结构设计的基本要求
➢ 气动性能要求:保证飞机具有合理的气动外形和好的表面质量(否则飞 行性能和品质变差) ➢ 最小重量要求:保证在足够的强度、刚度、疲劳安全寿命、损伤容限等 条件下,结构重量最轻 结构重量系数:飞机结构重量/飞机正常起飞重量 的百分比
2、夹层结构
上下面板(薄层合板)
—— 承受面内载荷(轴向拉压和面 内剪切)
中间芯层 (蜂窝、泡沫、波纹板
和木材等) —— 承受垂直于面板的剪切和压缩 应力,支持面板防止失稳。
优点:
➢ 更符合最小重量原则 比重小、刚度大(芯层支持抗弯好)、强度高(承受多轴向压力载荷)、 抗失稳、耐久性/损伤容限能力强(裂纹扩展和断裂韧性、抗声疲劳) ➢ 无铆缝(故机翼表面外形质量和气动性能较好) ➢ 简化结构(减少零件数目和减少装配工作量)
层合板/层压板的表示法:
图示法(直观)和公式法(简便)
(a)正轴坐标系和应力
(b)偏轴坐标系和应力
单向层合板的基本强度
铺层的基本强度,复合材料在面内正轴向的单轴正应力或纯剪力作用下
的极限应力(5项:单向板纵向和横向拉、压强度;面内剪切强度)。
层合板的强度
1、最先一层失效强度
各单一铺层应力分析→计算各铺层强度比→比较(强度比最小的铺层最 先失效,其对应的正则化内力)(强度比:材料强度极限同结构所受对应应
2、层合板极限强度
导致层合板中各铺层全部失效时的层合板正则化内力(层合板逐层失效)
层间应力
强度:复合材料层合板抵抗层间应力的能力与基体强度
为同一量级
产生原因:
1、横向载荷 2、自由边界效应
自由边、孔周边等处存在层间应力集中
后果:易导致分层破坏
飞机结构设计的基本要求
➢ 气动性能要求:保证飞机具有合理的气动外形和好的表面质量(否则飞 行性能和品质变差) ➢ 最小重量要求:保证在足够的强度、刚度、疲劳安全寿命、损伤容限等 条件下,结构重量最轻 结构重量系数:飞机结构重量/飞机正常起飞重量 的百分比
2、夹层结构
上下面板(薄层合板)
—— 承受面内载荷(轴向拉压和面 内剪切)
中间芯层 (蜂窝、泡沫、波纹板
和木材等) —— 承受垂直于面板的剪切和压缩 应力,支持面板防止失稳。
优点:
➢ 更符合最小重量原则 比重小、刚度大(芯层支持抗弯好)、强度高(承受多轴向压力载荷)、 抗失稳、耐久性/损伤容限能力强(裂纹扩展和断裂韧性、抗声疲劳) ➢ 无铆缝(故机翼表面外形质量和气动性能较好) ➢ 简化结构(减少零件数目和减少装配工作量)
层合板/层压板的表示法:
图示法(直观)和公式法(简便)
(a)正轴坐标系和应力
(b)偏轴坐标系和应力
单向层合板的基本强度
铺层的基本强度,复合材料在面内正轴向的单轴正应力或纯剪力作用下
的极限应力(5项:单向板纵向和横向拉、压强度;面内剪切强度)。
层合板的强度
1、最先一层失效强度
各单一铺层应力分析→计算各铺层强度比→比较(强度比最小的铺层最 先失效,其对应的正则化内力)(强度比:材料强度极限同结构所受对应应
《复合材料》PPT课件(2024)
优异的抗疲劳性能
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
2024/1/26
03
良好的减震性能
Hale Waihona Puke 复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
16
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
2024/1/26
25
建筑领域应用
建筑结构
复合材料可用于制造建 筑结构部件,如梁、板 、柱和墙体等,具有轻 质、高强度和耐腐蚀等 优点。
2024/1/26
建筑材料
复合材料还可作为建筑 材料使用,如复合地板 、复合门窗和复合墙板 等,具有美观、环保和 耐用等特点。
装饰装修
复合材料也可用于建筑 装饰装修领域,如吊顶 、隔断和家具等,具有 多样化的外观和优良的 性能。
X射线衍射(XRD)
分析复合材料的晶体结构和相组成,确定增 强体和基体的晶体类型。
2024/1/26
透射电子显微镜(TEM)
揭示复合材料内部微观结构,如增强体的分 布、取向和缺陷等。
原子力显微镜(AFM)
研究复合材料表面纳米级形貌和力学性质。
20
宏观性能测试方法
拉伸试验
测定复合材料的拉伸强度、弹性模量 和断裂伸长率等力学性能指标。
性能变化。
疲劳试验
2024/1/26
研究复合材料在交变应力作用下的疲 劳性能,预测其疲劳寿命和疲劳强度
。
耐化学腐蚀试验
测试复合材料在不同化学介质中的耐 腐蚀性能,评估其耐酸、耐碱、耐盐 雾等能力。
加速老化试验
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
2024/1/26
03
良好的减震性能
Hale Waihona Puke 复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
16
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
2024/1/26
25
建筑领域应用
建筑结构
复合材料可用于制造建 筑结构部件,如梁、板 、柱和墙体等,具有轻 质、高强度和耐腐蚀等 优点。
2024/1/26
建筑材料
复合材料还可作为建筑 材料使用,如复合地板 、复合门窗和复合墙板 等,具有美观、环保和 耐用等特点。
装饰装修
复合材料也可用于建筑 装饰装修领域,如吊顶 、隔断和家具等,具有 多样化的外观和优良的 性能。
X射线衍射(XRD)
分析复合材料的晶体结构和相组成,确定增 强体和基体的晶体类型。
2024/1/26
透射电子显微镜(TEM)
揭示复合材料内部微观结构,如增强体的分 布、取向和缺陷等。
原子力显微镜(AFM)
研究复合材料表面纳米级形貌和力学性质。
20
宏观性能测试方法
拉伸试验
测定复合材料的拉伸强度、弹性模量 和断裂伸长率等力学性能指标。
性能变化。
疲劳试验
2024/1/26
研究复合材料在交变应力作用下的疲 劳性能,预测其疲劳寿命和疲劳强度
。
耐化学腐蚀试验
测试复合材料在不同化学介质中的耐 腐蚀性能,评估其耐酸、耐碱、耐盐 雾等能力。
加速老化试验
《复合材料的维修》PPT课件
2021/4/24
24
(2)过渡性修理
这种修理主要针对有时间限制的许可损伤和可修
理的损伤,因不具备永久性修理的条件而进行的过渡
性修理。该修理要求恢复部件的强度,但不能恢复部
件的耐久性,它有不同于原始部件的检查间隔和检查
方法,最终也要被永久性修理所取代。这种修理也叫
“B级过渡性修理”。
(3)永久性修理
直径大于50mm,开胶直径75mm,层压板分层直径大 于75mm时,报废不再修理。
对于重要的复合材料构件,有专门的技术文件控 制损伤的大小,该文件与设计图纸配套使用,以保证 产品的质量。但一般还是由《结构修理手册》提供。
2021/4/24
16
第五节 复合材料修理的分类
从不同的角度,复合材料的修理方法不同,主要 有如下几种分类方法:
表面损伤的修理方法: ——用树脂填充划伤、刻痕,固化后磨平、涂漆; ——2021用/4/24混合物(相当于腻子)填充吹沙后的损伤区;31
图3-1 2021/4/24 表面划伤对拉伸强度的影响
32
——用清洁剂清洗凹陷区,后用胶黏剂填充,固化后
去除多余物,如需补漆再涂刷底漆面漆;
——将冷树脂注射到气泡或分层区,室温固化。该法只
适用于﹤25mm的损伤区。固化时可用重物或夹紧法对
构件施加压力。
第二节 分层的修理
构件边缘是最易出现损伤的区域。边缘开胶和分
层可采用树脂注射法或混合物填充法进行修理,固化
时要施加压力。该法已广泛用于碳纤维复合材料的边
2021/4/24
33
缘分层修理。层压板内的分层可采用抽钉法修理。 见图3-2
2021/4/24
图3-2 分层修理
34
复合材料的连接ppt课件
31
4> 缝合方向
缝合方向对复合材料的性能影响较 大,常采用的缝合角度为0º、45º和90º。 缝合方向对正交对称层合板的拉伸强度 有较大影响, 0º缝合引起的强度降小,45º 和90º缝合引起的强度降基本相同
ppt精选版
32
缝合对复合材料力学性能影响
缝合对复合材料平面性能的影响 (1)面内拉伸强度 (2)面内弯曲性能 (3)面内压缩强度 缝合对复合材料层间性能的影响
ppt精选版
33
(2) z-pinning连接
1.概念 2.种类
3. z-pinning技术应用
ppt精选版
34
1.概念
z-pinning 技术主要用于增强铺层预浸料或 泡沫夹层复合材料,它借鉴了缝合复合材料中 不连续缝线方法,在固化前的预浸料或泡沫夹 层厚度方向直接嵌入刚性的短棒,这种短棒通 常称为 z-pin
42
UAZ技术
该技术采用了一种超声波发生装置,超声波 可以带动枪头触角高频振动,最大输出功率下, 振幅可达20um,频率20 kHz。接触角头高频震动 可以降低嵌入z-pin需要的作用力,振动产生的热 还可以使树脂软化,易于z-pin的转移
工艺流程:(1)
ppt精选版
43
(2)
ppt精选版
Байду номын сангаас
44
(4)
分层的存在 将造成复合 材料层合板 结构强度和 刚度的降低, 使其性能得 不到充分的 发挥。
text3
因此,如何抑制 复合材料层合 板的分层损伤, 提高其层间强 度和抗分层、 抗冲击的能力 是使用复合材 料层合板时所 必须解决的问 题
ppt精选版
24
B 技术原理
其原理是通过缝合手段,使复合材料在 垂直于铺层平面的方向得到增强,从而 提高材料层间损伤容限
复合材料连接设计
(a) 搭接; (b) 偏位搭接; (c) 变厚度搭接; (d)单盖板对接; (e)双盖板对接; (f) 变厚度盖板对接
NUDT 12.6第十源自章 复合材料连接设计Chap.04
12.3 机械连接 一、机械连接接头分析
关于紧固件的应力分析与连接板的应力分析,一则涉及弹 性基础梁,各向异性板的接触应力和应力集中分析等内容, 二则工程设计中常采用简化的材料力学方法来处理复合材 料机械连接问题,所以本书不予讨论。
12.2 胶接
胶接接头基本连接形式
(a) 单面搭接; (b) 双面搭接; (c) 单面斜接; (d) 双面斜接; (e)单面阶梯形搭接; (f) 双面阶梯形搭接。
NUDT 12.6
第十二章 复合材料连接设计
12.2 胶接 一、胶接接头受力分析
Chap.04
单面搭接接头的受力情况
NUDT 12.6
NUDT 12.6
第十二章 复合材料连接设计
Chap.04
12.1 复合材料连接方式
复合材料连接方式分两类:胶接与机械连接。 连接方式要根据具体使用条件确定。 为了提高结构的安全性,可采用胶—螺或胶—铆混合连接。 好的连接设计,可以减轻结构质量,可以延长结构的使用 寿命。
NUDT 12.6
第十二章 复合材料连接设计
chx
ch
l
2
E2t2
E2t2 E1t1
P
chx
2sh
l
2
E2t2 E1t1
2 E2t2 E1t1
shx
ch l
2
复合材料PPT
总论 复合材料的基体材料 复合材料的增强材料 复合材料的界面 聚合物基复合材料 金属基复合材料 碳/碳复合材料
第一章
总 论
1.1 发展概况
1.2 复合材料定义、命名 和分类 1.3 复合材料的基本性能
第一章 总 论
1.1 发展概况
材料发展历史: 石器、铜器、铁器时代等 实现生产、科学目的: 新材料研究 材料科学历史: 四十多年
问 题: (1)复合产物能否为液体或气体? (2)复合材料是不是只能是一个
连续相与一个分散相的复合?
1.2.2 命名
例:玻璃纤维增强树脂基复合材料命名
玻璃钢 玻纤增强塑料、玻璃塑料、玻璃布 层压板、玻璃纤维复合材料
命名原则:
增强材料+基体材料+复合材料
例:碳纤维环氧树脂复合材料 书写: 碳/环氧复合材料
亚短钢纤维(长度40—60mm) 短钢纤维(长度20—35mm) 超短钢纤维(长度<15mm)
横截面形状:圆形、矩形截面 钢纤维主要品种:不锈钢、低碳钢
图 15
高架桥
1.3.6 三种复合材料性能比较 (1)使用温度、硬度 使用温度: CMC >MMC > PMC 硬 度: CMC >MMC > PMC
纤维增强树脂基复合材料:
● 基体强韧性降低裂纹扩展速度 ● 纤维对裂纹阻隔作用,使裂纹 尖端变纯或改变方向
裂纹扩展路径曲折、复杂
图12 三种材料疲劳性能比较
1—碳纤维复合材料
3—铝合金
2—玻璃钢
金属疲劳强度=20—50%抗张强度
碳纤维复合材料疲劳强度=
70—80%抗张强度
(3)减振性能好 影响自振频率因素:
1.3.2 聚合物基复合材料及主要性能
第一章
总 论
1.1 发展概况
1.2 复合材料定义、命名 和分类 1.3 复合材料的基本性能
第一章 总 论
1.1 发展概况
材料发展历史: 石器、铜器、铁器时代等 实现生产、科学目的: 新材料研究 材料科学历史: 四十多年
问 题: (1)复合产物能否为液体或气体? (2)复合材料是不是只能是一个
连续相与一个分散相的复合?
1.2.2 命名
例:玻璃纤维增强树脂基复合材料命名
玻璃钢 玻纤增强塑料、玻璃塑料、玻璃布 层压板、玻璃纤维复合材料
命名原则:
增强材料+基体材料+复合材料
例:碳纤维环氧树脂复合材料 书写: 碳/环氧复合材料
亚短钢纤维(长度40—60mm) 短钢纤维(长度20—35mm) 超短钢纤维(长度<15mm)
横截面形状:圆形、矩形截面 钢纤维主要品种:不锈钢、低碳钢
图 15
高架桥
1.3.6 三种复合材料性能比较 (1)使用温度、硬度 使用温度: CMC >MMC > PMC 硬 度: CMC >MMC > PMC
纤维增强树脂基复合材料:
● 基体强韧性降低裂纹扩展速度 ● 纤维对裂纹阻隔作用,使裂纹 尖端变纯或改变方向
裂纹扩展路径曲折、复杂
图12 三种材料疲劳性能比较
1—碳纤维复合材料
3—铝合金
2—玻璃钢
金属疲劳强度=20—50%抗张强度
碳纤维复合材料疲劳强度=
70—80%抗张强度
(3)减振性能好 影响自振频率因素:
1.3.2 聚合物基复合材料及主要性能
《复合材料的特性》课件
详细描述
复合材料是由两种或多种材料组合而成的,这些材料可以是金属、非金属、有机或无机材料,通过一定的工艺技 术,如挤压、铸造、热压等,将它们结合在一起,形成一个整体。这个整体具有各组分材料所不具备的特性,从 而满足各种不同的需求。
分类
要点一
总结词
复合材料可以根据不同的分类标准进行分类,如按组分类 型、形态、制造工艺等。
声学性能
通过调整复合材料的结构和组成,可 以控制其声学性能,如隔音、吸音效 果。
化学性能
耐腐蚀性
环境适应性
复合材料中的基体和纤维对各种化学环境 有很好的耐受性,不易被腐蚀。
某些复合材料能在极端环境中保持稳定, 如高温、高压、高湿或强辐射环境。
良好的密封性
可设计性强
复合材料的结构特性使其具有很好的气密 性和水密性,适用于需要密封的场合。
高性能化
随着科技的不断进步,对复合材料性能的要求也越来越高,高性能 复合材料将得到更广泛的应用。
智能化
随着物联网、传感器等技术的不断发展,复合材料将逐渐实现智能 化,提高其使用效率和安全性。
技术挑战
01
02
03
制造技术
复合材料的制造技术要求 高,需要精确控制各组分 的比例和分布,提高制造 效率和质量。
聚合物基复合材料的生产工艺主要包 括手糊成型、喷射成型、层压成型、 模压成型等。
喷射成型是通过将树脂和增强材料混 合后,通过喷枪喷射到模具表面,快 速固化形成复合材料制品。
金属基复合材料工艺
金属基复合材料是以金属或其 合金为基体,以纤维、晶须、 颗粒等为增强剂,通过复合工
艺制备而成的材料。
金属基复合材料的生产工艺主 要包括铸造、粉末冶金、扩散
可以根据特定的化学环境需求,设计复合 材料的组成和结构,以满足各种应用需求 。
复合材料是由两种或多种材料组合而成的,这些材料可以是金属、非金属、有机或无机材料,通过一定的工艺技 术,如挤压、铸造、热压等,将它们结合在一起,形成一个整体。这个整体具有各组分材料所不具备的特性,从 而满足各种不同的需求。
分类
要点一
总结词
复合材料可以根据不同的分类标准进行分类,如按组分类 型、形态、制造工艺等。
声学性能
通过调整复合材料的结构和组成,可 以控制其声学性能,如隔音、吸音效 果。
化学性能
耐腐蚀性
环境适应性
复合材料中的基体和纤维对各种化学环境 有很好的耐受性,不易被腐蚀。
某些复合材料能在极端环境中保持稳定, 如高温、高压、高湿或强辐射环境。
良好的密封性
可设计性强
复合材料的结构特性使其具有很好的气密 性和水密性,适用于需要密封的场合。
高性能化
随着科技的不断进步,对复合材料性能的要求也越来越高,高性能 复合材料将得到更广泛的应用。
智能化
随着物联网、传感器等技术的不断发展,复合材料将逐渐实现智能 化,提高其使用效率和安全性。
技术挑战
01
02
03
制造技术
复合材料的制造技术要求 高,需要精确控制各组分 的比例和分布,提高制造 效率和质量。
聚合物基复合材料的生产工艺主要包 括手糊成型、喷射成型、层压成型、 模压成型等。
喷射成型是通过将树脂和增强材料混 合后,通过喷枪喷射到模具表面,快 速固化形成复合材料制品。
金属基复合材料工艺
金属基复合材料是以金属或其 合金为基体,以纤维、晶须、 颗粒等为增强剂,通过复合工
艺制备而成的材料。
金属基复合材料的生产工艺主 要包括铸造、粉末冶金、扩散
可以根据特定的化学环境需求,设计复合 材料的组成和结构,以满足各种应用需求 。
复合材料PPT教学课件
原有材料的特点,又使各组分间 协同作用,形成了优于原材料的 特性。
4 复合材料的分类:
(1)按基体分类
树脂基复合材料 金属基复合材料 陶瓷基复合材料
(2)按增强体 的形状分类
颗粒增强复合材料 夹层增强复合材料 纤维增强复合材料
二 形形色色的复合材料
1 生产、生活中常用的复合材料
常见的复合材料有玻璃钢和 碳纤维增强复合材料。
玻璃钢是一种以玻璃纤维做增强体、合成树 脂做基体的复合材料。
优点:玻璃钢的强度可达到甚至超过合金的强度,
而密度只有钢铁的1/5左右;同时,这种材料保持着 较好的耐化学腐蚀性、电绝缘性和机械加工性能, 而且又不像普通玻璃那样硬脆。
玻璃钢制品
交流·研讨
你经常打羽毛球吗?现在羽毛球使用的大 多是碳素球拍,但几年前用的多是铝合金 球拍,人们还曾使用过木制球拍。
3.胰岛素改造
天然胰岛素制剂在储存中易形成二聚体和六聚体, 延缓胰岛素从注射部位进入血液,从而延缓了其降血 糖作用,也增加了抗原性,这是胰岛素B23-B28氨基 酸残基结构所致。利用蛋白质工程技术改变这些残基, 则可降低其聚合作用,使胰岛素快速起作用。该速效 胰岛素已通过临床实验。
4.治癌酶的改造
请与同学们讨论:用于制造碳素球拍的材 料有哪 些优越性?它为什么会具有这些 优越性?
• 碳纤维增强体 • 碳纤维复合材料
• 合成树脂做基体 优点:具有韧性好,强度高而质轻的特点。
• 碳纤维增强复合材料也广泛应用于纺织机 械和化工机械的制造,以及医学上人体组 织中韧带的制作等。
2 航空、航天领域中的复合材料
本节教材小结 复 合 材 料
认识复合材料
基体 增强体
形形色色的复合材料
4 复合材料的分类:
(1)按基体分类
树脂基复合材料 金属基复合材料 陶瓷基复合材料
(2)按增强体 的形状分类
颗粒增强复合材料 夹层增强复合材料 纤维增强复合材料
二 形形色色的复合材料
1 生产、生活中常用的复合材料
常见的复合材料有玻璃钢和 碳纤维增强复合材料。
玻璃钢是一种以玻璃纤维做增强体、合成树 脂做基体的复合材料。
优点:玻璃钢的强度可达到甚至超过合金的强度,
而密度只有钢铁的1/5左右;同时,这种材料保持着 较好的耐化学腐蚀性、电绝缘性和机械加工性能, 而且又不像普通玻璃那样硬脆。
玻璃钢制品
交流·研讨
你经常打羽毛球吗?现在羽毛球使用的大 多是碳素球拍,但几年前用的多是铝合金 球拍,人们还曾使用过木制球拍。
3.胰岛素改造
天然胰岛素制剂在储存中易形成二聚体和六聚体, 延缓胰岛素从注射部位进入血液,从而延缓了其降血 糖作用,也增加了抗原性,这是胰岛素B23-B28氨基 酸残基结构所致。利用蛋白质工程技术改变这些残基, 则可降低其聚合作用,使胰岛素快速起作用。该速效 胰岛素已通过临床实验。
4.治癌酶的改造
请与同学们讨论:用于制造碳素球拍的材 料有哪 些优越性?它为什么会具有这些 优越性?
• 碳纤维增强体 • 碳纤维复合材料
• 合成树脂做基体 优点:具有韧性好,强度高而质轻的特点。
• 碳纤维增强复合材料也广泛应用于纺织机 械和化工机械的制造,以及医学上人体组 织中韧带的制作等。
2 航空、航天领域中的复合材料
本节教材小结 复 合 材 料
认识复合材料
基体 增强体
形形色色的复合材料
第五章复合材料连接
1 1 λ = ( + ) η E1t1 E2t 2
2
G
d 2 T1 GP 2 − λ T1 + = 0 2 dx η E 2t2
(5-7)
d 2 T1 GP 2 − λ T1 + = 0 2 dx η E 2t2
为二阶常微分方程, 式(5-7)为二阶常微分方程,其一般解为 为二阶常微分方程
(5-7)
τ λl ch(λx) = τ av 2 sh( λl )
2
(5-16)
则无量纲的最大剪应力,即应力集中系数为: 则无量纲的最大剪应力,即应力集中系数为:
τ max =
Pλ λl cth( ) 2 2
τ av
l 1 2 P = ∫ l τdx = l −2 l
τ max λl λl = cth( ) τ av 2 2
(1) 胶接表面必须仔细清理; 胶接表面必须仔细清理; (2) 强度分散性大,胶接强度 强度分散性大, 受温湿环境的影响较大; 受温湿环境的影响较大; (3) 胶接质量检验较困难; 胶接质量检验较困难; (4) 多数情况下胶接具有不可 拆卸性。 拆卸性。
复合材料胶接连接持点
与金属材料构件之 间的胶接连接相比
5.1.2 接头效率 金属构件受拉剪的机械连接中,连接的接头效率: 金属构件受拉剪的机械连接中,连接的接头效率:
J
e
( w − nd ) = w
有连接孔构件能承 w—连续构件宽度 连续构件宽度 受的最大载荷与无 n—沿构件宽度发现的紧固件数 沿构件宽度发现的紧固件数 孔构件能承受的最 d—紧固件孔的直径 紧固件孔的直径 大载荷之比。 大载荷之比。
λ(5-12) 简化
l x=± 2
(5-14)
复合材料-第四章复合材料界面
残余应力 在金属基复合材料结构设计中,除了要考虑化学方面的因素外,还应注意增强纤维与基体金属的物理相容性。 要求金属基体有足够的韧性和强度,以便能够更好地通过界面将载荷传递给增强纤维; 要求在材料中出现裂纹或位错移动时基体上产生的局部应力不在增强纤维上形成高应力; 物理相容性中最重要的是要求纤维与基体的热膨胀系数匹配。
(1)物理因素
例1 粉末冶金制备的W丝/Ni,钨在镍中有很大的固溶度,在1100℃左右使用50小时后,钨丝发生溶解,造成钨丝直径仅为原来的60%,大大影响钨丝的增强作用,如不采取措施,将产生严重后果。为此,可采用钨丝涂覆阻挡层或在镍基合金中添加少量合金元素,如钛和铝,可以起到一定的防止钨丝溶入镍基合金的作用。
如何防止碳在镍中先溶解后析出的问题,就成为获得性能稳定的Cf / Ni的关键。
例2 碳纤维增强镍基复合材料。在800℃高温下,在界面碳先溶入镍,而后又析出,析出的碳是石墨结构,密度增大而在界面留下空隙,给镍提供了渗入碳纤维扩散聚集的位置。而且随温度的提高镍渗入量增加,在碳纤维表层产生镍环,严重损伤了碳纤维,使其强度严重下降。
4.2.1 聚合物基复合材料的界面
1.界面的形成 聚合物基复合材料界面的形成可以分成两个阶段: ①基体与增强纤维的接触与浸润过程; 增强纤维优先吸附能较多降低其表面能的组分,因此界面聚合物在结构上与聚合物基体是不同的。 ②聚合物的固化阶段。聚合物通过物理的或化学的变化而固化,形成固定的界面层。
1
2
复合材料中的界面并不是一个单纯的几何面,而是一个多层结构的过渡区域,这一区域由五个亚层组成。
界面是复合材料的特征,可将界面的机能归为以下几种效应。……P61
复合材料界面设计的原则(总的原则)
界面粘结强度要保证所受的力由基体通过界面传递给增强物,但界面粘结强度过高或过弱都会降低复合材料的强度。
(1)物理因素
例1 粉末冶金制备的W丝/Ni,钨在镍中有很大的固溶度,在1100℃左右使用50小时后,钨丝发生溶解,造成钨丝直径仅为原来的60%,大大影响钨丝的增强作用,如不采取措施,将产生严重后果。为此,可采用钨丝涂覆阻挡层或在镍基合金中添加少量合金元素,如钛和铝,可以起到一定的防止钨丝溶入镍基合金的作用。
如何防止碳在镍中先溶解后析出的问题,就成为获得性能稳定的Cf / Ni的关键。
例2 碳纤维增强镍基复合材料。在800℃高温下,在界面碳先溶入镍,而后又析出,析出的碳是石墨结构,密度增大而在界面留下空隙,给镍提供了渗入碳纤维扩散聚集的位置。而且随温度的提高镍渗入量增加,在碳纤维表层产生镍环,严重损伤了碳纤维,使其强度严重下降。
4.2.1 聚合物基复合材料的界面
1.界面的形成 聚合物基复合材料界面的形成可以分成两个阶段: ①基体与增强纤维的接触与浸润过程; 增强纤维优先吸附能较多降低其表面能的组分,因此界面聚合物在结构上与聚合物基体是不同的。 ②聚合物的固化阶段。聚合物通过物理的或化学的变化而固化,形成固定的界面层。
1
2
复合材料中的界面并不是一个单纯的几何面,而是一个多层结构的过渡区域,这一区域由五个亚层组成。
界面是复合材料的特征,可将界面的机能归为以下几种效应。……P61
复合材料界面设计的原则(总的原则)
界面粘结强度要保证所受的力由基体通过界面传递给增强物,但界面粘结强度过高或过弱都会降低复合材料的强度。
《复合材料》PPT课件
纳米绘画艺术—— 纳米中国
这是中国科学院化学所的科技人员利用 纳米加工技术在石墨表面通过搬迁碳原子而绘制 出的世界上最小的中国地图。
碳纳米球(富勒稀)
The Nobel Prize i n Chemistry 1996 for discovery of fullerenes(C60).
碳原子组成的小单元看起来和 足球一样。碳原子的活性差, 导电,非常稳定。绝佳的材料 和电性能
材料的创新:新材料的出现为产品设计提供更广阔 的前,由于其独
有的体积和表面效应,它从宏观上显示出许多奇妙 的特征。
制备纳米粒子的物理方法
1.球 磨
实施方法
2.振动 球磨
3.振动磨
4.搅拌磨
5.胶体磨
6.纳米气流粉碎 气流磨
球磨 (Milling)
新型日光温室复合材料 温室骨架和纵拉杆全部采用复合材料制成
绿可木,生态木塑 复合材料,木塑复
合材料吸音板
复合材料(玻璃 钢)制品
采用高分子复合材料制作浮雕和雕塑
碳纤维/树脂复合 材料
碳/碳复合材料
生物医学制品和体育运动
复合材料被用来预防受伤, 矫正生理机能,和帮助病人 复原。
生物医学制品和以体育运动器 材为主的碳纤维复合材料制品
• 台湾碳纤维约有3000吨/年的产能。
体育休闲用品应用
山地车
工业应用
这是一个覆盖甚广,内容甚多,也是一个发展最快, 前景最好的应用领域。
1、基础设施领域(混凝土结构加固补强)
基础设施(Infrastructure)系指建筑领域的房屋 、桥梁、隧道、涵洞、地铁及其相关的混凝土工程,其修 复、更新、加固已构成复合材料目前极重要的应用领域。
② 碳纤维增强复合材料 由碳纤维与酚醛、环氧、聚酯、聚四氧乙烯 等树脂组成的复合材料 特点:密度更低,比强度和比模量更高 具有优良的疲劳性能、耐冲击性能、自润滑 性能和耐磨、耐蚀、耐热性能
材料连接原理与工艺-绪论PPT课件
推动制造业的发展
材料连接技术是制造业的重要组成部 分,对于产品的制造效率和制造成本 有着重要影响。
02
材料连接的基本原理
熔化焊原理
熔化焊是通过加热使接头部位熔 化,然后通过液态熔融状态实现
材料之间的连接。
熔化焊的优点在于连接强度高, 适用于各种金属材料的连接。
熔化焊的缺点是加热过程中容易 造成接头部位氧化、烧损和变形。
材料连接原理与工艺-绪 论ppt课件
• 材料连接原理与工艺概述 • 材料连接的基本原理 • 材料连接工艺方法 • 材料连接的应用领域 • 材料连接的未来发展趋势
01
材料连接原理与工艺概述
材料连接的定义与分类
定义
材料连接是将两种或两种以上的材料 通过一定的工艺手段结合在一起,形 成一个整体的过程。
粘接工艺方法包括热熔胶、UV胶、环 氧树脂等,广泛应用于非金属材料的连
接。
粘接工艺方法具有操作简便、成本低等 优点,但同时也存在耐久性差、对环境
有一定污染等缺点。
机械连接工艺方法
机械连接工艺方法是通过机械方式,如螺丝、铆钉等,将待连接材料固定在一起,实现材料 连接的过程。
机械连接工艺方法包括螺纹连接、铆接、焊接等,广泛应用于各种材料的连接。
机械连接工艺方法具有连接强度高、耐久性好等优点,但同时也存在操作复杂、成本高等缺 点。
04
材料连接的应用领域
航空航天领域
01
02
03
飞机制造
飞机机身、机翼、尾翼等 部件的连接。
航天器制造
火箭、卫星、空间站等部 件的连接。
航空发动机制造
涡轮叶片、转子等部件的 连接。
汽车工业领域
车身制造
车架、车壳等部件的连接。
11.第十一次课——复合材料连接+复合材料结构设计基础(原耿)
1I f v f m vm
1 f v f m (1 v f )
考虑到实际复合材料中存在孔隙、裂纹、损伤、缺陷、残余应 力、界面结合不完善以及纤维微观屈曲等因素,加入修正系数K1
1 K1[ f v f m (1 v f )]
对于玻璃纤维/环氧树脂复合材料,K1取0.95-1
被胶接件拉伸 (或拉弯)破坏
被胶接件剥离破坏
胶层的剪切破坏
胶层剥离破坏
5.2 胶接连接设计
5.2.1胶接连接的破坏形式 除以上三种破坏形式之外,还会发生组合破坏,胶接 连接的破坏形式与以下因素有关: 连接形式 近邻胶层的纤维方向
载荷性质
连接几何参数
被胶接件 的厚度
5.2 胶接连接设计
5.2.1胶接连接的破坏形式
胶螺连接
胶铆连接
5.1 复合材料连接特点 混合连接的优缺点
优点:可提高抗剥离、抗冲击、抗疲劳和抗蠕变等性能; 缺点:存在孔应力集中带来的不利影响,增加重量和成本 混合连接仅在某些特定情况下才使用,并且需要选用 韧性胶黏剂,提高紧固件与孔的配合精度,以使胶接变形 与机械连接变形相协调,避免剪切破坏。
4.3 单向连续纤维复合材料弹性常数的预测
4.3.4 组合模型的弹性常数
整个模型由中间增强层I和表面基体层II组成,由基体薄片和纤维薄 片组成的增强层在横向呈串联形式. 整个复合材料单层由 表面层和增强层以并 联形式组合而成,在 增强层内部横向的基 体薄片和纤维薄片为 串联形式。
表面层
增强层
表面层
4.3 单向连续纤维复合材料弹性常数的预测
4.3.4 组合模型的弹性常数
1 纵向弹性模量E1
E1 E f 1v f Em (1 v f )
复合材料力学ppt课件
最新编辑ppt
7
(3)复合材料结构力学 它借助现有均匀各向同性材料结构力学的分 析方法,对各种形状的结构元件如板、壳等 进行力学分析,其中有层合板和壳结构的弯 曲、屈曲与振动问题以及疲劳、断裂、损伤 、开孔强度等问题。
最新编辑ppt
8
4复合材料的优点和缺点
复合材料的优点
(1)比强度高。
(2)比模量高。
示对称,“±”号表示两层正负角交错。
40/5 90/0 0 0/0 0/90/0 405 还可表示为 405 /900 /0 0s ,s表示
铺层上下对称。
最新编辑ppt
5
3复合材料的力学分析方法 (1)细观力学 它以纤维和基体作为基本单元,把纤维和基 体分别看成是各向同性的均匀材料(有的纤维 属横观各向同性材料),根据材料纤维的几何 形状和布置形式、纤维和基体的力学性能、 纤维和基体之间的相互作用(有时应考虑纤维 和基体之间界面的作用)等条件来分析复合材 料的宏观物理力学性能。
21
四 单层复合材料的宏观力学分析 1 平面应力下单层复合材料的应力一应变关系 可近似认为 3 0 , ,这就定义 23 431 50 了平面 应力状态,对正交各向异性材料,平面应力状态下 应力应变关系为
(3.1)
其中,
S 11
1 E1
S 22
1 E2
S 66
1 G12
S12E121E212
主方向应变分量间关系为
反过来有
最新编辑ppt
26
(3)任意方向上的应力一应变关系 在正交各向异性材料巾,平面应力状态主方向有下 列应力应变关系式
(3.4)
现应用式(3.3)和式(3.4)可得出偏轴向应力-应变 关系:
现用 Q 表示 T1Q(T1) ,则在x-y坐标中应力应变关系 可表示为
4复合材料连接设计详解
P t ≤ jt ( d )t
ω——板宽或钉间距,mm; [σjt] ——许用拉伸应力,MPa。
③剪切强度 校核按
p j ≤ j 2et
e——端距,mm; j ——许用剪切应力,MPa。
(2)紧固件的强度校核 校核按
4P ≤ 2 d
(3)紧固件的选用及对拧紧力矩的要求 ①紧固件直径的选择
d2
4
b dt br
由此得
d 4 br t b
式中
d——紧固件直径,mm t——被连接层合板的厚度,mm [σ
br]——层合板的许用挤压应力,MPa
[τb]——紧固件的许用剪应力,MPa
② 紧固件种类的选择 紧固件主要有螺栓和铆钉两大类:螺栓用于可拆卸的结构连接部位, 铆钉则用于不可拆卸的结构处
Hale Waihona Puke ——紧固件的许用剪切强度值
4.1.4 机械连接和强度校核举例 例4-1
图4-4为双排紧固件承受拉伸载荷的连接接头。试根据下述已知参 数校核接头强度,确定链接区复合材料层合板的厚度t。
已知紧固件为100°沉头窝Ti-22高锁
螺栓,公称直径d=6mm,单面破坏 剪[Q]=21.4KN,内排螺栓和外排螺
【解】
(1)计算连接区加厚部位的层合板厚度
①按面内剪切承载计算 q = t [ τ] T = q / [τ]=700/120=5.83mm
②按螺栓孔挤压承载计算
25×0.57×q = d t [σ
br]
t
25 0.57 700 4.32mm 6 385
③确定连接区加厚部位的层合板厚度按面内剪切承载需5.83mm,选定t=6mm。 铺层层数n=6/0.12=50层,即加厚板铺层层数比原来基本板增加16层。考
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受环境影响较小
开孔引起应力集中 降低了连接效率
增加紧固件或铆钉 的重量
(2)胶接连接
A.胶接连接 概念 B.胶接连接 优点和缺点 C.胶接连接 工艺流程
A. 胶接连接 概念
• 胶接连接是复合材料结构中较普遍 采用的一种连接方法。
• 这种连接方法是借助胶粘剂将其胶 接零件连接成不可拆卸的整体,是一种 较实用有效的连接工艺技术,有时还能 为研制生产解决关键性工艺技术
第三 这些特点使复合材料连接强度问题变得更复杂,必须予
以足够的重视。
(1) 机械连接
• 复合材料的机械连接是指将一复合 材料和另一复合材料(或金属或合金) 通过紧固件连接成为一整体
•
机械连接
优点
缺点
便于检查质量,安 全可靠, 强度分 散性小,能传递大
载荷
便于装卸,对零件连 接表面的准备及处理 要求不高,无胶接固 化产生的残余应力,
连接方法 优选原则
一、当承载较大,可靠性 要求较高时,宜采用机械连接
二、当承载较小、构件较薄、 环境条件 不十分恶劣时,
宜采用胶接连接
三、在某些特殊情况下, 为提高结构的破损 -安全 特性时,可采用混合连接
二. 复合材料连接应用 新进展
缝合
连接
New Joint
z-pinning 连接
螺栓-柱销 连接
(1) 缝合连接
缝合连接
A 应用背景
B 技术原理
C 工艺特点
D 缝合参数
A 应用背景 Background
text1
进行复合材料层 合板的轻量化设 计时,必须考虑层 合板的外层屈曲 破坏后,破坏的外 层和内层增强材 料之间将产生剥 离载荷,它将影响 层合板材料的强
度
text2
分层的存在 将造成复合 材料层合板 结构强度和 刚度的降低, 使其性能得 不到充分的 发挥。
提纲
一 复合材料主要连接类型
CONTENT
二 复合材料连接应用新进展
“连接”的重要性
首先 增强结构的载荷传递必须有相应的连接方式来解决,
而连接部位一般都是结构的薄弱环节。
其次 影响复合材料连接强度的因素要比金属复杂得多,因为
连接区域含有结构形状的各种间断,由此总是导致局部的应力集 中。其连接的失效模式多而且预测强度较困难。
存在一定的老化问题,胶 接连接后一般不可拆卸
表面处理
晾置 固化
配胶
叠合 检查
涂胶
清理 整修
表面处理
目的
方法
为了获得最佳的 表面状态,有助于 形成足够的黏合力
物理机械方法 和化学方法
胶接 表面处理方法
• 物理机械方法:砂纸打磨和喷砂 • 化学方法:溶剂清洗与脱脂,铬硫酸浸
蚀,阳极氧化处理和溶胶凝方法等,其 中阳极氧化处理是一种较好的方法
text3
因此,如何抑制 复合材料层合 板的分层损伤, 提高其层间强 度和抗分层、 抗冲击的能力 是使用复合材 料层合板时所 必须解决的问 题
B 技术原理
• 其原理是通过缝合手段,使复合材料在垂 直于铺层平面的方向得到增强,从而提高 材料层间损样性,如铺层方向、铺层距离
胶螺混合连接 工艺方法
两种方法
一、连接处预先制孔,涂胶后即安装螺 栓并拧紧,然后使胶层固化形成连接接 头
二、在已固化的胶接接头上制孔安装螺 栓,并拧紧形成连接接头
B. 胶铆连接
胶铆连接一般也可采用两种工艺方法 实 现,一种是在胶层固化后铆接;另一种 是在 胶 层 未 固 化 时 铆接。
为了提高胶-铆接头的强度,最好在胶 粘剂固化后再进行复合材料构件的铆接; 而在胶层未固化时铆接,应当分阶段对胶 层施加所需压力,以减少胶铆接头连接强 度的下降。
检查方法 1
目测法
2
敲击法
3
溶剂法
试压法
4
测量法
5
超声波法 X射线法 激光法 声阻法
等6
锐普PPT论坛chinakui首发:
(3)二者兼有的连接
A、胶螺连 接
B、胶铆连接
A.胶螺连接
• 胶螺混合连接: 一般是从结构的破损安全角度考虑,
用于提高连接接头的安全裕度以及结构 修补
胶螺混合连接有利于提高接头的承载 力及疲劳寿命
text4
缝合可用于局部增强,尤其对自由边的缝合可 大大降低层间垂直应力,减少自由边脱层。
D 缝合参数
1
缝线类型
2
缝线直径
3
缝合密度
4
缝合方向
1> 缝线类型
• 缝线不但要求具有高强度、一定的可延 伸性和耐磨损性,而且其性能不应受复合 材料固化的影响。常用的缝线有芳纶纤 维、玻璃纤维(GF)、涤纶和碳纤维CF等
无钻孔引起的应力集中,连接效率高, 适宜连接异形、异质、薄壁、复杂的 零件
结构轻,抗疲劳、密封、减振及绝缘性 能好,有阻止裂纹扩展作用,破损安全 性好,能获得光滑气动外形
不同材料连接无电偶腐蚀问题,工艺简便、 操作容易,可节省能源,因而具有一定的 经济效益
质量控制比较困难
胶接性能受环境(湿、热、 腐蚀介质)的影响
固化方法
• 方法有:室温固化、加热固化、辐射固 化、微波固化、高频固化等
以下对部分固化方法进行阐述: • 加热固化:分为中温固化(120度左右)和
高温固化(150度以上) 优点:固化速度快,强度高,耐老化 需要的设备:如热压罐,电烘箱,硫化
机,干燥炉,红外线,电吹风等
• 辐射固化:是指通过紫外线、电子束、Y射
和纤维织构可以调整,可以由预浸带经缝合-固化 而成型,也可以由预成型织物工艺经缝合-浸润固化而成型
text2 缝合不仅是一种增强技术,而且也是一种连接技术, 与复合材料的其它连接技术如粘结、铆接相比,缝 合材料整体性强、不易产生局部应力集中,因此为 制作大型复合材料制件提供了一种有效手段
text3 缝合对原有纤维分布没有大的影响,而通过调整 缝合参数如缝合密度、缝合花样和跨距可获得一定 程度的整体结构,达到合理的均匀应力状态。
2> 缝线直径
• 缝线直径大可提高缝合复合材料的层间 断裂韧性和抗冲击损伤能力。不过,缝线 直径增大会引起复合材料更多面内纤维 损伤,从而使其拉伸、压缩强度降低。
3> 缝合密度
线的照射而达到固化的效果 优点是:极快速,高质量,低耗能,高
效率,适合连续生产
微波固化:优点是修复速度快,效能高,
修复后的静强度可以恢复到原材料的102.9% 缺点是当微波照射下会发生电磁激励作
用,从而将胶粘剂中的磁性分子和被胶粘物发 生物理化学变化
设备:微波修复器(全军装备维修表面 工程研究中心研制)
开孔引起应力集中 降低了连接效率
增加紧固件或铆钉 的重量
(2)胶接连接
A.胶接连接 概念 B.胶接连接 优点和缺点 C.胶接连接 工艺流程
A. 胶接连接 概念
• 胶接连接是复合材料结构中较普遍 采用的一种连接方法。
• 这种连接方法是借助胶粘剂将其胶 接零件连接成不可拆卸的整体,是一种 较实用有效的连接工艺技术,有时还能 为研制生产解决关键性工艺技术
第三 这些特点使复合材料连接强度问题变得更复杂,必须予
以足够的重视。
(1) 机械连接
• 复合材料的机械连接是指将一复合 材料和另一复合材料(或金属或合金) 通过紧固件连接成为一整体
•
机械连接
优点
缺点
便于检查质量,安 全可靠, 强度分 散性小,能传递大
载荷
便于装卸,对零件连 接表面的准备及处理 要求不高,无胶接固 化产生的残余应力,
连接方法 优选原则
一、当承载较大,可靠性 要求较高时,宜采用机械连接
二、当承载较小、构件较薄、 环境条件 不十分恶劣时,
宜采用胶接连接
三、在某些特殊情况下, 为提高结构的破损 -安全 特性时,可采用混合连接
二. 复合材料连接应用 新进展
缝合
连接
New Joint
z-pinning 连接
螺栓-柱销 连接
(1) 缝合连接
缝合连接
A 应用背景
B 技术原理
C 工艺特点
D 缝合参数
A 应用背景 Background
text1
进行复合材料层 合板的轻量化设 计时,必须考虑层 合板的外层屈曲 破坏后,破坏的外 层和内层增强材 料之间将产生剥 离载荷,它将影响 层合板材料的强
度
text2
分层的存在 将造成复合 材料层合板 结构强度和 刚度的降低, 使其性能得 不到充分的 发挥。
提纲
一 复合材料主要连接类型
CONTENT
二 复合材料连接应用新进展
“连接”的重要性
首先 增强结构的载荷传递必须有相应的连接方式来解决,
而连接部位一般都是结构的薄弱环节。
其次 影响复合材料连接强度的因素要比金属复杂得多,因为
连接区域含有结构形状的各种间断,由此总是导致局部的应力集 中。其连接的失效模式多而且预测强度较困难。
存在一定的老化问题,胶 接连接后一般不可拆卸
表面处理
晾置 固化
配胶
叠合 检查
涂胶
清理 整修
表面处理
目的
方法
为了获得最佳的 表面状态,有助于 形成足够的黏合力
物理机械方法 和化学方法
胶接 表面处理方法
• 物理机械方法:砂纸打磨和喷砂 • 化学方法:溶剂清洗与脱脂,铬硫酸浸
蚀,阳极氧化处理和溶胶凝方法等,其 中阳极氧化处理是一种较好的方法
text3
因此,如何抑制 复合材料层合 板的分层损伤, 提高其层间强 度和抗分层、 抗冲击的能力 是使用复合材 料层合板时所 必须解决的问 题
B 技术原理
• 其原理是通过缝合手段,使复合材料在垂 直于铺层平面的方向得到增强,从而提高 材料层间损样性,如铺层方向、铺层距离
胶螺混合连接 工艺方法
两种方法
一、连接处预先制孔,涂胶后即安装螺 栓并拧紧,然后使胶层固化形成连接接 头
二、在已固化的胶接接头上制孔安装螺 栓,并拧紧形成连接接头
B. 胶铆连接
胶铆连接一般也可采用两种工艺方法 实 现,一种是在胶层固化后铆接;另一种 是在 胶 层 未 固 化 时 铆接。
为了提高胶-铆接头的强度,最好在胶 粘剂固化后再进行复合材料构件的铆接; 而在胶层未固化时铆接,应当分阶段对胶 层施加所需压力,以减少胶铆接头连接强 度的下降。
检查方法 1
目测法
2
敲击法
3
溶剂法
试压法
4
测量法
5
超声波法 X射线法 激光法 声阻法
等6
锐普PPT论坛chinakui首发:
(3)二者兼有的连接
A、胶螺连 接
B、胶铆连接
A.胶螺连接
• 胶螺混合连接: 一般是从结构的破损安全角度考虑,
用于提高连接接头的安全裕度以及结构 修补
胶螺混合连接有利于提高接头的承载 力及疲劳寿命
text4
缝合可用于局部增强,尤其对自由边的缝合可 大大降低层间垂直应力,减少自由边脱层。
D 缝合参数
1
缝线类型
2
缝线直径
3
缝合密度
4
缝合方向
1> 缝线类型
• 缝线不但要求具有高强度、一定的可延 伸性和耐磨损性,而且其性能不应受复合 材料固化的影响。常用的缝线有芳纶纤 维、玻璃纤维(GF)、涤纶和碳纤维CF等
无钻孔引起的应力集中,连接效率高, 适宜连接异形、异质、薄壁、复杂的 零件
结构轻,抗疲劳、密封、减振及绝缘性 能好,有阻止裂纹扩展作用,破损安全 性好,能获得光滑气动外形
不同材料连接无电偶腐蚀问题,工艺简便、 操作容易,可节省能源,因而具有一定的 经济效益
质量控制比较困难
胶接性能受环境(湿、热、 腐蚀介质)的影响
固化方法
• 方法有:室温固化、加热固化、辐射固 化、微波固化、高频固化等
以下对部分固化方法进行阐述: • 加热固化:分为中温固化(120度左右)和
高温固化(150度以上) 优点:固化速度快,强度高,耐老化 需要的设备:如热压罐,电烘箱,硫化
机,干燥炉,红外线,电吹风等
• 辐射固化:是指通过紫外线、电子束、Y射
和纤维织构可以调整,可以由预浸带经缝合-固化 而成型,也可以由预成型织物工艺经缝合-浸润固化而成型
text2 缝合不仅是一种增强技术,而且也是一种连接技术, 与复合材料的其它连接技术如粘结、铆接相比,缝 合材料整体性强、不易产生局部应力集中,因此为 制作大型复合材料制件提供了一种有效手段
text3 缝合对原有纤维分布没有大的影响,而通过调整 缝合参数如缝合密度、缝合花样和跨距可获得一定 程度的整体结构,达到合理的均匀应力状态。
2> 缝线直径
• 缝线直径大可提高缝合复合材料的层间 断裂韧性和抗冲击损伤能力。不过,缝线 直径增大会引起复合材料更多面内纤维 损伤,从而使其拉伸、压缩强度降低。
3> 缝合密度
线的照射而达到固化的效果 优点是:极快速,高质量,低耗能,高
效率,适合连续生产
微波固化:优点是修复速度快,效能高,
修复后的静强度可以恢复到原材料的102.9% 缺点是当微波照射下会发生电磁激励作
用,从而将胶粘剂中的磁性分子和被胶粘物发 生物理化学变化
设备:微波修复器(全军装备维修表面 工程研究中心研制)