结构化学第四章分子的对称性习题及答案
结构化学基础习题答案分子的对称性培训资料
谢谢10 解:若忽略分子中键和键之间的各种相互作用(共轭效应、空间阻碍效应和诱导效应等),则整个分子的偶极距近似等于个键距的矢量和。按矢量加和规则,C6H4ClCH3三种异构体的偶极距推算如下: ClCH3 3312222cos60CClCCHCClCCHo 2230305.17101.3410CmCm 123030125.17101.34102CmCm 304.6510Cm ClCH3 3312222cos60CClCCHCClCCHm 2230305.17101.3410CmCm 123030125.17101.34102CmCm 305.9510Cm ClCH3 3CClCCHp 30305.17101.3410CmCm 306.5110Cm 由结果可见,C6H4ClCH3 间位异构体偶极距的推算值和实验值很吻合,而对位异构体和邻位异构体,特别是邻位异构体两者差别较大。这既与共轭效应有关,更与紧邻的Cl原子和-CH3之间的空间阻碍效应有关。事实上,两基团夹角大于60。 【4.19】水分子的偶极矩为306.1810Cm,而2FO只有300.9010Cm,它们的键角值很近,试说明为什么2FO的偶极矩要比2HO小很多。 解:2HO分子和2FO均属于2vC点群。前者的键角为104.5,后者的键角为103.2。由于O和H两元素的电负性差1.24远大于O和F两元素的电负性差0.54,因而键矩OH大于键矩OF。多原子分子的偶极矩近似等于各键矩的矢量和,H2O分子和F2O分子的偶极距可分别表达为: 22104.52cos2103.22cos2HOOH称性
谢谢2 04分子的对称性 【4.1】HCN和2CS都是直线型分子,写出该分子的对称元素。 解:HCN:,C; CS2:2,,,,hCCi 【4.2】写出3HCCl分子中的对称元素。 解:3,3C 【4.3】写出三重映轴3S和三重反轴3I的全部对称操作。 解:依据三重映轴S3所进行的全部对称操作为: 1133hSC,2233SC,33hS 4133SC,5233hSC,63SE 依据三重反轴3I进行的全部对称操作为: 1133IiC,2233IC,33Ii 4133IC,5233IiC,63IE 【4.4】写出四重映轴4S和四重反轴4I的全部对称操作。 解:依据S4进行的全部对称操作为: 11213344442444,,,hhSCSCSCSE 依据4I进行的全部对称操作为: 11213344442444,,,IiCICIiCIE 【4.5】写出xz和通过原点并与轴重合的2C轴的对称操作12C的表示矩阵。 解:100010001xz, 12100010001xC 【4.6】用对称操作的表示矩阵证明: (a) 2xyCzi (b) 222CxCyCz (c) 2yzxzCz 解: (a)1122xyzzxxxCyCyyzzz, xxiyyzz
中国科学技术大学结构化学习题参考答案
5.
⎢⎡− ⎣
2
2m
d2 dx 2
+
1 2
kx
2
⎥⎤φ ⎦
=
Eφ
6.
势能算符
V
(r)
=
⎧0 ⎩⎨∞
r=a r≠a
则圆周上的波函数不为零,其他区间恒为零。
取 xy 平面作为用圆周面,则 θ=90°,r=a,Schrödinger 方程为
d 2ψ dϕ 2
+
2ma 2 E ψ 2
=0
解 之 可 得 两 个 特 解 ψ n = N sin(nϕ ) , ψ n ' = N cos(nϕ ) , 利 用 单 值 条 件
(f) SF5 Br : C4v ;(g) 反- SF4 Br2 : D4h ;(h) CDH 3 : C3v 。 7. (a) CH 2 = CH 2 : D2h ;(b) CH 2 = CHF : Cs ; (c) CH 2 = CF2 : C2v ; (d)
顺- CHF = CHF : C2v ; (e) 反- CHF = CHF : C2h 。 8. (a) 苯 D6h ;(b) 氟苯 C2v ;(c) 邻-二氟苯 C2v ;(d) 间-二氟苯 C2v ; (e) 对-二
氟苯 D2h ;(f) 1,3,5-三氟苯 D3h ;(g) 1,4-二氟-2,5-二溴苯 C2h ;(h) 萘 D2h (i) 2氟萘 Cs 。 9. (a) HCN : C∞v ;(b) H 2 S : C2v ;(c) CO2 : D∞h ;(d) CO : C∞v ;(e) C2 H 2 : D∞h ; (f) CN3OH : Cs ;(g) ND3 : C3v ;(h) OCS : C∞v ;(i) P4 : Td ;(j) PCl3 : C3v ; (k) PCl5 : D3h ;(l) B12Cl122− : I h ;(m) UF6 : Oh ;(n) Ar : K h 。 10. (a) FeF63− : Oh ; (b) IF5 : C4v ; (c) CH 2 = C = CH 2 : D2d ; (d) 立 方 烷
结构化学第四章分子的对称性习题及答案
一、填空题
1.群的表示可分为可约表示和不可约表示。
2.判断分子有无旋光性的标准是是否具有反轴。
3. 分子有无偶极矩与分子对称性有密切关系,只有属于C n和C nv这两类点群的分子才具有偶极矩,而其它点群的分子偶极矩为0。
二、选择题
1. CO2分子没有偶极矩,表明该分子是【D 】
A. 以共价键结合的
B. 以离子键结合的
C. V形的
D. 线形的,并且有对称中心
2. 根据分子的对称性,可知CCl4分子的偶极矩等于【A 】
A. 0
B. 1.03
C. 1.85
D. 1.67
3. 组成点群的群元素是什么【A 】
A. 对称操作
B. 对称元素
C. 对称中心
D. 对称面
4. CH4属于下列哪类分子点群【A 】
A. T d
B. D h
C. C3v
D. C s
5. H2O属于下列哪类分子点群【 A 】
A. C2v
B. C3v
C. C2h
D. O h
三、回答问题
1. 找出H2O分子和NH3分子的对称元素和对称操作及其所属点群,并建立其对称操作的乘积表。
课本第125页:表4.2.1和表4.2.2
课本第142页:表4.6.3。
结构化学第四章 分子对称性2
۞ 具有偶极矩分子所属的点群:
Cn, 偶极矩在转轴上; Cnv, 偶极矩在平面交线(转轴)上 Cs, 在对称面上 C1, 无对称性的分子 其它点群的分子没有偶极矩。
双原子分子的偶极矩:
同核双原子分子: 0 异核双原子分子: 0
偶极矩大,极性大,通常电负性差异大。
多原子分子的偶极矩:
对于n=奇数,Sn= Cn+ h Cnh n=偶数:
对称元素:(1)n=4的倍数:Sn 群阶(n为偶数):n
n阶
(2)n4的倍数:Cn/2+ i
n阶
5、Dn点群 Cn+ nC2(Cn) Dn
对称元素:Cn+ nC2(Cn)
对称操作:2n个
Dn :
ˆ1, C ˆ 2 , , C ˆ n 1 , C ˆ (1) , C ˆ (1) , , C ˆ (1) ˆ, C E n n n 2 2 2
确定分子点群的流程简图
4.4 分子的偶极矩和极化率
分子的永久偶极矩和分子的结构 偶极矩的定义:偶极矩 是正负电荷重心间的距离矢量 r 与电荷量q 的乘积,即:
qr
偶极矩的方向为正电荷重心指向负电荷重心。
对于多原子分子,偶极矩为: qi ri
用来判断手性分子的几种结构特征: 含有不对称C(或 N)的化合物:有 机上,常用有无不 对称C作为有无旋 光性的标准。
例外
螺旋型分子:无论有无不对称C均有旋光性,无 例外。
螺旋型分子都是手性分子, 旋光方向与螺旋方向一致;匝
数越多旋光度越大;螺距小者
旋光度大;分子旋光度是螺旋 旋光度的代数和.
(2)n=奇数:Cn,h,I2n
分子对称性习题答案
分子对称性习题答案分子对称性习题答案分子对称性是化学中一个重要的概念,它可以帮助我们理解分子的性质和反应。
在学习分子对称性的过程中,我们常常会遇到一些习题,下面我将为大家提供一些分子对称性习题的答案,希望对大家的学习有所帮助。
1. 对称性的定义是什么?对称性是指分子在空间中存在的对称操作,使得分子的外观在经过这些操作后保持不变。
常见的对称操作包括旋转、镜面反射和反转。
2. 如何确定分子的对称中心?分子的对称中心是指分子中存在一个点,经过该点进行旋转180度后,分子的外观保持不变。
确定分子的对称中心的方法是找出分子中所有的旋转轴,然后判断是否存在旋转180度后保持不变的点。
3. 如何确定分子的对称元素?分子的对称元素是指分子中存在的对称操作,使得分子在经过这些操作后保持不变。
常见的对称元素包括旋转轴、镜面反射面和反转中心。
4. 如何确定分子的点群?分子的点群是指分子在空间中具有的所有对称操作的集合。
确定分子的点群的方法是找出分子中所有的对称元素,并根据这些对称元素的组合关系确定分子的点群。
5. 如何确定分子的对称轴?分子的对称轴是指分子中存在的一个轴,经过该轴进行旋转后,分子的外观保持不变。
确定分子的对称轴的方法是找出分子中所有的旋转轴,并判断是否存在旋转后保持不变的轴。
6. 如何确定分子的镜面反射面?分子的镜面反射面是指分子中存在的一个平面,经过该平面进行镜面反射后,分子的外观保持不变。
确定分子的镜面反射面的方法是找出分子中所有的镜面反射面,并判断是否存在镜面反射后保持不变的平面。
7. 如何确定分子的反转中心?分子的反转中心是指分子中存在的一个点,经过该点进行反转后,分子的外观保持不变。
确定分子的反转中心的方法是找出分子中所有的反转中心,并判断是否存在反转后保持不变的点。
8. 请给出一些常见的分子的对称性描述。
- 水分子(H2O)具有C2v点群,其中包含一个C2轴和一个垂直于C2轴的镜面反射面。
结构化学第四章习题及答案
第四章习题一、 选择题1. 下面说法正确的是:---------------------------- ( D )(A) 分子中各类对称元素的完全集合构成分子的对称群(B) 同一种分子必然同属于一个点群,不同种分子必然属于不同的点群(C) 分子中有 Sn 轴,则此分子必然同时存在 Cn 轴和σh 面(D) 镜面σd 一定也是镜面σv2. 下面说法正确的是:---------------------------- ( B )(A) 如构成分子的各类原子均是成双出现的,则此分子必有对称中心(B) 分子中若有C4,又有i ,则必有σ(C) 凡是平面型分子必然属于Cs 群(D) 在任何情况下,2ˆn S =E ˆ3. 如果图形中有对称元素S6,那么该图形中必然包含:---------------------------- ( C )(A) C6, σh (B) C3, σh (C) C3,i (D) C6,i二、 填空题1. I3和I6不是独立的对称元素,因为I3= +I ,I6= +σh 。
2. 对称元素C2与σh 组合,得到__ i __;Cn 次轴与垂直它的C2组合,得到_n 个C2__。
3. 有两个分子,N3B3H6和 C4H4F2,它们都为非极性,且为反磁性,则N3B3H6几何构型_平面六元环__,点群 _。
C4H4F2几何构型_平面,有两个双键_,点群 。
三、 判断题1. 既不存在C n 轴,又不存在σh 时,S n 轴必不存在。
---------------------------- ( × )2. 在任何情况下,2ˆnS =E ˆ 。
---------------------------- ( × ) 3. 分子的对称元素仅7种,即σ ,i 及轴次为1,2,3,4,6的旋转轴和反轴。
---------------------------- ( × )四、 简答题1. 写出六重映轴的全部对称操作。
结构化学第四章习题讲解
《结构化学》第四萃习题4001厶和人不是独立的对称元素• I大1为心___ ,/6= ________4002判断:既不存在G轴.又不存在6时,久轴必不存在。
--------------------- ()4003判断:在任何情况下,S^E。
------------------------- ()4004判断:分子的对称元素仅7种,即o , i及轴次为1. 2. 3, 4, 6的旋转轴和反轴。
4005下面说法正确的是:------------------- ()(A)分子中各类对称元素的完全集合构成分子的对称群(B)同一种分子必然同属于一个点群.不同种分子必然属于不同的点群(C)分子中有&轴.则此分子必然同时存在G轴和6面(D)tfirfliod —定也是镜而64006下面说法正确的是:------------------- ()(A)如构成分子的各类原子均是成双出现的,则此分子必有对称中心(B)分子中若有C,又有i,则必有o(C)凡是平面型分子必然属于C,群(D)在任何情况下,= E4008对称元素G与6组合•得到 ___________________ : C”次轴与垂直它的G组合,得到.4009如果图形中有对称元素S6,那么该图形中必然包含:(A) a. 6 (B)C3,Qh (C)G,i (D)Cj i4010判断:因为映轴是旋转轴与垂直于轴的面组合所得到的对称元素.所以点群分子中必有对称元素6 和Cno ----------------------------- ()4011给出下列点群所具有的全部对称元素:(l)C2h (2) C JV⑶⑺⑷0⑸C引4012假定CuCl卩原來属于门点群,四个C1原子的编号如下图所示。
十出现下面的变化时•点群将如何变化(写出分子点群)。
(1)Cu-Cl(l)键长缩短(2)Cu-Cl(l)和Cu—C1⑵缩短同样长度(3)Cu-Cl(l)和Cu-Cl(2)缩短不同长度(4)0(1)和Cl(2)两原子沿这两原子(5)C1 (1)和CK2)沿其连线逆向移动相同距离.0(3)和Cl(4)亦沿其连线如上同样距离相向移动ci2--Cu-CL (Ch和Cb在纸面以上,X I C12和CX在纸面以下)4013d'(d._ 如.d 2-.2)sp4)杂化的几何构型属于 _________________ 点群°4014已知络合物MAaB:的中心原子M是dtp]杂化.该分子有多少种界构体?这些界构体备属什么点群?4015有一个AB.分子,实验测得其偶极矩为零且有一个三重轴,则此分子所属点群是4016有两个分子,NDH B和CHF"它们都为非极性,且为反磁性,则N3B3H6几何构型 __________________ 点群__________ o C1H4F2几何构型________ ,点群__________ 。
《结构化学》第四章习题答案
《结构化学》第四章习题答案4001C3+i; C3+σh4002(非)4003(非)4004不对4005(D)4006(B)4008i; n个C24009(C)4010(否)4011①C2h: C2(1), σh(1),i②C3v: C3(1),σv(3)③S4 : I4或S4④D2: C2(3)⑤C3i: C3(1),i4012(1) C3v(2) C2v(3) C s(4) C2v(5) D2d4013D3h4014有2 种异构体; 其一属于C2v,另一属于D4h。
4015D3h4016①平面六元环; ②D3h ; ③平面,有两个双键; ④C2h4017(1) D4h(2) C4v(3) C2v(4) D5h(5) C s4018C3v; C34019(C)4020(E)4022是4023D34024SO3: D3h;SO32-: C3v;CH3+: D3h;CH3-: C3v;BF3: D3h。
4025(1) D2h;(2) D2d;(3) D2。
4026C3v; D2h; O h; C3v; C3v。
4027(B)4028C2和D2h4029C2v; ∏344030SO2: C2v;CO2: D∞h;304031C s; C3v; C s。
4032D4h; C3v; C2; C s; D2h; T d。
4033C2v; C2v;。
4034I84035(A)4036(D)4037(D)4038(A)4039(B)4041(C)40424043C n;D n; T; O。
4044I n:分子有I n,无旋光;分子无I n,可能观察到旋光。
4045(E)4046(1) C3v,有(2) C2v,有(3) D3h,无(4) D2d,无(5) C s,有4047(1) C s,有(2) D∞v,有(3) C2,有(4) D5h,无(5) C2v,有4048C n4049点群旋光性偶极矩C i无无C n有有C nh无无C nv无有S n无无D n有无D nh无无D nd无无T d无无O h无无4050D n或T或O ; C nv40514052D3h; D3d; D3。
北师大_结构化学课后习题答案Word版
北师大 结构化学 课后习题 第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。
物质波的波动性是和微粒行为的统计性联系在一起的。
对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。
对一个粒子而言,通过晶体到达底片的位置不能准确预测。
若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。
因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为 12=ψ⎰τd 。
表示波函数具有归一性。
2 如何理解合格波函数的基本条件? 参考答案合格波函数的基本条件是单值,连续和平方可积。
由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。
3 如何理解态叠加原理? 参考答案在经典理论中,一个波可由若干个波叠加组成。
这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。
而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。
某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。
各种态都有自己的权重(即成份)。
这就导致了在态叠加下测量结果的不确定性。
但量子力学可以计算出测量的平均值。
4 测不准原理的根源是什么? 参考答案根源就在于微观粒子的波粒二象性。
结构化学练习题带答案
结构化学复习题一、选择填空题第一章量子力学基础知识1.实物微粒和光一样,既有性,又有性,这种性质称为性。
2.光的微粒性由实验证实,电子波动性由实验证实。
3。
电子具有波动性,其波长与下列哪种电磁波同数量级?(A)X射线 (B)紫外线(C)可见光(D)红外线4.电子自旋的假设是被下列何人的实验证明的?(A)Zeeman (B)Gouy (C)Stark (D)Stern—Gerlach5.如果f和g是算符,则(f+g)(f-g)等于下列的哪一个?(A)f2-g2; (B)f2—g2-fg+gf; (C)f2+g2; (D)(f—g)(f+g)6.在能量的本征态下,下列哪种说法是正确的?(A)只有能量有确定值;(B)所有力学量都有确定值;(C)动量一定有确定值; (D)几个力学量可同时有确定值;7.试将指数函数e±ix表示成三角函数的形式—----—8.微观粒子的任何一个状态都可以用来描述; 表示粒子出现的概率密度.9。
Planck常数h的值为下列的哪一个?(A)1.38×10-30J/s (B)1。
38×10—16J/s (C)6。
02×10—27J·s (D)6。
62×10—34J·s 10。
一维势箱中粒子的零点能是答案: 1。
略。
2。
略. 3.A 4.D 5。
B 6。
D 7.略 8。
略 9。
D 10.略第二章原子的结构性质1.用来表示核外某电子的运动状态的下列各组量子数(n, 1, m, m s)中,哪一组是合理的?(A)2,1,-1,—1/2; (B)0,0,0,1/2;(C)3,1,2,1/2; (D)2,1,0,0。
2.若氢原子中的电子处于主量子数n=100的能级上,其能量是下列的哪一个:(A)13.6Ev; (B)13。
6/10000eV; (C)—13.6/100eV;(D)-13.6/10000eV; 3。
氢原子的p x状态,其磁量子数为下列的哪一个?(A)m=+1; (B)m=—1;(C)|m|=1; (D)m=0;4。
(完整版)结构化学习题答案第4章
2组长:070601314组员:070601313070601315070601344070601345070601352第四章 双原子分子结构与性质1.简述 LCAO-MO 的三个基本原则,其依据是什么?由此可推出共价键应具有什么样的特征?答:1.(1)对称性一致(匹配)原则: φa = φs 而φb = φ pz 时, φs 和φ pz 在σˆ yz 的操作下对称性一致。
故 σˆ yz ⎰φs H ˆφ pz d τ = β s , pz ,所以, β s , pz ≠ 0 ,可以组合成分子轨道(2)最大重叠原则:在 α a 和α b 确定的条件下,要求 β 值越大越好,即要求 S ab 应尽可能的大(3)能量相近原则: 当α a = α b 时,可得 h = β ,c 1a = c 1b , c 1a =- c 1b ,能有效组合成分子轨道;2.共价键具有方向性。
2、以 H 2+为例,讨论共价键的本质。
答:下图给出了原子轨道等值线图。
在二核之间有较大几率振幅,没有节面,而在核间值则较小且存在节面。
从该图还可以看出,分子轨道不是原子轨道电子云的简单的加和,而是发生了波的叠加和强烈的干涉作用。
图 4.1 H + 的 ψ 1(a)和 ψ 2(b)的等值线图研究表明,采用 LCAO-MO 法处理 H 2+是成功的,反映了原子间形成共价键 的本质。
但由计算的得到的 Re=132pm ,De=170.8kJ/mol ,与实验测定值Re=106pm、De=269.0 kJ/mol 还有较大差别,要求精确解,还需改进。
所以上处理方法被称为简单分子轨道法。
当更精确的进行线性变分法处理,得到的最佳结果为Re=105.8pm、De=268.8 kJ/mol,十分接近H2+的实际状态。
成键后电子云向核和核间集中,被形象的称为电子桥。
通过以上讨论,我们看到,当二个原子相互接近时,由于原子轨道间的叠加,产生强烈的干涉作用,使核间电子密度增大。
结构化学 第四章习题(周公度)
第四章分子的对称性1、HCN和CS2都是线性分子。
写出该分子的对称元素解:HCN分子构型为线性不对称构型,具有的对称元素有:C∞,nσV; CS2分子为线性对称性分子构型,具有对称元素有:C∞,nC2, nσV ,σh 2、写出H3CCl分子的对称元素解:H3CCl 的对称元素有:C3,3σV3、写出三重映轴S3和三重反轴I3的全部对称操作解:S31=C3σ; S32=C32 ; S33=σ; S34= C3 ; S35 = C32σI31= C3i ; I32=C32 ; I33= i; I34= C3 ; I35 = C32i4、写出四重映轴S4和四重反轴I4的全部对称操作解:S41=C4σ; S42=C2 ; S43=C43σ; S44= EI41= C4i ; I42=C2 ; I43=C43 i; I44= E5、写出σxz和通过原点并与x轴重合的C2轴的对称操作C21的表示矩阵解:σxz和C2轴所在位置如图所示(基函数为坐标)σxz(x,y,z)’=(x,-y,z)σxz的变换矩阵为C21(x,y,z)’=(x,-y,-z)C21的变换矩阵为6、用对称操作的表示矩阵证明(1) C2(z) σxy = i(2) C2(x)C2(y) =C2(z)(3) σyzσxz=C2(z)解:C2(x),C2(y),C2(z),σxy,σyz,σxz,i对称操作的变换矩阵分别为,,,,,(1) C2(z) σxy = i=(2) C2(x)C2(y) =C2(z)=(3) σyzσxz=C2(z)=7、写出ClCH=CHCl(反式)分子的全部对称操作及其乘法表解:反式1,2-二氯乙烯的结构为:具有的对称元素为C2, I ; σh,σh即为分子平面,i位于C-C键中心C2与σh垂直。
分子为C2h群8、写出下列分子所隶属的点群:HCN,SO3,氯苯(C6H5)Cl,苯(C6H5),萘(C10H8)解HCN(属于C∞V),SO3(D3h),氯苯(C6H5)Cl(C2v),苯(C6H5)(D6h),萘(C10H8)(D2h)9、判断下列结论是否正确,说明理由(1) 凡线性分子一定有C∞轴(2) 甲烷分子有对称中心(3) 分子中最高轴次(n)与点群记号中的n相同(4) 分子本身有镜面,它的镜像和它本身全同解 (1) 正确线性分子的分子轴为一个C∞轴(2) 错甲烷分子没有对称中心(3) 错在只含一根主旋转轴的分子点群记号中n与主轴次相同,而在T,I,O类群中不相同(4) 正确分子含镜面,镜面前后部分成镜像关系,整个分子与它的镜像等同。
结构化学第四章练习题(含答案)
第四章分子对称性习题1、NF3分子属于_____________点群。
该分子是极性分子,其偶极矩向量位于__________上。
2、画出正八面体配位的Co(en)33+的结构示意图,指明其点群。
3、写出下列分子所属的点群:CHCl3,B2H6,SF6,NF3,SO32-4、下列说法正确的是:---------------------------- ( )(A) 凡是八面体络合物一定属于O h点群(B) 凡是四面体构型的分子一定属于T d点群(C) 异核双原子分子一定没有对称中心(D) 在分子点群中对称性最低的是C1群,对称性最高的是O h群5、判别分子有无旋光性的标准是__________。
6、偶极矩μ=0,而可能有旋光性的分子所属的点群为____________;偶极矩μ≠0,而一定没有旋光性的分子所属的点群为___________。
7、下列各组分子中,哪些有极性但无旋光性?----------------------------------- ( )(1)I3-(2)O3(3)N3-分子组:(A) 1,2 (B) 1,3 (C) 2,3 (D) 1,2,3 (E) 28、在下列空格中打上"+"或"-"以表示正确与错误。
分子所属点群C i C n vD n T d D n d分子必有偶极矩分子必无旋光性9、HCl的偶极矩是3.57×10-30C·m,键长是1.30Å。
如果把这个分子看作是由相距为1.30 Å 的电荷+q与-q组成的,求q并计算q/e。
(e=1.602×10-19C)10、分子有什么对称元素?属于何种点群?写出该群的乘法表。
11、CO2分子没有偶极矩,表明该分子是:-------------------------------------( )(A) 以共价键结合的(B) 以离子键结合的(C) V形的(D) 线形的,并且有对称中心(E) 非线形的11、一个具有一个三重轴、三个二重轴、三个对称面和一个对称中心的分子属于_______________________点群。
结构化学基础习题答案分子的对称性
04分子的对称性【4.1】HCN 和2CS 都是直线型分子,写出该分子的对称元素。
解:HCN :(),C υσ∞∞; CS 2:()()2,,,,h C C iυσσ∞∞∞【4.2】写出3H CCl 分子中的对称元素。
解:()3,3C υσ【4.3】写出三重映轴3S 和三重反轴3I 的全部对称操作。
解:依据三重映轴S 3所进行的全部对称操作为:1133h S C σ=,2233S C =,33h S σ= 4133S C =,5233h S C σ=,63S E = 依据三重反轴3I 进行的全部对称操作为:1133I iC =,2233I C =,33I i = 4133I C =,5233I iC =,63I E =【4.4】写出四重映轴4S 和四重反轴4I 的全部对称操作。
解:依据S 4进行的全部对称操作为:11213344442444,,,h h S C S C S C S E σσ====依据4I 进行的全部对称操作为:11213344442444,,,I iC I C I iC I E ====【4.5】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。
解:100010001xz σ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, ()12100010001x C ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦【4.6】用对称操作的表示矩阵证明: (a )()2xy C z iσ= (b )()()()222C x C y C z = (c )()2yz xz C z σσ=解:(a )()()1122xy z z x x x C y C y y z z z σ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, x x i y y z z -⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦()12xy z C iσ=推广之,有,()()1122xy xy n z n z C C i σσ==即:一个偶次旋转轴与一个垂直于它的镜面组合,必定在垂足上出现对称中心。
结构化学章节习题(含答案!)
第一章 量子力学基础一、单选题: 1、32/sinx l lπ为一维势箱的状态其能量是:( a ) 22229164:; :; :; :8888h h h hA B C D ml ml ml ml 2、Ψ321的节面有( b )个,其中( b )个球面。
A 、3 B 、2 C 、1 D 、03、立方箱中2246m lh E ≤的能量范围内,能级数和状态数为( b ). A.5,20 B.6,6 C.5,11 D.6,174、下列函数是算符d /dx的本征函数的是:( a );本征值为:( h )。
A 、e 2x B 、cosX C 、loge x D 、sinx 3 E 、3 F 、-1 G 、1 H 、2 5、下列算符为线性算符的是:( c )A 、sine xB 、C 、d 2/dx 2D 、cos2x6、已知一维谐振子的势能表达式为V = kx 2/2,则该体系的定态薛定谔方程应当为( c )。
A [-m 22 2∇+21kx 2]Ψ= E ΨB [m 22 2∇- 21kx 2]Ψ= E Ψ C [-m 22 22dx d +21kx 2]Ψ= E Ψ D [-m 22 -21kx 2]Ψ= E Ψ 7、下列函数中,22dx d ,dxd的共同本征函数是( bc )。
A cos kxB e –kxC e –ikxD e –kx2 8、粒子处于定态意味着:( c )A 、粒子处于概率最大的状态B 、粒子处于势能为0的状态C 、粒子的力学量平均值及概率密度分布都与时间无关系的状态.D 、粒子处于静止状态9、氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数?( c )A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5) 10、+He 离子n=4的状态有( c )(A )4个 (B )8个 (C )16个 (D )20个 11、测不准关系的含义是指( d ) (A) 粒子太小,不能准确测定其坐标; (B)运动不快时,不能准确测定其动量(C) 粒子的坐标的动量都不能准确地测定; (D )不能同时准确地测定粒子的坐标与动量12、若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者( b ) (A) 动量相同 (B) 动能相同 (C) 质量相同13、 为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本 身,动量算符应是(以一维运动为例) ( a )(A) mv (B) i x ∂∂ (C)222x ∂-∂14、若∫|ψ|2d τ=K ,利用下列哪个常数乘ψ可以使之归一化:( c )(A) K (B) K 2 (C) 1/K15、丁二烯等共轭分子中π电子的离域化可降低体系的能量,这与简单的一维势阱模型是一致的, 因为一维势阱中粒子的能量 ( b )(A) 反比于势阱长度平方 (B) 正比于势阱长度 (C) 正比于量子数16、对于厄米算符, 下面哪种说法是对的 ( b )(A) 厄米算符中必然不包含虚数 (B) 厄米算符的本征值必定是实数(C) 厄米算符的本征函数中必然不包含虚数17、对于算符Ĝ的非本征态Ψ ( c )(A) 不可能测量其本征值g . (B) 不可能测量其平均值<g >.(C) 本征值与平均值均可测量,且二者相等18、将几个非简并的本征函数进行线形组合,结果 ( b )(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变19. 在光电效应实验中,光电子动能与入射光的哪种物理量呈线形关系:( B )A .波长B. 频率C. 振幅20. 在通常情况下,如果两个算符不可对易,意味着相应的两种物理量( A)A .不能同时精确测定B .可以同时精确测定C .只有量纲不同的两种物理量才不能同时精确测定 21. 电子德布罗意波长为(C )A .λ=E /h B. λ=c /ν C. λ=h /p 22. 将几个非简并的本征函数进行线形组合,结果( A ) A .再不是原算符的本征函数B .仍是原算符的本征函数,且本征值不变C .仍是原算符的本征函数,但本征值改变23. 根据能量-时间测不准关系式,粒子在某能级上存在的时间τ越短,该能级的不确定度程度ΔE (B )A .越小 B. 越大 C.与τ无关24. 实物微粒具有波粒二象性, 一个质量为m 速度为v 的粒子的德布罗意波长为:A .h/(mv)B. mv/hC. E/h25. 对于厄米算符, 下面哪种说法是对的 ( B )A .厄米算符中必然不包含虚数B .厄米算符的本征值必定是实数C .厄米算符的本征函数中必然不包含虚数 26. 对于算符Ĝ的非本征态Ψ (A ) A .不可能测得其本征值g. B .不可能测得其平均值<g>.C .本征值与平均值均可测得,且二者相等 27. 下列哪一组算符都是线性算符:( C )A . cos, sinB . x, logC . x d dx d dx,,22二 填空题1、能量为100eV 的自由电子的德布罗依波波长为( 122.5pm )2、函数:①xe ,②2x ,③x sin 中,是算符22dxd 的本征函数的是( 1,3 ),其本征值分别是( 1,—1;)3、Li 原子的哈密顿算符,在( 定核 )近似的基础上是:(()23213212232221223222123332ˆr e r e r e r e r e r e mH +++---∇+∇+∇-= )三 简答题1. 计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光子的 能量。
结构化学答案 CHAPTER4
解: 群的特征标表如下
——————————————————————————————————
7.通过矩阵相乘,求证(4-22)式和(4-23)式,即 , 。
解:
,
又
8.证明Abel群的两个性质:(i)群中的每一元素自成一类;(ii)所有不可约表示都是一维的。
解:
(i)对于Abel群有, 。对此式两边同乘以 得 ,即 自成一类。
(ii)设Abel群的阶为 ,又群中的每一元素自成一类,即共轭类的数目为 。根据4.5.2定理1,群的不可约表示的数目等于共轭类数,不可约表示的数目为 。根据4.5.2定理2,群的不可约表示维数平方和等于阶数,即 ,这要求所有的维数 。
同样的理由可以说明其它轨函的对称性归属.
当然,也可以根据特征标表给出的各不可约表示基函数直接判断.如Eg不可约表示的基函数为z2,x2-y2,由于, , 的对称性变换性质和z2,x2-y2一致,故而 , 属于Eg不可约表示.
18.当有一个氘离子D+在三重轴方向与NH3结合成NH3D+,试问 的能级图4.7将发生什么变化,请画出NH3D+的能级图。
(3)
17.过渡金属络合物 具有 对称性,属于金属原子 的价轨道有 , , ; , ; , , 及 ,试说明它们的不可约表示类是: , ,及 。
解:判断一个轨函属于何种不可约表示,主要是根据其在群的各生成元的作用下的变换性质.Oh群的生成元为C4, C3, C2,i.可以验证,上述原子轨道中dxy,dyz,dxz在这些对称操作下的变换性质是相同的:例如, C4( ) = , C4( ) = , C4( ) = .所以对于这三个轨函, C4的特征标(C4)为1.同理,(C3)=0,(C2)=1.根据这些信息,就可以判断出,这三个轨函应该属于T2g或T2u,由于 , , 是中心对称的, , , 就只能属于T2g.
北师大 结构化学 第4章 分子对称性和群论
北师大 结构化学 课后习题第4章 分子对称性和群论习题与思考题解析1. 以H 2O 为例说明对称操作和对称元素的含义。
解:H 2O 分子为V 型结构,若将该分子经过O 原子且平分H-O-H 键角的直线旋转1800便可得到其等价图形,该直线称为对称元素-对称轴,其轴次为2,即为二重轴,用2C 表示。
绕2C 轴的对称操作叫旋转,用2ˆC 表示。
2. 写出HCN ,CO 2,H 2O 2,CH 2==CH 2和C 6H 6分子的对称元素,并指出所属对称元素系。
答:HCN 分子的对称元素:1个C ∞轴、∞个v σ面,属于'v C ∞对称元素系。
CO 2分子的对称元素:1个C ∞轴、∞个2C 轴、1个h σ、∞个v σ面和i 对称中心;属于'h D ∞对称元素系。
H 2O 2分子的对称元素:只有1个2C 轴,属于'2C 对称元素系。
CH 2==CH 2分子的对称元素:3个相互垂直的2C 轴、3个对称面(1个h σ、2个v σ),对称中心i ;属于'2h D 对称元素系。
C 6H 6分子的对称元素:1个6C 轴、6个垂直于6C 轴的2C 轴、1个h σ面、6个v σ面、和对称中心i ,属于'6hD 对称元素系。
3. 试证明某图形若兼有2C 轴和与它垂直的h σ对称面,则必定存在对称中心i 。
证明:假设该图形的2C 轴与z 轴重合,则与它垂直的h σ对称面为xy 平面。
则对称元素2()C z 和()h xy σ对应的对称操作2ˆˆ(),()h C z xy σ的矩阵表示为: 2100ˆ()010001C z -=- 和 100ˆ()010001h xy σ=- 则 210010100ˆˆˆ()()010010010010011h C z xy i σ--=-=-=--由此得证。
4. 写出xy σ和通过原点并与x 轴重合的2()C x 轴的对称操作的表示矩阵。
解:空间有一点(x , y , z ),经过对称面xy σ作用后得到点(x , y , -z ),经过2()C x 对称轴作用后得到点(x , -y , -z ),所以xy σ和2()C x 对应对称操作2ˆˆ,()xy C x σ的矩阵为: 100ˆ010001xy σ=- 和 21ˆ010001C =-- 5. 用对称操作的表示矩阵证明:(1) 2ˆˆˆ()xy C z i σ= (2) 222ˆˆˆ()()()C x C y C z = (3) 2ˆˆˆ()yz xz C z σσ= 证明:(1) 因为对称操作2ˆˆ(),xy C z σ的矩阵为: 21ˆ()010001C z -=- 和 10ˆ010001xy σ=- 所以210010100ˆˆˆ()010010010010011xy C z i σ--=-=-=--,由此得证。
结构化学习题答案第4章
2组长:070601314 组员:070601313070601315 070601344 070601345070601352第四章 双原子分子结构与性质1.简述 LCAO-MO 的三个基本原则,其依据是什么?由此可推出共价键应具有什么样的特征?答:1.(1)对称性一致(匹配)原则: φa = φs 而φb = φ pz 时, φs 和φ pz 在σˆ yz 的操作下对称性一致。
故 σˆ yz ⎰φs H ˆφ pz d τ = β s , pz ,所以, β s , pz ≠ 0 ,可以组合成分子轨道(2)最大重叠原则:在 α a 和α b 确定的条件下,要求 β 值越大越好,即要求 S ab 应尽可能的大(3)能量相近原则: 当α a = α b 时,可得 h = β ,c 1a = c 1b , c 1a =- c 1b ,能有效组合成分子轨道;2.共价键具有方向性。
2、以 H 2+为例,讨论共价键的本质。
答:下图给出了原子轨道等值线图。
在二核之间有较大几率振幅,没有节面,而在核间值则较小且存在节面。
从该图还可以看出,分子轨道不是原子轨道电 子云的简单的加和,而是发生了波的叠加和强烈的干涉作用。
图 4.1 H +的 ψ 1(a)和 ψ 2(b)的等值线图研究表明,采用 LCAO-MO 法处理 H 2+是成功的,反映了原子间形成共价键的本质。
但由计算的得到的Re=132pm,De=170.8kJ/mol,与实验测定值Re=106pm、De=269.0 kJ/mol 还有较大差别,要求精确解,还需改进。
所以上处理方法被称为简单分子轨道法。
当更精确的进行线性变分法处理,得到的最佳结果为Re=105.8pm、De=268.8 kJ/mol,十分接近H2+的实际状态。
成键后电子云向核和核间集中,被形象的称为电子桥。
通过以上讨论,我们看到,当二个原子相互接近时,由于原子轨道间的叠加,产生强烈的干涉作用,使核间电子密度增大。
结构化学练习(4-7章)
结构化学练习(4-7章)第四章练习(1)I3和I6不是独立的对称元素,因为I3= ,I6= 。
(2)下列等式成立的是A S3=C3+B S3=C6+σhC S3=C3+iD S3=C6+i(3)如果图形中有对称元素S6,那么该图形中必然包含A C6, σhB C3,C C3,iD C6,i(4)下列说法错误的是A 分子中有S n轴,则此分子必然同时存在C n轴和σh。
B 反映面σd一定也是反映面。
C I4是个独立的对称元素。
D 分子既有C n轴又有垂直于C n轴的σh,此分子必有Sn轴。
(5)对称元素C2与σh组合得到,C n轴与垂直于它的C2轴组合可得到。
(6)写出如下点群所具有的全部对称元素及其对称操作:(1)C2h (2)D3 (3)C3i(7)已知配合物MA2B4的中心原子M是d2sp3杂化,该分子中有多少种构造异构体,这些异构体各属于什么点群。
(8)下列说法正确的是A 凡是八面体配合物一定属于Oh点群B 异核双原子分子一定没有对称中心C 凡是四面体构型分子一定属于Td点群D 在分子点群中,对称性最低的是C1,对称性最高的是Oh(9)下列分子具有偶极矩,而不属于C nv群的是A H2O2B NH3C CH2Cl2D H2C=CH2(10)下列各组分子中有极性,但无旋光性的是(1)N3- (2)I3- (3)O3A (1),(2)B (2),(3)C (1),(2),(3)D (3)(11)下列具有相同阶的分子是(1)B2H6 (2)BrCl5 (3)SiF4A (1),(2)B (2),(3) B (1),(3) D 都不同(12)下列分子的点群不是16个群元素的是A CCl4B XeO4C S8D Ni(CN)4(13)(1)SO42- (2)PO43- (3)ClO4-三者中不是T d点群的是A (1)B (2)C (3)D 都是T d点群(14)下列空格中打上“+”或“-”分别表示对与错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1.群的表示可分为可约表示和不可约表示。
2.判断分子有无旋光性的标准是是否具有反轴。
3. 分子有无偶极矩与分子对称性有密切关系,只有属于 C n和 C nv这两类点群的分子才具有偶极矩,而其它点群的分子偶极矩为0。
二、选择题
1. CO2分子没有偶极矩,表明该分子是【 D 】
A. 以共价键结合的
B. 以离子键结合的
C. V形的
D. 线形的,并且有对称中心
2. 根据分子的对称性,可知CCl4分子的偶极矩等于【 A 】
A. 0
B.
C.
D.
3. 组成点群的群元素是什么【 A 】
A. 对称操作
B. 对称元素
C. 对称中心
D. 对称面
4. CH4属于下列哪类分子点群【 A 】
A. T d
B. D h
C. C3v
D. C s
5. H2O属于下列哪类分子点群【 A 】
A. C2v
B. C3v
C. C2h
D. O h
三、回答问题
1. 找出H2O分子和NH3分子的对称元素和对称操作及其所属点群,并建立其对称操作的乘积表。
课本第125页:表和表课本第142页:表。