数据结构 第七章-图2.ppt
合集下载
第7章图_数据结构
v4
11
2013-8-7
图的概念(3)
子图——如果图G(V,E)和图G’(V’,E’),满足:V’V,E’E 则称G’为G的子图
2 1 4 3 5 6 3 5 6 1 2
v1 v2 v4 v3 v2
v1 v3 v4
v3
2013-8-7
12
图的概念(4)
路径——是顶点的序列V={Vp,Vi1,……Vin,Vq},满足(Vp,Vi1),
2013-8-7 5
本章目录
7.1 图的定义和术语 7.2 图的存储结构
7.2.1 数组表示法 7.2.2 邻接表 ( *7.2.3 十字链表 7.3.1 深度优先搜索 7.3.2 广度优先搜索 7.4.1 图的连通分量和生成树 7.4.2 最小生成树
*7.2.4 邻接多重表 )
7.3 图的遍历
连通树或无根树
无回路的图称为树或自由树 或无根树
2013-8-7
18
图的概念(8)
有向树:只有一个顶点的入度为0,其余 顶点的入度为1的有向图。
V1 V2
有向树是弱 连通的
V3
V4
2013-8-7
19
自测题
7. 下列关于无向连通图特性的叙述中,正确的是
2013-8-7
29
图的存贮结构:邻接矩阵
若顶点只是编号信息,边上信息只是有无(边),则 数组表示法可以简化为如下的邻接矩阵表示法: typedef int AdjMatrix[MAXNODE][MAXNODE];
*有n个顶点的图G=(V,{R})的邻接矩阵为n阶方阵A,其定 义如下:
1 A[i ][ j ] 0
【北方交通大学 2001 一.24 (2分)】
王道数据结构 第七章 查找思维导图-高清脑图模板
每次调整的对象都是“最小不平衡子树”
插入操作
在插入操作,只要将最小不平衡子树调整平衡,则其他祖先结点都会恢复平衡
在A的左孩子的左子树中插入导致不平衡
由于在结点A的左孩子(L)的左子树(L)上插入了新结点,A的平衡因子由1增
至2,导致以A为根的子树失去平衡,需要一次向右的旋转操作。
LL
将A的左孩子B向右上旋转代替A成为根节点 将A结点向右下旋转成为B的右子树的根结点
RR平衡旋转(左单旋转)
而B的原左子树则作为A结点的右子树
在A的左孩子的右子树中插入导致不平衡
由于在结点A的左孩子(L)的右子树(R)上插入了新结点,A的平衡因子由1增
LR
至2,导致以A为根的子树失去平衡,需要两次旋转操作,先左旋转再右旋转。
将A的左孩子B的右子树的根结点C向左上旋转提升至B结点的位置
本质:永远保证 子树0<关键字1<子树1<关键字2<子树2<...
当左兄弟很宽裕时,用当前结点的前驱、前驱的前驱来填补空缺 当右兄弟很宽裕时,用当前结点的后继、后继的后继来填补空缺
兄弟够借。若被删除关键字所在结点删除前的关键字个数低于下限,且与此结点 右(或左)兄弟结点的关键字还很宽裕,则需要调整该结点、右(或左)兄弟结 点及其双亲结点及其双亲结点(父子换位法)
LL平衡旋转(右单旋转)
而B的原右子树则作为A结点的左子树
在A的右孩子的右子树中插入导致不平衡
由于在结点A的右孩子(R)的右子树(R)上插入了新结点,A的平衡因子由-1
减至-2,导致以A为根的子树失去平衡,需要一次向左的旋转操作。
RR
将A的右孩子B向左上旋转代替A成为根节点 将A结点向左下旋转成为B的左子树的根结点
《数据结构图论部分》PPT课件
Page 4
2020/11/24
哥尼斯堡七桥问题
能否从某个地方出发,穿过所有的桥仅一次 后再回到出发点?
Page 5
2020/11/24
七桥问题的图模型
欧拉回路的判定规则:
1.如果通奇数桥的地方多于
C
两个,则不存在欧拉回路;
2.如果只有两个地方通奇数
桥,可以从这两个地方之一
A
B 出发,找到欧拉回路;
V4 是有向边,则称该图为有向图。
Page 9
2020/11/24
简单图:在图中,若不存在顶点到其自身的边,且同 一条边不重复出现。
V1
V2
V3
V4
V5
非简单图
V1
V2
V3
V4
V5
非简单图
V1
V2
V3
V4
V5
简单图
❖ 数据结构中讨论的都是简单图。
Page 10
2020/11/24
图的基本术语
邻接、依附
DeleteVex(&G, v); 初始条件:图 G 存在,v 是 G 中某个顶点。 操作结果:删除 G 中顶点 v 及其相关的弧。
Page 34
2020/11/24
InsertArc(&G, v, w); 初始条件:图 G 存在,v 和 w 是 G 中两个顶点。 操作结果:在 G 中增添弧<v,w>,若 G 是无向的,则还
Page 2
2020/11/24
• 知识点
– 图的类型定义 – 图的存储表示 – 图的深度优先搜索遍历和广度优先搜索遍历 – 无向网的最小生成树 – 拓扑排序 – 关键路径 – 最短路径
Page 3
数据结构第七章:图
例
a c G1
b d
vexdata firstarc adjvex next 1 4 ^ a 2 3 4 b c d 1 1 3 ^ ^ ^
19
7.3 图的遍历
深度优先遍历(DFS) 深度优先遍历
方法:从图的某一顶点 出发,访问此顶点; 方法:从图的某一顶点V0出发,访问此顶点;然后依 次从V 的未被访问的邻接点出发,深度优先遍历图, 次从 0的未被访问的邻接点出发,深度优先遍历图, 直至图中所有和V 相通的顶点都被访问到; 直至图中所有和 0相通的顶点都被访问到;若此时图 中尚有顶点未被访问, 中尚有顶点未被访问,则另选图中一个未被访问的顶 点作起点,重复上述过程, 点作起点,重复上述过程,直至图中所有顶点都被访 问为止。 问为止。
ω ij , 若(v i , v j )或 < v i , v j >∈ E(G) A[i, j ] = 0,其它
11
例
1 3
5
2
8 4 7 5 1 6 3 4 2
0 5 7 0 3
5 0 0 4 8
7 0 0 2 1
0 4 2 0 6
3 8 1 6 0
12
关联矩阵——表示顶点与边的关联关系的矩阵 表示顶点与边的关联关系的矩阵 关联矩阵
1
7.1 图的定义和术语
是由两个集合V(G)和E(G)组成的 组成的, 图(Graph)——图G是由两个集合 图 是由两个集合 和 组成的 记为G=(V,E) 记为
其中: 其中:V(G)是顶点的非空有限集 是顶点的非空有限集 E(G)是边的有限集合,边是顶点的无序对或有序对 是边的有限集合, 是边的有限集合
有向图——有向图 是由两个集合 有向图G是由两个集合 有向图 有向图 是由两个集合V(G)和E(G)组成的 和 组成的
北京理工大学数据结构图课件
A
B C D
第 5 页
E
7.1 图的定义与术语
3、无向图——无向图G是由两个集合V(G)和 E(G)组成的。 其中:V(G)是顶点的非空有限集。 E(G)是边的有限集合,边是顶点的 无序对,记为 (v,w) 或 (w,v),并且 (v,w)=(w,v)。
第 6 页
7.1 图的定义与术语
例如:
G2 = <V2,E2> V2 = { v0 ,v1,v2,v3,v4 } E2 = { (v0,v1), (v0,v3), (v1,v2), (v1,v4), (v2,v3), (v2,v4) }
V5
第 15 页
7.1 图的定义与术语
非 连 通 图
V0
V1
V2
V3
V0
V1 V3
V2
强连通分量
第 16 页
7.1 图的定义与术语
7、生成树
包含无向图 G 所有顶点的极小连通子图称为G生 成树。 极小连通子图意思是:该子图是G的连通子图, 在该子图中删除任何一条边,子图不再连通。
V0 V2 V3 V4 V3 连通图G1 V1 V0 V1 连通 所有顶点 V4 无回路
第 22 页
7.2 图的存储结构 3、有向图的逆邻接表 顶点:用一维数组存储(按编号顺序) 以同一顶点为终点的弧:用线性链表存储。
vexdata V0 V1 0 1 v0 v1 v2
v3
firstarc 3 0 0 ^ ^
V2
V3
2 3
^
^
2
章 类似于有向图的邻接表,所不同的是: 以同一顶点为终点弧:用线性链表存储
Boolean visited[MAX]; // 访问标志数组
B C D
第 5 页
E
7.1 图的定义与术语
3、无向图——无向图G是由两个集合V(G)和 E(G)组成的。 其中:V(G)是顶点的非空有限集。 E(G)是边的有限集合,边是顶点的 无序对,记为 (v,w) 或 (w,v),并且 (v,w)=(w,v)。
第 6 页
7.1 图的定义与术语
例如:
G2 = <V2,E2> V2 = { v0 ,v1,v2,v3,v4 } E2 = { (v0,v1), (v0,v3), (v1,v2), (v1,v4), (v2,v3), (v2,v4) }
V5
第 15 页
7.1 图的定义与术语
非 连 通 图
V0
V1
V2
V3
V0
V1 V3
V2
强连通分量
第 16 页
7.1 图的定义与术语
7、生成树
包含无向图 G 所有顶点的极小连通子图称为G生 成树。 极小连通子图意思是:该子图是G的连通子图, 在该子图中删除任何一条边,子图不再连通。
V0 V2 V3 V4 V3 连通图G1 V1 V0 V1 连通 所有顶点 V4 无回路
第 22 页
7.2 图的存储结构 3、有向图的逆邻接表 顶点:用一维数组存储(按编号顺序) 以同一顶点为终点的弧:用线性链表存储。
vexdata V0 V1 0 1 v0 v1 v2
v3
firstarc 3 0 0 ^ ^
V2
V3
2 3
^
^
2
章 类似于有向图的邻接表,所不同的是: 以同一顶点为终点弧:用线性链表存储
Boolean visited[MAX]; // 访问标志数组
数据结构(C语言版)_第7章 图及其应用
(1)创建有向图邻接表 (2)创建无向图的邻接表
实现代码详见教材P208
7.4 图的遍历
图的遍历是对具有图状结构的数据线性化的过程。从图中任 一顶点出发,访问输出图中各个顶点,并且使每个顶点仅被访 问一次,这样得到顶点的一个线性序列,这一过程叫做图的遍 历。
图的遍历是个很重要的算法,图的连通性和拓扑排序等算法 都是以图的遍历算法为基础的。
V1
V1
V2
V3
V2
V3
V4
V4
V5
图9.1(a)
图7-2 图的逻辑结构示意图
7.2.2 图的相关术语
1.有向图与无向图 2.完全图 (1)有向完全图 (2)无向完全图 3.顶点的度 4.路径、路径长度、回路、简单路径 5.子图 6.连通、连通图、连通分量 7.边的权和网 8.生成树
2. while(U≠V) { (u,v)=min(wuv;u∈U,v∈V-U); U=U+{v}; T=T+{(u,v)}; }
3.结束
7.5.1 普里姆(prim)算法
【例7-10】采用Prim方法从顶点v1出发构造图7-11中网所对 应的最小生成树。
构造过程如图7-12所示。
16
V1
V1
V2
7.4.2 广度优先遍历
【例7-9】对于图7-10所示的有向图G4,写出从顶点A出发 进行广度优先遍历的过程。
访问过程如下:首先访问起始顶点A,再访问与A相邻的未被 访问过的顶点E、F,再依次访问与E、F相邻未被访问过的顶 点D、C,最后访问与D相邻的未被访问过的顶点B。由此得到 的搜索序列AEFDCB。此时所有顶点均已访问过, 遍历过程结束。
【例7-1】有向图G1的逻辑结构为:G1=(V1,E1) V1={v1,v2,v3,v4},E1={<v1,v2>,<v2,v3>,<v2,v4>,<v3,v4>,<v4,v1>,<v4,v3>}
实现代码详见教材P208
7.4 图的遍历
图的遍历是对具有图状结构的数据线性化的过程。从图中任 一顶点出发,访问输出图中各个顶点,并且使每个顶点仅被访 问一次,这样得到顶点的一个线性序列,这一过程叫做图的遍 历。
图的遍历是个很重要的算法,图的连通性和拓扑排序等算法 都是以图的遍历算法为基础的。
V1
V1
V2
V3
V2
V3
V4
V4
V5
图9.1(a)
图7-2 图的逻辑结构示意图
7.2.2 图的相关术语
1.有向图与无向图 2.完全图 (1)有向完全图 (2)无向完全图 3.顶点的度 4.路径、路径长度、回路、简单路径 5.子图 6.连通、连通图、连通分量 7.边的权和网 8.生成树
2. while(U≠V) { (u,v)=min(wuv;u∈U,v∈V-U); U=U+{v}; T=T+{(u,v)}; }
3.结束
7.5.1 普里姆(prim)算法
【例7-10】采用Prim方法从顶点v1出发构造图7-11中网所对 应的最小生成树。
构造过程如图7-12所示。
16
V1
V1
V2
7.4.2 广度优先遍历
【例7-9】对于图7-10所示的有向图G4,写出从顶点A出发 进行广度优先遍历的过程。
访问过程如下:首先访问起始顶点A,再访问与A相邻的未被 访问过的顶点E、F,再依次访问与E、F相邻未被访问过的顶 点D、C,最后访问与D相邻的未被访问过的顶点B。由此得到 的搜索序列AEFDCB。此时所有顶点均已访问过, 遍历过程结束。
【例7-1】有向图G1的逻辑结构为:G1=(V1,E1) V1={v1,v2,v3,v4},E1={<v1,v2>,<v2,v3>,<v2,v4>,<v3,v4>,<v4,v1>,<v4,v3>}
第七章 图
vertex firstin firstout
顶点结点结构
顶点值域 指针域 指针域
tailvex headvex hlink
tlink
info
弧结点结构
弧尾结点 弧头结点 指针域 指针域 弧上信息
A B
C
在十字链表中容易求 得顶点的出度和入度
0 A
0 1
∧
2 0∧∧
1 B 2 C
2 1∧
0 2∧∧
图的遍历方法有两种: 深度优先搜索和广度优先搜索
7.3.1 深度优先搜索
按照深度方向搜索 ,它类似于树的先根遍历。 深度优先算法的基本思想是: (1)从图中某个顶点v0出发,首先访问v0。 (2)找出刚访问过的顶点vi的第一个未被访问 的邻接点,然后访问该顶点。重复此步骤,直 到当前的顶点没有未被访问的邻接点为止。 (3)返回前一个访问过的顶点,找出该顶点的 下一个未被访问的邻接点,访问该顶点。转2。
一、图的数组(邻接矩阵)存储表示 二、图的邻接表存储表示
三、有向图的十字链表存储表示 四、无向图的邻接多重表存储表示
一、图的数组(邻接矩阵)表示法
所谓邻接矩阵(Adjacency Matrix)的存 储结构,就是用一维数组存储图中顶点的信息, 用矩阵表示图中各顶点之间的邻接关系。假设 图G=(V,E)有n个确定的顶点,即V= {v0,v1,…,vn-1},则表示G中各顶点相邻关系为一 个n×n的矩阵
遍 历
DFSTraverse(G, v, Visit());
//从顶点v起深度优先遍历图G,并对每 //个顶点调用函数Visit一次且仅一次。
BFSTraverse(G, v, Visit());
//从顶点v起广度优先遍历图G,并对每 //个顶点调用函数Visit一次且仅一次。
顶点结点结构
顶点值域 指针域 指针域
tailvex headvex hlink
tlink
info
弧结点结构
弧尾结点 弧头结点 指针域 指针域 弧上信息
A B
C
在十字链表中容易求 得顶点的出度和入度
0 A
0 1
∧
2 0∧∧
1 B 2 C
2 1∧
0 2∧∧
图的遍历方法有两种: 深度优先搜索和广度优先搜索
7.3.1 深度优先搜索
按照深度方向搜索 ,它类似于树的先根遍历。 深度优先算法的基本思想是: (1)从图中某个顶点v0出发,首先访问v0。 (2)找出刚访问过的顶点vi的第一个未被访问 的邻接点,然后访问该顶点。重复此步骤,直 到当前的顶点没有未被访问的邻接点为止。 (3)返回前一个访问过的顶点,找出该顶点的 下一个未被访问的邻接点,访问该顶点。转2。
一、图的数组(邻接矩阵)存储表示 二、图的邻接表存储表示
三、有向图的十字链表存储表示 四、无向图的邻接多重表存储表示
一、图的数组(邻接矩阵)表示法
所谓邻接矩阵(Adjacency Matrix)的存 储结构,就是用一维数组存储图中顶点的信息, 用矩阵表示图中各顶点之间的邻接关系。假设 图G=(V,E)有n个确定的顶点,即V= {v0,v1,…,vn-1},则表示G中各顶点相邻关系为一 个n×n的矩阵
遍 历
DFSTraverse(G, v, Visit());
//从顶点v起深度优先遍历图G,并对每 //个顶点调用函数Visit一次且仅一次。
BFSTraverse(G, v, Visit());
//从顶点v起广度优先遍历图G,并对每 //个顶点调用函数Visit一次且仅一次。
数据结构(C语言版CHAP7(2)
V1
AOE网
a0
a7
V2 V6
a2 a3
V3
a5
a8
V4
V5
a1
V7 a 6 V 8 a4
结束
第 15 页
7.4
有向无环图的应用
为计算完成整个工程至少需要多少时间,需将每一子工程所需的时 间作为权值赋给AOE网的各边(就象哈夫曼树给结点赋权值一样)。 AOE网与关键路径部分,不作为课程要求。
V1
a0
V0
V1
V3
V4
V5
V6
结束
第 3 页
7.4
有向无环图的应用
2 AOE网( activity on edge net ) 用边表示活动,顶点表示事件的有向图称为AOE网。 事件发生表示以 该事件为起点的活动可以开始,以该事件为终点的活动已经结束。
a1 a2 a3 a4 a5 a6 分别表示例1中的7个子工程V0、V1、V2、V3、V4、V5、V6。a7 a8
结束
第 14 页
7.4
三 AOE网与关键路径
对工程人们关心两类问题:
有向无环图的应用
1)工程能否顺序进行,即工程流程是否“合理” 2)完成整项工程至少需要多少时间,哪些子工程是影响工程进度的关键 子工程? 为解决第二类问题,通常可用称为AOE网的有向图表示工程流程 用边表示活动,顶点表示事件。 事件发生表示以该事件为起点的活动可 以开始,以该事件为终点的活动已经结束。
结束
第 12 页
7.4
有向无环图的应用
4)拓扑排序算法 Status TopologicalSort(ALGraph G) { //有向图G采用邻接表存储结构。 //若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则ERROR。 FindInDegree(G, indegree); //求各顶点入度indegree[0..vernum-1] InitStack(S); For(i=0; i<G. vexnum; ++i) //建入度为0的顶点栈S indegree 0 0 if (! Indegree[i]) Push(S, i); //入度为0顶点的编号进栈 1 0 6 2 1 5 V3 3 2 4 4 2 3 V1 V4 V6 5 3 S.top 2 6 2 1 1 V2 V5 V7 S.base 0 0
数据结构第七章--图(严蔚敏版)
9个顶点 个顶点
8个顶点的无向图最多有 条边且该图为连通图 个顶点的无向图最多有28条边且该图为连通图 个顶点的无向图最多有 连通无向图构成条件:边 顶点数 顶点数-1)/2 顶点数*(顶点数 连通无向图构成条件 边=顶点数 顶点数 顶点数>=1,所以该函数存在单调递增的单值反 顶点数 所以该函数存在单调递增的单值反 函数,所以边与顶点为增函数关系 所以28个条边 函数 所以边与顶点为增函数关系 所以 个条边 的连通无向图顶点数最少为8个 所以28条边的 的连通无向图顶点数最少为 个 所以 条边的 非连通无向图为9个 加入一个孤立点 加入一个孤立点) 非连通无向图为 个(加入一个孤立点
28
无向图的邻接矩阵为对称矩阵
2011-10-13
7.2
图的存储结构
Wij 若< vi,vj > 或<vj,v i > ∈E(G)
若G是网(有权图),邻接矩阵定义为 是网(有权图), ),邻接矩阵定义为
A [ i,j ] = , 0或 ∞
如图: 如图:
V1
若其它
V2
3 4
2
V3
2011-10-13
C
A
B
D 2011-10-13 (a )
3
Königsberg七桥问题
• Königsberg七桥问题就是说,能否从某点出发 通过每桥恰好一次回到原地?
C
C
A B
.
A D
B
D (a)
2011-10-13
(b)
4
第七章 图
7.1 图的定义 7.2 图的存储结构 7.3 图的遍历 7.4 图的连通性问题 7.5 有向无环图及其应用 7.6 最短路径
2011-10-13
8个顶点的无向图最多有 条边且该图为连通图 个顶点的无向图最多有28条边且该图为连通图 个顶点的无向图最多有 连通无向图构成条件:边 顶点数 顶点数-1)/2 顶点数*(顶点数 连通无向图构成条件 边=顶点数 顶点数 顶点数>=1,所以该函数存在单调递增的单值反 顶点数 所以该函数存在单调递增的单值反 函数,所以边与顶点为增函数关系 所以28个条边 函数 所以边与顶点为增函数关系 所以 个条边 的连通无向图顶点数最少为8个 所以28条边的 的连通无向图顶点数最少为 个 所以 条边的 非连通无向图为9个 加入一个孤立点 加入一个孤立点) 非连通无向图为 个(加入一个孤立点
28
无向图的邻接矩阵为对称矩阵
2011-10-13
7.2
图的存储结构
Wij 若< vi,vj > 或<vj,v i > ∈E(G)
若G是网(有权图),邻接矩阵定义为 是网(有权图), ),邻接矩阵定义为
A [ i,j ] = , 0或 ∞
如图: 如图:
V1
若其它
V2
3 4
2
V3
2011-10-13
C
A
B
D 2011-10-13 (a )
3
Königsberg七桥问题
• Königsberg七桥问题就是说,能否从某点出发 通过每桥恰好一次回到原地?
C
C
A B
.
A D
B
D (a)
2011-10-13
(b)
4
第七章 图
7.1 图的定义 7.2 图的存储结构 7.3 图的遍历 7.4 图的连通性问题 7.5 有向无环图及其应用 7.6 最短路径
2011-10-13
第7章图(Graphs)
7.1 图的概念及术语
v1 v3 有向边<v3, v4> V3:始点, v4: 终点 v2 v4
图的构成: • 结点集:V={v1,v2,v3,v4}, • 有向边集:E={<v1,v3>,<v1,v2>,<v3,v4>,<v4,v1>}
7.1 图的概念及术语
v1 v3 v2 v4 v1 v2
v3
为从顶点vi 到顶点 vj 的路径。 • 路径长度 –非带权图的路径长度是指此路径上的边数。 –带权图的路径长度是指路径上各边的权之和
7.1 图的概念及术语
• 简单路径 若路径上各顶点 v1,v2,...,vm 均不互相重 复, 则称这样的路径为简单路径。 • 回路 若路径上第一个顶点 v1 与最后一个顶点vm 重合, 则称这样的路径为回路或环。 • 连通图与连通分量 在无向图中, 若从顶点v1到顶 点v2有路径, 则称顶点v1与v2是连通的。 • 如果图中任意一对顶点都是连通的, 则称此图是连 通图。 • 非连通图的极大连通子图叫做连通分量.
7.1 图的概念及术语
v1
v2
v4Βιβλιοθήκη v3路径: (1) <v1, v3>, <v3, v4> (简单路径)
(2) <v1, v3>, <v3, v4>, <v4, v1> (环)
(3) <v3, v4>
7.1 图的概念及术语
• 路径: 在图 G=(V, E) 中, 若存在边的序列 (vi, vp1)、(vp1, vp2)、...、(vpm, vj) 则称顶点序列 ( vi vp1 vp2 ... vpm vj )
v4 v5
数据结构 C语言版(严蔚敏版)第7章 图
data Fout
1
2
4
1
e6 2 4
2016/11/7
29
7.3 图的遍历
从已给的连通图中某一顶点出发,沿着一 些边访遍图中所有的顶点,且使每个顶点 仅被访问一次,就叫做图的遍历 ( Graph Traversal )。 图中可能存在回路,且图的任一顶点都可 能与其它顶点相通,在访问完某个顶点之 后可能会沿着某些边又回到了曾经访问过 的顶点。 为了避免重复访问,可设置一个标志顶点 是否被访问过的辅助数组 visited [ ]。
2
1 2
V2
V4
17
结论:
无向图的邻接矩阵是对称的; 有向图的邻接矩阵可能是不对称的。 在有向图中, 统计第 i 行 1 的个数可得顶点 i 的出度,统计第 j 行 1 的个数可得顶点 j 的入度。 在无向图中, 统计第 i 行 (列) 1 的个数可得 顶点i 的度。
2016/11/7
18
2
邻接表 (出度表)
adjvex nextarc
data firstarc
0 A 1 B 2 C
2016/11/7
1 0 1
逆邻接表 (入度表)
21
网络 (带权图) 的邻接表
6 9 0 2 1 C 2 8 3 D
data firstarc Adjvex info nextarc
2016/11/7
9
路径长度 非带权图的路径长度是指此路径 上边的条数。带权图的路径长度是指路径 上各边的权之和。 简单路径 若路径上各顶点 v1,v2,...,vm 均不 互相重复, 则称这样的路径为简单路径。 回路 若路径上第一个顶点 v1 与最后一个 顶点vm 重合, 则称这样的路径为回路或环。
1
2
4
1
e6 2 4
2016/11/7
29
7.3 图的遍历
从已给的连通图中某一顶点出发,沿着一 些边访遍图中所有的顶点,且使每个顶点 仅被访问一次,就叫做图的遍历 ( Graph Traversal )。 图中可能存在回路,且图的任一顶点都可 能与其它顶点相通,在访问完某个顶点之 后可能会沿着某些边又回到了曾经访问过 的顶点。 为了避免重复访问,可设置一个标志顶点 是否被访问过的辅助数组 visited [ ]。
2
1 2
V2
V4
17
结论:
无向图的邻接矩阵是对称的; 有向图的邻接矩阵可能是不对称的。 在有向图中, 统计第 i 行 1 的个数可得顶点 i 的出度,统计第 j 行 1 的个数可得顶点 j 的入度。 在无向图中, 统计第 i 行 (列) 1 的个数可得 顶点i 的度。
2016/11/7
18
2
邻接表 (出度表)
adjvex nextarc
data firstarc
0 A 1 B 2 C
2016/11/7
1 0 1
逆邻接表 (入度表)
21
网络 (带权图) 的邻接表
6 9 0 2 1 C 2 8 3 D
data firstarc Adjvex info nextarc
2016/11/7
9
路径长度 非带权图的路径长度是指此路径 上边的条数。带权图的路径长度是指路径 上各边的权之和。 简单路径 若路径上各顶点 v1,v2,...,vm 均不 互相重复, 则称这样的路径为简单路径。 回路 若路径上第一个顶点 v1 与最后一个 顶点vm 重合, 则称这样的路径为回路或环。
DS07-图-数据结构(C语言版)(第2版)-唐国民-清华大学出版社
第七章
图
7.2
图的存储结构
图是由两部分组成,一部分是图的 顶点信息,另一部分是图顶点间的关系 信息(边)。所以要想将图的全部信息存 储到计算机中,也必须将顶点的信息和 顶点间的关系信息都存储。
第七章
图
一、图的邻接矩阵存储
设图 G = (V, E)是一个有 n 个顶点的图, 有一个记录各个顶点信息v0 ,v1, v2, …, vn-1 的顶点表,可以用顺序方式或链式方式来存储 顶点表;而图的边用一个二维数组表示,它是 一个n×n的矩阵(邻接矩阵),用于表示顶点 之间的邻接关系。定义为:
W (i , j ), A.Edge [i ][ j ] = , aij 0,
A
第七章
图
邻接矩阵表示法中图的类型定义:
#define MAXSIZE 100 /*图的顶点个数*/ typedef int datatype; typedef struct { datatype vexs[MAXSIZE]; /*顶点信息表*/ int edges[MAXSIZE][ MAXSIZE];/*邻接矩阵*/ int n,e ; /*顶点数和边数*/ }graph;
B A C E D
A B vexs C D E
有向图
0 0 edges 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
第七章
图
2
20
40
5
子图:设有两个图 G=(V, E) 和 G’=(V’, E’)。 若V’ V 且 E’E, 则称图G’是图G的子图。
第七章
图
路径:在图 G=(V, E) 中, 若存在一个顶点序列vp1, vp2,
数据结构课件
while (i>0)
{
/*读入顶点对号,建立边表*/
e++;
/*合计边数 */
p = (pointer)malloc(size(struct node));/*生成新旳邻接点序号为j旳表结点*/
p-> vertex = j;
p->next = ga->adlist[i].first;
ga->adlist[i].first = p;
三个强连通分量
第七章 图
权:图旳边具有与它有关旳数, 称之为权。这种带 权图叫做网络。
10
1
6
15
27 5
12
3 76
9
8
6 3
4
16
7
有向权图
60
AB 40 80 C源自307535
D
E
45
无向权图
第七章 图
生成树:连通图G旳一种子图假如是一棵包 括G旳全部顶点旳树,则该子图称为G旳生成
树;显然,n个顶点旳生成树具有n-1条边
scanf (“%d”, &(ga->n));
for (i =1; i<= ga->n; i++)
{
/*读入顶点信息,建立顶点表*/
scanf (“ \n %c”, &( ga->adlist[i].data) )
;
ga->adlist[i].first = NULL; }
e = 0; /*开始建邻接表时,边数为0*/
ga->edges[i][j] = 0;
for (k = 0;k<ga->e;k++) /*读入边旳顶点编号和权值,建立邻接矩阵*/
第七章--拓扑排序
3 拓扑排序的定义
拓扑排序
拓扑排序就是将AOV网中的所有顶点排列成一个线性序 列,并且满足条件:在AOV网中,如果从顶点vi到顶点vj存在 一条路径,则在该线性序列中,顶点vi一定出现在vj之前。拓 扑排
在有向图中选一个没有前驱(入度为0)的顶点,并且输出之。 从图中删除该顶点和所有以它为尾的弧。
《数据结构》 课程
拓扑排序
主讲教师:李晓娜
目录 CONTENTS
1 问题的导入 2 AOV网的定义 3 拓扑排序的定义 4 拓扑排序的过程
1 问题的导入
例如:我们非常想学习一门计算机 操作系统的课程,但是在修这门 课程之前,我们必须学习一些基 础课,比如程序设计基础、数据 结构、离散数学等等。那么学生 应按怎样的顺序学习这些课程, 才能无矛盾、顺利地完成呢?
课程编号 C1
课程 名称
高等数学
C2
程序设计基础
C3
离散数学
C4
数据结构
C5
算法语言
C6
编译技术
C7
操作系统
C8
普通物理
C9
计算机原理
先修 课程
无
无
C1,C2 C2,C3
C2 C4,C5 C4,C9
C1 C8
1 问题的导入
如何安排学习 计划?
C2
C5
C4 C3
C6
01 AOV网
C1
C8
C7
建立描述课程之间优先关系的有向无环图
重复上述两步,直至全部顶点均已输出;或者当图中不存在无前驱的顶点为止 (此时图中存在环)
V1
V5
拓扑序列:
v0, V1, V2, V3, V4, V5, V6,
2024版《数据结构图》ppt课件
重要性
良好的数据结构可以带来更高的运 行或存储效率,是算法设计的基础, 对程序设计的成败起到关键作用。
常见数据结构类型介绍
线性数据结构
如数组、链表、栈、队 列等,数据元素之间存
在一对一的关系。
树形数据结构
如二叉树、多叉树、森 林等,数据元素之间存
在一对多的关系。
图形数据结构
由顶点和边组成,数据 元素之间存在多对多的
队列定义、特点及应用场景
队列的特点 只能在队尾进行插入操作,队头进行删除操作。
队列是一种双端开口的线性结构。
队列定义、特点及应用场景
应用场景 操作系统的任务调度。 缓冲区的实现,如打印机缓冲区。
队列定义、特点及应用场景
广度优先搜索(BFS)。
消息队列和事件驱动模型。
串定义、基本操作及实现方法
最短路径问题 求解图中两个顶点之间的最短路径,即路径上边 的权值之和最小。
3
算法介绍 Prim算法、Kruskal算法、Dijkstra算法、Floyd 算法等。
拓扑排序和关键路径问题探讨
拓扑排序
对有向无环图(DAG)进行排序, 使得对每一条有向边(u,v),均有
u在v之前。
关键路径问题
求解有向无环图中从源点到汇点 的最长路径,即关键路径,它决
遍历二叉树和线索二叉树
遍历二叉树
先序遍历、中序遍历和后序遍历。遍历算 法可以采用递归或非递归方式实现。
VS
线索二叉树
利用二叉链表中的空指针来存放其前驱结 点和后继结点的信息,使得在遍历二叉树 时可以利用这些线索得到前驱和后继结点, 从而方便地遍历二叉树。
树、森林与二叉树转换技巧
树转换为二叉树
加线、去线、层次调整。将树中的每个结点的所有孩子结点用线连接起来,再去掉与原结点相连的线,最后 将整棵树的层次进行调整,使得每个结点的左子树为其第一个孩子,右子树为其兄弟结点。
良好的数据结构可以带来更高的运 行或存储效率,是算法设计的基础, 对程序设计的成败起到关键作用。
常见数据结构类型介绍
线性数据结构
如数组、链表、栈、队 列等,数据元素之间存
在一对一的关系。
树形数据结构
如二叉树、多叉树、森 林等,数据元素之间存
在一对多的关系。
图形数据结构
由顶点和边组成,数据 元素之间存在多对多的
队列定义、特点及应用场景
队列的特点 只能在队尾进行插入操作,队头进行删除操作。
队列是一种双端开口的线性结构。
队列定义、特点及应用场景
应用场景 操作系统的任务调度。 缓冲区的实现,如打印机缓冲区。
队列定义、特点及应用场景
广度优先搜索(BFS)。
消息队列和事件驱动模型。
串定义、基本操作及实现方法
最短路径问题 求解图中两个顶点之间的最短路径,即路径上边 的权值之和最小。
3
算法介绍 Prim算法、Kruskal算法、Dijkstra算法、Floyd 算法等。
拓扑排序和关键路径问题探讨
拓扑排序
对有向无环图(DAG)进行排序, 使得对每一条有向边(u,v),均有
u在v之前。
关键路径问题
求解有向无环图中从源点到汇点 的最长路径,即关键路径,它决
遍历二叉树和线索二叉树
遍历二叉树
先序遍历、中序遍历和后序遍历。遍历算 法可以采用递归或非递归方式实现。
VS
线索二叉树
利用二叉链表中的空指针来存放其前驱结 点和后继结点的信息,使得在遍历二叉树 时可以利用这些线索得到前驱和后继结点, 从而方便地遍历二叉树。
树、森林与二叉树转换技巧
树转换为二叉树
加线、去线、层次调整。将树中的每个结点的所有孩子结点用线连接起来,再去掉与原结点相连的线,最后 将整棵树的层次进行调整,使得每个结点的左子树为其第一个孩子,右子树为其兄弟结点。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
} }/*DFSAL*/
8
7.3 图的遍历
在遍历时,对图中每个顶点至多调用一次DFS函数,因为 一旦某个顶点被标志成已被访问,就不再从它出发进行搜索。 因此,遍历图的过程实质上是对每个顶点查找其邻接点的过 程。其耗费的时间则取决于所采用的存储结构。
用邻接矩阵做图的存储结构时,查找各个顶点的邻接点所 需的时间为O(n2),其中n为图中顶点数。当以邻接矩阵做存 储结构时,深度优先搜索遍历图的时间复杂度为O(n2+n)。
7^
V0 V4
V2
V5
V6
V0 V1 V2 V3 V4 V7 V5 V6
V0 V1 V2 V3 V4 V7 V5 V6
12
void BFSTraverse(MGraph G)
7.3 图的遍历
/*从v出发,广度优先遍历连通图G*/
接点; 依此类推,直到图中所有访问过的顶点的邻接点 都被访问;
10
※求图G以V0为起点的的广度优先序列(设存储结构为邻 接矩阵)
V0,V1,V2, V3,V4,V7,V5,V6
VV0
VV1
V22
VV3
VV4
VV5
VV6
VV7
若图的存储结构为邻接表,则 访问邻接点的顺序不唯一,
深度优先序列不是唯一的
void DFS(Graph G, int v)
7.3 图的遍历
visited 0 0 10 20 30 40
……
{/* 从第v个顶点出发,递归地深度优先遍历图G*/
/* v是顶点在一维数组中的位置,假设G是非空图*/
visited[v] =1;
Visit(v); /*访问第v个顶点*/
for ( w=FirstAdjVex(G, v); w; w=NextAdjVex(G, v, w) )
当以邻接表做图的存储结构时,找邻接点所需时间为O(e), 其中e为无向图中边的数或有向图中弧的数。因此,当以邻 接表做存储结构时,深度优先搜索遍历图的时间复杂度为 O(n+e)。
9
7.3.2 广度优先遍历
7.3 图的遍历
图中某顶点v出发:
1)访问顶点v ;
2)访问v的所有未被访问的邻接点w1 ,w2 , …wk ; 3)依次从这些邻接点出发,访问它们的所有未被访问的邻
所有顶点间的最短路径问题; 5. 利用AOV网进行拓扑排序;利用AOE网求关键路径问题; 【掌 握】: 1. 掌握图的定义和术语; 2. 图的各种存储结构及其构造算法、在实际问题中的求解
效率。
2
7.3 图的遍历
7.3 图的遍历:从图的某顶点出发,访问图中所有顶点, 并且每个顶点仅访问一次。
图结构的遍历复杂性:
(4)在图结构中,一个顶点可以和其他多个顶点邻接,当 这样的顶点访问过后,考虑如何选取下一个要访问的顶点的 问题
3
图的遍历方法有深度优先遍历和广度优先遍历两种。 7.3.1 深度优先搜索 方法: (1)从图的某一顶点V0出发,访问此顶点; (2)依次从V0的未被访问的邻接点出发,深度优先遍历图, 直至图中所有和V0相通的顶点都被访问到。 若此时图中尚 有顶点未被访问,则另选图中一个未被访问的顶点作起点, 重复上述过程,直至图中所有顶点都被访问到。
4
※求图G以V0为起点的的深度优先序列(设存储结构为邻接 矩阵)
V0,V1,V3,V4,V7,V2,V5,V6,
VV0
VV1
VV2
VV3
VV44
VV5
VV6
VV7
若图的存储结构为邻接表,则 访问邻接点的顺序不唯一, 深度优先序列不是唯一的
5
深度优先遍历算法: 辅助数组:int visited[Max_Vertex_Num] ; 访问标志数组,全局变量,初始时所有分量 全为0,visited[v]=1表示顶点v已被访问.
if (!visited[w]) DFS(G, w);
/*对v的尚未访问的邻接顶点w递归调用DFS*/
} 6
在邻接表存储结构上实现深度优先搜索: void DFSTraverseAL(ALGraph G) /*深度优先遍历以邻接表存储的图G*/ {int i; for (i=0;i<G.vexnum; ++ i)
(1)在图结构中,没有一个“自然”的首结点,图中的任 意一个顶点都可以作为第一个被访问的结点
(2)在非连通图中,从一个顶点出发,只能访问它所在的 连通分量上的所有顶点,因此,还需考虑如何选取下一个出 发点以访问图中的其余连通分量
(3)在图结构中,如果有回路存在,那么一个顶点被访问 后,有可能沿回路又回到该顶点,考虑如何避免重复访问
visited[i]=0; /*标志数组初始化*/ for(i=0;i<G.vexnum;++i)
if (!visited[i]) DFSAL(G,i); /*Vi未访问过,从Vi开始DFS搜索*/
}
7.3 图的遍历7源自7.3 图的遍历void DFSAL(ALGraph G, int i) {/*从第v个顶点出发,递归地深度优先遍历图G*/
/* v是顶点的序号,假设G是用邻接表存储*/ EdgeNode *p; int w; visited[i] =1; Visit(i); /*访问第v个顶点*/ for (p=G.vertices[i].firstarc;p;p=p->nextarc)
{w=p->adjvex; /*w是v的邻接顶点的序号*/ if (!visited[w]) DFSAL(G, w); /*若w尚未访问, 递归调用DFS*/
∵ 先被访问的顶点,其 邻接点也要先被访问
∴设一队列保存已访问的 顶点
11
※ 在邻接表存储结构上的广度优先搜索
data firstarc
0 V0
1
adjvex next 2^
1 V1
0
3
4
2 V2
0
5
6^
3 V3
1^
4 V4
1
5 V5
2
6 V6
2
7 V7
1
7^ 6^ 5^ 4^
V1 V3
V7
Q
7.3 图的遍历
第7章 图
图是一种多对多的结构关系,每个元素可以有零个或多 个直接前趋;零个或多个直接后继。
2020/12/11
1
【重点掌握】: 1. 图的两种遍历方法:遍历的定义、深度优先搜索遍历和
广度优先搜索遍历的算法; 2. 应用图的遍历算法判断图的连通性及求图的生成树; 3. 用Prim、Kruskal算法求图的最小生成树; 4. 用Dijkstra算法求解单源最短路径问题;用Floyd算法求
8
7.3 图的遍历
在遍历时,对图中每个顶点至多调用一次DFS函数,因为 一旦某个顶点被标志成已被访问,就不再从它出发进行搜索。 因此,遍历图的过程实质上是对每个顶点查找其邻接点的过 程。其耗费的时间则取决于所采用的存储结构。
用邻接矩阵做图的存储结构时,查找各个顶点的邻接点所 需的时间为O(n2),其中n为图中顶点数。当以邻接矩阵做存 储结构时,深度优先搜索遍历图的时间复杂度为O(n2+n)。
7^
V0 V4
V2
V5
V6
V0 V1 V2 V3 V4 V7 V5 V6
V0 V1 V2 V3 V4 V7 V5 V6
12
void BFSTraverse(MGraph G)
7.3 图的遍历
/*从v出发,广度优先遍历连通图G*/
接点; 依此类推,直到图中所有访问过的顶点的邻接点 都被访问;
10
※求图G以V0为起点的的广度优先序列(设存储结构为邻 接矩阵)
V0,V1,V2, V3,V4,V7,V5,V6
VV0
VV1
V22
VV3
VV4
VV5
VV6
VV7
若图的存储结构为邻接表,则 访问邻接点的顺序不唯一,
深度优先序列不是唯一的
void DFS(Graph G, int v)
7.3 图的遍历
visited 0 0 10 20 30 40
……
{/* 从第v个顶点出发,递归地深度优先遍历图G*/
/* v是顶点在一维数组中的位置,假设G是非空图*/
visited[v] =1;
Visit(v); /*访问第v个顶点*/
for ( w=FirstAdjVex(G, v); w; w=NextAdjVex(G, v, w) )
当以邻接表做图的存储结构时,找邻接点所需时间为O(e), 其中e为无向图中边的数或有向图中弧的数。因此,当以邻 接表做存储结构时,深度优先搜索遍历图的时间复杂度为 O(n+e)。
9
7.3.2 广度优先遍历
7.3 图的遍历
图中某顶点v出发:
1)访问顶点v ;
2)访问v的所有未被访问的邻接点w1 ,w2 , …wk ; 3)依次从这些邻接点出发,访问它们的所有未被访问的邻
所有顶点间的最短路径问题; 5. 利用AOV网进行拓扑排序;利用AOE网求关键路径问题; 【掌 握】: 1. 掌握图的定义和术语; 2. 图的各种存储结构及其构造算法、在实际问题中的求解
效率。
2
7.3 图的遍历
7.3 图的遍历:从图的某顶点出发,访问图中所有顶点, 并且每个顶点仅访问一次。
图结构的遍历复杂性:
(4)在图结构中,一个顶点可以和其他多个顶点邻接,当 这样的顶点访问过后,考虑如何选取下一个要访问的顶点的 问题
3
图的遍历方法有深度优先遍历和广度优先遍历两种。 7.3.1 深度优先搜索 方法: (1)从图的某一顶点V0出发,访问此顶点; (2)依次从V0的未被访问的邻接点出发,深度优先遍历图, 直至图中所有和V0相通的顶点都被访问到。 若此时图中尚 有顶点未被访问,则另选图中一个未被访问的顶点作起点, 重复上述过程,直至图中所有顶点都被访问到。
4
※求图G以V0为起点的的深度优先序列(设存储结构为邻接 矩阵)
V0,V1,V3,V4,V7,V2,V5,V6,
VV0
VV1
VV2
VV3
VV44
VV5
VV6
VV7
若图的存储结构为邻接表,则 访问邻接点的顺序不唯一, 深度优先序列不是唯一的
5
深度优先遍历算法: 辅助数组:int visited[Max_Vertex_Num] ; 访问标志数组,全局变量,初始时所有分量 全为0,visited[v]=1表示顶点v已被访问.
if (!visited[w]) DFS(G, w);
/*对v的尚未访问的邻接顶点w递归调用DFS*/
} 6
在邻接表存储结构上实现深度优先搜索: void DFSTraverseAL(ALGraph G) /*深度优先遍历以邻接表存储的图G*/ {int i; for (i=0;i<G.vexnum; ++ i)
(1)在图结构中,没有一个“自然”的首结点,图中的任 意一个顶点都可以作为第一个被访问的结点
(2)在非连通图中,从一个顶点出发,只能访问它所在的 连通分量上的所有顶点,因此,还需考虑如何选取下一个出 发点以访问图中的其余连通分量
(3)在图结构中,如果有回路存在,那么一个顶点被访问 后,有可能沿回路又回到该顶点,考虑如何避免重复访问
visited[i]=0; /*标志数组初始化*/ for(i=0;i<G.vexnum;++i)
if (!visited[i]) DFSAL(G,i); /*Vi未访问过,从Vi开始DFS搜索*/
}
7.3 图的遍历7源自7.3 图的遍历void DFSAL(ALGraph G, int i) {/*从第v个顶点出发,递归地深度优先遍历图G*/
/* v是顶点的序号,假设G是用邻接表存储*/ EdgeNode *p; int w; visited[i] =1; Visit(i); /*访问第v个顶点*/ for (p=G.vertices[i].firstarc;p;p=p->nextarc)
{w=p->adjvex; /*w是v的邻接顶点的序号*/ if (!visited[w]) DFSAL(G, w); /*若w尚未访问, 递归调用DFS*/
∵ 先被访问的顶点,其 邻接点也要先被访问
∴设一队列保存已访问的 顶点
11
※ 在邻接表存储结构上的广度优先搜索
data firstarc
0 V0
1
adjvex next 2^
1 V1
0
3
4
2 V2
0
5
6^
3 V3
1^
4 V4
1
5 V5
2
6 V6
2
7 V7
1
7^ 6^ 5^ 4^
V1 V3
V7
Q
7.3 图的遍历
第7章 图
图是一种多对多的结构关系,每个元素可以有零个或多 个直接前趋;零个或多个直接后继。
2020/12/11
1
【重点掌握】: 1. 图的两种遍历方法:遍历的定义、深度优先搜索遍历和
广度优先搜索遍历的算法; 2. 应用图的遍历算法判断图的连通性及求图的生成树; 3. 用Prim、Kruskal算法求图的最小生成树; 4. 用Dijkstra算法求解单源最短路径问题;用Floyd算法求