控制网优化设计
论GPS控制网布设优化
论GPS控制网的布设与优化摘要:文章通过分析gps网特点及优化设计原则,进一步提出了gps控制网的优化设计的措施。
关键词:gps 控制网;布设原则;优化设计近年来,gps技术被广泛应用到测量领域,是现代测绘工程建设项目中一项非常重要的技术进步。
与传统控制测量方法相比,gps 技术具有点位精度高、观测时间短、操作简便、可全球全天候作业等优点,但并不等于gps控制网就无需像传统控制测量方法那样进行控制网的优化设计。
gps网优化设计是实施gps测量的基础性工作,在网的精确性、可靠性和经济性等方面,寻求设计的最佳方案。
1 gps控制网的特点(1)网形与卫星空间分布的几何图形相关。
gps控制网的精度与网中的点所构成的几何图形没有关系,与观测权相关程度不大,与边和边所构成的角度无关,主要取决于网中个点发出基线的数目及基线的权阵。
(2)具有非层次结构性。
根据采用仪器类型和作业模式不同,得到不同精度的观测值,这与经典控制网的“逐级控制”、“分级施测”没有关系,gps网可用相同精度一次扩展达到所需的密度设计要求。
(3)没有误差积累且分布均匀。
误差积累是经典控制网存在特性之一,而gps网则没有误差的积累,而且误差分布比较均匀,各边的方位和边长的相对精度基本是相同的。
(4)简单易行的必要基准条件。
gps网的观测数据(基线向量)中包含了尺度和方位信息,理论上只需要一个已知点的坐标即可确定gps网的平移。
2 gps 控制网布设应坚持的原则2.1 效率优先原则在进行gps网的设计时,应采用效率指标来衡量设计方案的效率,以及在采用布网方案作业中所需要的时间、消耗等问题。
2.2 高精度性原则gps控制网的高精度性是工程测量的基石,也是其最明显的优势之一。
在布设时,要做到高精度性原则:先确定gps网的网形,再根据gps网的网形,得到gps网的设计矩阵b,从而得到gps网的协因数阵q=(btpb),由此做到gps 控制网的高精度性原则。
平面控制网的优化设计方法探讨
③ 在 新 区 间 内 重 复 a)、b)步 骤 ,直 至 所 求 出 的 区 间 (xa1(K),
x1b(K))满 足 预 先 给 定 的 小 正 数 δ,即|(K)-xa1(K)|≤δ(K 为 搜 索 次
数)时 ,取 x1(1)=xa1(K)+2x1b(K)作 为 第 一 个 变 量 的 第 一 次 迭 代 结 果 。
长的一段时间内,由于受到计 算 工 具 的 限 制 等 原 因,这 一 问 题 没 有得到进一步研究,直到20 世 纪 60 年 代,随 着 最 优 化 理 论 与 方 法的发展和电子计算机的应 用,测 量 控 制 网 的 优 化 设 计 问 题,才 得到国内外广大测绘工作者的关注。
1974年 Grafarend提出控制网优化设计可归纳为四类: (1)零 类 设 计 --- 基 准 设 计 问 题 。 (2)一 类 设 计 --- 网 形 设 计 问 题 。 (3)二 类 设 计 --- 观 测 精 度 设 计 问 题 。 (4)三 类 设 计 --- 对 已 有 控 制 网 的 改 进 与 加 密 问 题 。 这四类设计内容可以用参数法平差的函数模型来解释。 目前,GPS虽在工程水平控制 测 量 上 应 用 比 较 广 泛,但 它 的 使用也受到许多客观条件限 制,因 而 在 特 殊 条 件 下,用 常 规 测 量 水 平 控 制 网 的 方 法 显 得 更 为 便 捷 。 那 么 ,我 们 经 常 要 对 平 面 控 制 网(不包含 GPS网)进行优化设计。 2 平面控制网优化设计方法 在现代电子计 算 机 技 术 高 度 发 展 的 情 况 下,无 论 是 测 图 控 制网、施工控制网 还 是 变 形 监 测 网 的 优 化 方 法 一 般 可 归 纳 为 两 大 类 ,解 析 法 设 计 和 机 助 法 设 计 。 2.1 解析法设计 解 析 法 设 计 是 将 各 种 设 计 标 准 (精 度 标 准 、费 用 标 准 、可 靠 性 等)以数学方式表达为目标函 数 和 若 干 约 束 条 件,然 后 解 出 使 目 标 函 数 值 为 极 值 的 设 计 参 数 ,得 到 最 优 设 计 。 即 先 建 立 设 计 问 题 的数学模型,然后用一种 适 当 的 算 法,求 出 最 优 解。 现 以 网 形 优 化设计中怎样确 定 网 点 的 最 优 位 置 为 例,来 说 明 解 析 法 设 计 的 思想。 确定网点最优位置常用变量轮换法。 我们将控制点分为两类:第 一 类 点 是 不 能 变 动 的 控 制 点,第 二类点是点位允许一定变化的控制点。第一类点已事先确定可 视 为 常 量 ,从 而 建 立 以 第 二 类 点 坐 标 的 变 量 的 目 标 函 数 : QF=fTQxf=fT(ATPA)-1f=F(x1,y1,x2,y2,… … ,xp,yp) 式中:Qx---未知数 X 的协因数阵; A--- 设 计 矩 阵 ; P--- 观 测 值 权 阵 ; f--- 权 函 数 式 系 数 向 量 x1,y1,x2,y2,… … ,xp,yp 是 可 以 调 整 的 点 。
工程控制网优化设计方案
工程控制网优化设计方案一、引言随着现代社会的发展,大部分工程项目都会使用到工程控制网。
工程控制网是一个用于地形测量和工程建筑的重要基础设施,在土木工程、建筑工程、水利工程和交通工程等领域都有着广泛的应用。
因此,如何优化工程控制网设计是一个重要的课题。
通过对工程控制网进行优化设计,可以提高工程测量的精度和效率,减少测量成本,为工程施工提供更好的保障,达到经济和社会效益。
本文将介绍工程控制网的基本概念和作用,分析工程控制网优化设计的必要性,然后提出一种基于GPS和GIS技术的工程控制网优化设计方案,并对其进行深入探讨。
二、工程控制网的基本概念和作用工程控制网是用于工程测量和建筑的一种基础设施,由一系列控制点构成,主要用于测量和定位工程项目的各个部分。
在工程测量中,控制网可以提供精确的水平和垂直控制,以确保工程施工的精度和准确度。
同时,工程控制网也是测绘和地理信息系统的基础设施,用于地图制图、地形测量、环境监测等方面。
三、工程控制网优化设计的必要性随着科学技术的发展和工程项目的复杂化,对工程控制网的精度和稳定性要求也越来越高。
然而,传统的工程控制网设计存在一些问题,如控制点过于密集、控制点分布不均匀、控制点传递效率低等。
这些问题导致工程测量成本高、效率低,无法满足现代工程项目的需求。
因此,需要对工程控制网进行优化设计,提高其精度和效率,降低测量成本。
目前,基于GPS和GIS技术的工程控制网优化设计方案已经成为一个研究热点。
四、基于GPS和GIS技术的工程控制网优化设计方案GPS(全球定位系统)和GIS(地理信息系统)是两种现代化的测量技术,它们广泛应用于地理空间数据收集、处理和分析,具有较高的精度和效率。
基于GPS和GIS技术的工程控制网优化设计方案主要包括以下几个方面:1. 控制点选取和布设在工程控制网的优化设计中,首先需要进行控制点的选取和布设。
传统的控制点布设是靠人工判断和摸索,容易出现偏差和误差。
高速铁路gps控制网优化设计及测量方案研究
罨煎龃.高速铁路G PS控制网优化设计及测量方案研究杨肃钟(中铁二十三局集团第三有限工程公司,四川成都611130)喃弱首先论述了精度指标、可靠性指标和费用指标等G pS控制网优化设计指标,然后从G Ps零类优化设计、G PS网一类舌l=北设计、二类优化设计等方面,论述了G PS网优化设计,最后从基准网和CP I的建立、c P I I的建立和建立c PⅢ三个方面,论述了高速铁路控制网测量方案爱技术要.最。
陕键词高速铁路G Ps控制网;优化设计;测量方案1G P S网优化设计指标G P S控制网优化酾十三种指标。
1)精度指标。
根据G PS基线向量所建立法方程,可以得到G P S网协因数阵Q x)(o在G P S网设计阶段,可采用协因数阵Q xx的迹来衡量G P S网精度指标。
—般应用协因数阵Q xx的特征值最大值最小、特征值的行列式最小、迹最小、迹的平均值最,J、和最大特征值与最,j、特征值之间的比值或差值为准则来实现对整体网精度的优化。
2)可言副封旨标。
G PS网的可靠性是指发现或探测聊测值粗差的能力和抵抗观测值粗差对平差结果影响的能力,其中前者被称为内部可靠性,后者被称为外部可靠性。
3)费用指标。
在G PS网建设过程中,经费消耗主要跟网中点的总数和重复设站数有关,重复设站数越多,精度和网的可靠性越高,则建网费用越高。
因此权衡三者关系,对G PS网进行优化酾十,可以实现工程资源和工程质量的最佳配置。
2G PS网优化设计分以下几个方面论述:1)G P S零类优化设计。
基线固定点的误差会给基线结果带来一定的误差,因此必须对网的位置基准进行优化设计。
G P S T程控制网多为约束网,只需要选择国家、地方坐标系或转化为高程抵偿面的任意带高斯投影直角坐标系(平面和高j|呈)下的一个或多个已知点作为位置基准,但有时候根据特定要求,方位基准可由网中给定的起算方位角值确定;尺度基准可根据边长的不同采用其它测量方法确定,如采用较高精度的测距仪或全站仪施测2—3条基线边。
浅谈施工控制网的优化设计
浅谈施工控制网的优化设计摘要:在工程施工阶段,施工控制网能有效保证各建筑物轴线之间的相对关系、相对稳定及相对精度,对工程的定线放样起控制作用,因此施工控制网的精度显得异常重要。
为使施工控制网的作用发挥到最大,施工控制网的优化设计尤为重要,它能为工程建设节约成本,提高效率。
因此通过运用合理技术手段更加完善的优化施工控制网成为我们共同努力的目标。
关键词:施工控制网、精度、设计、优化、跟据作业的过程,通常将施工控制网的优化设计划分为四个阶段,即:零类设计,一类设计、二类设计和三类设计。
零类设计是控制网参考系或基准的设计问题,它包括数据处理的方法和坐标系的选择,不同用途的控制网选择不同的数据处理方法。
由于施工控制网要考虑相对点位的精度问题,因此零类设计通常采用传统的习惯做法。
一类设计是控制网的网形设计问题,是在预定测量精度的前提下,确定最佳的点位概略坐标和联系方式控制点的设计位置,主要受施工放样的需要及地形和设备条件的制约,有些因素目前还很难用数学的方式表示。
而控制网的图形(即控制点之间的联系方式)对网的图形强度影响较大,它是一类设计的主要研究内容。
二类设计是控制网在图形固定的前提下,寻求最佳的精度配置,它是控制网优化设计的热点问题。
三类设计则是对已有控制网的改善,它一般要包含零类、一类和二类设计。
施工控制网优化设计的作用,是使所求解的控制网的图形和观测纲要在高精度、高可靠性及低成本意义上为最优。
针对施工控制网设计的特点,求出图形和观测纲要同时满足预先规定的优化设计指标。
一、优化设计指标控制网的优化设计指标包括精度、可靠性和经济费用指标。
精度指标一般通过精度约束函数来满足。
可靠性分为内部可靠性和外部可靠性,常用的指标有:观测量的多余观测分量、可发现粗差的下界值、外部可靠性尺度等。
控制网最终的优化结果,是各个阶段优化设计的总和。
因此,在各个阶段的优化设计上不必强求同时满足精度、可靠性和费用指标,而最后的优化设计结果中达到这三项指标便可。
矿区三等高程控制网优化设计
文献标 识 码 : B
文章编 号 : 1 0 0 1— 3 5 8 X( 2 0 1 4 ) O 1— 0 0 3 7— 0 2
某矿 区现 有 四个 生 产 矿 井 , 面积大于 1 5 0 k m 。
பைடு நூலகம்
使 用过 程 中对 点 位 的 高 程 进 行 过 修 正 , 因此 矿 区高 程 控制 系独 立 统 精 度 较 高 , 相 对 于 国家 的基 本 高 程 控 制 网精度较 低 , 甚至 存在 一定 差异 。
矿 区水 准 网的布设 必须 符合 《 国家 三 、 四等水 准
测量 规范 》 的要 求 , 并结 合矿 区 现有 的水 准 资 料 和实
际生 产情 况进 行设 计 。 ( 1 ) 对 矿 区现存 的所 有高 程起 算点 均 应联 测 , 以 确保 起算 点 的精度 和稳 定性 。
过 增加 、 变更 、 舍 弃原有 的水 准 路 线 以提 高水 准 网 的 精度、 稳定性 、 可靠 性 和经 济 性 , 从 而 使 矿 区 的高 程
根据矿 区现 有 的水准 资料 以及 收集 到 的 水 准资
料, 对 该矿 区原有 的水 准 网进 行优 化 设 计 , 提 出 了如
矿 区现有 高程 控制 系统 以三 个二 等 基 岩水 准 点
高程 控制 系 统 由二 等基 岩水 准点 三 个 , 三 等 水 准 点
几十个 构 成 , 均为 1 9 5 6黄海 高 程 系统 高 程 。矿 区高 程系 统与 附 近 地 区 的 高 程 系统 存 在 差 异 , 且 矿 区 高
程 系统在 使用 过程 中有 过几 次 较 大 的变 动 。水 准 网 中部 分水 准 点 的埋 设 不 规 范 , 水 准 路 线 也 不 是 最 优
城市GPS控制网优化设计
参考椭 球 、 中央 子 午 线 的经 度 、 横 坐 标 的 加 常 数 、 纵
投影 面 的高程 、 区 的高 程 异 常 值 和 起 算 点 的 坐 标 测 值。
2 G S控 制 网 的 网 形 设 计 及 精 度 设 计 P
’
G S网在 基 准设 计 时 , 该 充 分 考 虑 以下 几 个 P 应
以上 基线 分支 , 而每 两 条基线 的夹 角不 易 过小 , 以确 保检 核条件 , 高 网的可 靠性 。 提
2 2 G S控 制 网 的 精 度 设 计 . P
精度是 衡量 G S控制 网的坐标 参数及 其 函数 估 P
值 受 观测偶 然误 差影 响程 度 的指 标 。 网的 精度 设 计 是 根据偶 然 误 差 的传 播 规 律 。 照 一 定 的 精度 设 计 按 方 法 . 析 网 中各 未 知 点 坐 标 及 其 函 数 在 平差 后 预 分 期 能够 达到 的精 度 。G S控 制 网在 网形 设 计 后 , P 就 可 以根 据所 选择 的接 收机标 称精 度 ( 检验 精度 ) 或 估
问题 :
( ) 了获得 G S控 制 点 在城 市 坐标 系统 中 的 1为 P 坐标 , 该在 国 家坐 标 系统 或 城 市 独 原 有 控 制 点 , 以 坐 标 转 换 。 用
大 中城 市 G S控 制 网至少 应 该联 测 3个 起 算 点 , P 小
( ) 了 获 得 G S控 制 点 的 正 常 高 程 , G S 4为 P 在 P
解算 时 的固定位 置基 准 。 () 3 为保 证 G S网获 得 精度 均 匀 的 约束 平 差 成 P 果, 减少 尺 度误 差 影 响 , 要在 G S网 中加 测 2~3条 P 高 精度 的测距 边作 为 G S网的外 部尺度 基 准 。对 于 P 中小 城 市 G S控 制 网 也 可 以在 网 中选 择 一 条长 基 P 线, 对该 基线做 多次 长 时间观 测 , 后取 多 次 观测 段 最 所得 的基 线 平均 值 , 其 投 影 到高 斯 平 面 上 的边 长 以 作 为网 的尺度 基准 。
GPS控制网在外业工作中的的优化设计
GPS控制网在外业工作中的的优化设计摘要:在测绘工程中,GPS定位技术具有操作简便、观测时间短、全天候、高精度等诸多优点,目前已在各种控制网的建立上得到广泛地应用。
文章在总结了GPS网特点及优化设计原则,如可靠性、精度及经济性等方面特点,提出了GPS控制网的优化设计的措施。
关键字:GPS;控制网;外业工作;优化设计因为GPS观测是通过接收天空卫星信号实现定位测量,一般情况下,不要求观测站之间进行通视。
且由于GPS观测精度主要受观测卫星的几何状况的影响,与地面构成的几何状况无关。
其结果要求外业工作中,GPS控制网的设计达到更好的优化。
一、当前GPS测量的特点GPS网是一种非层次结构,其相对定位测量是若干台GPS接收机同时对天空卫星进行观测,从而获得接收机间的基线向量。
并可以一次扩展到所需的密度。
GPS网实现了网的精度不受网点所构成的几何图形的影响,其精度与网中各点的坐标及边与边之间的角度无关,而只与网中的各点所发出的基线数目和基线的权阵有关。
GPS控制网所需的数据包括:一点的坐标,用于网的定位;一条边的方位,用于网的定向;一条边的长度,用于确定网的尺度。
GPS定位测量主要优势在于高精度、高效率和低成本,而这些优势建立在测前科学的技术设计和测后精确可靠的数据处理为基础的。
因此为确保精确,GPS 网的设计需考虑到诸多因素,其核心就是考虑网形构造、精度、基准的设计。
同时,还应考虑到观测时段、时间、测站位置的选择等。
二、GPS控制网网形设计原则(一)GPS控制网不应存在自由基线。
自由基线主要指的是不构成闭合图形的基线,由于自由基线不具备发现粗差的能力,因而必须避免出现自由基线,也就是GPS控制网一般应通过独立基线构成闭合图形。
(二)GPS控制网中的闭合条件中基线数不应太多。
网中的各点最好有三条或更多基线分支,以保证检核条件,使网的精度、可靠性较均匀,提高网的可靠性。
(三)按照需要和理论要求进行观测。
GPS控制网应以“每个点至少独立设站观测两次”的原则布网。
gps工程控制网的优化设计
.192-|工程设计I Engineering Design(2019年第21期〕GPS工程控制网的优化设计孔祥豪(苏交科集团股份有限公司,江苏南京210019)摘要:GPS测量技术手段精度较高、效率较高,具有一定的灵活性,其应用范围越来越广泛。
分析GPS X程控制网的基础原理以及各项关键因素,综合实际状况根据规定要求,进行GPS工程控制网的优化设计,可以为GPS工程控制网的优化工作提供参考与支持。
基于此,文章主要对GPS X程控制网的优化设计进行了简单的分析,研究了GPS控制网定位原理与种类,分析了GPS相对定位的误差源分析,重点探究了GPSX程控制网的优化设计的方式与手段。
关键词:GPS工程控制网;优化设计;精度中图分类号:S127文献标志码:A文章编号:2096-2789(2019)21-0192-021GPS控制网定位原理与种类根据己知点、仪器架设位置、未知点的参数,可以将其分为前方、侧方以及后方交会三种结构类型。
GPS 定位原理是通过几何以及物理的基础性原理,通过空间运行的卫星与地面点距离交会地面测量其未知位置。
GPS定位测试种类繁多,根据基本观测量的不同可以将其分为伪距测量以及载波相位测量两种形式:根据参考点位置的不同可以分为绝对定位以及相对定位两种方式;根据定位结果获得的时效可以分为定时定位以及事后定位两种;根据接收机在测量作业中的状态可以将其分为静态定位以及动态定位两种形式。
现阶段高精度的GPS静态定位主要通过相对定位的方式分析,将在相位作为主要的观测量,其基本的组合方式可以分为单差、双差以及三差几种形式,差分的结果与计算的量之间有着密切的关系。
通过差分形式观测可以有效降低存在的系统误差,达到控制平差计算中未知数数量的目的。
通过GPS定位,基于GPS卫星以及用户接收机天线距离作为基本的观测量,根据对已知卫星瞬间坐标确定分析用户接收机对应的点位参数,进行测量分析。
2GPS相对定位的误差源GPS测量中会受到多种误差的综合性干扰因素的影响,降低GPS定位的精准性。
工业控制网络拓扑结构的优化设计
工业控制网络拓扑结构的优化设计工业控制网络是指应用于工业控制系统中的网络,它具备高可靠性、高实时性、高安全性等特点,广泛应用于各个行业的工业控制中。
而在实际应用中,工业控制网络的优化设计对于提高工业控制系统的效率和可靠性非常重要。
本文将从工业控制网络的拓扑结构入手,探讨工业控制网络的优化设计。
一、工业控制网络的拓扑结构在工业控制网络中,拓扑结构是指网络中各节点之间的物理连接方式,是构成网络的基础。
工业控制网络的常用拓扑结构有星型、总线型、环型、树型、网状等。
其中,星型和总线型是应用最广泛的两种拓扑结构。
1.星型拓扑结构星型拓扑结构是指所有节点都连接到一个中心节点的拓扑结构。
在此结构下,中心节点是整个网络的控制中心,所有数据通信都需要经过中心节点进行管理和调度。
星型拓扑结构具备较高的可靠性和安全性,但是如果中心节点发生故障,整个网络就会瘫痪。
2.总线型拓扑结构总线型拓扑结构是指所有节点都连接在一条主线上的拓扑结构。
在此结构下,任何节点都可以向主线发送数据,数据会被传输到所有节点。
总线型拓扑结构具备较高的实时性和可扩展性,但是如果主线发生故障,整个网络就会瘫痪。
二、工业控制网络的优化设计在实际应用中,工业控制网络的优化设计需要考虑多个因素,包括网络的可靠性、实时性、容错性、可扩展性、安全性等。
1.优化拓扑结构在选择拓扑结构时,需要综合考虑网络规模、传输距离、节点数量、传输速率等因素。
对于小规模网络,可以选择星型或者总线型拓扑结构;对于大规模网络,可以选择网状拓扑结构或者分布式拓扑结构。
同时,在设计拓扑结构时,需要考虑网络容错性和安全性,以减少网络故障和安全威胁。
2.优化网络带宽在实际应用中,网络带宽是影响网络传输效率和实时性的关键因素。
因此,在优化设计工业控制网络时,需要考虑如何最大化网络带宽。
具体的做法包括增加带宽、选择合适的协议、使用数据压缩等。
3.优化网络可靠性工业控制系统的可靠性对于保障生产环境的稳定运行至关重要。
GNSS控制网网型的优化设计
GNSS控制网网型的优化设计作者:李宗勋来源:《大科技·C版》2018年第08期摘要:本文提出采用逐个剔除法对控制网的网型进行优化设计,通过衡量每条基线对网型平均点位精度的影响,逐个剔除基线,从而得到最优化的网型。
并结合相关算例进行分析,证明该方法能够大幅提高工作效率。
关键词:GNSS控制网;逐个剔除法;网型优化中图分类号:P228.4 文献标识码:A 文章编号:1004-7344(2018)23-0174-021 引言由于GNSS控制网的特殊性(由多台GNSS接收机同步观测,同时获得多个观测量),采用所有可能的连接构成控制网可以使网的整体精度达到最高,但是这意味着其经济指标要达到最大,而GNSS控制网的目的是使网的整体精度满足施工的要求。
对于一个含有n个GNSS点的控制网,最多由s=n(n-1)/2条独立基线组成,从中选取m条基线主要有两种方法。
一是从这s条基线中选择m条基线的全组合方案,计算网的整体精度,选择精度最高的选取方案。
二是剔除法,即从s条基线中逐个剔除对网的整体精度贡献最小的基线,一直剔除到剩下m条基线为止。
m的选择主要考虑GNSS网的等级以及经济指标。
2 基线向量优化选取的主要方法(1)全组合法n个GNSS点最多由s=n(n-1)/2条独立基线组成,选取m条基线有C种方案,理论上将每种方案的GNSS网的点位精度因子都计算出来,精度最高的一组即为最优方案,实际上这种算法实现较为困难。
例如有20个点的GNSS网,最多由20(20-1)/2=190条独立基线构成网形,从中选择30条基线,就有C=190!/(30!160!)=7.74×1034种方案,超出了一般计算机的计算能力。
(2)逐个剔除法n个GNSS点的控制网最多由s=n(n-1)/2条独立基线组成,按间接平差求得该网的未知数协因数阵为:若从中剔除第i条基线,利用矩阵反演公式可得到由S-1条基线组成的未知数协因数阵:式中,B为的第i条基线向量的误差方程系数阵。
GPS控制网的优化设计研究
零级 优化 设计 是在 已知 GPS 控制 网平 差模 型中 的强 度设 计。
的 系 数 阵 A 和 权 阵 P 的 基 础 上 , 求 解 协 因 数 阵 2 基于 预报 星历 的控 制网 优化
Qxx 的 过 程。 这实 际 上是 一个 平 差的 过 程, 除 了一
众所 周知 , 由传 统 方法 布 设和 观 测的 我 国平 面
图形 结 构和 拟定 观测 方 案时 , 可 根据 预 报星 历 预报 GPS 控 制 网进 行 网的 加 密和 改 进, 使 其逐 渐 达到 精
的卫 星分 布的 情况 对 GPS 控 制网 进行 优化 设计 。 1 GP S 控制 网的 优化 设计
度要 求, 也 就是 对网 形 结构 强 度的 优 化设 计 。综 上 所述 , GPS 控 制 网的 优 化设 计 主要 归 结为 二 类内 容
业于太原理工大学, 助理工程师。
与 GPS 观 测对 点位 的要 求相 矛 盾, 同时 , 根 据 实际 情况 , 这 些 国家 高级 点 作为 起 算点 时 必须 联 测, 即 使是 重新 布 设新 网, 按 照规 范 要求 , 对于 一 些原 有
由于 GPS 控制 网同 经典 网有 诸多 不同 , 导 致了
的 设 计[1]: GPS 控 制 网 基 准 的 优 化 设 计 ; GPS 控 制
GPS 控 制 网的 优化 设 计不 完全 等 同于 经 典控 制 网的 优化 设计 , 一 般可 分为 四级 。
网 图形 结 构 强 度 的 优化 设 计 , 包 括 网 的 精度 设 计 、 网的 抗粗 差 能力 的可 靠 性设 计 、网 发 现系 统 差能 力
控制 网的 优 化设 计是 指 在限 定精 度 、可 靠 性和 GPS 控 制网 来说 没有 太大 的意 义。
GPS控制网优化设计探讨与分析
1 . 2 高精 度 原 则
高精度是 G P S控制相对 于其他控 制最 明显 的优 势之一 , 它是 的测量控制 网 , 本文将就上述几方 面的标准 对 G P S控制 网的优化 测量工作 的基 石 。设 计 时先 确 定 网形 结 构 , 再 根 据 网形 , 得 到 设计进行解析 。 G P S控制 网的设 计矩阵 。通过对常 用坐标 方差 , 也就 是协方 差阵
1 GP S控 制 网设计 原则
进行分析确认整 个控 制 网的精度 指标 。实际应 用 时多用 点 与点
角度和方位的方差或标准差来进行 比较分析 。 对G P S控制 网优化设计就 是对 它的可靠性 、 精 确性 和经济性 之间的距离 、
选取前 2 1个数据作为学习样本 , 分别 利用 多元 回归 模型 、 时 出输入与输 出之 间的内在 关系 , 从 而建立模 型 。从表 2中可以发
[ J ] . 现代 测绘 , 2 0 0 4, 2 7 ( 1 ) : 3 6 - 3 8 . [ 3 ] 史玉峰 , 孙保琪. 时 间序列分析及其在 变形数据 分析 中的应
用[ J ] . 金属矿 山, 2 0 0 4 ( 8 ) : 1 3 - 1 5 . 表 2中误差为预测值 与实测值之差 , 由表 2可 以看 出, 在 3种 [ 4 ] 胡伍生. 神 经 网络理论 及其 工程应 用[ M] . 北京: 测 绘 出版 模型 中 , 神经 网络模 型的拟合精度 最好。 社. 2 0 o 6 .
问序列模型 、 神经 网络模 型预 测后 3个样本 的变形 量 , 其结 果对 现神经 网络模 型预测 结果较好。 比见表 2 。
表 2 预测数据对 比表
实 多元 回归模型 时间序列模 型
参考文献 :
工程测量报告--工程控制网的优化设计
《工程测量学》实习报告工程控制网的优化设计2011 年 4 月24 日1 基本要求------------------------------------------------------------------------------------- 32 实习目的-------------------------------------------------------------------------------------3 3平面网的模拟计算与分析(COSA)---------------------------------------- 34 控制网的优化设计-------------------------------------------------------------- 45 总结--------------------------------------------------------------------------------- 51 基本要求名称:工程控制网的优化设计采用软件:COSA系列软件的CODAPS(测量控制网数据处理通用软件包),自研发软件。
2 实习目的掌握工程测量控制网模拟法优化设计计算的基本理论和方法,学习对典型工程控制网的计算机辅助模拟计算设计和结果分析,通过加扰动和删“肥网”观测量等方法进行工程控制网优化设计,并比对优化结果。
分别使用两种软件进行上述过程,对比两软件的差别。
3平面网的模拟计算与分析(COSA)3.1观测方案文件:人工生成简化的观测方案文件“网名.FA2”(只含一组精度),单击“生成初始观测方案文件”菜单项。
平面网观测方案文件结构:第1行(观测精度指标部分):方向中误差,边长固定误差(mm),比例误差(ppm)第2行到第K行(控制点坐标部分):点名,点类型(0-已知点,1-未知点),X坐标,Y坐标…,……,……,……第K+1行(已知方位角部分,有已知方位角值时才有此行):测站点,照准点,A,方位角值从第K+2行起(观测方案部分):测站点点号L(代表方向):照准点点号1,....., 照准点点号n(按顺时针方向排序)S(代表边长): 照准点点号1,....., 照准点点号n(按顺时针方向排序)观测值方案文件示例(网名.FA2)1.7,2,2 /H,0,2000.000,3000.000A,1,3183.917,3000.000B,1,2588.415,3814.643C,1,1467.472,3840.727D,1,487.716,3347.045E,1,918.248,2369.768F,1,1775.682,1811.933HL:A,B,C,D,E,FS:A,B,C,D,E,FAL:B,C,D,H,E,FS:B,C,D,H,E,FBL:C,D,E,H,F,AS:C,D,E,H,F,ACL:D,E,F,H,A,BS:D,E,F,H,A,BDL:E,F,H,A,B,CS:E,F,H,A,B,CEL:F,A,H,B,C,DS:F,A,H,B,C,DFL:A,B,H,C,D,ES:A,B,H,C,D,E3.2生成正态标准随机数单击“生成正态标准随机数”,将弹出一对话框,要求您输入生成随机数的相关参数,第一个参数用于控制生成不相同的随机数序列,其取值可取1-10的任意整数。
注册测绘师教材第三章知识点:控制网优化设计
注册测绘师教材第三章知识点:控制网优化设计控制网优化设计
(一)含义
控制网优化设计指在一定的人力、物力、财力等条件下,设计出精度高、可靠性强、灵敏度最高(对变形监测网而言)、经费最省的控制网布设方案.
(二)分类
根据固定参数和待定参数的不同,控制网优化设计分为如下四类: (1)零类设计(基准设计).是在控制网的图形和观测值的先验精度已定的情况下,选择合适的参考基准(起始数据)使网的精度最高;
(2)一类设计(网形设计).是在控制网成果要求精度和观测手段可能达到的精度已定的情况下,选择最佳的点位布设和最合理的观测值数量; (3)二类设计(权设计).是在控制网的网形和控制网成果要求精度已定的情况下,设计各观测值的精度(权),使观测工作量最佳分配;
(4)三类设计(改进设计).是对现有网或现有设计进行改进,从而改善控制网成果精度.
(三)方法
(1)解析法.解析法是通过数学方程的表达,用最优化方法解算.该法适用于各类设计.
(2)模拟法.模拟法是根据经验和准则,通过计算、比较和修改得到最优方案.该法适用于一、二、三类设计.
(一)施测方法
1.平面控制测量
平面控制测量通常采用gps 测量方法,也可采用三角形网测量、导线测量等常规方法.。
基于GPS基线的控制网优化
0 l ,
csps L1 s B 1 oB 1n P i i ej n
DJ GY3
图 1 D 级 控 制 网形
华
北 水
利 水 电 学 院
学
报
21 0 2年 4月
外业 测量 过程 按 照 外 业调 度 表 进 行 , 用 与天 采 宝 仪器 相匹配 的木 质脚 架安 置天 线 , 严格 对 中整平 ,
在 无约束 平差 中 , 线分量 的改 正数要 满足要 求 : 基
△
≤3 " o ,VA ≤ 3 - V z≤ 3 - y o, a o.
对 中误 差不 大于 ±1m 每 时段 观测 前 后均 量 取天 m. 线高一 次 , 次差 值 的绝 对 值 不 大 于 3mm, 平均 两 取 值作 为最后 的天 线高. 采集 数 据过 程 中的基 本 参 数符 合 规 范要 求 : 观
在进行 G S控 制 网优 化 时 , P 还应 该 考 虑在 整 个
式 中 8 5X 为 P 点 的坐 标变化 对基 线 的影 响. 。 若 G S采用 双差 模 型 , P 则误 差方 程为
V: t △ P , A( 1 + ) P , ,
测量 过程 中由于信 号 失 锁 或其 他 原 因 造成 的周 跳 ,
8 X^ = 8 XP + 8 X PP , △ 1
一
般情 况 下 , 周 数 为 固定值 , 整 只在 以后 的
测 量 中进行 累计 , 是 如 果 对少 数 卫 星 的 观测 时 间 但 过短 , 无法 准确 地确 定 出整周未 知数 , 而直接影 响 从 了基 线解 算结 果 的质量.
,
= 一
X P =X P + △
某煤矿矿区GPS控制网的优化设计
13 作 业 依 据 .
1 《 : 0 、1 10 、1 20 ) 1 50 : 00 : 0 0地形 图图式》 G B 7 2 / T99
—
1 95。 9
2 大 比例尺地形 图机助制 图规范》 G 19 2— 4 )《 B4 1 9 。 收稿 日期 :2 0 0 0 0 7— 1— 4
对 于本 次施 测任务 ,采用 的是 E级控制 ,其 主要精 度
指 标 见 表 1 。 表 1 G S定 位 的 E级 精 度 指 标 P
12 图纸 资料 .
委 托 方 提 供 的井 田 区 1 5 0 : 0 0地 形 图 及 井 田 区 1 5 0 : 00
采掘 图可作为本项工程施工 、设计的依 据。
2 G S控 制 网的技 术设 计 P 2 1 G S网的密度 、精度 设计 . P
2 1 1 G S测 量 精 度 标 准及 其 设 计 . . P
1 工程 已有资 料的分 析 1 1 控 制பைடு நூலகம்资料 .
测区内及其附近有月形山 、横坂 、胡家 冲等三个 Ⅳ等三 角点 ( 由江西省煤 田地质大 队于 18 96年施测 ) ,平 面坐标 为 15 94年北京坐标系 ,相应 点上 的高程 成果为 15 96年黄海 高 程系统 ,控制点资料由甲方提供 。本次 G S P 控制 测量是在Ⅳ
等j 角 点 下 面布 设 E级 控 制 网 ,作 为 井 田 1 20 : 00地 形 图 及
1 )对于各类 G S网的精 度设 计主要取 决于 网的用途 。 P 精度指标通常 以网中相邻点之 间的距离误差来表示 :
=
 ̄n / +( a h)
() 1
式 中 —— G s基线 向量 的弦长 中误 差 ,m P m,亦 即等效
控制网优化设计
(3)二类设计(权设计)。即在控制网的网形和网的精 度要求已定的情况下,进行观测工作量的最佳分配(权 分配),决定各观测值的精度(权),使各种观测手段 得到合理组合。 (4)三类设计(加密设计)。是对现有网和现有设计 进行改进,引入附加点或附加观测值,导致点位增删或 移动,观测值的增删或精度改变。
近代控制网优化设计不 同于上述规范化设计, 而是一种更为科学和精 确的设计方法。它能同 时顾及的不仅有精度和 费用指标,还有其他一 些指标。应用这种方法, 可求得最为合理的设计 方案。然而此法也有不 足之处,主要是计算工 作量大,必须依靠计算 机进行。
在控制网的技术设计中,首先考虑的是精度指 标,其次是网的费用指标,这是传统的技术设计 方法。在这种方法中,主要以技术规范为依据, 只要设计出的控制网经过精度估算,得出最弱边 的相对精度能够满足有关规范对某一等级控制网 的精度要求,即基本上完成了设计任务. 近代控制网优化设计不同于上述规范化设计, 而是一种更为科学和精确的设计方法。它能同时 顾及的不仅有精度和费用指标,还有其他一些指 标。应用这种方法,可求得最为合理的设计方案。 然而此法也有不足之处,主要是计算工作量大, 必须依靠计算机进行。
解析法具有计算机时较少理论上较严密等优点但其数学模型难于构造最优解有时不符合实际或可行性差权的离散化和程序设计较费时等缺2模拟法模拟法是对经验设计的初步网形和观测精度模拟一组起始数据与观测值输入计算机按间接参数平差组成误差方程法方程求逆进而得到未知参数的协因数阵或方差协方差阵计算未知参数及其函数的精度估算成本或进一步计算可靠性数值等信息
• 3.费用标准 : 布设任何控制网都不可一味追求高精度和 高可靠性而不考虑费用问题,尤其是在讲究经济效益的今 天更是如此。网的优化设计,就是得出在费用最小(或不 超过某一限度)的情况下使其他质量指标能满足要求的布 网方案。具体地说就是采用下列的某一原则:(1)最大原 则。在费用一定的条件下,使控制网的精度和可靠性最大 或者可靠性能满足一定限制下使精度最高。 (2)最小 原则。在使精度和可靠性指标达到一定的条件下,使费用 支出最小。优化设计中,主要考虑的是观测费用。由于各 种不同观测量,采用不同的仪器,其计算均不一样,很难 有一完整的表达式表达出来,只能视具体情况,采用不同 的计算公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制网优化设计
一、GPS 卫星定位的基本原理
GPS 定位时,把卫星看成是―飞行‖的已知控制点,利用测量的距离进行空间后方交会,便得到接收机的位置。
卫星的瞬时坐标可以利用卫星的轨道参数计算。
二、在进行载波相位观测时,在不同观测时段,载波可以划分为哪几部分?
首次观测值0
0)(~φϕFr = 后继量测值)()(~φφϕ
Fr Int += 通常表示为)()(~0
0φφϕFr Int N N ++=+=Φ 三、坐标系之间的转换过程
举例:WGS —84大地坐标系至80平面直角坐标系:
方法一:先将WGS —84大地坐标系转换成WGS —84空间直角坐标系,再将WGS —84大地坐标系,利用七参数(三个平移参数,三个旋转参数,一个尺度变换参数)转变成80空间直角坐标系,在将80空间直角坐标系转换成80大地坐标系,通过高斯投影,输入相应中央子午线经度L0,将其转换成80平面直角坐标系。
方法二; 通过高斯投影,输入相应中央子午线经度L0,先将WGS —84大地坐标系转换成WGS —84平面直角坐标系,再利用四参数(两个平移参数,一个旋转参数,一个缩放参数)将WGS —84平面直角坐标系转化成80平面直角坐标系。
四、GPS 网数据处理的基本过程
1、数据传输
2、建立坐标系统
1)打开TGO 软件,功能—Coordinate System Manager ,进入坐标系统管理器。
2)增加椭球,输入椭球名称、长半轴、扁率
3)增加基准转换(Molodensky ),创建新的基准转换组。
4)增加坐标系统组
5)选择投影方式:横轴墨卡托投影
6)文件保存退出
3 、新建项目
1)新建项目
2)选择模板(Metric 米制单位模板).
3)改变坐标系统,选择需要的坐标系统。
4、导入静态观测数据(*.dat 或RINEX)数据
1)文件/导入
2)修改测站名,天线高度,天线类型,测量方法。
5、处理Timeline
6、处理GPS 基线
7、GPS 网的无约束平差
1)平差—基准—WGS-84,进行无约束平差。
2)查看网平差报告。
看迭代平差是否通过;如果不通过,选择“交替的”加权策略
3)再次进行平差,直到通过为止。
8、网的约束平差
1) 平差—基准—当地投影基准。
2)然后点击观测值,加载水准面模型,输入已知点坐标。
3)点击平差,进行网的约束平差。
9、成果输出
五、GPS 控制网优化设计的分类处理方法
零类设计:即控制网的基准设计,是对一个已知图形结构和观测方案的自由GPS 网确定最优坐标系统的优化设计。
对于区域GPS 网来说,主要确定控制网的投影面和投影带,一般要考虑现有坐标系统的利用及其两种坐标系统的转换。
一类设计:即控制网图形设计,是在约定网的精度和观测方案的情况下,求得最佳点位的优化设计。
研究表明,尽管GPS 对网形设计要求不十分严格,但是网形仍然影响着最后成果的精度。
GPS 网图形设计主要考虑连接方式:即边连接,点连接,重复设站比率,重测基线比率等。
二类设计:即观测方案的最佳选择。
选择观测方案主要反映在选星计划,行车路线,观测时间和数据处理方法等内容。
三类设计:用GPS 改造现有控制网的最优设计。
主要考虑在什么地方加测GPS 基线向量,加则多少。
在设计时主要计算各种方案的经费、精度和可靠性。
六、GPS 控制网数据处理精度控制指标
A .基本精度指标
相邻点弦长标准差σ
σ=B .基线解算质量控制指标 ①基线本身限制:比率、参考变量、RMS
②网限制:数据剔除率、复测基线的长度较差、坐标分量相对闭合差和全长相对闭合差、独立闭合环或者附和路线坐标闭合差
C .网平差质量控制指标
①无约束平差中,基线分量的改正数(V △x ,V △y ,V △z )绝对值
333x y z V V V σσσ∆∆∆⎫≤⎪≤⎬
⎪≤⎭
②约束平差中,基线向量的改正数与经过粗剔除后的无约束平差结果的同名基线相应改正数的较差的绝对值
2x dV σ∆≤,2y dV σ∆≤,2z dV σ∆≤
③最弱边相对中误差 七、推导伪距定位法的数学模型
设在某一瞬间卫星发出一个信号,该瞬间卫星钟•的读数为,正确的标准时应为,该信号在正
确的标准时刻到达接收机,根据接收机钟读得
的时间为。
伪距测量中测得的时延τ= -(1)
•设发射时刻卫星钟的改正数为,接收时刻接收机钟的改正数为,则有
•+=,+= •或=-=-(2)a t a τb τb t b
t a t a t v b t v a t a t
v b t b t v b τa τa t a τa t v b t b τb t v
八、推导载波定位法的数学模型
九、推导载波相位双差数学模型
假设基准卫星为S1, S1的单差观测方程为式(4-9),S2的单差观测方程为式(4-10):
将式(4-10)与式(4-9)求差可得:
实际运算中,必须首先将观测方程进行线性化。
运用泰勒级数将双差观测方程式(4-11)线性化后有:
在双差观测方程中,如果两个测站同步观测n 颗卫星,则未知数中除了含有3个未知测站坐标分量改正数外,还有n 一1个载波相位双差整周模糊度。
其双差误差方程为:
十、控制网设计及相关计算
1.点连接:同步环间仅有一个点相连接而构成的异步网图,如下图所示。
该异步环网图:网中点数n =6,同步环数(观测时段数)
c
=3
,则:
总基线数j 总= 1/2 c N(N-1)=9
独立基线数j 独=c (N-1)=6
必要基线数j 必=n -1=5
多余基线数j 多=j 独-j 必=1——由此产生1个异步环的闭合条件
平均设站次数m =(cN )/n =9/6=1.5(次)
– 2.边连接:同步环间由一条边相连接而构成的异步环网图。
如下图所示。
⑤
②
①
⑥
④
③
该异步环网图:网中点数n=6,同步环数(观测时段数)c=6,则:
总基线数j总=1/2 c N(N-1)=18
独立基线数j独=c(N-1)=12
必要基线数j必=n-1=5
多余基线数j多=j独-j必=7——由此产生1个异步环的闭合条件和6个重复基线条件
平均设站次数m=(cN)/n=18/6=3(次)
• 3.边点混合连接:既有点连接又有边连接的GPS网,如下图所示。
2
①
④
3
图中:n=6 ;c=4 则:
J总=12;j独=8;j必=5;j多=3——
有1个异步环闭合条件和2个重复基线条件。
m=4×3/6=2。
由上可见,混合连接是一种较合理的布网方案(能保证网的精度与可靠性,同时工作量适中)。
• 4.网连接:相邻同步环间有两个以上公共点相连接,相邻同步图形间存在互相重叠的部分,即某一同步图形的一部分是另一同步图形中的一部分。
•这种布网方式需要N≥4,这样密集的布网方法,其几何强度和可靠性指标是相当高的,但其观测工作量及作业经费均较高,仅适用于网点精度要求较高的测量任务。