工程建筑中地下水危害及防治

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程建筑中地下水危害及防治

工程建筑中地下水危害及防治

摘要:地下水是很重要的水资源,对人类的水源提供具有很重要的意义,然而在工程建设中,由于地下水的特殊性和其化学成分,对钢筋混泥土具有很大的侵蚀性,对工程建筑有极大的作用和影响。本文有针对性地提出了勘测、设计,施工等各阶段防治地下水的相关措施,以便有效地防范由地下水引发的工程事故。

关键词:地下水;化学分析;侵蚀性;工程建筑;防治

一,地下水性质及对工程建筑的危害

1地下水的物理性质

由于地下水在运动过程中与各种岩土体相互作用,而岩土中的可溶性物质(很多是矿物)随水迁移、聚集,使地下水成为一种复杂的溶液,这种复杂的地下水溶液通常具有温度、颜色、透明度、气味、味道和导电性等等的物理性质。

2地下水的化学成分

第一,地下水中常见的气体有:O2、N2、H2S、CO2等,地下水中气体分子能够很好地反映地球化学环境。

第二,地下水中含有的离子有:地下水中含量最多、分布最广的离子有七种,即:Cl-、SO2-4、HCO3-、Na+、K+、Ca2+、Mg2+。

第三,地下水中的化合物有:Fe2O3、Al2O3、H2SiO3等。

3地下水的主要化学性质

由于地下水具有如上的物理性质和化学成分,因此在地下水中通常具有如下的化学性质:

第一,地下水的矿化度。

水中所含离子、分子及化合物的总量称为水的总矿化度,低矿化度的水中常以含有HCO3-为主,中等矿化度水常以含有SO2-4为主;高矿化度的水常以含有Cl-为主。高矿化度的水能降低水泥混凝土的强度,腐蚀钢筋等等。

第二,地下水的酸碱度。

地下水的酸碱度用水的PH值来表示,常温常压下当PH值小于5时,水为强酸性水;PH值在5—7之间为弱酸性水,PH值为7时,为中性的水;PH值在7—9之间时为弱碱性水;PH值大于9时为强碱性水。

第三,地下水的硬度。

通常情况下水的硬度按水中的Ca2+、Mg2+离子的含量的多少可以分为以下三种情况:

(1)总硬度,它是指水在未被煮沸时Ca2+、Mg2+离子的总含量。

(2)暂时硬度,它是指水在被煮沸时水中的Ca2+、Mg2+离子因失去CO2生成沉淀碳酸盐而失去的Ca2+、Mg2+离子的数量。

(3)永久硬度是指水经过煮沸后,仍然留在水中的Ca2+、Mg2+离子的含量,

也就是总硬度与暂时硬度的差值。

总的说来,地下水的矿化度、酸碱度和硬度对水泥混凝土的强度都有影响。

4地下水的侵蚀性

具体地说,即为侵蚀性的CO2和游离的CO2。

CO2是地下水中的气体成分之一。以气体状态存在于水中的CO2称为游离的CO2。当水中游离的CO2的量增加时,水溶解碳酸盐的能力就相应的增强。

当水中含有一定数量的HCO-3时,必须有相当的游离CO2与之保持平衡,这部分游离的CO2称为平衡CO2。游离的CO2一部分与新生的HCO-3相平衡,另一部分则消耗于对碳酸盐的溶解,这后一部分的CO2就被称之为侵蚀性CO2。不是所有的游离CO2都能和碳酸盐起作用,能溶解碳酸盐的只是其中的一部分。

另外,SO2-4与混凝土中的某些成分相互作用,生成含水硫酸盐结晶,体积膨胀,使混凝土结构破坏,,也称为结晶式侵蚀。另外,镁盐和混凝土中的Ca(OH)2作用,形成Mg(OH)2和易溶于水的CaCl2,而使混凝土结构破坏。

5地下水对工程建筑的危害

(1)地下水位的变化,对工程建筑的危害影响极大,如地下水位上升,可引起浅基础地基承载力的降低,在有地震砂土液化的地区会引起液化的加剧,岩土体产生变形、滑移、崩塌失稳等不良的地质作用。再有,在寒冷地区产生地下水的冻胀影响。其实就建筑物本身而言,若是地下水位在基础底面以下压缩层内发生上升变化,水浸湿和软化岩土,因而使地基土的强度降低,压缩性增大,建筑物则会产生过大的沉降,导致地基严重变形。尤其是对于结构

不稳定的土(例如湿陷性黄土,膨胀土等)这种现象更为严重,对设有地下室的建筑的防潮和防湿也均为很不利。

(2)地下水侵蚀性的影响主要体现在水对混凝土、可溶性石材、管道以及金属材料的侵蚀和危害。突出表现在地下水的侵蚀性和地下水中的化学性质的积极作用,在工程上带来很大的危害,侵蚀性在或快或慢的进行,改变了各种建筑材料的使用预期。

(3)在饱和的砂性土层中施工,由于地下水的水力状态的改变,使土颗粒之间的有效应力等于零,土颗粒悬浮于水中,随着水一起流出的现象被称为流砂。这种不良地质作用的影响主要表现为在工程施工过程中会造成大量的土体流动,致使地表塌陷或建筑物的地基破坏,会给工程带来极大的困难,或者直接影响建筑工程及附近建筑物的稳定。

(4)如果地下水渗流水力坡度小于临界水力坡度,那么虽然不会产生流砂现象,但是土中细小颗粒仍有可能穿过粗颗粒之间的孔隙被渗流带走。其结果是使地基土的强度受到破坏,土下形成空洞,从而导致地表塌陷,破坏建筑场地的稳定,此种现象就是常说的潜蚀。

(5)地下水的不良地质作用中,还有一个应尤其注意的是基坑涌水现象。这种现象发生在建筑物基坑下有承压水时,开挖基坑会减小基坑底下承压水上部的隔水层厚度,减小过多会使承压水的水头压力冲破基坑底板形成涌水现象。涌水会冲毁基坑,破坏地基,给工程带来一定程度的经济损失。

(6)过度开采地下水,经常造成地面沉陷,塌陷的地面给工程造成极大的危害,经济损失很大。此类的工程实例很多,例如某一工厂为

了赚取更大的利润,工业用水采用地下水,由于开采量超大,过度抽取地下水而造成了地面塌陷成很

大的漏斗状,因此而造成周边的建筑开裂,地基很多失稳,给人们带来了极大的安全隐患,过渡开采地下水的实例告诉我们,地下水资源可以被利用,但是不能盲目的过度的利用,否则就会受到大自然的惩罚。

总之,由于地下水的复杂成分和性质,对工程建筑的不良影响以及危害体现在以上诸多方面,因此工程建筑中要谨防地下水的影响,避免地下水的多种危害。

二、防治地下水的工程措施

防治地下水必须从思想上认识到地下水的危害,同时要加强监管,做好勘测、设计、施工。验收各阶段地下水防治工作,确保施工质量和安全。

(一)水文地质勘测

要详尽了解最高地下水位的标高、类型、补给来源、水质、流量、流向、渗透系数、压力以及历年气候变化情况、降水量、蒸发量及地层冻结深度等技术指标,这是合理确定工程防水标高、防护要求与地下水防止措施的前提与保证。

(二)结构自防水设计

1.选用合理结构形式:应根据防护要求、使用功能结合工程地质和水文地质条件等因素综合确定,能短的不长、能整的不散,避免结构突变(或断面突变),尽量使结构选型规则、整齐,借以提升结构的整体刚度。

2.优化构造节点设计:构造节点长期以来就有“十缝九漏”的说法,虽然有些夸张,却也充分暴露出变形缝防水存在的问题。结构设计中要尽量减少裂缝开展及变形缝的设置。后浇带与构造节点的防水宜优先采用复合式防水设计,如中埋式止水带与外贴防水层复合使用;中埋式止水带与遇水膨胀橡胶条、嵌逢材料复合使用等。

3.避免设计上“强度越高越好”的错误观念:高强度的混凝土中水泥含量较多,产生大量水化热易使结构开裂。如采用较高强度的混

相关文档
最新文档