大学高等数学下考试题库(附答案)

合集下载

大学高等数学下考试习题库(附答案)

大学高等数学下考试习题库(附答案)

欢迎阅读《高等数学》试卷6(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥b3. (A )6π4.A.=⋅b a 5.函数z A.2 6.设z =A.227. 级数(A 8.幂级数=1n nA.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x -21 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4. 设L 为取正向的圆周:221x y +=,则曲线积分2(22)d (4)d Lxy y x x x y -+-=⎰Ñ____________. 5. .级数n ∞三.1.设z =2.3.计算D⎰⎰4. .一.二.1.2-y x 2.(xy cos 3.62-y x 4. ()n n n n ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x x e e y 23-=. 四.应用题1.2.31x y =一.1.点(1M A.12 2.A.6π 3.点(-P A.3 4.A.1≤r 8.幂级数A.[]1,1- B.[)1,1- C.(]1,1- D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10. .考虑二元函数(,)f x y 的下列四条性质:(1)(,)f x y 在点00(,)x y 连续; (2)(,),(,)x y f x y f x y 在点00(,)x y 连续(3)(,)f x y 在点00(,)x y 可微分; (4)0000(,),(,)x y f x y f x y 存在. 若用“P Q ⇒”表示有性质P 推出性质Q ,则有( ) (A )(2)(3)(1)⇒⇒; (B )(3)(2)(1)⇒⇒ (C )(3)(4)(1)⇒⇒; (D )(3)(1)(4)⇒⇒ 二.填空题(4分⨯5)1. 级数(3)nn x ∞-∑的收敛区间为____________.2.函数z3.曲面z4.211x+三.1.设i a =2.设z =3.4. 设∑四.一.二.填空题1.211212+=-=-z y x . 2.()xdy ydx e xy +. 3.488=--z y x . 4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-. 2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂.4.332a 5.C y =四.1.316. 2. x =1A 、10 2、设A 、3、点P A 、2 4、函数z=xsiny 在点(1,4)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22-,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=0(n 9A 、一阶10A 、-2,1、直线 直线2、(0.9834512、求曲线x=t,y=t 2,z=t 3在点(1,1,1)处的切线及法平面方程. 3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n ?,?n 收敛则是条件收敛还是绝对若收敛收敛吗5、将函数f(x)=e 3x 展成麦克劳林级数6、用特征根法求y``+3y`+2y=0的一般解四、应用题(本题共2小题,每题10分,共20分) 1、求表面积为a 2而体积最大的长方体体积。

高等数学下期末试题(七套附答案)

高等数学下期末试题(七套附答案)

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数11z x y x y =++-的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程2222xyz x y z +++=确定,则在点(1,0,1)-处的dz =( )A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D. 2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12 D. 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分) 1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数24x y z -=的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则Lyds =⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 122三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

p p 122222-+--y x y x )11)1)1¶¶4,p y z2222p nA.x -11B.x -22C.x -12D.x-21 10.微分方程0ln =-¢y y y x 的通解为(的通解为( ). A.x ce y =B.x e y =C.x cxe y =D.cxe y =二.填空题(4分´5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设13323+--=xy xy y x z ,则=¶¶¶yx z 2_____________________________. 4.x +21的麦克劳林级数是___________________________. 5.微分方程044=+¢+¢¢y y y 的通解为_________________________________. 三.计算题(5分´6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ¶¶¶¶ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,y z x z ¶¶¶¶ 3.计算s d y x D òò+22sin ,其中22224:p p £+£y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径). 5.求微分方程x e y y 23=-¢在00==x y 条件下的特解. 四.应用题(10分´2)1.要用铁板做一个体积为23m 的有盖长方体水箱,的有盖长方体水箱,问长、问长、宽、高各取怎样的尺寸时,高各取怎样的尺寸时,才能使用料最省?才能使用料最省?才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点÷øöçèæ31,1,求此曲线方程求此曲线方程. 试卷1参考答案一.选择题选择题 CBCAD ACCBD 二.填空题填空题1.0622=+--z y x . 2.()()xdy ydx xy +cos . 3.19622--y y x . 4. ()n n n nx å¥=+-0121. 5.()x ex C C y 221-+= . 三.计算题计算题1.()()[]y x y x y e xz xy +++=¶¶cos sin ,()()[]y x y x x e y z xy +++=¶¶cos sin . 2.12,12+=¶¶+-=¶¶z y y z z x x z . 3.òò=×p p p p r r r j 202sin d d 26p -. 4.3316R . 5.xx e e y 23-=. 四.应用题应用题1.长、宽、高均为m 32时,用料最省. 2..312x y =M 12131415p p p p ))0)0p)0p1¶¶xzr4nA.cx e y =B.x ce y =C.x e y =D.xcxe y =二填空题(4分´5) 1.直线l 过点()1,2,2-A 且与直线ïîïíì-==+=tz t y t x 213平行,则直线l 的方程为__________________________. 2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x +的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________. 三.计算题(5分´6)1.设k j b k j i a 32,2+=-+=,求.b a ´2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z ¶¶¶¶ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,y z x z ¶¶¶¶ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a)所围的几何体的体积. 5.求微分方程023=+¢+¢¢y y y 的通解. 四.应用题(10分´2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积. 2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=tdt yx ¶¶,、二阶行列式 2 -3 4 4p 22,22222222222222y x z z z z z z z zA 、å¥=-0)1(n n)!2(2n x n B 、å¥=-1)1(n n )!2(2n x n C 、å¥=-0)1(n n )!2(2n x n D 、å¥=-0)1(n n )!12(12--n x n 9、微分方程(y``)4+(y`)5+y`+2=0的阶数是(的阶数是( )A 、一阶、一阶B 、二阶、二阶C 、三阶、三阶D 、四阶、四阶10、微分方程y``+3y`+2y=0的特征根为(的特征根为( )A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分)分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

高等数学下册试题(题库)及参考答案

高等数学下册试题(题库)及参考答案

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( A ) A )5 B ) 3 C ) 6 D )9…解 AB ={1-1,2-0,1-2}={0,2,-1},|AB |=5)1(20222=-++.2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .—4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4π C )3π D )π 解 由公式(6-21)有21112)1(211)1(1221cos 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x . 【解 由于平面平行于z 轴,因此可设这平面的方程为0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

⾼等数学下考试题库(附答案)《⾼等数学》试卷1(下)⼀.选择题(3分?10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ().A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有().A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是().A.(){}21,22≤+≤y x y x B.(){}21,22<+C.(){}21,22≤+y x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是().A.0=?b aB.0 =?b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极⼩值是(). A.2 B.2- C.1 D.1- 6.设y x z sin =,则4,1πyz =().A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n p n 收敛,则(). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为().A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=??02在收敛域内的和函数是().A.x -11 B.x -22 C.x -12 D.x-21 10.微分⽅程0ln =-'y y y x 的通解为().A.xce y = B.xe y = C.xcxe y = D.cxe y =⼆.填空题(4分?5)1.⼀平⾯过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平⾯⽅程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题(5分?6)1.设v e z usin =,⽽y x v xy u +==,,求.,yz x z 2.已知隐函数()y x z z ,=由⽅程05242222=-+-+-z x z y x 确定,求.,yz x z 3.计算σd y x D+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱⾯所围成的⽴体的体积(R 为半径).四.应⽤题(10分?2)1.要⽤铁板做⼀个体积为23m 的有盖长⽅体⽔箱,问长、宽、⾼各取怎样的尺⼨时,才能使⽤料最省? .试卷1参考答案⼀.选择题 CBCAD ACCBD ⼆.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=??cos sin ,()()[]y x y x x e y z xy +++=??cos sin . 2.12,12+=??+-=??z yy z z x x z . 3.?=πππρρρ?202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应⽤题1.长、宽、⾼均为m 32时,⽤料最省.2..312x y =《⾼数》试卷2(下)⼀.选择题(3分?10)1.点()1,3,41M ,()2,1,72M 的距离=21M M (). A.12 B.13 C.14 D.152.设两平⾯⽅程分别为0122=++-z y x 和05=++-y x ,则两平⾯的夹⾓为(). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为().A.(){}10,22≤+≤y x y x B.(){}10,22<+C.()?≤+≤20,22πy x y x D.()?<+<20,22πy x y x 4.点()1,2,1--P 到平⾯0522=--+z y x 的距离为(). A.3 B.4 C.5 D.6 5.函数2 2232y x xy z --=的极⼤值为().A.0B.1C.1-D.21 6.设223y xy x z ++=,则()=??2,1xz ().A.6B.7C.8D.9 7.若⼏何级数∑∞=0n nar是收敛的,则().A.1≤rB. 1≥rC.1D.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为().A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是(). A.条件收敛 B.绝对收敛 C.发散 D.不能确定⼆.填空题(4分?5)1.直线l 过点()1,2,2-A 且与直线??-==+=t z t y t x 213平⾏,则直线l 的⽅程为__________________________.2.函数xye z =的全微分为___________________________.3.曲⾯2242y x z -=在点()4,1,2处的切平⾯⽅程为_____________________________________.三.计算题(5分?6)1.设k j b k j i a32,2+=-+=,求.b a ?2.设22uv v u z -=,⽽y x v y x u sin ,cos ==,求.,y z x z 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z 4.如图,求球⾯22224a z y x =++与圆柱⾯ax y x 222=+(0>a )所围的⼏何体的体积.四.应⽤题(10分?2) 1.试⽤⼆重积分计算由x y x y 2,==和4=x 所围图形的⾯积.试卷2参考答案⼀.选择题 CBABA CCDBA. ⼆.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=??-=?? . 3.22,z xy xz y z z xy yz x z +-=??+-=??. 4.-3223323πa . 5.x xe C eC y --+=221.四.应⽤题1.316. 2. 00221x t v gt x ++-=.《⾼等数学》试卷3(下)⼀、选择题(本题共10⼩题,每题3分,共30分) 2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平⾯x+2y-2z-5=0的距离为() A 、2 B 、3 C 、4 D 、5 4、函数z=xsiny 在点(1,4π)处的两个偏导数分别为() A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ,分别为() A 、z y z R x --, B 、z y z R x ---, C 、zz R x ,-- D 、zyz R x ,- 6、设圆⼼在原点,半径为R ,⾯密度为22y x +=µ的薄板的质量为()(⾯积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为()A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n⼆、填空题(本题共5⼩题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹⾓为z y x =-+=-1321___________。

大一高数下考试题及答案

大一高数下考试题及答案

大一高数下考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,是指对于任意给定的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。

这个定义描述的是()。

A. 函数在某点的连续性B. 函数在某点的可导性C. 函数在某点的极限D. 函数在某点的间断性答案:C2. 以下哪个函数是偶函数?()A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个积分是收敛的?()A. ∫(1/x)dx 从1到∞B. ∫(1/x^2)dx 从1到∞C. ∫(1/x^3)dx 从1到∞D. ∫(1/x)dx 从0到1答案:B4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...答案:D5. 以下哪个是二阶导数?()A. f''(x) = 2xB. f'(x) = 2xC. f(x) = x^2D. f'(x) = 2答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x在x=0处的导数是________。

答案:02. 函数f(x) = e^x的不定积分是________。

答案:e^x + C3. 函数f(x) = sin(x)的不定积分是________。

答案:-cos(x) + C4. 函数f(x) = x^2在区间[0,1]上的定积分是________。

答案:1/35. 函数f(x) = x^2 + 2x + 1的极值点是________。

答案:x = -1三、计算题(每题10分,共30分)1. 计算极限:lim(x→0) [(x^2 + 1) / (x^2 - 1)]。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。

高等数学下册试题题库及参考答案

高等数学下册试题题库及参考答案

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( A ) A )5 B ) 3 C ) 6 D )9解 AB ={1-1,2-0,1-2}={0,2,-1},||=5)1(20222=-++. 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4πC )3π D )π 解 由公式(6-21)有21112)1(211)1(1221c o s 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x .解 由于平面平行于z 轴,因此可设这平面的方程为 0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

《高等数学》试卷1(下)一。

选择题(3分10)1。

点到点的距离()。

A。

3 B。

4 C.5 D。

62。

向量,则有( ).A。

∥ B.⊥C。

D.3。

函数的定义域是()。

A。

B。

C. D4.两个向量与垂直的充要条件是()。

A. B。

C. D.5.函数的极小值是( ).A。

2 B。

C.1 D.6.设,则=().A. B. C。

D。

7。

若级数收敛,则()。

A。

B。

C。

D.8。

幂级数的收敛域为()。

A。

B C. D.9.幂级数在收敛域内的和函数是( )。

A。

B。

C。

D。

10.微分方程的通解为()。

A. B。

C. D.二。

填空题(4分5)1.一平面过点且垂直于直线,其中点,则此平面方程为______________________。

2。

函数的全微分是______________________________.3。

设,则_____________________________.4。

的麦克劳林级数是___________________________。

三。

计算题(5分6)1。

设,而,求2。

已知隐函数由方程确定,求3。

计算,其中.4.求两个半径相等的直交圆柱面所围成的立体的体积(为半径)。

四。

应用题(10分2)1。

要用铁板做一个体积为2的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?。

试卷1参考答案一.选择题CBCAD ACCBD二.填空题1。

2. 。

3. .4。

5。

三。

计算题1。

,。

2。

.3。

.4。

5。

四。

应用题1。

长、宽、高均为时,用料最省.2.《高数》试卷2(下)一。

选择题(3分10)1.点,的距离().A. B。

C. D.2。

设两平面方程分别为和,则两平面的夹角为()。

A。

B. C。

D。

3。

函数的定义域为()。

A。

B。

C. D。

4。

点到平面的距离为( )。

A.3 B。

4 C。

5 D.65。

函数的极大值为().A。

0 B。

1 C。

D。

6。

设,则().A。

6 B。

7 C。

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)

一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2.则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =.则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n pn收敛.则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nn x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ).A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB .其中点()1,1,2-B .则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z .则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =.而y x v xy u +==,.求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定.求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin .其中22224:ππ≤+≤y x D . 4.如图.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xey y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱.问长、宽、高各取怎样的尺寸时.才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍.且曲线过点⎪⎭⎫ ⎝⎛31,1.求此曲线方程试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin .()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时.用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M .()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x .则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y x C.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.21 6.设223y xy x z ++=.则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的.则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行.则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x+的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=.求.b a ⨯2.设22uv v u z -=.而y x v y x u sin ,cos ==.求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定.求.,yz x z ∂∂∂∂ 4.如图.求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 四.应用题 1.316.《高等数学》试卷3(下)一、选择题(本题共10小题.每题3分.共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k.则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1.4π)处的两个偏导数分别为( )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx.则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点.半径为R.面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2.-1 B 、2.1 C 、-2.1 D 、1.-2 二、填空题(本题共5小题.每题4分.共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

高等数学下考试题库及答案

高等数学下考试题库及答案

高等数学下考试题库及答案一、单项选择题(每题4分,共20分)1. 函数f(x)=x^2+3x-4的零点个数是()。

A. 0B. 1C. 2D. 3答案:C2. 曲线y=e^x与y=ln x的交点个数是()。

A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-3x+1的单调递增区间是()。

A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-∞, 1)∪(1, +∞)答案:C4. 函数f(x)=x^2-4x+3的极小值是()。

A. 0B. 1C. 2D. 3答案:B5. 曲线y=x^3-3x^2+2x+1的拐点个数是()。

A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的零点是_________。

答案:1和37. 函数f(x)=e^x-x-1的零点是_________。

答案:18. 函数f(x)=x^3-3x+1的极小值点是_________。

答案:19. 函数f(x)=x^2-4x+3的极大值是_________。

答案:010. 曲线y=x^3-3x^2+2x+1的拐点坐标为_________。

答案:(0,1)和(2,5)三、计算题(每题10分,共30分)11. 计算定积分∫₀¹(x^2+2x)dx。

解:∫₀¹(x^2+2x)dx = (1/3x^3+x^2)|₀¹ = 1/3+1 = 4/3。

12. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2=1所围成的圆盘。

解:∬D(x^2+y^2)dσ = ∬(0,2π)∫(0,1)(r^2)rdrdθ = (1/3)π。

13. 计算曲线积分∮C(xy)dx+(yz)dy+(zx)dz,其中C为单位圆x^2+y^2=1在xy平面上的投影。

解:∮C(xy)dx+(yz)dy+(zx)dz = ∮(0,2π)(-1/2)sin^2θdθ = π/2。

大学高等数学下考试习题库(附答案)

大学高等数学下考试习题库(附答案)

大学高等数学下考试习题库(附答案)《高等数学》试卷6(下)一.选择题(3分?10)1.点M1?2,3,1?到点M2?2,7,4?的距离M1M2?().A.3B.4C.5D.62.向量a??i?2?j?k?,b?2?i?j,则有().A.a?∥b?B.a?⊥b?C.a?,b??3D.a?,b??43.设有直线L:某?1y?5z?8?某?y?611?2?1和L2:?2y?z?3,则L1与L2的夹角为((A)6;(B)?4;(C)?3;(D)?2. 4.两个向量a?与b?垂直的充要条件是(). A.a?b?0 B.a?b??0 C.a?b??0 D.a?b??0 5.函数z?某3?y3?3某y的极小值是(). A.2 B.?2 C.1 D.?1 6.设z?某siny,则?z?y?=(). ??1,4?A.22 B.?22 C.2 D.?2 ?7. 级数?(?1)n(1?cos?) (?0)是(n?1n )(A)发散;(B)条件收敛;(C)绝对收敛;(D)敛散性与?有关. ?某n8.幂级数?的收敛域为(). n?1nA.?1,1? B?1,1? C.?1,1? D.?1,1?n9.幂级数?某?2?在收敛域内的和函数是().n?0A.11?某B.22?某C.211?某D.2?某二.填空题(4分?5)页脚内容1.一平面过点A?0,0,3?且垂直于直线AB,其中点B?2,?1,1?,则此平面方程为______________________.2.函数z?sin?某y?的全微分是______________________________.2z_____________________________.3.设z?某y?3某y?某y?1,则某?y32324. 设L为取正向的圆周:某2?y2?1,则曲线积分?(2某y?2y)d某?(某?4某)dy?____________. ?L(某?2)n5. .级数?的收敛区间为____________. nn?1?三.计算题(5分?6) 1.设z?eusinv,而u?某y,v?某?y,求?z?z,. ?某?y?z?z,. ?某?y2.已知隐函数z?z?某,y?由方程某2?2y2?z2?4某?2z?5?0确定,求3.计算?sin某2?y2d?,其中D:?2?某2?y2?4?2. D4. .计算.10dyyysin某d某某试卷6参考答案一.选择题 CBCAD ACCBD 二.填空题 1.2某?y?2z?6?0. 2.cos?某y?yd某?某dy? . 3.6某2y?9y2?1 .4. ?n?0??1?n某n.2n?15.y?C1?C2某?e?2某.三.计算题1.zze某y?某sin?某?y?cos?某?y?. ?e某y?ysin?某?y?cos?某?y?,?y?某页脚内容z某?2?某z?1,?z?y?2yz?1. 3.?2?d?2?0sin??d??6?2?.4.163R3.5.y?e3某?e2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y?13某2.《高数》试卷7(下)一.选择题(3分?10)1.点M1?4,3,1?,M2?7,1,2?的距离M1M2?().A.12B.13C.14D.152.设两平面方程分别为某?2y?2z?1?0和?某?y?5?0,则两平面的夹角为(A.6 B.4 C.3 D.2 3.点P?1,?2,1?到平面某?2y?2z?5?0的距离为(). A.3 B.4 C.5 D.6 ?4.若几何级数?arn是收敛的,则().n?0A.r?1 B. r?1 C.r?1 D.r?1 ?8.幂级数?n?1?某n的收敛域为(). n?0A.?1,1? B.?1,1? C.?1,1? D. ?1,1? ?9.级数?sinna是()n?1n4. A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10. .考虑二元函数f(某,y)的下列四条性质:(1)f(某,y)在点(某0,y0)连续;(2)f某(某,y),fy(某,y)在点(某0,y0)连续页脚内容(3)f(某,y)在点(某0,y0)可微分;(4)f某(某0,y0),fy(某0,y0)存在. 若用“P?Q”表示有性质P推出性质Q,则有()(A)(2)?(3)?(1);(B)(3)?(2)?(1) (C)(3)?(4)?(1);(D)(3)?(1)?(4) 二.填空题(4分?5)(某?3)n1.级数?的收敛区间为____________.nn?1?2.函数z?e某y的全微分为___________________________. 3.曲面z?2某2?4y2在点?2,1,4?处的切平面方程为_____________________________________. 1的麦克劳林级数是______________________. 21?某三.计算题(5分?6)?1.设a?i?2j?k,b?2j?3k,求a?b. 4.2.设z?u2v?uv2,而u?某cosy,v?某siny,求?z?z,. ?某?y?z?z,. ?某?y3.已知隐函数z?z?某,y?由某3?3某yz?2确定,求4. 设?是锥面z?某2?y2 (0?z?1)下侧,计算?某dydz?2ydzd某?3(z?1)d某dy ?四.应用题(10分?2)试用二重积分计算由y?某,y?2某和某?4所围图形的面积. 试卷7参考答案一.选择题 CBABA CCDBA. 二.填空题某?2y?2z?1?1.. 1122.e某y?yd某?某dy?. 3.8某?8y?z?4.4.??1?某2n.nn?0?页脚内容?1.8i?3j?2k.2.zz3某2sinycosy?cosy?siny?,?2某3sinycosy?siny?cosy?某3sin3y?cos3y . ?某?y?3.zyzz某z?,?. ?某某y?z2?y某y?z2323?2?a??. 3?23?4.5.y?C1e?2某?C2e?某. 四.应用题 161.. 312. 某?gt2?v0t?某0. 2《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为() 4 5 A、10 B、20 C、24 D、22 2、设a=i+2j-k,b=2j+3k,则a与b 的向量积为() A、i-j+2k B、8i-j+2k C、8i-3j+2k D、8i-3i+k 3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为() A、2 B、3 C、4 D、5 4、函数z=某siny在点(1,A)处的两个偏导数分别为()422222222,,B、,?,C、??D、?222222225、设某2+y2+z2=2R某,则Azz,分别为() ?某?y某?Ry某?Ry某?Ry,? B、?,? C、?,zzzzzz D某?Ry, zz页脚内容。

大学高数下试题及答案

大学高数下试题及答案

大学高数下试题及答案一、选择题(每题4分,共20分)1. 设函数f(x)=x^3-3x^2+2x,求f'(x)的值。

A. 3x^2-6x+2B. x^3-3x^2+2C. 3x^2-6xD. 3x^2-6x+2答案:A2. 计算定积分∫(0到1) x dx。

A. 1/2B. 0C. 1D. 2答案:A3. 已知级数∑(从n=1到∞) 1/n^2 收敛,那么级数∑(从n=1到∞) 1/n 收敛吗?A. 收敛B. 发散C. 不确定D. 收敛于0答案:B4. 以下哪个选项是函数y=e^x的反函数?A. y=ln(x)B. y=e^(-x)C. y=x^eD. y=e^x答案:A5. 设函数f(x)=x^2+2x+1,求f(x)的极值点。

A. x=-1B. x=1C. x=0D. 无极值点答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的拐点是______。

答案:x=1, 22. 求极限lim(x→0) (sin(x)/x)的值为______。

答案:13. 计算二重积分∬(从0到1, 从0到x) xy dA的值为______。

答案:1/64. 已知函数f(x)在点x=a处可导,且f'(a)=3,那么曲线y=f(x)在点(a, f(a))处的切线斜率为______。

答案:35. 计算定积分∫(从0到π) sin(x) dx的值为______。

答案:2三、解答题(共60分)1. (10分)求函数y=x^2-4x+3在区间[1,3]上的最大值和最小值。

答案:函数y=x^2-4x+3的导数为y'=2x-4。

令y'=0,解得x=2,即在x=2处可能存在极值。

计算f(1)=0,f(2)=-1,f(3)=0,因此最小值为-1,最大值为0。

2. (15分)计算级数∑(从n=1到∞) (1/n - 1/(n+1))的和。

答案:级数∑(从n=1到∞) (1/n - 1/(n+1))是一个望远镜级数,其和为1。

大学高数下册试题及答案

大学高数下册试题及答案

大学高数下册试题及答案《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)1.设有直线及平面,则直线(A)A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交.2.二元函数在点处(C)A.连续、偏导数存在;B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在.3.设为连续函数,则=(B)A.;B.;C.D..4.设是平面由,所确定的三角形区域,则曲面积分=(D)A.7;B.;C.;D..5.微分方程的一个特解应具有形式(B)A.;B.;C.;D..二、填空题(每小题3分,本大题共15分)1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则0;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数;5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有.三、(本题7分)设由方程组确定了,是,的函数,求及与.解:方程两边取全微分,则解出从而四、(本题7分)已知点及点,求函数在点处沿方向的方向导数.解:,从而五、(本题8分)计算累次积分).解:依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、(本题8分)计算,其中是由柱面及平面围成的区域.解:先二后一比较方便,七.(本题8分)计算,其中是抛物面被平面所截下的有限部分.解:由对称性从而八、(本题8分)计算,是点到点在上半平面上的任意逐段光滑曲线.解:在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、(本题8分)计算,其中为半球面上侧.解:补取下侧,则构成封闭曲面的外侧十、(本题8分)设二阶连续可导函数,适合,求.解:由已知即十一、(本题4分)求方程的通解.解:解:对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、(本题4分)在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.解:设点的坐标为,则问题即在求最小值。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

《高等数学》试卷1(下)一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC. a,bD.3 a,b43.函数122y2xy的定义域是().22xy12y2y22A.x,y1x2B.x,y1x22y2y22C.x,y1x2Dx,y1x24.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab0335.函数zxy3xy 的极小值是().A.2B.2C.1D.16.设zxsiny,则zy 1, 4=().A.22B.22C.2D.27.若p级数n1 1 pn收敛,则().A.p1B.p1C.p1D.p18.幂级数n1nxn的收敛域为().A.1,1B1,1C.1,1D.1,19.幂级数nx02n在收敛域内的和函数是().1221A.B.C.D.1x2x1x2x 10.微分方程xyylny0的通解为().A. xyceB.xyeC.xycxeD. ycxe二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zsinxy的全微分是______________________________.3yxy3xy2 3.设zx31,则2zxy_____________________________.1的麦克劳林级数是___________________________.4.2x三.计算题(5分6)zzu sin,而uxy,vxy,求,.1.设zevxyzz2yzxz222.已知隐函数zzx,y由方程x24250确定,求,.xy22 3.计算sinxyd,其中24222 D:xy.D4.求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).四.应用题(10分2)1.要用铁板做一个体积为23m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?.试卷1参考答案一.选择题CBCADACCBD二.填空题1.2xy2z60.2.cosxyydxxdy.2yy23.6x91.4.n0n1n12nx.11.y2x CCxe1.2三.计算题zxyzxy4.eysinxycosxy,exsinxycosxy.xy5.zx2zx1,zy2zy1.6.22dsind26.7.1633R.8.y3xe2ex.四.应用题5.长、宽、高均为m32时,用料最省.126.yx.3《高数》试卷2(下)一.选择题(3分10)2.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.153.设两平面方程分别为x2y2z10和xy50,则两平面的夹角为().A.B.C.D.64324.函数22zarcsinxy的定义域为().2y2y22A.x,y0x1B.x,y0x1C. 2y2x,y0xD.2 x,y0x 2y225.点P1,2,1到平面x2y2z50的距离为().A.3B.4C.5D.66.函数222z2xy3xy的极大值为().A.0B.1C.1D. 1 212.设z 23xyy2zx,则1,2x().A.6B.7C.8D.913.若几何级数nar是收敛的,则(). n0A.r1B.r1C.r1D.r114.幂级数nn1x的收敛域为().n0A.1,1B.1,1C.1,1D.1,115.级数sinnn1n a4 是().A.条件收敛B.绝对收敛C.发散D.不能确定二.填空题(4分5)x3t9.直线l过点A2,2,1且与直线yt 平行,则直线l的方程为__________________________.z12t10.函数xyze的全微分为___________________________.11.曲面242z2xy在点2,1,4处的切平面方程为_____________________________________.三.计算题(5分6)7.设ai2jk,b2j3k,求ab.8.设zz 2zu,而uxcosy,vxsiny,求,.2vuvxyzz3xyz9.已知隐函数zzx,y由x32确定,求,.xy10.如图,求球面2y2z24a22 2x与圆柱面xy2ax(a0)所围的几何体的体积.四.应用题(10分2)16.试用二重积分计算由yx ,y2x 和x4所围图形的面积.试卷2参考答案一.选择题CBABACCDBA. 二.填空题 12.x 2y2z 112 1 . xy13.eydxxdy.14.8x8y z4.15.1n0nx 2n. 16.3 yx. 三.计算题11.8i3j2k.z 2z 333312.3xsinycosycosysiny,2xsinycosysinycosyxsinycosy .xy zyzzxz 13.2,2xxyzyxyz. 14. 3232 a.323 15. 2xxCeyCe21.四.应用题17. 16 3.12xgtvtx.2.002《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为() A 、2B 、3C 、4D 、54、函数z=xsiny 在点(1,)处的两个偏导数分别为() 42A 、,22 2,2 B 、,22 2C 、2 22 2D 、2 22 2, 5、设x 2+y 2+z 2=2Rx ,则2+y 2+z 2=2Rx ,则z x z,分别为()yA 、x R z yx ,B 、 z z R yxRy ,C 、,D 、 zzzx z R , y z 6、设圆心在原点,半径为R ,面密度为2y 2 x 的薄板的质量为()(面积A= 2 R )1A 、R2AB 、2R 2AC 、3R 2AD 、RA22n xn7、级数(1)的收敛半径为()nn1A 、2B 、1 2C 、1D 、38、cosx 的麦克劳林级数为()A 、 ( n0 n 1) ( 2n x 2n)!B 、 (1) n1n 2n x (2n)! C 、 n 0 ( 1) n 2n x (2n)!D 、 n 0 ( 1) n ( 2n x 2n 1 1)!二、填空题(本题共5小题,每题4分,共20分)___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》试卷1(下)一.选择题(3分10)1。

点到点的距离().A.3B.4 C。

5 D.62.向量,则有( ).A.∥B.⊥C.D.3.函数的定义域是()。

A。

B.C. D4。

两个向量与垂直的充要条件是()。

A. B。

C。

D.5.函数的极小值是().A。

2 B。

C.1 D.6.设,则=()。

A。

B. C. D.7.若级数收敛,则()。

A。

B. C。

D。

8.幂级数的收敛域为().A. B C. D。

9。

幂级数在收敛域内的和函数是().A. B。

C. D.10.微分方程的通解为()。

A。

B. C. D.二.填空题(4分5)1。

一平面过点且垂直于直线,其中点,则此平面方程为______________________.2.函数的全微分是______________________________.3.设,则_____________________________。

4.的麦克劳林级数是___________________________.5。

微分方程的通解为_________________________________.三.计算题(5分6)1.设,而,求2。

已知隐函数由方程确定,求3。

计算,其中.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(为半径)。

5.求微分方程在条件下的特解。

四.应用题(10分2)1.要用铁板做一个体积为2的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2。

.曲线上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点,求此曲线方程.《高数》试卷2(下)一.选择题(3分10)1.点,的距离().A。

B. C。

D。

2.设两平面方程分别为和,则两平面的夹角为().A. B. C. D.3。

函数的定义域为().A。

B。

C. D.4.点到平面的距离为()。

A。

3 B。

4 C.5 D。

65.函数的极大值为().A.0 B。

1 C. D.6。

设,则( )。

A。

6 B。

7 C。

8 D.97.若几何级数是收敛的,则()。

A。

B. C。

D.8。

幂级数的收敛域为()。

A。

B。

C。

D。

9。

级数是().A。

条件收敛B。

绝对收敛 C.发散D。

不能确定10.微分方程的通解为()。

A。

B. C. D.二。

填空题(4分5)1.直线过点且与直线平行,则直线的方程为__________________________。

2.函数的全微分为___________________________。

3。

曲面在点处的切平面方程为_____________________________________.4。

的麦克劳林级数是______________________。

5.微分方程在条件下的特解为______________________________。

三.计算题(5分6)1.设,求2.设,而,求3。

已知隐函数由确定,求4。

如图,求球面与圆柱面()所围的几何体的体积。

5.求微分方程的通解.四.应用题(10分2)1.试用二重积分计算由和所围图形的面积。

2。

如图,以初速度将质点铅直上抛,不计阻力,求质点的运动规律(提示:。

当时,有,)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2 -3 的值为()4 5A、10B、20C、24D、222、设a=i+2j—k,b=2j+3k,则a与b的向量积为()A、i—j+2kB、8i—j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面x+2y—2z—5=0的距离为()A、2B、3C、4D、54、函数z=xsiny在点(1,)处的两个偏导数分别为()A、B、C、D、5、设x2+y2+z2=2Rx,则分别为()A、B、C、D、6、设圆心在原点,半径为R,面密度为的薄板的质量为()(面积A=)A、R2AB、2R2AC、3R2AD、7、级数的收敛半径为()A、2B、C、1D、38、cosx的麦克劳林级数为()A、B、C、D、9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( )A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为( )A、—2,—1B、2,1C、-2,1D、1,—2二、填空题(本题共5小题,每题4分,共20分)1、直线L1:x=y=z与直线L2:___________.直线L3:____________。

2、(0.98)2。

03的近似值为________,sin100的近似值为___________。

3、二重积分___________.4、幂级数__________,__________。

5、微分方程y`=xy的一般解为___________,微分方程xy`+y=y2的解为___________。

三、计算题(本题共6小题,每小题5分,共30分)1、用行列式解方程组—3x+2y-8z=172x-5y+3z=3x+7y-5z=22、求曲线x=t,y=t2,z=t3在点(1,1,1)处的切线及法平面方程.3、计算.4、问级数5、将函数f(x)=e3x展成麦克劳林级数6、用特征根法求y``+3y`+2y=0的一般解四、应用题(本题共2小题,每题10分,共20分)1、求表面积为a2而体积最大的长方体体积。

2、放射性元素铀由于不断地有原子放射出微粒子而变成其它元素,铀的含量就不断减小,这种现象叫做衰变.由原子物理学知道,铀的衰变速度与当时未衰变的原子的含量M成正比,(已知比例系数为k)已知t=0时,铀的含量为M0,求在衰变过程中铀含量M(t)随时间t变化的规律.《高数》试卷4(下)一.选择题:1.下列平面中过点(1,1,1)的平面是.(A)x+y+z=0(B)x+y+z=1(C)x=1(D)x=32.在空间直角坐标系中,方程表示.(A)圆(B)圆域(C)球面(D)圆柱面3.二元函数的驻点是.(A)(0,0)(B)(0,1)(C)(1,0)(D)(1,1)4.二重积分的积分区域D是,则.(A)(B)(C)(D)5.交换积分次序后.(A)(B)(C)(D)6.n阶行列式中所有元素都是1,其值是.(A)n(B)0(C)n!(D)17.对于n元线性方程组,当时,它有无穷多组解,则.(A)r=n(B)r<n(C)r>n(D)无法确定8.下列级数收敛的是.(A)(B)(C)(D)9.正项级数和满足关系式,则.(A)若收敛,则收敛(B)若收敛,则收敛(C)若发散,则发散(D)若收敛,则发散10.已知:,则的幂级数展开式为.(A)(B)(C)(D)二.填空题:1.数的定义域为.2.若,则.3.已知是的驻点,若则当时,一定是极小点.4.矩阵A为三阶方阵,则行列式5.级数收敛的必要条件是.三.计算题(一):1.已知:,求:,.2.计算二重积分,其中.3.已知:XB=A,其中A=,B=,求未知矩阵X.4.求幂级数的收敛区间.5.求的麦克劳林展开式(需指出收敛区间).四.计算题(二):1.求平面x-2y+z=2和2x+y-z=4的交线的标准方程.2.设方程组,试问:分别为何值时,方程组无解、有唯一解、有无穷多组解.《高数》试卷5(下)一、选择题(3分/题)1、已知,,则()A 0BC D2、空间直角坐标系中表示()A 圆B 圆面C 圆柱面D 球面3、二元函数在(0,0)点处的极限是()A 1B 0CD 不存在4、交换积分次序后=()A BC D5、二重积分的积分区域D是,则()A 2B 1C 0D 46、n阶行列式中所有元素都是1,其值为()A 0B 1C nD n!7、若有矩阵,,,下列可运算的式子是( )A B C D8、n元线性方程组,当时有无穷多组解,则()A r=nB r〈nC r>nD 无法确定9、在一秩为r的矩阵中,任r阶子式()A 必等于零B 必不等于零C 可以等于零,也可以不等于零D 不会都不等于零10、正项级数和满足关系式,则( )A 若收敛,则收敛B 若收敛,则收敛C 若发散,则发散D 若收敛,则发散二、填空题(4分/题)1、空间点p(-1,2,-3)到平面的距离为2、函数在点处取得极小值,极小值为3、为三阶方阵,,则4、三阶行列式=5、级数收敛的必要条件是三、计算题(6分/题)1、已知二元函数,求偏导数,2、求两平面:与交线的标准式方程.3、计算二重积分,其中由直线,和双曲线所围成的区域。

4、求方阵的逆矩阵。

5、求幂级数的收敛半径和收敛区间。

四、应用题(10分/题)1、判断级数的收敛性,如果收敛,请指出绝对收敛还是条件收敛.2、试根据的取值,讨论方程组是否有解,指出解的情况。

试卷1参考答案一。

选择题CBCAD ACCBD二.填空题1..2. 。

3。

4。

.5. .三.计算题1. ,.2。

3。

.4. .5。

四。

应用题1.长、宽、高均为时,用料最省.2。

试卷2参考答案一.选择题CBABA CCDBA.二.填空题1.。

2.。

3。

.4..5。

三。

计算题1.。

2。

.3.。

4. .5..四。

应用题1。

2. 。

3参考答案一、选择题1、D2、C3、C4、A5、B6、D7、C8、A9、B 10,A二、填空题1、2、0。

96,0.173653、л4、0,+5、三、计算题1、—3 2 -8解:△= 2 -5 3 = (—3)× -5 3 —2× 2 3 +(-8)2 —5 =—1381 7 —5 7 —5 1 -517 2 —8△x= 3 —5 3 =17×—5 3 -2× 3 3 +(-8)× 3 —5 =—1382 7 -5 7 -5 2 —5 2 7同理:—3 17 -8△y= 2 3 3 =276 ,△z= 4141 2 —5所以,方程组的解为2、解:因为x=t,y=t2,z=t3,所以x t=1,y t=2t,z t=3t2,所以x t|t=1=1, y t|t=1=2, z t|t=1=3故切线方程为:法平面方程为:(x—1)+2(y-1)+3(z—1)=0即x+2y+3z=63、解:因为D由直线y=1,x=2,y=x围成,所以D:1≤y≤2y≤x≤2故:4、解:这是交错级数,因为5、解:因为用2x代x,得:6、解:特征方程为r2+4r+4=0所以,(r+2)2=0得重根r1=r2=-2,其对应的两个线性无关解为y1=e—2x,y2=xe-2x所以,方程的一般解为y=(c1+c2x)e-2x四、应用题1、解:设长方体的三棱长分别为x,y,z则2(xy+yz+zx)=a2构造辅助函数F(x,y,z)=xyz+求其对x,y,z的偏导,并使之为0,得:yz+2(y+z)=0xz+2(x+z)=0xy+2(x+y)=0与2(xy+yz+zx)—a2=0联立,由于x,y,z均不等于零可得x=y=z代入2(xy+yz+zx)-a2=0得x=y=z=,所以,表面积为a2而体积最大的长方体的体积为2、解:据题意试卷4参考答案一.1.C;2.D;3.D;4.D;5.A;6.B;7.B;8.C;9.B;10.D.二.1.2.3.4.275.四.1.解:2.解:3.解:。

相关文档
最新文档