安徽中考数学模拟试题及答案

合集下载

安徽省芜湖市中考数学一模试卷(含答案解析)

安徽省芜湖市中考数学一模试卷(含答案解析)

安徽省芜湖市中考数学一模试卷一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:94.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.165.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:29.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为.12.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.安徽省芜湖市中考数学一模试卷参考答案与试题解析一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【解答】解:A、=,则5y=6x,故此选项错误;B、=,则5x=6y,故此选项正确;C、=,则5y=6x,故此选项错误;D、=,则xy=30,故此选项错误;故选:B.【点评】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°【分析】根据相似多边形对应角的比相等,就可以求解.【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.【点评】主要考查了相似多边形的性质和四边形的内角和是360度的实际运用.3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC 是解题关键.5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒【分析】已知函数式为二次函数解析式,最高点即为抛物线顶点,求达到最高点所用时间,即求顶点的横坐标.【解答】解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.【点评】本题考查的是二次函数在实际生活中的应用,比较简单.7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率为=,故选:C.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:2【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.【解答】解:∵矩形纸片对折,折痕为EF,∴AF=AB=a,∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选:B.【点评】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB =2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q 点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选:D.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y =x 2向左平移1个单位,所得的新抛物线的解析式为 y =(x +1)2 .【分析】先确定抛物线y =x 2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y =x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(﹣1,0),所以新抛物线的解析式为y =(x +1)2. 故答案为y =(x +1)2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是 8﹣2π (结果保留π).【分析】根据S 阴=S △ABD ﹣S 扇形BAE 计算即可; 【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为4.【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(﹣a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(a,),∴点B的坐标为(0,),∴=1,解得,k=4,故答案为:4.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=或2或6.【分析】由AD∥BC,∠ABC=90°,易得∠PAD=∠PBC=90°,又由AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,然后分别从△APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.所以AP=或AP=2或AP=6.故答案是:或2或6.【点评】此题考查了相似三角形的性质.注意利用分类讨论思想求解是关键.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.【分析】原方程转化为x=0或x+2=0,然后解一次方程即可.【解答】解:∵x=0或x+2=0,∴x1=0,x2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【解答】解:(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.【分析】一般用增长后的量=增长前的量×(1+增长率),要投入教育经费是2500(1+x)万元,在的基础上再增长x,就是的教育经费数额,即可列出方程求解.【解答】解:设增长率为x,根据题意为2500(1+x)万元,为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【解答】解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.【分析】(1)根据圆周角定理得到∠D=∠B,证明△DMA∽△BMC,根据相似三角形的性质列出比例式,即可证明结论;(2)连接OA,OC,过O作OH⊥AC于H点,根据圆周角定理、垂径定理计算即可.【解答】(1)证明:∵=,∴∠D=∠B,又∵∠DMA=∠BMC,∴△DMA∽△BMC,∴=,∴DM•MC=BM•MA;(2)连接OA,OC,过O作OH⊥AC于H点,∵∠D=60°,∴∠AOC=120°,∠OAH=30°,AH=CH,∵⊙O半径为2,∴AH=∵AC=2AH,∴AC=2.【点评】本题考查的是相似三角形的判定和性质、圆周角定理、垂径定理,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.【分析】(1)根据抛物线与x轴有两个交点,得到△>0,由此求得m的取值范围.(2)利用(1)中m的取值范围确定m=2,然后根据抛物线解析式求得点A、B的坐标,利用三角形的面积公式解答即可.【解答】解:(1)∵抛物线y=x2﹣4x+2m﹣1与x轴有两个交点,令y=0.∴x2﹣4x+2m﹣1=0.∵与x轴有两个交点,∴方程有两个不等的实数根.∴△>0.即△=(﹣4)2﹣4•(2m﹣1)>0,∴m<2.5.(2)∵m<2.5,且m取最大整数,∴m=2.当m=2时,抛物线y=x2﹣4x+2m﹣1=x2﹣4x+3=(x﹣2)2﹣1.∴C坐标为(2,﹣1).令y=0,得x2﹣4x+3=0,解得x1=1,x2=3.∴抛物线与x轴两个交点的坐标为A(1,0),B(3,0),∴△ABC的面积为=1.【点评】考查了抛物线与x轴的交点坐标,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点,解题时,注意二次函数与一元二次方程间的转化关系.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.【分析】(1)列表得出所有等可能的情况数即可;(2)找出点(x,y)落在反比例函数y=的图象上的情况数,即可求出所求的概率;(3)找出所确定的数x,y满足y的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的结果有16种,分别为(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4);(2)其中点(x,y)落在反比例函数y=的图象上的情况有:(2,3);(3,2)共2种,则P(点(x,y)落在反比例函数y=的图象上)==;(3)所确定的数x,y满足y的情况有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8种,则P(所确定的数x,y满足y)==.【点评】此题考查了列表法与树状图法,以及反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=3;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.【分析】(1)由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;(2)设A点坐标为(a,),则D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合∠P=∠P 可得出△PDC∽△PAB,由相似三角形的性质可得出∠CDP=∠A,再利用“同位角相等,两直线平行”可证出CD∥AB;(3)由四边形ABCD的面积和△PCD的面积相等可得出S△PAB =2S△PCD,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.【解答】(1)解:∵B点(1,3)在反比例函数y=的图象,∴k=1×3=3.故答案为:3.(2)证明:∵反比例函数解析式为,∴设A点坐标为(a,).∵PB⊥x轴于点C,PA⊥y轴于点D,∴D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,∴,,∴.又∵∠P=∠P,∴△PDC∽△PAB,∴∠CDP=∠A,∴CD∥AB.(3)解:∵四边形ABCD的面积和△PCD的面积相等,∴S△PAB =2S△PCD,∴×(3﹣)×(1﹣a)=2××1×(﹣),整理得:(a﹣1)2=2,解得:a1=1﹣,a2=1+(舍去),∴P点坐标为(1,﹣3﹣3).【点评】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)利用相似三角形的判定定理找出△PDC∽△PAB;(3)由三角形的面积公式,找出关于a的方程.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.【分析】(1)由余角的性质可得∠ABE=∠BCF,即可证△ABE∽△BCF;(2)由相似三角形的性质可得==,由等腰三角形的性质可得BP=2BE,即可求的值;(3)由题意可证△DPH∽△CPB,可得==,可求AE=,由等腰三角形的性质可得AE平分∠BAP,可证∠EAG=∠BAH=45°,可得△AEG是等腰直角三角形,即可求AG 的长.【解答】证明:(1)∵AB⊥BC,∴∠ABE+∠FBC=90°又∵CF⊥BF,∴∠BCF+∠FBC=90°∴∠ABE=∠BCF又∵∠AEB=∠BFC=90°,∴△ABE∽△BCF(2)∵△ABE∽△BCF,∴==又∵AP=AB,AE⊥BF,∴BP=2BE∴==(3)如图,延长AD与BG的延长线交于H点∵AD∥BC,∴△DPH∽△CPB∴==∵AB=BC,由(1)可知△ABE≌△BCF∴CF=BE=EP=1,∴BP=2,代入上式可得HP=,HE=1+=∵△ABE∽△HAE,∴=,=,∴AE=∵AP=AB,AE⊥BF,∴AE平分∠BAP又∵AG平分∠DAP,∴∠EAG=∠BAH=45°,∴△AEG是等腰直角三角形.∴AG=AE=3【点评】本题是相似综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.。

2023年安徽省合肥市庐江县庐州学校中考数学模拟试卷(含答案解析)

2023年安徽省合肥市庐江县庐州学校中考数学模拟试卷(含答案解析)

2023年安徽省合肥市庐江县庐州学校中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣6的相反数是()A .﹣6B .﹣16C .6D .162.粮食是人类赖以生存的重要物质基础,2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A .46.828510⨯吨B .46828510⨯吨C .76.828510⨯吨D .86.828510⨯吨3.如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A .平移B .旋转C .轴对称D .黄金分割5.如图,Rt ABC △是一块直角三角板,其中90,30C BAC ∠=︒∠=︒.直尺的一边DE 经过顶点A ,若DE CB ∥,则DAB ∠的度数为()A .100°B .120°C .135°D .150°6.如图,ABC 内接于O ,AD 是O 的直径,若20B ∠=︒,则CAD ∠的度数是()A .60°B .65°C .70°D .75°7.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大暑”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A .23B .12C .16D .188.如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在 AB 上的点C 处,图中阴影部分的面积为()A .3π-B .3πC .2π-D .6π9.如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形1111D C B A ;第二次,顺次连接四边形1111D C B A 各边的中点,得到四边形2222A B C D ;…如此反复操作下去,则第n 次操作后,得到四边形n n n n A B C D 的面积是()A .2nab B .12n ab -C .12n ab +D .22nab 二、填空题10.勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;⋯,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;⋯,若此类勾股数的勾为2m (3m ≥,m 为正整数),则其弦是______(结果用含m 的式子表示).11.若一元二次方程2430x x -+=的两个根是1x ,2x ,则12x x ⋅的值是__.12.如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.13.如图,在菱形ABCD 中,60A ∠=︒,6AB =.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,.F 当点M 与点B 重合时,EF 的长为______;当点M 的位置变化时,DF 长的最大值为______.三、解答题14.计算:012022sin302--︒.15.解方程:1 122 x xx x-=--.16.如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.17.观察下面的点阵图形和与之相对应的等式探究其中的规律.①•→4×0+1=4×1﹣3;②→4×1+1=4×2﹣3;③→4×2+1=4×3﹣3;④→;⑤→.(1)请在④和⑤后面的横线上分别写出相对应的等式;(2)猜想第n(n是正整数)个图形相对应的等式为.18.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin700.94cos700.34tan70 1.73︒≈︒≈︒≈≈,,).19.首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A .8小时及以上;B .6~8小时;C .4~6小时;D .0~4小时.第二项您阅读的课外书的主要来源是(可多选)E .自行购买;F .从图书馆借阅;G .免费数字阅读;H .向他人借阅.调查结论……请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务用函数观点认识一元二次方程根的情况我们知道,一元二次方程20(0)ax bx c a ++=≠的根就是相应的二次函数2(0)y ax bx c a =++≠的图象(称为抛物线)与x 轴交点的横坐标.抛物线与x 轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x 轴的交点个数确定一元二次方程根的情况下面根据抛物线的顶点坐标(2b a -,244ac b a -)和一元二次方程根的判别式24b ac =-△,分别分0a >和a<0两种情况进行分析:(1)0a >时,抛物线开口向上.①当240b ac =-> 时,有240ac b -<.∵0a >,∴顶点纵坐标2404ac b a -<.∴顶点在x 轴的下方,抛物线与x 轴有两个交点(如图1).②当240b ac =-= 时,有240ac b -=.∵0a >,∴顶点纵坐标2404ac b a -=.∴顶点在x 轴上,抛物线与x 轴有一个交点(如图2).∴一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根.③当240b ac =-= 时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A .数形结合B .统计思想C .分类讨论.D .转化思想(2)请参照小论文中当0a >时①②的分析过程,写出③中当0,0a ><△时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为21.综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30︒的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD 按照(1)中的方式操作,并延长PM 交CD 于点Q ,连接BQ .①如图2,当点M 在EF 上时,MBQ ∠=______︒,CBQ ∠=______︒;②改变点P 在AD 上的位置(点P 不与点A ,D 重合),如图3,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD 的边长为8cm ,当1cm FQ =时,直接写出AP 的长.参考答案:1.C【分析】根据相反数的意义,即可解答.【详解】解:6-的相反数是6,故选:C.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.2.D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:68285万=6.8285×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.4.D【分析】根据黄金分割的定义即可求解.【详解】解:动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割.故选:D【点睛】本题考查了黄金分割的定义,黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为12,约等于0.618,这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.熟知黄金分割的定义是解题关键.5.B【分析】先根据平行线的性质可得90DAC C ∠=∠=︒,再根据角的和差即可得.【详解】解:DE CB ∥ ,90C ∠=︒90DAC C ∴∠=∠=︒,30BAC ∠=︒ ,120DAB D C AC BA ∠=∠+=∴∠︒,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.6.C【分析】首先连接CD ,由AD 是O 的直径,根据直径所对的圆周角是直角,可求得=90ACD ∠︒,又由圆周角定理,可得20D B ∠=∠=︒,再用三角形内角和定理求得答案.【详解】解:连接CD ,∵AD 是O 的直径,∴=90ACD ∠︒.∵20D B ∠=∠=︒,∴18090180902070CAD D ∠=︒-︒-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查了圆周角定理、三角形的内角和定理.熟练掌握圆周角定理是解此题的关键.7.C【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:将“立春”、“立夏”、“秋分”、“大暑”的图片分别记为A 、B 、C 、D .根据题意,列表如下:ABCDA(A ,B )(A ,C )(A ,D )B (B ,A )(B ,C )(B ,D )C(C ,A )(C ,B )(C ,D )D (D ,A )(D ,B )(D ,C )由表格可知,共有12种等可能的结果,其中抽到的两张卡片恰好是“立春”和“立夏”的结果有2种,故其概率为:21126=.故选:C .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.8.B【分析】根据折叠,ACB AOB ≌△△,进一步得到四边形OACB 是菱形;进一步由3OC OB BC ===得到OBC △是等边三角形;最后阴影部分面积=扇形AOB 面积-菱形的面积,即可【详解】依题意:ACB AOB ≌△△,3AO BO ==∴3AC BC AO BO ====∴四边形OACB 是菱形∴AB CO⊥连接OC∵3OC OB ==∴3OC OB BC ===∴OBC △是等边三角形同理:OAC 是等边三角形故120AOB ∠=︒由三线合一,在Rt OBD △中:1302OBD OBC ∠=∠=︒1322OD OB ==BD ==1132222222OACB S BD OD =⨯⋅=⨯⨯⨯=菱形212033360AOB S ππ︒=⋅⋅=︒扇形3OACB AOB S S S π=-=阴影菱形扇形故选:B【点睛】本题考查菱形的判定,菱形面积公式,扇形面积公式;解题关键是发现OBC △是等边三角形9.A【分析】利用中位线、菱形、矩形的性质可知,每一次操作后得到的四边形面积为原四边形面积的一半,由此可解.【详解】解:如图,连接AC ,BD ,11A C ,11B D .∵四边形ABCD 是矩形,∴AC BD =,AD BC =,AB CD =.∵1A ,1B ,1C ,1D 分别是矩形四个边的中点,∴1111111111,22A DBC BD A B C D AC ====,∴11111111A D B C A B C D ===,∴四边形1111D C B A 是菱形,∵11AC AD a ==,11B D AB b ==,∴四边形1111D C B A 的面积为:1111111222ABCD A C B D ab S ⋅== .同理,由中位线的性质可知,22221122D C A B AD a ===,2222////D C A B AD ,22221122D A C B AB b ===,2222////D A C B AB ,∴四边形2222A B C D 是平行四边形,∵AD AB ⊥,∴2222C D D A ⊥,∴四边形2222A B C D 是矩形,∴四边形2222A B C D 的面积为:1111222211112242ABC A B C D D C D A D a b S S ⋅=⋅== 菱形.∴每一次操作后得到的四边形面积为原四边形面积的一半,∴四边形n n n n A B C D 的面积是2nab .故选:A .【点睛】本题考查矩形的性质,菱形的性质以及中位线的性质,证明四边形1111D C B A 是菱形,四边形2222A B C D 是矩形是解题的关键.10.21m +【分析】根据题意得2m 为偶数,设其股是a ,则弦为2a +,根据勾股定理列方程即可得到结论.【详解】解:m 为正整数,∴2m 为偶数,设其股是a ,则弦为2a +,根据勾股定理得,222(2)(2)m a a +=+,222444m a a a +=++,2444a m =-,解得21a m =-,∴弦为222121a m m +=-+=+,故答案为:21m +.【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.11.3【分析】根据根与系数的关系直接可得答案.【详解】解:1x ,2x 是一元二次方程2430x x -+=的两个根,123x x ∴⋅=,故答案为:3.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是掌握一元二次方程根与系数的关系.12.5或354【分析】过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =3x ,由△ACN ≌△CDM 可得AN =CM =10+x ,CN =DM =3x ,由点C 、M 、D 、E 四点共圆可得△NME 是等腰直角三角形,于是NE =10-2x ,由勾股定理求得AC 可得CE ,在Rt △CNE 中由勾股定理建立方程求得x ,进而可得BE ;【详解】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =,Rt △ECD 中,CD =AC ,CE =2CD ,Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦,2425250x x -+=,()()4550x x --=,x =5或x =54,∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354;故答案为:5或354;【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.13.6-【分析】如图1中,求出等边ADB 的高DE 即可.如图2中,连接AM 交EF 于点O ,过点O 作OK AD ⊥于点K ,交BC 于点T ,过点A 作AG CB ⊥交CB 的延长线于点G ,取AD 的中点R ,连接OR .证明OK =AF 的最小值,可得结论.【详解】解:如图1中,四边形ABCD 是菱形,AD AB BC CD ∴===,60A C ∠=∠=︒,ADB ∴ ,BDC 都是等边三角形,当点M 与B 重合时,EF 是等边ADB 的高,sin 606EF AD =⋅︒=⨯.如图2中,连接AM 交EF 于点O ,过点O 作OK AD ⊥于点K ,交BC 于点T ,过点A 作AG CB ⊥交CB 的延长线于点G ,取AD 的中点R ,连接OR .∵AD CG ,OK AD ⊥,OK CG ∴⊥,90G AKT GTK ∴∠=∠=∠=︒,∴四边形AGTK 是矩形,sin 60AG TK AB ∴==⋅︒=OA OM =∵,AOK MOT ∠=∠,90AKO MTO ∠=∠=︒,()AAS AOK MOT ∴ ≌,OK OT ∴==OK AD ⊥ ,OR OK ∴≥=90AOF ∠=︒ ,AR RF =,2AF OR ∴=≥AF ∴的最小值为DF ∴的最大值为6-.故答案为:6-【点睛】本题考查菱形的性质,矩形的判定和性质,垂线段最短等知识,解题的关键是学会填空常用辅助线,构造特殊四边形解决问题,属于中考填空题中的压轴题.14.3【分析】先化简每项,再加减计算,即可求解.【详解】原式111222=++-3=【点睛】本题考查零次幂,二次根式,绝对值,三角函数;注意先每项正确化简,再加减计算即可求解.15.=1x -【分析】两边同时乘以公分母()1x -,先去分母化为整式方程,计算出x ,然后检验分母不为0,即可求解.【详解】1122x x x x -=--,()112x x =-,解得=1x -,经检验=1x -是原方程的解,故原方程的解为:=1x -【点睛】本题考查解分式方程,注意分式方程要检验.16.(1)作图见解析(2)AE CF =,证明见解析【分析】(1)根据垂直平分线的尺规作图的画法,分别以A 、C 为圆心,以大于12AC 的长为半径画弧,交于两点,过两点作直线即可得到线段AC 的垂直平分线.(2)利用矩形及垂直平分线的性质,可以证得AEO CFO ≌,根据全等三角形的性质即可得出结论.【详解】(1)解:如图,(2)解:AE CF =.证明如下:∵四边形ABCD 是矩形,∴AD BC ∥.∴EAO FCO AEO CFO ∠=∠∠=∠,.∵EF 为AC 的垂直平分线,∴OA OC =.∴AEO CFO ≌.∴AE CF =.【点睛】本题主要考查了垂直平分线的尺规作图的画法、矩形的性质、全等三角形的判定和性质.17.(1)④431443⨯+=⨯-,⑤441453⨯+=⨯-;(2)4(1)143n n -+=-.【分析】(1)根据从同一顶点向外作出的四条线上的点的个数解答;(2)根据变化的层数和相应的图形的序数解答.【详解】解: ①401413→⨯+=⨯- ;②411423→⨯+=⨯-;③421433→⨯+=⨯-;∴④431443⨯+=⨯-,⑤441453⨯+=⨯-;(2)第n 个图形:4(1)143n n -+=-.【点睛】本题是对图形变化规律的考查,仔细观察图形,从每一条线上的点的个数考虑求解是解题的关键.18.58m【分析】延长AB 和CD 分别与直线OF 交于点G 和点H ,则90AGO EHO ∠=∠=︒,再根据图形应用三角函数即可求解.【详解】解:延长AB 和CD 分别与直线OF 交于点G 和点H ,则90AGO EHO ∠=∠=︒.又∵=90GAC ∠︒,∴四边形ACHG 是矩形.∴GH AC =.由题意,得60,24,70,30,60AG OF AOG EOF EFH ==∠=︒∠=︒∠=︒.在Rt AGO △中,90,tan AG AGO AOG OG ∠=︒∠=,∴606021.822tan tan 70 2.75AG OG AOG ==≈≈≈∠︒(m )﹒∵EFH ∠是EOF 的外角,∴603030FEO EFH EOF ∠=∠-∠=︒-︒=︒.∴EOF FEO ∠=∠.∴24EF OF ==m .在Rt EHF 中,90,cos FHEHF EFH EF∠=︒∠=∴cos 24cos 6012FH EF EFH =⋅∠=⨯︒=(m).∴()22241258m AC GH GO OF FH ==++=++≈.答:楼AB 与CD 之间的距离AC 的长约为58m .【点睛】本题主要考查三角函数的综合应用,正确构造直角三角形并应用三角函数进行求解是解题的关键.19.(1)参与本次抽样调查的学生人数为300人,这些学生中选择“从图书馆借阅”的人数为186人;(2)1152人(3)答案见解析【分析】(1)用D类人数除以所占百分比即可得到总人数;再用总人数乘以F类所占百分比,即可求解;(2)利用样本估计总体的思想即可解决问题;(3)从平均每周阅读课外书的时间和阅读的课外书的主要来源写出一条你获取的信息即可.÷=(人).【详解】(1)解:3311%300⨯=(人);30062%186答:参与本次抽样调查的学生人数为300人,这些学生中选择“从图书馆借阅”的人数为186人;⨯=(人).(2)解:360032%1152答:估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数有1152人;(3)解:答案不唯一.例如:第一项:①平均每周阅读课外书的时间在“4~6小时”的人数最多;②平均每周阅读课外书的时间在“0~4小时”的人数最少;③平均每周阅读课外书的时间在“8小时及以上”的学生人数占调查总人数的32%;第二项:①阅读的课外书的主要来源中选择“从图书馆借阅”的人数最多;②阅读的课外书的主要来源中选择“向他人借阅”的人数最少.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.20.(1)AC(2)分析见解析;作图见解析(3)答案见解析【分析】(1)解一元二次方程的解转化为抛物线与x轴交点的横坐标;还体现了分类讨论思想;(2)依照例题,画出图形,数形结合,可以解答;(3)结合所学知识,找到用转化思想或数形结合或分类讨论思想解决问题的一种情况即可.【详解】(1)解:上面解一元二次方程的过程中体现了转化思想、数形结合、分类讨论思想,故答案为:AC ;(2)解:a >0时,抛物线开口向上.当△=b 2−4ac <0时,有4ac −b 2>0﹒∵a >0,∴顶点纵坐标24>04ac b a-﹒∴顶点在x 轴的上方,抛物线与x 轴无交点(如图):∴一元二次方程ax 2+bx +c =0(a ≠0)无实数根.(3)解:可用函数观点认识二元一次方程组的解.(答案不唯一.又如:可用函数观点认识一元一次不等式的解集,等)【点睛】本题考查的二次函数与一元二次方程的关系,根据转化思想将一元二次方程的解的问题转化成抛物线与x 轴交点的横坐标的问题,再根据数形结合的思想用抛物线与x 轴的交点个数确定一元二次方程根的情况是本题的关键.21.(1)EMB ∠或CBM ∠或ABP ∠或PBM ∠(任写一个即可);(2)①15,15;②CBQ MBQ ∠=,理由见解析;(3)40cm 11或24cm 13【分析】(1)由折叠的性质可得12AE BE AB ==,90AEF BEF ∠=∠=︒,AB BM =,ABP PBM ∠=∠,由锐角三角函数可求30EMB ∠=°,即可求解;(2)由“HL ”可证Rt BCQ △≌Rt BMQ △,,可得15CBQ MBQ ∠=∠=︒;②由“HL ”可证Rt BCQ △≌Rt BMQ △,可得CBQ MBQ ∠=∠;(3)分两种情况讨论,由折叠的性质和勾股定理可求解.【详解】(1) 对折矩形纸片ABCD ,12AE BE AB ∴==,90AEF BEF ∠=∠=︒, 沿BP 折叠,使点A 落在矩形内部点M 处,AB BM ∴=,ABP PBM ∠=∠,1sin 2BE BME BM ∠== ,30EMB ∴∠=︒,60ABM ∴∠=︒,30CBM ABP PBM ∴∠=∠=∠=︒,故答案为:EMB ∠或CBM ∠或ABP ∠或(PBM ∠任写一个即可);(2)①由()1可知30CBM ∠=︒,四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴=,90BMQ C ∠=∠=︒,又BQ BQ = ,在Rt BCQ △和Rt BMQ △中BQ BQ BC BM=⎧⎨=⎩Rt BCQ ∴ ≌()Rt HL BMQ ,15CBQ MBQ ∴∠=∠=︒,故答案为:15,15;MBQ CBQ ∠=∠②,理由如下:四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴=,90BMQ C ∠=∠=︒,在Rt BCQ △和Rt BMQ △中,,BM BC BQ BQ =⎧⎨=⎩Rt BCQ ∴ ≌()Rt HL BMQ ,CBQ MBQ ∴∠=∠;(3)由折叠的性质可得4cm DF CF ==,AP PM =,Rt BCQ ≌Rt BMQ △,CQ MQ ∴=,当点Q 在线段CF 上时,1cm FQ = ,3cm MQ CQ ∴==,5cm DQ =,222PQ PD DQ =+ ,22(3)(8)25AP AP ∴+=-+,4011AP ∴=,当点Q 在线段DF 上时,1cm FQ = ,5cm MQ CQ ∴==,3cm DQ =,222PQ PD DQ =+ ,22(5)(8)9AP AP ∴+=-+,2413AP ∴=,综上所述:AP 的长为40cm 11或24cm 13.【点睛】本题是四边形综合题,考查了矩形的性质,正方形的性质,折叠的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.。

2024年安徽省合肥市名校联考中考数学模拟试卷及答案解析

2024年安徽省合肥市名校联考中考数学模拟试卷及答案解析

2024年安徽省合肥市名校联考中考数学模拟试卷一、选择题(共10小题,满分40分,每小题4分)1.(4分)﹣2024的绝对值是()A.2024B.﹣2024C.D.2.(4分)下列计算正确的是()A.a3+a3=a6B.a3•a4=a7C.(﹣a)6÷a3=﹣a3D.(﹣2a)3=﹣6a33.(4分)如图是由四个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.4.(4分)若代数式和的值互为相反数,则x等于()A.1B.C.2D.5.(4分)如图,将一个等腰直角三角尺GEF放置在一张矩形纸片上,使点G,E,F分别在矩形的边AD,BC,CD上,若∠EFC=70°,则∠AGE的度数为()A.130°B.120°C.110°D.100°6.(4分)在反比例函数的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4可以用完全平方公式进行因式分解,则该反比例函数的表达式为()A.B.C.D.7.(4分)每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.8.(4分)如图,四边形ABCD中,AB=AD,△ABC沿着AC折叠,则点B恰好落在CD 的点B′上处,若∠BAD=90°,则B′D=6,AD=9,则CD=()A.B.C.D.9.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE,DE,P,Q分别是AE,DE上的点,且PE=DQ.设△EPQ的面积为y,PE的长为x,则y关于x 的函数关系式的图象大致是()A.B.C.D.10.(4分)如图,正方形ABCD中,点M,N分别为AB,BC上的动点,且AM=BN,DM,AN交于点E,点F为AB的中点,点P为BC上一个动点,连接PE,PF.若AB=4,则PE+PF的最小值为()A.B.2C.5D.二.填空题(共4小题,满分20分,每小题5分)11.(5分)计算:﹣2=.12.(5分)为实现我国2030年前碳达峰、2060年前碳中和的目标,光伏发电等可再生能源将发挥重要作用.去年全国光伏发电量为3259亿千瓦时,数据“3259亿”用科学记数法表示为.13.(5分)如图,在△ABC中AB=AC=4,∠BAC=120°,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线交AC于点E.则DE的长为.14.(5分)在平面直角坐标系中,G(x1,y1)为抛物线y=x2+4x+2上一点,H(﹣3x1+1,y1)为平面上一点,且位于点G右侧.(1)此抛物线的对称轴为直线;(2)若线段GH与抛物线y=x2+4x+2(﹣6≤x<1)有两个交点,则的x1取值范围是.三.(本答题共2题,每小题8分,满分16分)15.(8分)计算:.16.(8分)2024年春节联欢晚会的吉祥物“龙辰辰”具有龙年吉祥,幸福安康的寓意,深受大家喜欢.某商场第一次用2400元购进一批“龙辰辰”玩具,很快售完;该商场第二次购进该“龙辰辰”玩具时,进价提高了20%,同样用2400元购进的数量比第一次少10件,求第一次购进的“龙辰辰”玩具每件的进价是多少钱?四.(本答题共2题,每小题8分,满分16分)17.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)以原点O为位似中心,在第三象限画出与△A1B1C1位似的图形△A2B2C2,且△A2B2C2与△A1B1C1的相似比为2:1.18.(8分)观察以下等式:第1个等式:12+2×1=1×(1+2)第2个等式:22+2×2=2×(2+2)第3个等式:32+2×3=3×(3+2)…按照以上规律,解决下列问题:(1)写出第4个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五.(本答题共2题,每小题10分,满分20分)19.(10分)小亮为测量某铁桥的长度BC,乘车在与该铁桥平行且处于同一水平面的一段东西走向的公路上行驶时,在A处发现桥的起点B在A点的北偏东30°的方向上,并测得AB=160米,当车前进146米到达D处时,测得桥的终点C在D点的北偏东55°的方向上,求该桥的长度BC.(结果保留整数,参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,≈1.73)20.(10分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且∠DCF=∠CAD.(1)求证:CF是⊙O的切线;(2)若AD=10,cos B=,求FD的长.六.(本大题满分12分)21.(12分)为弘扬学生爱国主义教育,某校在清明节来临之际开展“走进清明•缅怀英烈”知识竞赛活动,现从七年级和八年级参加活动的学生中各随机抽取20名同学的成绩进行整理、描述和分析(成绩用x表示,共分为四组:A.x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100,下面给出了部分信息:七年级学生成绩为:66,76,77,78,79,81,82,83,84,86,86,86,88,88,91,91,92,95,96,99;八年级C组学生成绩为:88,81,84,86,87,83,89.七、八年级学生成绩统计表:年级平均数中位数众数方差七年级85.286b62.1八年级85.2a9185.3根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)根据以上数据,你认为哪个年级对爱国主义教育知识掌握更好?请说明理由(写出一条理由即可);(3)该校七、八年级共840名学生参加了此次知识竞赛活动,估计两个年级成绩为优秀(90分及以上)的学生共有多少人?七.(本大题满分12分)22.(12分)为了丰富学生的课余生活,加强同学们户外锻炼的意识,学校举办了排球赛.如图,已知学校排球场的长度OD为18米,位于球场中线处球网的高度AB为2.24米,一队员站在点O处发球,排球从点O的正上方1.7米的点C向正前方做抛物线运动,当排球运行至离点O的水平距离OE为5米时,到达最高点G,建立如图所示的平面直角坐标系.(1)这名队员发球后,当球上升的最大高度为3.7米时,他此次发球是否会过网?请说明理由;(2)在(1)的条件下,对方距球网1米的点F处站有一队员,她起跳后够到的最大高度为2.02米,则这次她是否可以拦网成功(假设她够到球一定拦网成功)?请通过计算说明.八、(本大题满分14分)23.(14分)已知正方形ABCD,E,F为平面内两点.(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.猜想并证明线段AE,CE,DE之间的数量关系;(3)如图3,当点E在正方形ABCD外部时,AE⊥EC,AE⊥AF,DE⊥BE,且D,F,E三点共线,DE与AB交于G点.若DF=3,AE=,求CE的长.2024年安徽省合肥市名校联考中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,满分40分,每小题4分)1.【分析】根据绝对值的意义解答即可.【解答】解:﹣2024的绝对值是2024.故选:A.【点评】本题主要考查了绝对值的意义,解题的关键是熟练掌握.2.【分析】根据合并同类项,同底数幂相乘,同底数幂相除,积的乘方,逐项判断即可求解.【解答】解:A、a3+a3=2a3,故本选项错误,不符合题意;B、a3•a4=a7,故本选项正确,符合题意;C、(﹣a)6÷a3=a3,故本选项错误,不符合题意;D、(﹣2a)3=﹣8a3,故本选项错误,不符合题意;故选:B.【点评】本题主要考查了合并同类项、同底数幂相乘、同底数幂相除、积的乘方,熟练掌握运算法则是解题的关键.3.【分析】画出从左面看到的图形即可.【解答】解:该几何体的左视图故选:B.【点评】本题考查三视图,掌握从左面看到的图形是左视图是关键..4.【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:+=0,去分母得:x+3(x﹣2)=0,解得:x=,检验:把x=代入得:x(x﹣2)≠0,∴分式方程的解为x=.故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.【分析】先根据直角三角形的两锐角互余可得∠CEF=20°,最后由平行线的性质可得结论.【解答】解:如图,在矩形ABCD中,∴∠C=90°,AD∥BC,∵∠EFC=70°,∴∠CEF=20°,∵∠GEF=90°,∴∠CEG=90°+20°=110°,∵AD∥BC,∴∠AGE=∠CEG=110°.故选:C.【点评】本题考查了矩形的性质,直角三角形的性质,平行线的性质,熟练掌握直角三角形两锐角互余是本题的关键.6.【分析】先根据反比例函数的性质得到k>1,再根据完全平方式的特点a2±2ab+b2求得k=4,进而求得k即可求解.【解答】解:∵在反比例函数的图象的每一支上,y都随x的增大而减小∴k﹣1>0,则k>1,∵整式x2﹣kx+4可以用完全平方公式进行因式分解.∴﹣k=2×1×2=±4,则k=±4,故k=4,∴该反比例函数的表达式为.故选:B.【点评】本题考查反比例函数的图象与性质、完全平方公式,熟练掌握相关公式运算法则是关键.7.【分析】画树状图(用A、B、C分别表示“二胡课”“轮滑课”“围棋课”三种课程)展示所有9种等可能的结果数,找出两人恰好选择同一课程的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“二胡课”“轮滑课”“围棋课”三种课程)∵共有9种等可能的结果数,其中两人恰好选择同一课程的结果数为3,∴两人恰好选择同一课程的概率=.故选:A.【点评】本题考查了列表法与树状图法,解答本题的关键要明确:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.8.【分析】连接BD,作AE⊥CD于点E,由折叠得AB′=AB,B′C=BC,∠CAB′=∠CAB=∠BAB′,则AB′=AD,所以∠EAB′=∠EAD=∠DAB′,所以∠EAC=∠BAD=45°,可证明∠B′CA=∠BCA=45°,则∠BCD=90°,所以BC2+CD2=AB2+AD2=BD2,设B′C=BC=m,则m2+(m+6)2=92+92,求得m=6﹣3,则CD =6+3,于是得到问题的答案.【解答】解:连接BD,作AE⊥CD于点E,则∠AEC=90°,∵△ABC沿着AC折叠,则点B恰好落在CD的点B′上处,∴AB′=AB,B′C=BC,∠CAB′=∠CAB=∠BAB′,∵AB=AD,∠BAD=90°,∴AB′=AD,∴∠EAB′=∠EAD=∠DAB′,∴∠EAC=∠CAB′+∠EAB′=(∠BAB′+∠DAB′)=∠BAD=45°,∴∠ECA=∠EAC=45°,∴∠B′CA=∠BCA=45°,∴∠BCD=∠B′CA+∠BCA=90°,∴BC2+CD2=AB2+AD2=BD2,∴设B′C=BC=m,∵B′D=6,AB=AD=9,∴CD=m+6,∴m2+(m+6)2=92+92,正理得m2+6m﹣63=0,解得m1=6﹣3,m2=﹣6﹣3(不符合题意,舍去),∴CD=6﹣3+6=6+3,故选:B.【点评】此题重点考查轴对称的性质、等腰三角形的“三线合一”、等腰直角三角形的判定与性质、勾股定理等知识,正确地作出辅助线是解题的关键.9.【分析】证明△ADE为等边三角形,利用y=×PH×EQ=××(4﹣x)=﹣,即可求解.【解答】解:∵BC=4,E为BC的中点,则BE=2,在Rt△ABE中,AE=,BE=2,则AE=4,同理可得ED=4=AE=AD,故△ADE为等边三角形,则∠AED=60°,∵PE=QD=x,则QE=4﹣x,在△PQE中,过点P作PH⊥ED于点H,则PH=PE sin∠AED=x•sin60°=,则y=×PH×EQ=×(4﹣x)=,该函数为开口向下的抛物线,x=2时,y的最大值为,故选:C.【点评】本题考查的是动点图象问题,涉及到二次函数、解直角三角形等知识,有一定的综合性,难度适中.10.【分析】先确定点E的运动路线,再根据轴对称,以及点与圆周上点的最短路线将PE+PF 的最小值表示成两确定长度的线段差,最后可用勾股定理解决问题.【解答】解:∵四边形ABCD是正方形,∴AD=AB,∠DAM=∠ABN=90°,又∵AM=BN,∴△DAM≌△ABN(SAS),∴∠ADM=∠BAN,∵∠DAE+∠BAN=∠DAM=90°,∴∠DAE+∠ADM=90°,∴∠AFD=90°,∴点F在以AD为直径的⊙O上,作点F关于直线BC的对称点F',连接OF'交⊙O于点E',PF',则PF=PF',∴PE+PF=PE+PF'≥E'F'=OF'﹣OE',即PE+PF的最小值为OF'﹣OE',∵AD=AB=4,点F为AB的中点,∴OA=OE'=2,AF'=AB+BF'=4+2=6,在Rt△OAF'中,由勾股定理,得OF'===2,∴OF'﹣OE'=2﹣2,即PE+PF的最小值为:2﹣2,故选:B.【点评】本题考查轴对称﹣最短路线问题,点到圆周的最短路线问题,解答中涉及轴对称,正方形性质,三角形确定的判定和性质,隐圆的确定,勾股定理等知识,能灵活运用相关知识是解题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=3﹣2=.故答案为:.【点评】本题考查的是二次根式的加减,熟知二次根式的加减实质上是合并同类项是解答此题的关键.12.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:3259亿=325900000000=3.259×1011,故答案为:3.259×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【分析】连接AD、OD,则∠ODB=∠B,由AB=AC=4,∠BAC=120°,得∠C=∠B=30°,所以∠ODB=∠C,则OD∥AC,由AB为⊙O的直径,得∠ADB=90°,则=cos30°=,求得CD=BD=AB=2,由切线的性质得DE⊥OD,则∠CED =∠ODE=90°,所以DE=CD=,于是得到问题的答案.【解答】解:连接AD、OD,则OD=OB,∴∠ODB=∠B,∵AB=AC=4,∠BAC=120°,∴∠C=∠B=×(180°﹣120°)=30°,∴∠ODB=∠C,∴OD∥AC,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC,=cos B=cos30°=∴CD=BD=AB=×4=2,∴DE与⊙O相切于点D,∴DE⊥OD,∴∠CED=∠ODE=90°,∴DE=CD=×2=,故答案为:.【点评】此题重点考查直角所对的圆周角是直角、等腰三角形的“三线合一”、三角形内角和定理、平行线的判定与性质、切线的性质、锐角三角函数与解直角三角形等往右,正确地作出辅助线是解题的关键.14.【分析】(1)利用对称轴公式即可求解;(2)画出函数y=x2+4x+2(﹣6≤x<1)的图象,由图象知当﹣2≤x1<1或﹣6≤x1<﹣5时,线段GH与抛物线y=x2+4x+2(﹣6≤x<1)只有1个交点;当﹣5≤x1<﹣2时,求得9<GH≤21,则GH>MN,此时线段GH与抛物线y=x2+4x+2(﹣6≤x<1)有2个交点.【解答】解:(1)∵y=x2+4x+2,∴此抛物线的对称轴为直线x=﹣=﹣2,故答案为:x=﹣2.(2)如图,当x=1时,y=x2+4x+2=7,即M(1,7),∵对称轴为直线x=﹣2,∴M(1,7)关于直线x=﹣2的对称点为N(﹣5,7),∴MN=1﹣(﹣5)=6,由图象知当﹣2≤x1<1或﹣6≤x1<﹣5时,线段GH与抛物线y=x2+4x+2(﹣6≤x<1)只有1个交点;当﹣5≤x1<﹣2时,GH=﹣3x1+1﹣x1=﹣4x1+1,∴9<GH≤21,∴GH>MN,此时线段GH与抛物线y=x2+4x+2(﹣6≤x<1)有2个交点.综上所述,x1的取值范围是﹣5≤x1<﹣2,故答案为:﹣5≤x1<﹣2.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,数形结合是解题的关键.三.(本答题共2题,每小题8分,满分16分)15.【分析】根据特殊角的三角函数值、立方根、零指数幂、有理数的乘方运算法则分别计算即可.【解答】解:==1﹣2+1﹣1=﹣1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、立方根、零指数幂、有理数的乘方运算法则是解题的关键.16.【分析】设第一次购进的“龙辰辰”玩具每件的进价是x元钱,则第二次购进的“龙辰辰”玩具每件的进价是(1+20%)x元钱,根据该商场第二次同样用2400元购进的数量比第一次少10件,列出分式方程,解方程即可.【解答】解:设第一次购进的“龙辰辰”玩具每件的进价是x元钱,则第二次购进的“龙辰辰”玩具每件的进价是(1+20%)x元钱,由题意得:﹣=10,解得:x=40,经检验,x=40是原方程的解,且符合题意,答:第一次购进的“龙辰辰”玩具每件的进价是40元钱.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.四.(本答题共2题,每小题8分,满分16分)17.【分析】(1)分别作出点A、B、C关于x轴的对称点,顺次连接即可;(2)分别连接A1O、B1O、C1O并分别延长到A2、B2、C2,使得OA2=2A1O、OB2=2B1O、OC2=2C1O,顺次连接A2、B2、C2即可.【解答】解:(1)如图,△A1B1C1即为所作.(2)如图,△A2B2C2即为所作.【点评】本题考查轴对称图形和位似图形的作图,熟练掌握作图方法是解题的关键.18.【分析】(1)根据提供的算式写出第4个算式即可;(2)根据规律写出通项公式然后证明即可.【解答】解:(1)∵第1个等式:12+2×1=1×(1+2);第2个等式:22+2×2=2×(2+2);第3个等式:32+2×3=3×(3+2);…由上可知,这些算式的规律为等式左边为序号的平方加上序号数的2倍,右边为序号数与比序号大2的数的积,∴第4个等式:42+2×4=4×(4+2),故答案为:42+2×4=3×(4+2);(2)由规律可知,第n个等式为:n2+2n=n(n+2).理由如下:∵左边=n2+2n,右边=n(n+2)=n2+2n,∴左边=右边,即n2+2n=n(n+2).故答案为:n2+2n=n(n+2).【点评】本题考查了数字的变化类问题,解题的关键是仔细观察各个等式并从中找到规律.五.(本答题共2题,每小题10分,满分20分)19.【分析】过B作BE⊥AD于E,过C作CF⊥AD于F,根据矩形的性质得到BE=CF,BC=EF,解直角三角形即可得到结论.【解答】解:过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF,BC=EF,有题意可得∠BAD=90°﹣30°=60°,AB=160米,AD=146米,∴(米),∴米,∵∠DCF=55°,∴DF=CF•tan55°≈197.91米,∴BC=EF=AD﹣AE+DF≈146﹣80+197.91=263.91≈264(米),答:桥BC的长度约为264米.【点评】此题考查了解直角三角形的应用一方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20.【分析】(1)根据切线的判定,连接OC,证明出OC⊥FC即可,利用直径所得的圆周角为直角,三角形的内角和以及等腰三角形的性质可得答案;(2)由cos B=,根据锐角三角函数的意义和勾股定理可得CD:AC:AD=3:4:5,再根据相似三角形的性质可求出答案.【解答】(1)证明:连接OC,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ADC+∠CAD=90°,又∵OC=OD,∴∠ADC=∠OCD,又∵∠DCF=∠CAD.∴∠DCF+∠OCD=90°,即OC⊥FC,∴FC是⊙O的切线;(2)解:∵∠B=∠ADC,cos B=,∴cos∠ADC=,在Rt△ACD中,∵cos∠ADC==,AD=10,∴CD=AD•cos∠ADC=10×=6,∴AC==8,∴=,∵∠FCD=∠FAC,∠F=∠F,∴△FCD∽△FAC,∴===,设FD=3x,则FC=4x,AF=3x+10,又∵FC2=FD•FA,即(4x)2=3x(3x+10),解得x=(取正值),∴FD=3x=.【点评】本题考查切线的判定和性质,圆周角定理,直角三角形的边角关系以及相似三角形,掌握切线的判定方法,直角三角形的边角关系以及相似三角形的性质是正确解答的前提.六.(本大题满分12分)21.【分析】(1)分别根据中位数、众数的意义求解即可求出a、b,用“1”分别减去其它组所占百分比可得m的值;(2)从平均数、中位数、众数的角度比较得出结论;(3)用总人数乘七、八年级不低于90分人数所占百分比即可.【解答】解:(1)由题意可知,八年级A组有:20×10%=2(人),B组有:20×=3(人),把被抽取八年级20名学生的数学竞赛成绩从小到大排列,排在中间的两个数分别为87,88,故中位数a==87.5;在被抽取的七年级20名学生的数学竞赛成绩中,8(6分)出现的次数最多,故众数b=86;m%=1﹣10%﹣﹣=40%,故m=40.故答案为:87.5,86,40;(2)八年级成绩较好,理由:因为八年级学生成绩的中位数比七年级的高,所以八年级成绩较好;(3)840×=294(人),答:估计两个年级成绩为优秀(9(0分)及以上)的学生大约共有294人.【点评】本题考查了中位数、众数以及用样本估计总体,理解中位数、众数的意义是正确解答的关键.七.(本大题满分12分)22.【分析】(1)根据题意,抛物线的顶点坐标(5,3.7),设抛物线的解析式为y=a(x﹣5)2+3.7,把C(0,1.7)代入解析式计算即可.(2)根据题意,当x=9+1=10时,求对应的函数值,与在2.02米比较,计算解答即可.【解答】解:(1)他此次发球会过网,理由如下:根据题意,抛物线的顶点坐标(5,3.7),设抛物线的解析式为y=a(x﹣5)2+3.7,把C(0,1.7)代入解析式,得1.7=a(0﹣5)2+3.7,解得.∴.∵OD=18,点A为OD中点,∴OA=9.将x=9代入解析式得,.∵2.42>2.24,∴他此次发球会过网.(2)这次她可以拦网成功;理由如下:OF=OA+AF=9+1=10(米).把x=9+1=10代入,得y=1.7,∵2.02>1.7,故她可以拦网成功.【点评】本题考查了抛物线的应用,熟练掌握顶点式抛物线解析式的确定,把生活问题转化为函数值的大小比较是解题的关键.八、(本大题满分14分)23.【分析】(1)证明△DAE≅△DCF(ASA),可得结论;(2)猜想:AE=CF,证明△DAE≅△DCF(ASA),推出DE=DF.AE=CF即可;(3)连接AC,取AC的中点O,连接OE,OD.证A、E、C、D四点共圆,得∠AED =∠ACD=45°,则∠AED=∠DEC=45°,再由(2)可知,.然后证,即可解决问题.【解答】(1)证明:如图一中,∵四边形ABCD是正方形,∴DA=DC,∠A=∠ADC=∠DCB=∠DCF=90°,∵DE⊥DF,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴AE=CF.(2)解:猜想:EA+EC=DE.理由:如图2中,∵四边形ABCD是正方形,∴DA=DC,∠ADC=90°,∵DE⊥DF,AE⊥EF,∴∠AEF=∠EDF=90°,∴∠ADC=∠EDF,∴∠ADE=∠CDF,∵∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°,∵∠DCF+∠DCE=180°,∴∠DAE=∠DCF,∴△DAE≌△DCF(AAS),∴AE=CF,DE=DF,∴EF=DE,∵AE+EC=EC+CF=EF,∴EA+EC=DE.(3)解:如图3中,连接AC,取AC的中点O,连接OE,OD.∵四边形ABCD是正方形,AE⊥EC,∴∠AEC=∠ADC=90°,∵OA=OC,∴OD=OA=OC=OE,∴A,E,C,D四点共圆,∴∠AED=∠ACD=45°,∴∠AED=∠DEC=45°,由(2)可知,AE+EC=DE,∵AE⊥AF,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴AE=AF=,∴EF=AE=2,∵DF=3,∴DE=5,∴+EC=5,∴EC=4.【点评】本题是四边形综合题,考查了正方形的性质、全等三角形的判定和性质、四点共圆、圆周角定理、等腰直角三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用建模的思想思考问题,属于中考压轴题。

2023年安徽省名校大联考中考数学模拟试卷(一)及答案解析

2023年安徽省名校大联考中考数学模拟试卷(一)及答案解析

2023年安徽省名校大联考中考数学模拟试卷(一)一、选择题(本大题共9小题,每小题4分,满分36分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的。

1.(4分)下面四个数中,比1小的数是()A.1B.C.﹣2D.2.(4分)下列计算正确的是()A.(﹣a3)2=a6B.3a+2b=5abC.a6÷a3=a2D.(a﹣b)=a2﹣b23.(4分)据安徽省教育招生考试院消息,2023年硕士研究生招生考试,安徽省共约23.2万名考生参考,比2022年研考报名人数增加7%,再创历史新高,其中23.2万用科学记数法表示为()A.23.2×104B.2.32×104C.2.32×105D.2.32×106 4.(4分)如下列各图片所示的景德镇瓷器中,主视图和左视图一样的是(不考虑瓷器花纹等因素)()A.B.C.D.5.(4分)如图是两圆柱形连通容器,向甲容器匀速注水,则下面可以近似地刻画甲容器的水面高度h(cm)随时间t(分)的变化情况的是()A.B.C.D.6.(4分)在矩形ABCD中,AC交BD于O,AO:BO:AB的值可以是()A.1:1:2B.1::1C.2:3:2D.2:2:37.(4分)已知的整数部分是方程x2﹣3x﹣m=0的一个根,则该方程的另一根是()A.﹣2B.2C.﹣1D.18.(4分)垃圾分类可以把有用的垃圾回收再利用,减少了对环境的危害.随机将一节废旧的电池(有害垃圾)和矿泉水空瓶(可回收垃圾)分别放入不同的垃圾桶,则投放正确的概率为()A.B.C.D.9.(4分)在Rt△ABC中,斜边AC=10,点B为动点,以AC为边长作等边△ACD,连接BD,则BD的最大值是()A.10B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)10.(5分)不等式的解集是.11.(5分)因式分解:2x2﹣8=.12.(5分)如图,已知⊙O的两条弦AC,BD相交于点E,∠BAC=70°,∠ACD=50°,连接OE,若E为AC的中点,则∠OEB的度数是.13.(5分)如图,在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=45°,AE交BD于点M,AF交BD于点N,EF=2.则:(1)DF+BE的值为.(2)若F是CD的中点,则tan∠AEF=.三、(本大题共2小题,每小题8分,满分16分)14.(8分)计算:.15.(8分)如图,在小正方形的边长为1个单位的网格中,已知△ABC各顶点都在格点上.(1)画出△ABC向右平移5个单位得到的△A1B1C1;(2)画出△A1B1C1绕点B1逆时针旋转90°得到的△A2B1C2.四、(本大题共2小题,每小题8分,满分16分)16.(8分)【数学阅读】计算:1+2+3+ (100)解:设S=1+2+3+6+…+100,①则S=100+99+98+…+1,②①+②(即左右两边分别相加),得:2S=(1+100)+(2+99)+(3+98)+…+(100+1)=100×101.所以,所以1+2+3+…+100=5050.【问题解决】利用上面的方法解答下面的问题:(1)猜想:1+2+3+…+n=(用含n的式子表示);(2)利用(1)中的结论,计算:1001+1002+ (2000)17.(8分)为了慰问北京冬奥会志愿者,某物流公司调用了卡车12辆和6辆分别从甲、乙两地运送慰问物资,其中10辆车到张家口赛区,8辆车到延庆赛区.已知每辆卡车从甲地运送物资到张家口赛区和延庆赛区的运费分别为40元和80元,从乙地运送物资到张家口赛区和延庆赛区的运费分别为30元和50元.设从甲地去往张家口赛区的卡车有x 辆.(1)用含x的代数式填表;张家口赛区延庆赛区甲地(12辆)x12﹣x乙地(6辆)10﹣x支付运费(元)10x+300(2)若该公司共支付运费980元,求车辆的运输方案是如何安排的?五、(本大题共5小题,每小题10分,满分58分)18.(10分)如图,某人以3.6公里/小时的速度在南北方向的公路上行走,在A处时,他观测到在点A的东北方向有一古塔B.他沿正北行走40分钟后到达C处,观测到古塔B 在点C的北偏东75°方向,求点C与古塔B的距离(结果精确到0.1公里,参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,).19.(10分)为了解学校七年级学生的身高情况,九年级数学兴趣小组进行了抽样调查,并将收集的数据进行整理,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm),请根据统计图所提供的信息,回答下列问题:(1)一共调查了多少名七年级学生?补全频数分布直方图;(2)样本的中位数在统计图所示的哪个小组范围内?(3)如果上述样本的平均数为157cm,方差为0.8;该校八年级学生身高的平均数为159cm,方差为0.6,那么(填“七年级”或“八年级”)学生的身高比较整齐.20.(12分)如图,Rt△ABC的直角顶点C在⊙O上,⊙O与斜边AB相切于点E,⊙O交边AC于点D、交BC于点F,连接EF,ED,且EF∥AC.(1)求证:四边形CDEF为矩形;(2)若CD=2,∠BAC=30°,求AE的长.21.(12分)已知二次函数y=ax2+bx+2的图象经过点(1,m)、(﹣1,n).(1)小明判断m,n满足关系式:m﹣n=2b,请判断他的说法是否正确,并说明理由;(2)若m=2,n=0,求该二次函数的表达式;(3)当a<0,且满足a+b=0时,若该函数图象上的任意两点P(x1,y1),Q(x2,y2)满足x1=﹣2,y1>y2,求x2的取值范围.22.(14分)如图1,BD是菱形ABCD的对角线,点E是边CD上一点,将△BCE沿着BE 翻折,点C的对应点F恰好落在AD的延长线上,且AB=5.(1)求证:FB平分∠AFE;(2)如图2,若点F落在AD上.①猜想∠ABF与∠DBE之间的数量关系,并证明你的结论;②若,求证:EC=3DE.2023年安徽省名校大联考中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共9小题,每小题4分,满分36分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的。

安徽省中考数学模拟试卷(一)及答案

安徽省中考数学模拟试卷(一)及答案

密学校 班级姓名 考号密 封 线 内 不 得 答 题安徽省中考数学模拟试卷(一)(满分150分,时间120分钟)一、选择题(本大题共10小题,每小题4分,共40分.) 1.—3的绝对值是( )A .3B .—3C .13D .— 132.下列等式成立的是A.a 2+a 3=a 5 B.a 3-a 2=a C.a 2.a 3=a 6 D.(a 2)3=a6 3.用科学记数法表示537万正确的是( )A 、537×104B 、5.37×105C 、5.37×106D 、0.537×1074.如图所示,下列选项中,正六棱柱的左视图是( )第4题图A .B .C .D . 5.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为( )A .26元 B .27元 C .28元 D .29元 6.分式方程131x x x x +=--的解为( ) A .1x = B .1x =- C .3x = D .3x =-7.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( )A .30°B .45°C .60°D .75° 8.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) 第7题图 A .45 B .35 C .25 D .159.某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是( )10.如图,是某几何体的三视图及相关数据,则下面判断正确的是A. a>cB. b>cC. a 2+4b 2=c 2D. a 2+b 2=c 2二、填空题(本大题共4小题,每小题5分,共20分)11.函数y= 2x+1x-1中,自变量x 的取值范围是 .12.因式分解:2221a b b ---= . 13.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 14.如图,在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③ CH CA =;④ED BE 3=, 所有正确结论的序号是 . 三、(本大题共2小题,每小题8分,满分16分) 15.计算:|2-|o 2o 12sin30((tan45)-+-+16.解不等式组:331213(1)8x x x x -⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来. 第14题图 四、(本大题共2小题,每小题8分,满分16分)17.如图,MP 切⊙O 于点M ,直线PO 交⊙O 于点A 、B ,弦AC ∥MP ,求证:MO ∥BC .第9题图深 水 区 浅水区 P第17题图18.如图,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1.(1)写出点D1的坐标_________,点D旋转到点D1所经过的路线长______________;(2)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角..是________,则它所对应的正弦函数值是_________;(3)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若点D2(4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)五、(本大题共2小题,每小题10分,满分20分)19.在不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为1 2 .(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率20.某地震救援队探测出某建筑物废墟下方点C点A、B相距4m,探测线与地面的夹角分别是30º和(结果精确到0.1m,参考数据:2≈1.414,3≈1.六、(本题满分12分)21个乙种零件的进价少2元,且用80数量相同.(1(2件的总数量不超过95销售价格为15总利润(利润=售价-进价)超过371两种零件哪有几种方案?密学校 班级姓名 考号密 封 线 内 不 得 答 题E P D C B A E P D C B A 七、(本题满分12分)22.某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:⑴在这次问卷调查中,一共抽查了 名学生; ⑵请将上面两幅统计图补充完整;⑶图①中,“踢毽”部分所对应的圆心角为 度;⑷如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?八、(本题满分14分)23.已知:正方形ABCD 的边长为1,点P 为对角线BD 上一点,连接CP . (1)如图1,当BP =BC 时,作PE ⊥PC ,交AB 边于E ,求BE 的长; (2)如图2,当DP =DC 时,作PE ⊥PC ,交BC 边于E ,求BE 的长.图1 图2参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.A 2.C 3.D 4.B 5.C 6.D 7.C 8.C9.A 10.B 二、填空题(本大题共4小题,每小题5分,共20分) 11.)2)(2(2-+a a a 12.2 13.-8 14.②③④ 三、(本大题共2小题,每小题8分,满分16分) 15.解:原式=2+1-3+1………………6分 =1………………8分 16.解:解不等式23-x >x +1,得x <1, ……………………………………2分 解不等式)1(31--x ≤x -8,得x ≥-2, …………………………4分所以,原不等式组的解集是-2≤x <1. …………………………………6分 它的解集在数轴上表示为: ………………8分四、(本大题共2小题,每小题8分,满分16分)17.证:∵AB 是⊙O 的直径,∴∠ACB=90°.∵MP 为⊙O 的切线,∴∠PMO=90°. ∵MP ∥AC ,∴∠P=∠CAB ∴∠MOP=∠B ………………6分 从而,MO ∥BC.……8分18.解:(1)(3,-l ),10π; ………………………………………………3分(2)∠ACD ,22 (或∠DAC ,55) ………………………………………6分 (3)画出正确图形 …………………………………………………………8分 五、(本大题共2小题,每小题10分,满分20分) 19.解:(1)设蓝球个数为x 个则由题意得(2)密学校 班级姓名 考号密 封 线 内 不 得 答 题 七、(本题满分12分) 22.解:(1)200(2)补充图:扇形图中补充的跳绳25% ,其它20% 条形图中补充的高为50 (3)54(4)解:1860×40%=744(人).答:最喜欢“球类”活动的学生约有744人.八、(本题满分14分) 23.(1)∵四边形ABCD 是正方形,∴∠ABD =∠BDC =45°,∠BCP +∠DCP =90°, ∵PE ⊥PC ,∴∠BPE +∠BPC =90°, ∵BP =BC ,∴∠BPC =∠BCP , ∴∠BPE =∠DCP , 又BP =BC =DC , ∴△BPE ≌△DCP , ∴BE =PD .∵BC =CD =1,∴BD =2,又BP =BC =1,∴BE =PD =BD -BP =12-.………………………………7分 (2)∵BC =CD =DP =1,∴BD =2,PB =12-.∵PE ⊥PC ,∴∠EPC =90°,∴∠BPE +∠DPC =90°. ∵DP =DC ,∴∠DPC =∠DCP , 又∠BCP +∠DCP =90°,∴∠BPE =∠BCP , 又∠PBE =∠CBP , ∴△BPE ≌△BCP ,∴BP BE BC BP =,∴2231)12(22-=-==BC BP BE .……………………14分图①球类 40% 其它20% 踢毽15% 跳绳 25%图②。

【2020年】安徽省中考数学模拟试题(含答案)

【2020年】安徽省中考数学模拟试题(含答案)

2020年安徽省中考数学模拟试题含答案一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简: = .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.数学试题含答案解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD 面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE 和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。

2023年安徽省合肥市庐阳区中考数学模拟试卷及答案解析

2023年安徽省合肥市庐阳区中考数学模拟试卷及答案解析

2023年安徽省合肥市庐阳区中考数学模拟试卷一.选择题(每题4分,共10小题,满分40分)1.(4分)﹣2023的相反数是()A.B.2023C.D.32022.(4分)2月5日,合肥市统计局发布2022年全市经济运行情况.根据地区生产总值统一核算结果,2022年合肥全市生产总值(GDP)为12013.1亿元,连续七年每年跨越一个千亿台阶.数据12013.1亿用科学记数法表示为()A.1.20131×108B.12.0131×1012C.0.120131×1013D.1.20131×1012 3.(4分)如图所示几何体的俯视图是()A.B.C.D.4.(4分)下列运算正确的是()A.a6+a3=a9B.a3•a4=a12C.(a+1)2=a2+1D.(a5)2=a10 5.(4分)下列因式分解正确的是()A.y2﹣x2=(y+x)(x﹣y)B.x2﹣4x+2=(x﹣2)2C.9xy2+6xy+x=x(3y+1)2D.x2y﹣xy2=x(x+y)(x﹣y)6.(4分)下列命题是真命题的是()A.内错角相等B.四边形的外角和为180°C.等腰三角形两腰上高相等D.平面内任意三点都可以在同一个圆上7.(4分)骑自行车是一种健康自然的运动旅游方式,长期坚持骑自行车可增强心血管功能,提高人体新陈代谢和免疫力.如图是骑行爱好者老刘2023年2月12日骑自行车行驶路程(km)与时间(h)的关系图象,观察图象得到下列信息,其中错误的是()A.点P表示出发4h,老刘共骑行80kmB.老刘的骑行在0~2h的速度比3~4h的速度慢C.0~2h老刘的骑行速度为15km/hD.老刘实际骑行时间为4h8.(4分)如图,已知:平行四边形ABCD中,BE⊥CD于E,BE=AB,∠DAB=60°,∠DAB的平分线交BC于F,连接EF.则∠EFA的度数等于()A.30°B.40°C.45°D.50°9.(4分)函数与y=﹣kx2+k(k为常数且k≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.10.(4分)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.二.填空题(每题5分,共4小题,满分20分)11.(5分)﹣的立方根是.12.(5分)如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是.13.(5分)如图,在⊙O中,直径AB与弦CD交于点E,CD=2,四边形BCOD是菱形,则的长是.14.(5分)正方形ABCD中,AB=2,点P为射线BC上一动点,BE⊥AP,垂足为E,连=;在点P运动的过程中,的最小接DE、DP,当点P为BC中点时,S△ADE值为.三.(本答题共2题,每小题8分,满分16分)15.(8分)计算:(3﹣π)0﹣cos45°+()﹣1﹣|﹣4|.16.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?四.(本答题共2题,每小题8分,满分16分)17.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣4,﹣1),B(﹣2,﹣4),C(﹣1,﹣2).(1)请画出△ABC向右平移5个单位后得到的△A1B1C1;(2)请画出△ABC关于直线y=﹣x对称的△A2B2C2;(3)线段B1B2的长是.18.(8分)如图,下列图案都是由同样大小的基本图形⊙按一定规律所组成的,其中:第1个图案中基本图形的个数:1+2×2=5,第2个图案中基本图形的个数:2+2×3=8,第3个图案中基本图形的个数:3+2×4=11,第4个图案中基本图形的个数:4+2×5=14,….按此规律排列,解决下列问题:(1)写出第5个图案中基本图形的个数:;(2)如果第n个图案中有2024个基本图形,求n的值.五.(本答题共2题,每小题10分,满分20分)19.(10分)引江济淮工程是国家重大水利工程,也是安徽省的“一号工程”,2022年11月24日,引江济淮金寨南路桥主塔如图1顺利完成封项,犹如一颗“明珠”镶刻在派河大道之上,某校数学综合实践社团的同学们为了测量该主塔的高OA,在地面上选取点B 放置测倾仪,测得主塔顶端A的仰角∠AMN=45°,将测倾仪向靠近主塔的方向前移10米至点C处(点O,C,B在同一水平线上),测得主塔顶端A的仰角∠ANE=47.7°,测量示意图如图2所示,已知测倾仪的高度BM=1.5米,求金寨南路桥主塔的高OA.(精确到1米.参考数据:sin47.7°≈0.74,cos47.7°≈0.67,tan47.7°≈1.10)20.(10分)如图,点B为圆O外一点,过点B作圆O的切线,切点为A,点P为OB上一点,连接AP并延长交圆O于点C,连接OC,若OB与OC垂直.(1)求证:BP=AB;(2)若OB=10,圆O的半径为8,求AP的长.六.(本大题满分12分)21.(12分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.七.(本大题满分12分)22.(12分)某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y (件)、月销售利润w(元)的部分对应值如表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价﹣进价)(1)求y关于x的函数表达式;(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(3)现公司决定每销售1件商品就捐赠m元利润(m≤6)给“精准扶贫”对象,要求:在售价不超过52元时,每月扣除捐赠后的月销售利润随售价x的增大而增大,求m的取值范围.八.(本大题满分14分)23.(14分)如图①,△ABC是等腰直角三角形,在两腰AB、AC外侧作两个等边三角形ABD和ACE,AM和AN分别是等边三角形ABD和ACE的角平分线,连接CM、BN,CM与AB交于点P.(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求的值.2023年安徽省合肥市庐阳区中考数学模拟试卷参考答案与试题解析一.选择题(每题4分,共10小题,满分40分)1.【分析】根据相反数的定义,即可求解.【解答】解:﹣2023的相反数是2023,故选:B.【点评】本题考查的是相反数的定义,掌握只有符号不同的两个数叫做相反数是解题的关键.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:12013.1亿=12013.1×108=1.20131×1012,故选:D.【点评】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解本题的关键.3.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:如图所示:几何体的俯视图是:.故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.4.【分析】分别根据合并同类项、同底数幂的乘法、完全平方公式、幂的乘方等知识逐项判断即可求解.【解答】解:A.a6和a3不是同类项,不能相加,故原选项计算错误,不合题意;B.a3•a4=a7,故原选项计算错误,不合题意;C.(a+1)2=a2+2a+1,故原选项计算错误,不合题意;D.(a5)2=a10,故原选项计算正确,符合题意.故选:D.【点评】本题考查了合并同类项、同底数幂的乘法、完全平方公式、幂的乘方等知识,熟知相关计算法则是解题关键.5.【分析】各式分解得到结果,即可作出判断.【解答】解:A、原式=(y+x)(y﹣x),不符合题意;B、原式不能分解,不符合题意;C、原式=x(9y2+6y+1)=x(3y+1)2,符合题意;D、原式=xy(x﹣y),不符合题意.故选:C.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.【分析】根据平行线的性质,多边形的外角和定理,等腰三角形的性质,圆的有关性质解答即可.【解答】解:A.内错角相等,是假命题,不符合题意;B.四边形的外角和为180°,是假命题,不符合题意;C.等腰三角形两腰上高相等,是真命题,符合题意;D.平面内任意三点都可以在同一个圆上,是假命题,不符合题意;故选:C.【点评】本题主要考查了命题和定理,熟练掌握平行线的性质,多边形的外角和定理,等腰三角形的性质,圆的有关性质是解答本题的关键.7.【分析】观察所给图象,结合横纵坐标的意义得出骑自行车的速度,再分别分析选项的描述即可解答.【解答】解:由图象可知,A.点P表示出发4h,老刘共骑行80km,故本选项正确,不符合题意;B.0~2h老刘的骑行速度为=15(km/h),3~4h老刘的骑行速度为=50(km/h),∵15<50,∴老刘的骑行在0~2h的速度比3~4h的速度慢,故本选项正确,不符合题意;C.由上述可知,0~2h老刘的骑行速度为=15(km/h),故本选项正确,不符合题意;D.2~3h,时间增加,但路程没有增加,老刘处于停止状态,因此实际骑行时间为3h,故本选项错误,符合题意故选:D.【点评】本题考查了函数的图象,读懂题意,从所给图象中获取相关信息是解题关键.8.【分析】根据平行四边形的性质得到AD∥BC,根据平行线的性质得到∠DAF=∠AFB,根据角平分线的定义得到∠DAF=∠BAF=DAB=30°,求得∠BAF=∠AFB=30°,求得∠EBF=30°,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠AFB,∵AF平分∠∠DAB,∴∠DAF=∠BAF=DAB=30°,∴∠BAF=∠AFB=30°,∴AB=BF,∵BE=AB,∴BE=BF,∴∠BEF=∠BFE,∵BE⊥CD,∴∠BEC=90°,∵DAB=60°,∴∠C=∠DAB=60°,∴∠EBF=30°,∴∠BFE=(180°﹣30°)=75°,∴∠EFA=∠BFE﹣∠BFA=45°,故选:C.【点评】本题考查了平行四边形的性质,角平分线的定义,等腰三角形的性质,熟练掌握平行四边形的性质是解题的关键.9.【分析】根据题意中的函数解析式和分类讨论的方法,可以判断哪个选项中的图象是正确的.【解答】解:当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx2+k的图象开口向下,顶点在y轴的正半轴上,故选项B符合题意,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx2+k的图象开口向上,顶点在y轴的负半轴上,选项A、C、D不符合题意.故选:B.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴∠BED=90°,∵∠B=60°,∴∠BDE=30°,∴BE=BD=,∴DE==,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.二.填空题(每题5分,共4小题,满分20分)11.【分析】先根据算术平方根的定义求出,再利用立方根的定义解答.【解答】解:∵82=64,∴=8,∴﹣=﹣8,∵(﹣2)3=﹣8,∴﹣的立方根是﹣2.故答案为:﹣2.【点评】本题考查了立方根与算术平方根的定义,是易错题,熟记概念是解题的关键.12.【分析】将所求式子化简后再将已知条件中a﹣b=2整体代入即可求值;【解答】解:∵a﹣b﹣2=0,∴a﹣b=2,∴1+2a﹣2b=1+2(a﹣b)=1+4=5;故答案为5.【点评】本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键.13.【分析】根据四边形BCOD是菱形,得OC=BC,OB⊥CD,△OBC是等边三角形,所以∠BOC=60°,根据垂径定理得CE=CD=,再求出半径即可求出答案.【解答】解:∵四边形BCOD是菱形,∴OC=BC,OB⊥CD,∵OC=OB,∴OC=OB=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵AB为⊙O的直径,∴CE=CD=,∴OC=CE÷sin∠COE=÷=2,∴的长是=π.故答案为:π.【点评】本题考查了弧长的计算,菱形的性质,关键是根据菱形的性质得∠BOC=60°.14.【分析】过点E作EF⊥AD于F,由cos∠BAP=cos∠AEF=cos∠BAE以及AP=;把△APB绕点A逆时针旋转90°得=,可得EF=,即可求得S△ADE到△ADG,取AG的中点H,连接HD、HP,由旋转的性质,得:AG=AP,∠1=∠2,∠ADG=∠ABP=90°,由勾股定理得HP=AP,再由两点之间线段最短得HD+DP≥HP,即得AP+DP≥AP,从而可得的最小值为.【解答】解:如图,过点E作EF⊥AD于F,∵∠BAD=∠EFD=90°,∴EF∥AB,∴∠BAP=∠AEF=∠BAE,∴cos∠BAP=cos∠AEF=cos∠BAE,∴,∵点P为BC中点,∴BP=AB=1,∴AP==,∴==,∴AE=,∴EF=,=AD•EF=×2×=;∴S△ADE如图,把△APB绕点A逆时针旋转90°得到△ADG,取AG的中点H,连接HD、HP,由旋转的性质,得:AG=AP,∠1=∠2,∠ADG=∠ABP=90°,∴∠2+∠3=∠1+∠3=90°,AH=HD=AP,∵AH2+AP2=HP2,∴HP=AP,∵HD+DP≥HP,∴AP+DP≥AP,∴DP≥AP,∴的最小值为.故答案为:;.【点评】本题主要考查了正方形的性质、勾股定理、锐角三角函数、旋转的性质、直角三角形斜边中线等于斜边一半、两点之间线段最短,解决此题的关键是把△APB绕点A 逆时针旋转90°得到△ADG,取AG的中点H,构造直角三角形斜边中线等于斜边一半以及两点之间线段最短,从而得到AP+DP≥AP.三.(本答题共2题,每小题8分,满分16分)15.【分析】本题涉及零指数幂、特殊角的三角函数值、负指数为正指数的倒数、取绝对值四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣×+2﹣4=﹣2.【点评】此题主要考查了实数的运算,其中特殊角的三角函数值是常考的知识点,因此要熟记特殊角的三角函数值;另外,负指数为正指数的倒数;任何非0数的0次幂等于1 16.【分析】(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据题意得:=,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.【点评】本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,列出分式方程;(2)找准等量关系,列出一元二次方程.四.(本答题共2题,每小题8分,满分16分)17.【分析】(1)根据平移的性质即可画出△ABC向右平移5个单位后得到的△A1B1C1;(2)根据对称性即可画出△ABC关于直线y=﹣x对称的△A2B2C2;(3)根据勾股定理即可得线段B1B2的长.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)线段B1B2的长是=.故答案为:.【点评】本题考查了作图﹣轴对称变换、作图﹣平移变换,解决本题的关键是掌握轴对称的性质和平移的性质.18.【分析】(1)根据所给的规律进行求解即可;(2)总结出第n个图形中基本图形的个数,从而可求解.【解答】解:(1)由题意得:第5个图案中基本图形的个数:5+2×6=17,故答案为:17;(2)由题意得:第n个图形中基本图形的个数为:n+2(n+1)=3n+2,∵第n个图案中有2024个基本图形,∴3n+2=2024,解得:n=674.【点评】本题主要考查图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.五.(本答题共2题,每小题10分,满分20分)19.【分析】延长MN交AO于点F,根据题意可得:MF⊥AO,OF=NC=MB=1.5米,MN =BC=10米,然后设AF=x米,在Rt△AFM中,利用锐角三角函数的定义求出FM的长,从而求出FN的长,再在Rt△AFN中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:延长MN交AO于点F,由题意得:MF⊥AO,OF=NC=MB=1.5米,MN=BC=10米,设AF=x米,在Rt△AFM中,∠AMF=45°,∴MF==x(米),∴FN=MF﹣MN=(x﹣10)米,在Rt△AFN中,∠ANF=47.7°,∴tan47.7°==≈1.1,解得:x=110,经检验:x=110是原方程的根,∴AF=110米,∴AB=AF+FO=111.5≈112(米),∴金寨南路桥主塔的高OA约为112米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.【分析】(1)由垂直的定义,等腰三角形的性质得到∠OAC+∠BPA=90°,由切线的性质得到∠OAC+∠BAP=90°因此∠BAP=∠BPA得到AB=PB;(2)作BH⊥AP于H,由勾股定理求出AB的长,CP的长,由△BPH∽△CPO,即可求出PH=,从而求出AP的长.【解答】(1)证明:∵OB⊥OC,∴∠POC=90°,∴∠C+∠CPO=90°,∵OC=OA,∴∠C=∠OAC,∴∠OAC+∠CPO=90°,∵∠BPA=∠CPO,∴∠OAC+∠BPA=90°,∵BA与圆切于A,∴半径OA⊥AB,∴∠OAC+∠BAP=90°,∴∠BAP=∠BPA,∴AB=PB;(2)解:作BH⊥AP于H,∵AB=PB,∴AP=2PH,∵OB=10,圆O的半径为8,∴AB===6,∴BP=AB=6,∴OP=OB﹣PB=10﹣6=4,∴PC===4,∵∠BHP=∠COP,∠BPH=∠CPO,∴△BPH∽△CPO,∴PH:PO=BP:CP,∴PH:4=6:4,∴PH=,∴AP=2PH=,∴AP的长是.【点评】本题考查切线的性质,余角的性质,勾股定理,相似三角形的判定和性质,关键是通过作辅助线构造相似三角形.六.(本大题满分12分)21.【分析】(1)先利用跳绳的人数和它所占的百分比计算出调查的总人数,再用总人数分别减去喜欢其它项目的人数可得到喜欢篮球项目的人数,再计算出喜欢乒乓球项目的百分比,然后用800乘以样本中喜欢篮球项目的百分比可估计全校学生中喜欢篮球项目的人数;(2)画树状图展示所有20种等可能的结果数,再找出所抽取的2名同学恰好是1名女同学和1名男同学的结果数,然后根据概率公式求解【解答】解:(1)调查的总人数为20÷40%=50(人),所以喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);“乒乓球”的百分比=×100%=20%,因为800××100%=80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)如图,(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七.(本大题满分12分)22.【分析】(1)设出函数解析式,用待定系数法求函数解析式即可;(2)根据表中数据可以求出每件进价,设该商品的月销售利润为w元,根据利润=单件利润×销售量列出函数解析式,根据函数的性质求出函数最值;(3)根据总利润=(单件利润﹣m)×销售量列出函数解析式,再根据x≤52时,每月扣除捐赠后的月销售利润随售价x的增大而增大,利用函数性质求m的取值范围.【解答】解:(1)设一次函数解析式为y=kx+b,根据题意,得,解得:,所以y与x的函数表达式为y=﹣10x+700;(2)由表中数据知,每件商品进价为=30(元),设该商品的月销售利润为w元,则w =(x ﹣30)y =(x ﹣30)(﹣10x +700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,∵﹣10<0,∴当x =50时,w 最大,最大值为4000,∴当该商品的售价是50元时,月销售利润最大,最大利润为4000元;(3)根据题意得:w =(x ﹣30﹣m )(﹣10x +700)=﹣10x 2+(1000+10m )x ﹣21000﹣700m ,对称轴为直线x =﹣=50+,∵﹣10<0,∴当x ≤50+时,w 随x 的增大而增大,∵x ≤52时,每月扣除捐赠后的月销售利润随售价x 的增大而增大,∴50+>51.5,解得:m >3,∵3<m ≤6,∴m 的取值范围为3<m ≤6.【点评】本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.八.(本大题满分14分)23.【分析】(1)根据△ABC 是等腰直角三角形,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,即可得到AB =AC ,∠BAC =90°,∠BAM =∠CAN =30°,AM =AN ,进而得出△BAN ≌△CAM ,进而得到CM =BN ;(2)依据∠APF =∠AMC ,∠MAC =∠PAF =120°,即可判定△APF ∽△AMC ;(3)连接CF ,依据A ,F ,C ,P 四点共圆,可得∠AFP +∠CFN =90°,根据∠CFN +∠FCN =90°,可得∠FCN =∠AFP =∠ACM .再根据∠FNC =∠PAC =90°,可得△PAC∽△FNC ,进而得出==2①;根据△APF ∽△AMC ,可得===②,联立①②可得=,进而得到====.【解答】解:(1)∵△ABC 是等腰直角三角形,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,∴AB=AC,∠BAC=90°,∠BAM=∠CAN=30°,AM=AN,∴∠BAN=∠CAM=120°,∴△BAN≌△CAM,∴CM=BN;(2)∵∠APF=∠APC﹣∠CPF=∠APC﹣30°,∠AMC=∠APC﹣∠MAB=∠APC﹣30°,∴∠APF=∠AMC,又∵∠MAC=∠PAF=120°,∴△APF∽△AMC;(3)如图②,连接CF,∵△APF∽△AMC,∴∠AFP=∠ACM,∴A,F,C,P四点共圆,∴∠PFC=∠PAC=90°,∴∠AFP+∠CFN=90°,∵∠CFN+∠FCN=90°,∴∠FCN=∠AFP=∠ACM.又∵∠FNC=∠PAC=90°.∴△PAC∽△FNC,∴==2①;∵△APF∽△AMC,∴===②,由①可得,FN=AP;由②可得,AF=AP,∴==.∴====.【点评】本题属于相似形综合题,主要考查了相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可。

安徽省宿州市2022年中考一模数学试题(含答案与解析)

安徽省宿州市2022年中考一模数学试题(含答案与解析)
A.46.49×108B.4.649×108
C.4.649×109D.0.4649×1010
【2题答案】
【答案】C
【解析】
【分析】科学记数法的表现形式为 的形式,其中 ,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.
【9题答案】
【答案】D
【解析】
【分析】根据tan∠EAH=tan∠BCA求得AE=2x,再利用勾股定理列得方程,求解即可.
【详解】解:设正方形EFGH的边长为x,
∵∠EAH=∠BCA,
∴ ,
∴ ,
∴AE=2x.
在△AFG中, ,
解得 .
故选:D.
【点睛】本题主要考查了正方形、解直角三角形,勾股定理,解题的关键是转化角进行求解.
【详解】解:当x=-4时, ,
∴点A的坐标为 ,
将A 代入y=kx得:2=-4k,
解得: ,①正确;
∵正比例函数y=kx与反比例函数 相交于A,C两点,点A的坐标为 ,
∴点C的坐标为 ,
由函数图象可得不等式 的解集为:-4<x<0或x>4,②正确;
∵ ,点A、C到x轴 距离相等,
∴ ,③错误.
故选:C.
5.某校为丰富学生课余活动,开展了一次“校园书法绘画”比赛,共有20名学生入围,他们的决赛成绩如下表:
成绩(分)
94
95
96
97
98
99
人数
1
3
6
5
3
2
则入围学生决赛成绩的中位数和众数分别是()
A.96.5分,96分B.96分,96分C.96.5分,97分D.96分,97分

安徽省合肥XX中学中考数学模拟试卷(二)及答案解析

安徽省合肥XX中学中考数学模拟试卷(二)及答案解析

安徽省合肥XX中学中考数学模拟试卷(二)一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)63.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为.10.分解因式:a3﹣4ab2=.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为.16.已知关于x的方程的解是负数,则n的取值范围为.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.26.如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB 和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.28.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27d(x)3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a﹣3b安徽省合肥XX中学中考数学模拟试卷(二)参考答案与试题解析一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.【点评】本题考查同底数幂的乘法、幂的乘方和有理数乘方的定义,熟练掌握运算性质是解题的关键.3.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥【考点】由三视图判断几何体.【分析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【考点】多边形内角与外角.【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°【考点】菱形的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】几何综合题.【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】首先根据题意推断方程x3+2x﹣1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x﹣1=0的实根x所在范围.【解答】解:方程x3+2x﹣1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x﹣1=0的实根x所在范围为:<x<.故选:C.【点评】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 4.5×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450000用科学记数法表示为4.5×105.故答案为:4.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400.【考点】反比例函数的应用.【分析】首先利用待定系数法求得v与P的函数关系式,然后代入P求得v值即可.【解答】解:∵在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,∴设P=∵当V=200时,p=50,∴k=VP=200×50=10000,∴P=当P=25时,得v==400故答案为:400.【点评】本题考查了反比例函数的应用,解题的关键是利用待定系数法求得反比例函数的解析式.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1200(条).故答案为:1200.【点评】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.【考点】解直角三角形;等腰三角形的性质.【分析】根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.【解答】解:过点A作AD⊥BC于D,如图∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.【点评】本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为30.【考点】等腰梯形的性质.【分析】首先过点A作AE∥BC于点E,由在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,可得四边形ADCE是平行四边形,△ABE是等边三角形,继而求得AB=AD=CD=BE=CE=6.继而求得答案.【解答】解:过点A作AE∥BC于点E,∵在梯形ABCD中,AD∥BC,∴四边形ADCE是平行四边形,∴AD=EC,AE=CD,∵AB=CD,∴AB=AE,∵∠ABC=60°,∴△ABE是等边三角形,∴AB=BE,∵AB=AD,∴AD=AB=CD=BE=CE=BC=×12=6,∴梯形ABCD的周长为:AB+AD+CD+BC=30.故答案为:30.【点评】此题考查了等腰梯形的性质、等边三角形的判定与性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为5π.【考点】弧长的计算;翻折变换(折叠问题).【分析】如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°﹣∠DOB=50°;然后由弧长公式弧长的公式l=来求的长.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.【点评】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB 是等边三角形是解答此题的关键之处.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6.【考点】勾股定理;矩形的性质.【分析】设矩形一条边长为x,则另一条边长为x﹣2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积.【解答】解:设矩形一条边长为x,则另一条边长为x﹣2,由勾股定理得,x2+(x﹣2)2=42,整理得,x2﹣2x﹣6=0,解得:x=1+或x=1﹣(不合题意,舍去),另一边为:﹣1,则矩形的面积为:(1+)(﹣1)=6.故答案为:6.【点评】本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E、F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.【考点】整式的混合运算—化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂的性质和特殊角的三角函数值代入计算即可;(2)利用整式的乘法和完全平方公式展开化简后代入求值即可.【解答】解(1)原式=4﹣2×+2=4+;(2)原式=2x2﹣x+2x﹣1﹣x2+6x﹣9=x2+7x﹣10,当x=﹣2时,原式=4﹣14﹣10=﹣20.【点评】本题考查了实数的运算、负整数指数幂及特殊角的三角函数值,属于基础题,应重点掌握.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.【解答】解:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.【点评】本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得该顾客最少可得20元购物券,最多可得80元购物券;(2)由(1)中的树状图即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为: =.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.17.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【考点】条形统计图;加权平均数;中位数;方差.【专题】计算题.【分析】(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可;(2)观察表格,成绩为7分处于中游略偏上,应为甲组的学生;(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组.【解答】解:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(5+5+6+7+7+8+8+8+8+9)=7.1(分),填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,小明是甲组的学生;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组.故答案为:(1)6;7.1;(2)甲【点评】此题考查了条形统计图,加权平均数,中位数,以及方差,弄清题意是解本题的关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形;正方形的判定;相似三角形的判定与性质.【专题】证明题.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论;(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE,∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,∴△BCD≌△ACE,∴∠B=∠CAE=45°,∴∠BAE=45°+45°=90°,∴AB⊥AE;(2)∵BC2=AD•AB,而BC=AC,∴AC2=AD•AB,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴∠CDA=∠BCA=90°,而∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形,∵CD=CE,∴四边形ADCE为正方形.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质、三角形全等、相似的判定与性质以及正方形的判定.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.【考点】分式方程的应用.【分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:﹣=8,解此方程即可求得答案.【解答】解:设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,则:﹣=8,解得:x=25,经检验,x=25是原分式方程的解.九(2)班的人均捐款数为:(1+20%)x=30(元)答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.【点评】本题考查分式方程的应用.注意分析题意,找到合适的等量关系是解决问题的关键.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)由BF是⊙O的切线,利用弦切角定理,可得∠1=∠C,又由∠ABF=∠ABC,可证得∠2=∠C,即可得AB=AC;(2)首先连接BD,在Rt△ABD中,解直角三角形求出AB的长度;然后在Rt△ABE中,解直角三角形求出AE的长度;最后利用DE=AD﹣AE求得结果.【解答】(1)证明:∵BF是⊙O的切线,∴∠1=∠C,∵∠ABF=∠ABC,即∠1=∠2,∴∠2=∠C,∴AB=AC;(2)解:如图,连接BD,在Rt△ADB中,∠BAD=90°,∵cos∠ADB=,∴BD====5,。

安徽省阜阳市十校联考2024届中考数学全真模拟试题含解析

安徽省阜阳市十校联考2024届中考数学全真模拟试题含解析

安徽省阜阳市十校联考2024届中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm2.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是()A.12B.13C.29D.163.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm4.在Rt△ABC中,∠C=90°,那么sin∠B等于()A.ACABB.BCABC.ACBCD.BCAC5.若反比例函数kyx=的图像经过点1(,2)2A-,则一次函数y kx k=-+与kyx=在同一平面直角坐标系中的大致图像是()A.B.C.D.6.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.117.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个8.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.359.下列运算中,正确的是()A.(a3)2=a5B.(﹣x)2÷x=﹣x C.a3(﹣a)2=﹣a5D.(﹣2x2)3=﹣8x610.如图,在△ABC中,EF∥BC,AE1EB2,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)12.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.14.如图,已知矩形ABCD中,点E是BC边上的点,BE=2,EC=1,AE=BC,DF⊥AE,垂足为F.则下列结论:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=23.其中正确的结论是_____.(把正确结论的序号都填上)15.如图,反比例函数3yx=(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为.16.如图,在平面直角坐标系中,已知C(1,2),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.17.若式子2xx+有意义,则x的取值范围是_____.18.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售 精加工后销售 每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工? (2)如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?20.(6分)先化简,再求值:()()()2111x x xx +-+-,其中2x =-.21.(6分)计算:2sin60°+|3﹣3|+(π﹣2)0﹣(12)﹣122.(8分)计算:+()﹣2﹣|1﹣|﹣(π+1)0.23.(8分)解不等式组()22113x x x x ⎧-≥-⎪⎨≤+⎪⎩,并把它的解集表示在数轴上.24.(10分)某超市对今年“元旦”期间销售A 、B 、C 三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售 个绿色鸡蛋,A 品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度; (2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B 种品牌的绿色鸡蛋的个数?25.(10分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)26.(12分)如图所示,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:△ACE ≌△BCD ;若AD =5,BD =12,求DE 的长.27.(12分)如图1,在圆O 中,OC 垂直于AB 弦,C 为垂足,作BAD BOC ∠=∠,AD 与OB 的延长线交于D . (1)求证:AD 是圆O 的切线;(2)如图2,延长BO ,交圆O 于点E ,点P 是劣弧AE 的中点,5AB =,132OB =,求PB 的长 .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解题分析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案. 【题目详解】∵原正方形的周长为acm ,∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a+8(cm ),因此需要增加的长度为a+8﹣a=8cm , 故选B .【题目点拨】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 2、B 【解题分析】解:将两把不同的锁分别用A 与B 表示,三把钥匙分别用A ,B 与C 表示,且A 钥匙能打开A 锁,B 钥匙能打开B 锁,画树状图得:∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:13.故选B . 点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 3、D 【解题分析】【分析】先求AC,再根据点D 是线段AC 的中点,求出CD ,再求BD. 【题目详解】因为,AB=10cm ,BC=4cm , 所以,AC=AB-BC=10-4=6(cm ) 因为,点D 是线段AC 的中点, 所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm ) 故选D【题目点拨】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.4、A【解题分析】根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.【题目详解】根据在△ABC中,∠C=90°,那么sinB=B∠的对边斜边=ACAB,故答案选A.【题目点拨】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.5、D【解题分析】甶待定系数法可求出函数的解析式为:1yx=-,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象. 【题目详解】解:由于函数kyx=的图像经过点1,22A⎛⎫-⎪⎝⎭,则有1k,=-∴图象过第二、四象限,∵k=-1,∴一次函数y=x-1,∴图象经过第一、三、四象限,故选:D.【题目点拨】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;6、B【解题分析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=12BC=2,DF∥BC,EF=12AB=32,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+32)=1.故选B.7、C【解题分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【题目详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【题目点拨】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.8、A【解题分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【题目详解】列表如下:∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.9、D【解题分析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【题目详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【题目点拨】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.10、A【解题分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.【题目详解】∵AE1 EB2=,∴AE AE11==AB AE+EB1+23=.又∵EF∥BC,∴△AEF∽△ABC.∴2AEFABCS11=S39∆∆⎛⎫= ⎪⎝⎭.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故选A.11、A【解题分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【题目详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【题目点拨】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.12、B【解题分析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C 在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.14、①②【解题分析】只要证明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解决问题.【题目详解】∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,22AE BE5∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,5不妨设DF平分∠ADC,则△ADF是等腰直角三角形,这个显然不可能,故③错误,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=53,故④错误,故答案为①②.【题目点拨】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、9 4【解题分析】试题分析:如图,连接OB.∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=32×1=32.∵AE=BE,∴S△BOE=S△AOE=32,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣32=32.∴F是BC的中点.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣32﹣32﹣32×32=.16、510)【解题分析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【题目详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC5∴点F的坐标为(1×52×5510),故答案为:(5,10).【题目点拨】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .17、x≥﹣2且x≠1. 【解题分析】由2x +知20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.18、π【解题分析】试题分析:∵,∴S 阴影=1ABB S 扇形=250360AB π⋅=54π.故答案为54π. 考点:旋转的性质;扇形面积的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)应安排4天进行精加工,8天进行粗加工(2)①20001000(140)W m m =+-=1000140000m +②安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元【解题分析】解:(1)设应安排x 天进行精加工,y 天进行粗加工,根据题意得12{515140.x y x y +=+=, 解得4{8.x y ==,答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m +②要求在不超过10天的时间内将所有蔬菜加工完, 14010515m m -∴+≤ 解得5m ≤ 05m ∴<≤ 又在一次函数1000140000W m =+中,10000k =>, W ∴随m 的增大而增大,∴当5m =时,10005140000145000.W =⨯+=最大∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.20、3x -1, -9.【解题分析】先去括号,再合并同类项;最后把x=-2代入即可.【题目详解】原式=323211x x x x --=-+,当x=-2时,原式=-8-1=-9.【题目点拨】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值. 21、1【解题分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【题目详解】原式=1×32+3﹣3+1﹣1=1. 【题目点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.22、【解题分析】先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;【题目详解】解:原式【题目点拨】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.23、不等式组的解是x≥3;图见解析【解题分析】先求出每个不等式的解集,再求出不等式组的解集即可.【题目详解】解:()22113x xxx⎧-≥-⎪⎨≤+⎪⎩①②∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式组的解是x≥3,在数轴上表示为:.【题目点拨】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.24、(1)2400,60;(2)见解析;(3)500【解题分析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:4002400×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B 种品牌的绿色鸡蛋为:8002400×1500=500个. 25、 (1)AB ≈1395 米;(2)没有超速.【解题分析】 (1)先根据tan ∠ADC =2求出AC ,再根据∠ABC =35°结合正弦值求解即可(2)根据速度的计算公式求解即可.【题目详解】解:(1)∵AC ⊥BC ,∴∠C =90°,∵tan ∠ADC =AC CD =2, ∵CD =400,∴AC =800,在Rt △ABC 中,∵∠ABC =35°,AC =800,∴AB =sin 35AC =8000.57358≈1395 米; (2)∵AB =1395, ∴该车的速度=139590=55.8km /h <60千米/时, 故没有超速.【题目点拨】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.26、(1)证明见解析(2)13【解题分析】(1)先根据同角的余角相等得到∠ACE=∠BCD ,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD ,∠EAC=∠B=45°,即可证得△AED 是直角三角形,再利用勾股定理即可求出DE 的长.【题目详解】(1)∵△ACB 和△ECD 都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形2222∴=+=+=DE AE AD12513【题目点拨】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.PB=27、(1)详见解析;(2)313【解题分析】(1)连接OA,利用切线的判定证明即可;(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可.【题目详解】解:(1)如图,连结OA,∵OA=OB,OC⊥AB,∴∠AOC=∠BOC,又∠BAD=∠BOC,∴∠BAD=∠AOC∵∠AOC+∠OAC=90°,∴∠BAD+∠OAC=90°,∴OA⊥AD,即:直线AD是⊙O的切线;(2)分别连结OP、PE、AE,OP交AE于F点,∵BE是直径,∴∠EAB=90°,∴OC∥AE,∵OB=132,∴BE=13∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=132-52=4在直角△PEF中,FP=4,EF=6,PE2=16+36=52,在直角△PEB中,BE=13,PB2=BE2-PE2,【题目点拨】本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键.。

2023年中考数学第二次模拟考试卷及答案解析(安徽卷)

2023年中考数学第二次模拟考试卷及答案解析(安徽卷)

2023年中考数学第二次模拟考试卷及答案解析(安徽卷)第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列有理数:4-,()3--,27-,0,()4-+,3--,()1⎡⎤-+-⎣⎦中,负数有()A .1个B .2个C .3个D .4个【答案】C【分析】运用相反数,绝对值进行化简即可.【详解】 ()33--=,2277-=,()44-+=-,33--=-,[(1)](1)1-+-=--=∴题目中负数有:4-,()4-+,3--故选:C .【点睛】本题考查了运用相反数,绝对值等知识对有理数的符号进行辨别的能力,关键是能正确理解并运用以上知识解题.2.长方体的主视图与左视图如图所示(单位:cm ),则其俯视图的面积是()A .4cm 2B .6cm 2C .8cm 2D .12cm 2【答案】D【详解】试题分析:根据题意,正方体的俯视图是矩形,它的长是4cm ,宽是3cm ,面积=4×3=12(cm 2),故选D .考点:由三视图判断几何体.3.脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A .73.610⨯B .80.3610⨯C .83.610⨯D .63.610⨯【答案】A【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯的形式,其中1||10a ≤<,n 是比原整数位数少1的数.【详解】解:736000000 3.610=⨯.故选:A .【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.已知|2020﹣a a ,则4a ﹣40402的值为()A .6063B .8084C .4042D .2021【答案】B【分析】根据二次根式有意义的条件,得出a -2021≥0,从而得出2020-a <0,将式子化简整理后得到220202021a -=,根据积的乘方的逆用,将4a ﹣24040化为2442020a -⨯的形式,求解即可.【详解】解:∵a -2021≥0,∴a≥2021,∴2020-a <0,∴化简|2020﹣aa 得:(a -2020)=a ,=2020,两边同时平方:a -2021=22020,∴220202021a -=,244040a -=24(22020)a -⨯=2442020a -⨯=24(2020)a -=4×2021=8084.故选:B .【点睛】本题主要考查了二次根式的混合运算和化简求值,根据二次根式有意义的条件将等式化简整理是解题的关键.5.将下列多项式因式分解,结果中不含有因式(a+1)的是()A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【详解】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.6.下列事件中的随机事件是()A .在数轴上任取一个点,它表示的数是实数B .任意画一个三角形,恰好同一边上的高线与中线重合C .任意画一个三角形,其内角和是180°D .用长度分别是3,3,6的木条首尾顺次相连可组成一个等腰三角形【答案】B【分析】根据必然事件,不可能事件以及随机事件的概念对选项逐个判断即可.【详解】解:A 、在数轴上任取一个点,它表示的数是实数,这是必然事件,不符合题意;B 、任意画一个三角形,恰好同一边上的高线与中线重合,这是随机事件,符合题意;C 、任意画一个三角形,其内角和是180°,这是必然事件,不符合题意;D 、用长度分别是3,3,6的木条首尾顺次相连可组成一个等腰三角形,这是不可能事件,不符合题意,故选:B【点睛】此题考查了必然事件,不可能事件以及随机事件,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.若关于x 的分式方程12111m x x--=--的解是正数,则m 的取值范围是()A .4m <或3m ≠B .4m <C .4m ≤且3m ≠D .5m >且6m ≠【答案】A【分析】首先求得分式方程的解为x =4-m ,再根据解为正数得4-m >0且4-m ≠1,从而求得m 的取值范围即可.【详解】解:12111m x x--=--,去分母,得1-m -(x -1)=-2,去括号,得1-m -x +1=-2,移项,合并得x =4-m ,∵方程的解为正数,∴4-m >0且4-m ≠1,解得m <4且3m ≠,故选:A .【点睛】本题考查分式方程的特殊解,难度适中,解题的关键是注意要排除分式方程无解情况.8.已知点(3,1)P m m --关于原点的对称点P '在第四象限,则m 的取值范围在数轴上表示正确的是()A .B .C .D .【答案】D【分析】先确定点P 所在的象限,然后根据点所在象限的坐标特点列不等式组求解即可.【详解】解: 点(3,1)P m m --关于原点的对称点P '在第四象限,∴点P 在第二象限,∴3010m m -<⎧⎨->⎩,解得:13m <<,故选:D .【点睛】本题主要考查了点的坐标特征,掌握第二象限的点的横坐标小于零、纵坐标大于零是解答本题的关键.9.如图,E 是菱形ABCD 边AD 上一点,连接BE ,若13AB EB ==,3ED =,点P 是BE 的中点,点Q 在BC 上,则下列结论错误的是()A .菱形ABCD 的面积是156B .若Q 是BC 的中点,则PQ =C .5sin 13EBC ∠=D .若PQ BE ⊥,则785PQ =【答案】C【分析】过点B 作BM ⊥AD 于M ,过点E 作EN ⊥BC 于N ,连接EC ,PQ ,由四边形BNEM 是平行四边形可得BN =ME ,由BA =BE 可得ME ,解Rt △BNE 可得EN ,进而求得菱形面积,∠EBC 的正弦值;解Rt △ENC 可得EC ,若Q 是BC 中点,由三角形中位线的性质可得PQ ;若PQ ⊥BE ,由∠EBC 的正切值解Rt △BPQ 可得PQ ;【详解】解:如图,过点B 作BM ⊥AD 于M ,过点E 作EN ⊥BC 于N ,连接EC ,PQ ,ABCD 是菱形,则AD ∥BC ,BM ⊥AD ,EN ⊥BC ,则BM ∥EN ,∴四边形BNEM 是平行四边形,∴BN =ME ,ABCD 是菱形,则AD =AB =BC =13,DE =3,则AE =10,BA =BE ,BM ⊥AE ,则ME =AM =12AE =5,∴BN =5,CN =8,Rt △ENB 中,EN 12=,∴菱形ABCD 的面积=BC •EN =156,sin ∠EBN =1213EN BE =,tan ∠EBN =125EN BN =,∴12sin 13EBC ∠=,Rt △CNE 中,CE =若Q 是BC 中点,则QP 是△BCE 的中位线,∴QP =12CE =若QP ⊥BE ,则Rt △BPQ 中,BP =12BE =132,QP =BP tan ∠PBQ =132×125=785,综上所述:C .12sin 13EBC ∠=,选项错误,符合题意;故选:C .【点睛】本题考查了菱形的性质,平行四边形的判定和性质,三角形中位线的性质,解直角三角形等知识;正确作出辅助线是解题关键.10.如图,正方形ABCD 的边长为2,E 为与点D 不重合的动点,以DE 一边作正方形DEFG .设DE =d 1,点F 、G 与点C 的距离分别为d 2,d 3,则d 1+d 2+d 3的最小值为()AB .2C .D .4【答案】C【分析】连接CF 、CG 、AE ,证()ADE CDG SAS ∆≅∆可得AE CG =,当A 、E 、F 、C 四点共线时,即得最小值;【详解】解:如图,连接CF 、CG 、AE ,∵90ADC EDG ∠=∠=︒∴ADE CDG ∠=∠在ADE ∆和CDG ∆中,∵AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩∴()ADE CDG SAS ∆≅∆∴AE CG=∴DE CF CG EF CF AE ++=++当EF CF AE AC ++=时,最小,AC ===∴d 1+d 2+d 3的最小值为故选:C .【点睛】本题主要考查正方形的性质、三角形的全等证明,正确构造全等三角形是解本题的关键.第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)11.把根号外的因式移到根号内:(a -=__________.【答案】【分析】根据题意可得a -1<0,原式可以化成(1a --法则即可求解.【详解】由题意,得a -1<0,所以((1a a ---=--.【点睛】本题考查了二次根式的化简,正确理解题目中的隐含条件:a -1<0是关键.12.化简:(1221121x xx x x ++÷=--+_____.【答案】11x x -+.【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果.【详解】(1+11x -)÷2221x xx x +-+=22211x x x x x x -+⨯-+=()2111x x x x x -⨯-+=11x x -+,故答案为x 1x 1-+.【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.13.如图,等腰直角三角形ABC 顶点A 在x 轴上,∠BCA =90°,AC =BC数3y x=(x >0)的图象分别与AB ,BC 交于点D ,E .连接DE ,当△BDE ∽△BCA 时,点E 的坐标为___.【答案】.【详解】如图,∵∠BCA =90°,AC =BC 3y x=(x >0)的图象分别与AB ,BC 交于点D ,E ,∴∠BAC =∠ABC =45°,且可设E (a ,3a ),D (b ,3b).∴C (a ,0),B (a ,),A (a0),设直线AB 的解析式为y kx m =+,∴(0{a k m ak m -+=+=,解得1{k m a ==.∴线AB的解析式为y x a =+.又∵△BDE ∽△BCA ,∴∠BDE =∠BCA=90°.∴直线AB 与直线DE 垂直.如图,过点D 作x 轴的垂线,过点R 作y 轴的垂线,两线交于点H,则△DEH 为等腰直角三角形,∴HE =HD ,即33b a a b-=-.∴3b a=.又∵点D 在直线AB上,∴3b a b =+,即3a a a =+.∴2230a --=,解得12a a ==-.∴点E的坐标是.14.在平面直角坐标系中,已知抛物线y =mx 2-2mx +m -2(m >0).(1)抛物线的顶点坐标为_________;(2)点M (x 1,y 1)、N (x 2,y 2)(x 1<x 2≤3)是拋物线上的两点,若y 1<y 2,x 2-x 1=2,则y 2的取值范围为_________(用含m 的式子表示)【答案】(1,-2)2242m y m -<≤-【分析】(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x =1,得到当点M ,N 关于抛物线的对称轴对称时,x 1+x 2=2,结合x 2-x 1=2,可得x 1=0,x 2=2,得到当2<x 2≤3时,y 1<y 2,再将x =2、x =3代入函数关系式进行求解即可.【详解】(1)∵2222(1)2y mx mx m m x =--=-+-,∴抛物线顶点坐标为(1,-2),故答案为(1,-2).(2)∵抛物线的对称轴为直线x =1,∴当点M ,N 关于抛物线的对称轴对称时,x 1+x 2=2,结合x 2-x 1=2,可得x 1=0,x 2=2,∴当2<x 2≤3时,y 1<y 2,对于y =m (x -1)2-2,当x =2时,m -2;当x =3时,y =4m -2,∴2242m y m -<≤-.【点睛】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系.三、(本大题共2小题,每小题8分,满分16分)15()1013tan 3020222π-︒⎛⎫+-- ⎪⎝⎭.1【分析】原式利用二次根式性质,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【详解】解:原式312=+-121=-=.【点睛】本题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.三角形ABC 与三角形A B C '''在平面直角坐标系中的位置如图所示:(1)分别写出下列各点的坐标:A ______,A '______;(2)若点(),P x y 是三角形ABC 内部一点,则三角形A B C '''内部的对应点P '的坐标______.(3)三角形A B C '''是由三角形ABC 经过怎样的平移得到的?【答案】(1)(1,3),(-3,1);(2)(x -4,y -2);(3)△ABC 向左平移4个单位,再向下平移2个单位得到A B C ''' .【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的规律解决问题即可;(3)根据平移变换的性质解决问题.【详解】(1)解:由△ABC 和A B C ''' 在坐标系中的位置可得A (1,3),)3(1A '-,,故答案为:(1,3),(-3,1);(2)解:∵A (1,3),)3(1A '-,,∴-3-1=-4,1-3=-2,∴△ABC 向左平移4个单位,再向下平移2个单位得到A B C ''' ,∴P (x ,y )的对应点P '(x -4,y -2),故答案为:(x -4,y -2);(3)解:∵A (1,3),)3(1A '-,,∴-3-1=-4,1-3=-2,∴△ABC 向左平移4个单位,再向下平移2个单位得到A B C ''' ,【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握平移变换的性质.四、(本大题共2小题,每小题8分,满分16分)17.某建工集团下有甲、乙两个工程队,现中标承建一段公路,若甲、乙两工程队合做20天可完成;若让两队合做15天后,剩下的工程由甲队独做,还需15天才能完成.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费10000元,乙工程队施工每天需付施工费26000元,此项工程若由甲工程队先独做若干天后,乙工程队再加入共同完成剩下的工程,则甲工程队至少要独做多少天,才能使施工费不超过680000元?【答案】(1)甲队单独完成此项工程需60天,乙工程队单独完成此项工程需要30天(2)甲工程队至少要独做20天【分析】(1)设甲队单独完成此项工程需x 天,由题意:让两队合做15天后,剩下的工程由甲队独做,还需15天才能完成.列出分式方程,解方程即可;(2)设甲工程队要独做a 天,乙工程队做了b 天,由题意:由甲工程队先独做若干天后,乙工程队再加入共同完成剩下的工程,列出二元一次方程,得b =20−13a ,再由题意:施工费不超过680000元,列出不等式,解不等式即可.【详解】(1)解:设甲队单独完成此项工程需x 天,由题意得:111515120x⨯+⨯=,解得:x =60,经检验,x =60是原方程的解,且符合题意,∵1111120206030x -=-=,∴乙工程队单独完成此项工程需要30天,答:甲队单独完成此项工程需60天,乙工程队单独完成此项工程需要30天.(2)解:设甲工程队要独做a 天,乙工程队做了b 天,由题意得:16030a b b ++=,整理得:a +3b =60,∴b =20−13a ,∵施工费不超过680000元,∴10000(a +b )+26000b ≤680000,∴10000(a +20−13a )+26000(20−13a )≤680000,解得:a ≥20,答:甲工程队至少要独做20天.【点睛】本题主要考查了二元一次方程组的应用、二元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.18.观察以下等式:第1个等式:21131232-=⨯⨯;第2个等式:31182343-=⨯⨯;第3个等式:411153454-=⨯⨯;第4个等式:511244565-=⨯⨯;…按照以上规律,解决下列问题:(1)写出第6个等式:___________;(2)写出你猜想的第n (n 取正整数)个等式:________(用含n 的等式表示),并验证等式的正确性.【答案】(1)711486787-=⨯⨯;(2)2111(1)1(1)(2)1n n n n n n +-=+-+++【分析】(1)根据题目中给出的等式的规律,即可写出第6个等式;(2)根据题目中给出的等式的规律,可以猜想出第n 个等式,并加以证明.【详解】(16个等式为:711486787-=⨯⨯;(2)解:猜想的第n (n 取正整数)个等式为:2111(1)1(1)(2)1n n n n n n +-=+-+++.证明:左边211(1)1(1)(2)+=-+-++n n n n n 11(11)(11)(1)(2)n n n n n n +=-+-++++11(2)(1)(2)n n n n n n +=-+++2(1)1(1)(2)n n n n +-=++2211(1)(2)n n n n n ++-=++(2)(1)(2)n n n n n +=++11n =+.右边11n =+,∵左边=右边,∴原等式成立.∴第n (n 取正整数)个等式为:2111(1)1(1)(2)1n n n n n n +-=+-+++.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现数字的变化规律,写出相应的猜想并加以证明.五、(本大题共2小题,每小题10分,满分20分)19.如图,在一笔直的海岸线上有A ,B 两观景台,A 在B 的正东方向,BP =km ),有一艘小船停在点P 处,从A 测得小船在北偏西60°的方向,从B 测得小船在北偏东45°的方向.(1)求A 、B 两观景台之间的距离;(2)小船从点P 处沿射线AP 的方向进行沿途考察,求观景台B 到射线AP 的最短距离.(结果保留根号)【答案】(1)A 、B 两观景台之间的距离为=(km ;(2)观测站B 到射线AP 的最短距离为(5+22)km .【分析】(1)过点P 作PD ⊥AB 于点D ,先解Rt △PBD ,得到BD 和PD 的长,再解Rt △PAD ,得到AD 和AP 的长,然后根据BD+AD=AB ,即可求解;(2)过点B 作BF ⊥AC 于点F ,解直角三角形即可得到结论.【详解】解:(1)如图,过点P 作PD ⊥AB 于点D .在Rt △PBD 中,∠BDP =90°,∠PBD =90°﹣45°=45°,∴BD =PD =2BP =5km .在Rt △PAD 中,∠ADP =90°,∠PAD =90°﹣60°=30°,∴AD=,PA =12.∴AB =BD+AD =(km ;答:A 、B 两观景台之间的距离为=(km ;(2)如图,过点B 作BF ⊥AC 于点F ,则∠BAP =30°,∵AB =(,∴BF =12AB =(52)km .答:观测站B 到射线AP 的最短距离为(5+22)km .【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中.通过作辅助线,构造直角三角形是解题的关键.20.如图,在ABC 中,以AB 为直径作O ,交BC 于点D ,交AC 于点E ,且BD CD ,过点D 作O 的切线交AC 于点F ,过点D 作AB 的垂线,交AB 于点G ,交O 于点H .(1)求证:DF AC ⊥;(2)若1OG =,求AE 的长.【答案】(1)证明见解析(2)2AE =【分析】(1)根据切线,得到90ODF ∠=︒;连接OD ,通过证OD 是ABC 的中位线,证OD AC ∥,进而得到90CFD ODF ∠=∠=︒,即可证明;(2)连接DE ,分别证AC =AB =2OB ,CD =DE ,得到CF =BG ,CF =EF ,再利用222AE AC CF EF OB BG OG =--=-=,即可求解.【详解】(1)证明:∵过点D 作O 的切线交AC 于点F ,∴90ODF ∠=︒,连接OD ,∵BD CD =,OA =OB ,∴OD 是ABC 的中位线,∴OD AC ∥,∴90CFD ODF ∠=∠=︒,∴DF AC ⊥.(2)解:设圆与AC 相交于点E ,连接DE ,由(1)可知,OD AC ∥,∴ODB C ∠=∠,∵OD =OB ,∴ODB ABC ∠=∠,∴C ABC ∠=∠,∴AC =AB =2OB ,∵在Rt CFD △和 Rt BGD 中,90DFC DGB C ABC CD BD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()Rt CFD Rt BGD AAS ≌,∴CF =BG ,又∵四边形ABDE 是圆内接四边形,∴180AED ABC ∠+∠=︒,又∵180AED CED ∠+∠=︒,∴ABC CED ∠=∠,∴C CED ∠=∠,∴CD =DE ,又∵DF AC ⊥,∴CF =EF ,∴22AE AC CF EF OB BG =--=-,即()222AE OB BG OG =-==.【点睛】本题考查圆、全等三角形和等腰三角形的相关知识.包括圆的切线,圆内接四边形;以及全等三角形的判定和性质,等腰三角形的判定和性质,综合性强.熟练掌握圆、全等三角形和等腰三角形的判定和性质是本题解题的关键.六、(本题满分12分)21.某校为进一步提高教职工的身体素质,提倡“每天一万步”活动,校工会随机抽取20名教职工一天行走的步数,对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:组别步数分组频数频率A5500≤x <650020.1B6500≤x <7500100.5C7500≤x <8500a m D8500≤x <950030.15E 9500≤x <10500b 0.15请根据以上信息解答下列问题:(1)填空:a =______,b =______,m =______,并补全频数分布直方图;(2)这20名教职工一天行走步数的中位数落在______组;7500步的人数.(3)若该校教职工共有320人,请估计其中一天行走步数不少于...【答案】(1)2、3、0.1(2)B(3)128人【分析】(1)由A组频数及频率得出样本容量,再用样本容量乘以E组频率得出其频数b,根据频数之和等于总人数得出a的值,继而可得m的值;(2)根据中位数的定义可得答案;(3)总人数乘以样本中C、D、E组频率之和即可得出答案.(1)解:样本容量为2÷0.1=20,∴b=20×0.15=3,则a=20-(2+10+3+3)=2,∴m=2÷20=0.1,补全图形如下:故答案为:2、3、0.1;(2)这20名教职工一天行走步数的中位数是第10、11个数据的平均数,而这两个数据均落在B组,所以这20名教职工一天行走步数的中位数落在B 组,故答案为:B .(3)估计其中一天行走步数不少于7500步的有320×(0.1+0.15+0.15)=128(人).【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.七、(本题满分12分)22.如图,抛物线2y x bx c =++的对称轴为1x =-,抛物线与x 轴相交于A 、B 两点与y 轴交于点C ,其中点A 的坐标为()3,0-(1)求点B 的坐标;(2)若点P 在AC 下方的抛物线上,且2PAC BOC S S = ,求点P 的坐标;(3)在抛物线的对称轴上是否存在点G ,使△ACG 是直角三角形?若存在,求出符合条件的G 点坐标;若不存在,请说明理由.【答案】(1)()1,0B (2)()1,4--,()23--,(3)存在,G 的坐标为31712⎛--- ⎝⎭,或31712⎛-+- ⎪ ⎪⎝⎭,或()14--,或()1,2-.【分析】(1)根据抛物线的对称轴为=1x ,点()3,0A -,即可求得点B 的坐标;(2)待定系数法求得抛物线解析式,进而求得C 的坐标,求得直线AC 的解析式为3y x =--,过点P 作x 轴的垂线,交AC 于点Q ,设()2,23P m m m +-,则(),3Q m m --,根据2PAC BOC S S = 建立方程,解方程求得m 的值,即可求得点P 的坐标;(3)设()1,G n -,根据勾股定理求得,,AC AG CG 的长,分三种情况讨论,根据勾股定理建立方程,解方程即可求解.【详解】(1)∵抛物线的对称轴为1x =-,抛物线与x 轴相交于A 、B 两点,()3,0A -,∴()1,0B (2)∵抛物线2y x bx c =++,中=1a ,()3,0A -,()1,0B ,∴抛物线解析式为()()21323y x x x x =-+=+-,令=0x ,得3y =-,∴()0,3C -,设直线AC 的解析式为=+y kx b ,则3+=0=3k b b --⎧⎨⎩,解得=1=3k b --⎧⎨⎩,∴直线AC 的解析式为3y x =--,如图,过点P 作x 轴的垂线,交AC 于点Q ,设()2,23P m m m +-,则(),3Q m m --,∴()2323PQ m m m =---+-23m m =--,∵()()1,0,0,3B C -,()3,0A -∴1,3OB OC ==,3OA =,∴131322OBC S =⨯⨯= ,()2113322APC C A S PQ x x m m =⨯-=--⨯ ,∵2PAC BOC S S = ,∴()23332m m =--,解得122,1m m =-=-,∴当2m =-时,2234433m m +-=--=-,当1m =-时,2231234m m +-=--=-,∴P 的坐标为:()1,4--,()23--,;(3)∵抛物线对称轴为1x =-,设()1,G n -,由()3,0A -,()0,3C -∴2223318AC =+=,()2222134AG n n =-++=+,()222=1++3=+6+10CG n n n ,设在抛物线的对称轴上存在点G ,使△ACG 是直角三角形,则①当AC 为斜边时,222AC AG CG =+即22461018n n n ++++=解得:1233,22n n ---+==∴G 的坐标为1⎛- ⎝⎭或1⎛- ⎝⎭②当AG 为斜边时,222AG AC CG =+,即22418610n n n +=+++,解得4n =-,∴G 的坐标为()14--,,③当CG 为斜边时,222CG AC AG =+,即22610418n n n ++=++,解得=2n ,∴G 的坐标为()1,2-;综上所述,点G 的坐标为1⎛- ⎝⎭或1⎛- ⎝⎭或()14--,或()1,2-.【点睛】本题考查了二次函数综合问题,面积问题,直角三角形的性质,勾股定理,掌握以上知识是解题的关键.八、(本题满分14分)23.把两块全等的直角三角形ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,其中90ABC DEF ∠=∠= ,45C F ∠=∠= ,4AB DE ==,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .(1)如图1,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD CDQ ∽.此时,·AP CQ =;将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α.其中090α<< ,问·AP CQ 的值是否改变?答:(填“会”或“不会”);若改变,·AP CQ 的值为(不必说明理由);(2)在(1)的条件下,设CQ x =,两块三角板重叠面积为y ,求y 与x 的函数关系式.(图2,图3供解题用)【答案】(1)8,不会,8;(2)当24x ≤<时,88y x x =--;当02x <<时,8444x y x x -=---2484x x y x ⎛⎫-+= ⎪-⎝⎭或.【详解】(1)由题意得·AP CQ =8;将三角板DEF 旋转后·AP CQ 的值不会改变;8;45,90A C APD QDC ∠=∠=︒∠=∠=︒APD CDQ∴ ::AP CD AD CQ∴=即AP CQ AD CD⨯=⨯4AB BC == ∴斜边中点为O2AP PD ∴==248AP CQ ∴⨯=⨯=;将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α在APD △与CDQ 中,45A C ∠=∠=︒()180454590APD αα∠=︒-︒-︒+=︒-,90CDQ α∠=︒-APD CDQ∴∠=∠APD CDQ∴ 22182AP CQ AD CD AD AC ∴⎛⎫= ⎪⎝⎭⋅=⋅==;(2)当045α<≤ 时,如图2,过点D 作DM AB ⊥于M ,DN BC ⊥于N ,O 是斜边的中点,2DM DN ∴==,CQ x= 则8AP x=,18812,222APD DQC S S x x x x ∴=⋅⋅==⨯=△△,()8824y x x x∴=--≤<,当4590α<< 时,如图3,过点D 作DG BC ⊥于G,DG=2CQ x= 则8AP x=,84BP x ∴=-,BP BM DG MG= ,即8422,24MG x x MG MG x--==-()2248244x x x MQ x x x-+∴=+-=--()248024x x y x x-+∴=<<-考点:旋转问题的综合题点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.。

(安徽卷)2021年中考数学第一次模拟考试(参考答案)

(安徽卷)2021年中考数学第一次模拟考试(参考答案)

2021年中考数学第一次模拟考试【安徽卷】数学·参考答案1 2 3 4 5 6 7 8 9 10 ACCACBCBBD11.x ﹥﹣6 12.5 13.40 14.4或,153,1535+- 15.【解析】原式=1114(2)232-++-+⨯= 16.【解析】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n 个图案中有5n+n-(n-1)=5n+1根; (3)令n=25,得出51126n +=,故第25个图案中有126根小棒;(4)令512032n +=,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成. 17.【解析】(1)旋转后的A B C '''∆图形如图所示,点A 的对应点Q 的坐标为:()2,3-; (2)如图点A 的对应点A ''的坐标()3,2--;(3)如图以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标为:()7,3-或()5,3--或()3,318.【解析】延长BD 交AE 于点G ,作DH ⊥AE 于H ,设BC =x m ,由题意得,∠DGA =∠DAG =30°, ∴DG =AD =6,∴DH =3,GH =2233DG DH -=, ∴GA =63,在Rt △BGC 中,tan ∠BGC =BCGC, ∴CG =3tan BCx BGC=∠,在Rt △BAC 中,∠BAC =45°, ∴AC =BC =x ,由题意得,3x ﹣x =63,解得,x =6331-≈14, 答:大树的高度约为14m .19.【解析】(1)证明:连接OA , ∵∠B=60°,∴∠AOC=2∠B=120°, 又∵OA=OC ,∴∠OAC=∠OCA=30°, 又∵AP=AC , ∴∠P=∠ACP=30°,∴∠OAP=∠AOC ﹣∠P=90°, ∴OA ⊥PA ,∴PA是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=23,∴BE=12BC=3,CE=3,∵AB=4+3,∴AE=AB﹣BE=4,∴在Rt△ACE中,AC=22AE CE=5,∴AP=AC=5.∴在Rt△PAO中,OA=53,∴⊙O的半径为533.20.【解析】(1)100%﹣20%﹣10%﹣30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50﹣15﹣5﹣10=20(人).如图所示:(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.21.【解析】(1)由题意得:()()110001000115%1850150y x x =+⨯--=+,()21000110%900y x x =⨯-=;(2)若收费相同,则12y y =,即:850150900x x +=, 解得:3x =,若是到甲商场购买更优惠,则12y y <,即:850150900x x +<, 解得:3x >,若是到甲乙商场购买更优惠,则12y y >,即:850150900x x +>, 解得:3x <,答:当3x =时,两商场收费相同,当3x >时,到甲商场购买更优惠,当3x <时,到乙商场购买更优惠; (3)依题意,有:1520(10)5200w m m m =+-=-+, 由于甲商场库存只有4台,所以:04m <≤, ∵50-<,∴w 随着m 的增大而减小,∴当m 取最大值4时,w 取到最小值,为180元.22.【解析】(1)先补充证明角平分线的性质定理:如图,△ABC 中,AD 是角平分线,则:BD DC =ABAC. 理由:过C 作CE ∥DA ,交BA 的延长线于E ,∵CE ∥DA ,∴∠1=∠E ,∠2=∠3,∠1=∠2, ∴∠E =∠3,∴AE=AC,∵BDDC=BAAE,∴BDDC=ABAC.如图1中,延长CO交AB于E,∵OA平分∠EAC,∴AEAC=OEOC,∴AEEO=ACOC=53,设AE=5k,OE=3k,∵OB平分∠ABC,∴OC平分∠ACB,∵∠ACB=2∠ABC,∴∠BCE=12∠ACB=∠EBC,∴EB=EC=3k+3,∵∠ACE=∠ABC,∠CAE=∠BAC,∴△ACE∽△ABC,∴ACAB=AEAC,∴5533k k=55k,解得k=58或﹣1(舍弃),∴AB=8k+3=8.故答案为:8.(2)如图2中,过点O作EF⊥OA交AB于E,交AC于F,作CG∥EF交AB于G,连接OG.∵AO平分∠AEF,∴∠OAE=∠OAF,∵AO=AO,∠AOE=∠AOF=90°,∴△AOE≌△AOF(ASA),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°=∠FOC+∠FCO,∵∠OBC+∠FCO=60°,∴∠FOC=∠OBC,∵EF∥CG,∴∠AGC=∠AEF=60°,∠ACG=∠AFE=60°,∴∠AGC=∠ACG,∴AG=AC,∵∠GAO=∠CAO,AO=AO,∴△AGO≌△ACO(SAS),∴OG=OC,∴∠OGC=∠OCG,∵∠FOC=∠OCG,∴∠OBC=∠OGC,∴O,G,B,C四点共圆,∴∠ABO=∠OCG,∴∠ABO=∠OBC,∴OB平分ABC.(3)如图3中,以BC为边向上作等边△BCH,连接OH,作HM⊥BC于M.∵△OBD,△BCH都是等边三角形,∴∠HBC=∠OBD=60°,BH=BC,BO=BD,∴∠HBO=∠CBD,∴△HBO≌△CBD(SAS),∴OH=CD,由(2)可知∠BOC=120°,∴当点O落在HM上时,OH的值最小,此时OH=HM﹣OM=3﹣3,∴CD的最小值为3﹣3.故答案为:3﹣3.23.【解析】(1)∵四边形ABCD是正方形,∴∠BCF=∠DCE=90°∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵AC是边长为4的正方形的对角线,∴∠CAD=45°,2,∵2,∴AC=CE,∴∠CAE=∠BEA,∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠BEA , ∴∠CAE=∠DAE=12∠CAD=22.5°, ∵∠EAF=45°,∴∠CAF=∠EAF ﹣∠CAE=22.5°=∠CAE , 在△ACF 和△ACE 中,ACF ACE AC ACCAF CAE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ACF ≌△ACE , ∴b=CF=CE=42,(2)∵AC 是正方形ABCD 的对角线, ∴∠BCD=90°,∠ACB=45°, ∴∠ACF=180°, ∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF )﹣∠EAF=180°﹣90°﹣45°=45°, ∴∠CAF=∠AEC , ∵∠ACF=∠ACE=135°, ∴△ACF ∽△ECA , ∴AC CFEC AC=, ∴EC×CF=AC 2=2AB 2=32 ∴ab=32, ∵a=4, ∴b=8; (3)ab=32, 理由:(2)已证.。

2024年安徽省百校联赢中考一模数学试题(解析版)

2024年安徽省百校联赢中考一模数学试题(解析版)

百校联䇔・2024安徽名校大联考一数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

3.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,满分40分)1. 下列四个数2−,0,1,5−中,最小的数是( )A. 2−B. 0C. 1D. 5−【答案】D【解析】【分析】此题考查了有理数的大小比较,用到的知识点是负数0<<正数,两个负数,绝对值大的反而小,是一道基础题.根据有理数的大小比较方法,找出最小的数即可.【详解】解:5201−<−<< , ∴最小的数是5−故选:D2. 如图,一个30°角的三角板的直角顶点在直线a 上,其斜边与直线a 平行,则1∠的度数为( )A. 30°B. 40°C. 60°D. 70°【答案】C【解析】 【分析】本题考查了平行线的性质以及垂线的定义的应用,正确合理的使用平行线的性质是解决本题的关键.先由平行线的性质:两直线平行,内错角相等得230B ∠=∠=°,再由90ACB ∠=°以及平角的意义可求1∠的度数.【详解】解:由题意得,90ACB ∠=°, ∵AB a ∥,∴230B ∠=∠=°,∵12180ACB ∠+∠+∠=°,∴1180309060∠=°−°−°=°.故选:C .3. 据安徽省统计局公布的数据,2023年我省夏粮总产量约1740万吨,其中1740万用科学记数法表示为( )A. 31.7410×B. 71.7410×C. 81.7410×D. 517410×【答案】B【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.【详解】解:1740万用科学记数法表示为71.7410×.故选:B .4. 某几何体的三视图如图所示,则该几何体是( )主视图 左视图 俯视图A. B. C. D.【答案】B【解析】【分析】本题考查了三视图的判断,根据图形特点,正确的画出三视图是关键.首先画出各个图形的俯视图,找出正确的答案;或者用排除法.【详解】解:A 的俯视图,C 的俯视图,D 的俯视图,都与题目给出的三视图矛盾.B 的三视图为,故图中三视图对应的几何体不是选项A 、C 、D 中图形,选项B 的三视图与题目的三视图相一致. 故选B .5. 小李从安徽通过快递公司给在广东的亲人邮寄本地土特产,寄快递时,快递公司规定:不超过1千克,收费12元,超过1千克时,超出部分按每千克4元加收费用.若小李给亲人邮寄了(1)x x >千克本地土特产,则快寄的费用y (元)与x (千克)之间的函数关系式为( )A. 12y x =B. 88y x =+C. 48y x =+D. 412y x =+ 【答案】C【解析】【分析】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.根据单价、数量和总价的关系,即可以写出y 与x 之间的函数关系式.【详解】解: ()124148y x x =+−=+, ∴y 与x 之间的函数关系式为:48y x =+. 故选:C .6. 一组数据:1,4,7,7,x ,4的平均数是5,则下列说法中正确的是( )A. 这组数据的极差是3B. 这组数据的中位数是7C. 这组数据的众数是4D. 这组数据的方差是5【答案】D【解析】【分析】本题考查极差,众数,平均数,中位数、方差的定义,属于基础题.分别求出这组数据的极差,众数,中位数,方差,即可判断每个选项.【详解】解:∵一组数据:1,4,7,7,x ,4的平均数是5, ∴1477456x +++++= ∴7x =极差是716−=,故A 是错误的;则一组数据:1,4,4,7,7,7, 则这组数据的中位数是47 5.52+=,故B 是错误的; ∴这组数据的众数是7,故C 是错误的;方差()()()()()()22222215454547474756−+−+−+−+−+−=故D 是正确的故选:D .7. 某学校为了打造“书香校园”,丰富师生的业余文化生活,计划采购A ,B 两种图书,已知采购2本A 种图书和3本B 种图书共需110元,采购1本A 种图书和5本B 种图书共需160元,则A ,B 两种图书的单价分别为( )A. 10元、30元B. 3010元C. 25元、20元D. 60元、20元【答案】A【解析】【分析】本题考查了二元一次方程组的应用,设A ,B 两种图书的单价分别为a 元,b 元,根据题意列出方程组,解方程组即可求解.【详解】解:设A ,B 两种图书的单价分别为a 元,b 元,根据题意得, 231105160a b a b += +=解得:1030a b = =即A ,B 两种图书的单价分别为10元、30元,故选:A .8. 如图,在ABC 中,90C ∠=°,10AB =,6AC =,点D 在边AB 上,点E 在边BC 上,若:2:3AD BD =,且DE 平分ABC 的周长,则DE 的长是( )A. B. C. D. 【答案】C【解析】 【分析】本题主要考查了勾股定理,相似三角形的判定及性质,平行线的判定,熟练掌握相似三角形的判定及性质是解决问题的关键.过点D 作DM BC ⊥于点M ,先证BDM BAC ∽,求得 3.6DM =,4.8BM =,从而求得6 4.8 1.2EM =−=,再利用勾股定理即可得解. 【详解】解:过点D 作DM BC ⊥于点M ,∵90C ∠=°,10AB =,6AC =,∴8BC ==,∵DE 平分ABC 的周长, ∴1068122BD BE +++==, ∵:2:3AD BD =,10AB =, ∴35BD AB =6BD =,, ∴1266BE =−=,∵DM BC ⊥,90C ∠=°,∴90BMD C ∠∠==°,∴DM AC ∥,∴BDM BAC ∽, ∴DMBD BM AC AB BC ==即66810DM BM ==, ∴ 3.6DM =, 4.8BM =,∴6 4.8 1.2EM =−=,∴DE =, 故选:C .9. 如图,四边形ABCD 内接于O ,AC 为O 的直径,180ACD BCD ∠+∠=°,连接OD ,过点D 作DE AC ⊥,垂足为点E ,过点D 作O 的切线交BC 的延长线于点F ,则下列结论中不正确的是( )A. AD DB= B. CDF BAC ∠=∠ C. DF BF ⊥D. 若O 的半径为5,4CD =,则85CF =【答案】B【解析】【分析】根据圆周角定理及圆内接四边形的性质即可判断A 选项,根据直径所对的圆周角是直角和切线性质,证明CDE CDF ≌△△,即可判断C 选项,结合已知条件证明DEC ADC ∽△△即可判断D 选项,无条件证明B 选项正确.【详解】 180ACD BCD ∠+∠=°,180ACD ACB DCF ∠+∠+∠=°, BCD ACB DCF ∴∠=∠+∠,BCD ACB ACD ∠=∠+∠ ,ACD DCF ∴∠=∠,四边形ABCD 内接于O ,DCF DAB =∴∠∠,ACD DAB ∴∠=∠,∴ AD DB=故A 选项正确; DE AC ⊥,90DEC DEA ∴∠=∠=°,90CDE DCE ∴∠+∠=°,AC 为O 的直径,∴90ADE CDE ADC ∠+∠=∠=°,∴DAC CDE ∠=∠,FD 是O 的切线,90FDC ODC ODF ∴∠+=∠=°,OA OD OC == ,DAC ADO ∴∠=∠,ODC OCD ∠=∠,FDC EDC ∴∠=∠CDE 和CDF 中FDC EDCDCF ACD CD CD∠=∠ ∠=∠ = ,∴CDE CDF ≌△△90DEC DFC ∠=∠=°DF BF ∴⊥,故C 选项正确;O 的半径为5,4CD =,10AC ∴=,90ADC DEC ∠=∠=° ,C C ∠=∠,DEC ADC ∽△△DCACEC DC ∴=2DC EC AC =⋅,2410EC =×,85EC =,DCE DCF △≌85CF EC ∴==,∴所以,D 选项正确,CDF CDE ∠=∠,DAC CDE ∠=∠,在CDF DAC ∴∠=∠,无已知条件证明BC DC =,CDF DAC ∴∠=∠但不一定等于BAC ∠,故选项B 不成立,该选项符合题意;故选:B .【点睛】本题考查了本题考查了圆周角定理,全等三角形的性质与判定,切线的性质,相似三角形的性质和判定等知识,熟练运用性质进行推理是解答本题的关键.10. 如图,在四边形ABCD 中,60A ∠=°,CD AD ⊥,90,BCD ∠=°4AB BC ==,动点P ,Q 同时从A 点出发,点Q 以每秒2个单位长度沿折线A B C −−向终点C 运动;点P 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,APQ △的面积为y 个平方单位,则y 随x 变化的函数图象大致为( )A. B. C.D.【答案】D【解析】【分析】分当02x ≤<时,点Q 在AB 上和当24x ≤≤时,点Q 在BC 上,根据三角形的面积公式即可得到结论.【详解】解:过Q 作QN AD ⊥于N ,当02x ≤<时,点Q 在AB 上,∵60A ∠=°,∴906030,AQN ∠=°−°=° ∴AN =11222AQ x x =×=,∴QN,∴21122y AP NQ x x =××=×=, 当24x ≤≤时,点Q 在BC 上,过点B 作BM AD ⊥于点M ,∵BM AD ⊥,60,A∠=° ∴30,ABM∠=° ∴AM =114222AB =×=,∴BM ==,∵CD AD ⊥,QN AD ⊥,∴QN CD ∥,∴90,BQNBCD ∠∠==° ∵,BM AD ⊥CD AD ⊥,∴四边形BMNQ 是矩形,∴QNBM ==, 1122y AP QN x =⋅=×,综上所述,当02x ≤<时的函数图象是开口向上的抛物线的一部分,当24x ≤≤时,函数图象是直线的一部分,故选:D .【点睛】本题考查了动点问题的函数图象,二次函数的图象,一次函数的图象,矩形的性质,勾股定理,30度直角三角形的性质,熟练掌握各定理是解题的关键.二、填空题(本大题共4小题,每小题5分;满分20.分)11. 函数中,自变量x 的取值范围是__________________.【答案】x≤13. 【解析】【详解】试题解析:根据题意得:1-3x≥0解得:x≤13. 考点:自变量的取值范围.12. 若=1x −是关于x 的方程220ax bx ++=的一个解,则代数式202022a b −+的值为________.【答案】2024【解析】【分析】本题考查了一元二次方程的解和代数式求值,熟知方程解的概念、灵活应用整体思想是解题的关键.把=1x −代入方程220ax bx ++=并整理可得2a b −=−,然后整体代入所求式子解答即可. 【详解】解:∵=1x −是关于x 的方程220ax bx ++=的一个解,∴20a b −+=,即2a b −=−,∴()()420202220222020220022a ba b −+−−−=−×=; 故答案为:2024.13. 如图,点18~P P 是O 的八等分点.若O 的半径为6,则五边形13467PP P P P 的面积为________.【答案】54+##54【解析】【分析】连接1346773,,,,,OP OP OP OP OP P P ,过6P 作673P M P P ⊥于点M ,分别求出64P OP S 、17POP S 、13POP S 、67P OP S 及34P OP S 即可得解.【详解】解:如图,连接1346773,,,,,OP OP OP OP OP P P ,过6P 作673P M P P ⊥于点M ,∵点18~P P 是O 的八等分点, ∴36736049082P P P °∠=×=°,6745P OP ∠=°,643602908P OP °∠=×=°, ∴37P P 是O 的直径,372612P P =×=,646411661822P OP S P O OP =××=××= , 同理可得∶ 171318POP POP S S == , ∵6745P OP ∠=°,673P M P P ⊥,∴666sin P M P OM OP ∠=即sin 45°,∴6P M =∴676711622P OP S P M OP =××=×= ,同理:34P OP S = ,∴边形13467PP P P P 的面积为641713673418181854P OP POP POP P OP P OP S S S S S ++++=++++=+故答案为:54+.【点睛】本题主要考查圆周角定理,勾股定理,弧、弦、圆心角之间的关系,解直角三角形以及直角三角形的两锐角互余,熟练掌握圆周角定理,勾股定理,弧、弦、圆心角之间的关系是解题的关键. 14. 如图,正方形ABCD 约边长为4,点E ,F 分别是AB ,BC 上的动点,且AF DE ⊥,将ABF △沿AF 翻折,得到AMF ,连接CM .(1)线段AF 与DE 的长度关系是________;(2)当点E 运动到AB 的中点时,CM 的长为________.【答案】 ①. AF DE = ②.【解析】【分析】(1)根据正方形的性质可得AED BFA ∠=∠,从而证明ABF AED △≌△,即可求解;(2)根据折叠的性质得出tan tan AFB FCN ∠=∠2=,进而得出2FC=,即可求解.【详解】 四边形ABCD 是正方形, 90DAE ABF ∴∠=∠=°,DA AB =,AF DE ⊥ ,90BAF AED ∴∠+∠=°,90BAF AFB ∠+∠=° ,AED BFA ∴∠=∠,()AAS ABF DAE ∴ ≌,DE AF ∴=, 故答案为:AF DE =.(2)当点E 运动到AB 的中点时,如图,过点F 作FN CM ⊥于点N ,正方形ABCD 边长为4,则∵ABF AED △≌△∴2AE BF FC ===,∵折叠,∴2FM BF ==,AFB AFM ∠=∠ ∵BF FM FC ==∵FN CM ⊥∴MN NC =,MFN CFN ∠=∠又∵AFB AFM ∠=∠ ∴()1902BFM CFM AFM MFN AFN ∠+∠=∠+∠=∠=°, ∴90AFB NFC FCN ∠=°−∠=∠∴tan tan AFB FCN ∠=∠, ∴2ABFN BF NC== 设NC a =,则2FN a =∴2FC=∴a =∴2MC NC ==【点睛】本题考查了正方形的折叠问题,勾股定理,正切的定义,等腰三角形的性质,熟练掌握正方形的性质是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:25232111a a a a a − +÷ −−+ ,其中1a =+.【答案】11a − 【解析】 【分析】此题考查了分式的化简求值,分母有理化,首先化简分式,然后把a 代入化简后的算式,求出算式的值即可. 【详解】解:25232111a a a a a − +÷ −−+()()()52111132a a a a a a −++×+−− ()()52211132a a a a a a −−+×+−− 11a =−;当1a =+时,原式. 16. 元朝1299年朱世杰所著的《算学启蒙》中有一道题,原文是:“良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之?”译文为:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?【答案】快马20天可以追上慢马【解析】【分析】本题主要考查了一元一次方程的应用,解题的关键是根据快马和慢马走的路程相同,列出方程.【详解】解:设快马x 天可以追上慢马,则:150(12)240x x +=,901800x =,解:20x ,答:快马20天可以追上慢马.四、(本大题共2小题,每小题8分,满分16分).17. 甲、乙两船同时从A 码头开出,45分钟后,甲船到达B 码头,乙船到达C 码头;已知甲船航行的速度是12海里/时.乙船航行的速度是16海里/时,甲船航行的方向是北偏东40°,乙船航行的方向是南偏东50°,求甲、乙两船之间的距离BC .【答案】甲、乙两船之间的距离BC 为15海里.【解析】【分析】此题主要考查了勾股定理,关键是掌握勾股定理.首先计算出甲乙两船的路程,再根据甲船航行的方向是北偏东40°,乙船航行的方向是南偏东50°证明90BAC ∠=°,然后利用勾股定理求解即可.【详解】解:由题意得:甲船45分钟的路程=4512960×=海里,乙船45分钟的路程=45161260×=海里,即:9AB =,12AC =,∵甲船航行的方向是北偏东40°,乙船航行的方向是南偏东50°,∴90BAC ∠=°,∴222912BC +=,∴15BC =,∴甲、乙两船之间的距离BC 为15海里.18. 在由边长为1个单位长度的小正方形组成的网格中建立如图所示的平面直角坐标系,已知格点ABC (顶点为网格线的交点).(1)画出ABC 关于y 轴对称的111A B C △;(2)将111A B C △绕点1C 逆时针旋转90°得到122C A B ,画出122C A B ;【答案】(1)见解析 (2)见解析【解析】【分析】本题考查画轴对称图形与旋转图形;(1)根据轴对称的性质找出,,A B C 关于y 轴的对称点,然后画出111A B C △;(2)根据旋转性质找出,A B 的对应点,然后画出122C A B ,即可求解.【小问1详解】解:如图所示,111A B C △即为所求;的【小问2详解】解:如图所示,122C A B 即为所求五、(本大题共2小题,每小题10分,满分20分)19. 观察下列等式:第1个等式:555122=−×,第2个等式:5552323=−×,第3个等式:5553434=−×,第4个等式:551454=−×;…… 根据发现的规律,解答下列各题;【填空】直接写出第5个等式:________;【猜想】请写出第n 个等式(用含n 的式子表示),并证明; 【应用】计算:555512233420242025++++×××× .【答案】填空:551566=−×;猜想:()55511n n n n =−×++,证明见解析;应用:4044405. 【解析】【分析】填空:根据规律计算即可求解;猜想:根据规律即可求解;应用:利用规律拆项,再合并即可求解;本题考查了数字类规律题,有理数的混合运算,掌握拆项法是解题的关键. 【详解】解:填空:∵第1个等式:5555512212=−=−×, 第2个等式:5552323=−×, 第3个等式:5553434=−×, 第4个等式:5555145445=−=−×; ∴第5个等式:5555156566=−=−×, 故答案为:551566=−×; 猜想: ()55511n n n n =−×++, 证明: ∵()()()()55555555511111n n n n n n n n n n n n n n ++−−=−==+×+×+×+×+, ∴()55511n n n n =−×++; 应用:根据题意,得555512233420242025++++×××× 555555552233420242025=−+−+−++− , 552025=− , 4044405=. 20. 随着新课程标准的颁布,为落实立德树人根本任务,我省各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A .“青少年科技馆”,B .“渡江战役纪念馆”,C .“徽文化园”,D .“长江白紧豚保护研究所”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在本次调查中,一共抽取了________名学生,并将条形统计图补充完整;(2)学校想从选择研学基地D 的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D 的学生中恰有两名女生,请用列表法或画树状图的方法求出所选两人中恰有一名男生和一名女生的概率.【答案】(1)20,图见解析(2)23【解析】【分析】本题考查是用树状图法求概率以及扇形统计图和条形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.(1)由B C 、D 的人数,将条形统计图补充完整即可;(2)画树状图,共有12种等可能的结果,其中恰有一名男生和一名女生的结果有8种,再由概率公式求解即可.【小问1详解】在本次调查中,一共抽取的学生人数为:1260%20÷=(名), C 的人数为:2010%2×=(名), D 的人数为:2021224−−−=(名), 将条形统计图补充完整如下:的故答案为:20;【小问2详解】∵基地D 有4名学生,恰有两名女生,∴有2名男生,画树状图如下:共有12种等可能的结果,其中恰有一名男生和一名女生的结果有8种, ∴所选两人中恰有一名男生和一名女生的概率为82123=. 六、(本题满分12分)21. 如图,在平面直角坐标系xOy 1y k x b =+(1k ,b 为常数,且10k ≠)与反比例函数2k y x=(2k 为常数,且20k ≠)的图象交于点(,6)A m ,(4,3)B −.(1)求反比例函数和一次函数的表达式;(2)当210k k x b x>+>时,直接写出自变量x 的取值范围; (3)已知一次函数1y k x b =+的图象与x 轴交于点C ,点P 在x 轴上,若PAC △的面积为9;求点P 的坐标.【答案】(1)反比例函数表达式为12y x =−,一次函数的表达式为:332y x =−+ (2)20x −<<(3)()5,0P 或()1,0P −【解析】 分析】本题考查了反比例函数与一次函数交点问题,一次函数与几何图形; (1)待定系数法求解析式,即可求解;(2)根据函数图象,写出反比例函数图象在一次函数上方时且在x 轴上方时,自变量的取值范围,即可求解;(3)先求得点C 的坐标,进而根据三角形的面积公式,即可求解.【小问1详解】解:将(4,3)B −代入2k y x =, 解得:212k =−, ∴反比例函数表达式为12y x =−将(,6)A m 代入12y x=−,解得:2m =−, ∴(2,6)A −, 将(2,6)A −,(4,3)B −代入1y k x b =+, 得112643k b k b −+= +=− , 解得:1323k b =− = , ∴一次函数的表达式为:332y x =−+; 【小问2详解】∵(2,6)A −,(4,3)B − 【根据函数图象可得:当210k k x b x>+>时,20x −<<; 【小问3详解】 ∵332y x =−+,令0y =,解得:2x =, ∴()2,0C ,设(),0P p , 则2PC p =−,∵PAC △的面积为9, ∴12692p ×−×=, 解得:5p =或1−,∴()5,0P 或()1,0P −.七、(本题满分12分)22. 如图1,在ABC 中,AB AC =,点D 是BC 的中点,以点D 为圆心,DB 的长为半径作弧交AB 于点E ,连接DE ,作BDE ∠的平分线交AB 于点G ,延长DG 到F ,使FG DG =.(1)求证:3CAF FAB ∠=∠;(2)连接EF ,BF .①如图2,判断四边形BDEF 的形状,并证明;②如图3,若ABC 为等边三角形,其他条件不变,已知等边ABC 的边长为4,求AFD △的面积.【答案】(1)见解析 (2)①四边形BDEF 是菱形,证明见解析;②【解析】【分析】(1)根据等腰三角形的性质得出CAD BAD ∠=∠,进而根据作图可得DB DE =,DG 是BDE ∠的角平分线,DG DF =,证明()SAS AGF AGD ≌,得出DAG FAG ∠=∠,即可得证; (2)①根据(1)可得AG 垂直平分DF ,进而证明EF BD ∥,EF BD =可得四边形BDEF 平行四是边形,根据EF ED =,即可得出结论;②先证明AFD △是等边三角形,根据含30度角的直角三角形的性质,勾股定理求得AG ,进而根据三角形的面积公式,即可求解.【小问1详解】证明:∵在ABC 中,AB AC =,点D 是BC 的中点,∴CAD BAD ∠=∠ 根据作图可得DB DE =,DG 是BDE ∠的角平分线,DG DF =,∴DG BE ⊥,∴90AGD AGF ∠=∠=°,又∵AG AG =,∴()SAS AGF AGD ≌,∴DAG FAG ∠=∠,∴DAG BAD CAD ∠=∠=∠,∴3CAF FAB ∠=∠;【小问2详解】①四边形BDEF 是菱形,证明:如图2,∵DG BE ⊥,DG GF =,则AG 垂直平分DF ,∴EF ED =,∴∠=∠EFD EDF ,∵DG 是BDE ∠的角平分线,∴EDF BDF ∠=∠,∴EFD BDF ∠=∠,∴EF BD ∥,又∵ED BD =,∴EF BD =,∴四边形BDEF 是平行四边形,又∵EF ED =,∴四边形BDEF 是菱形;②如图3,ABC 为等边三角形,等边ABC 的边长为4, ∴1302DAC BAC ∠=∠=°,∵3390CAF FAB DAC ∠=∠=∠=°,∴60FAD FAC DAC ∠=∠−∠=°,又∵AF AD =,∴AFD △是等边三角形,∵4AC =,1302DAC BAC ∠=∠=°, ∴2DC =,∴AD =∵AG DF ⊥,∴30GAD ∠=°,∴12GD AD ==∴3AG ,∴AFD △的面积11322FD AG ××=×=. 【点睛】本题考查了等边三角形的性质与判定,等腰三角形的性质,菱形的性质,勾股定理,含30度角的直角三角形的性质,熟练掌握等边三角形的性质,是解题的关键.八、(本题满分14分)23. 如图1,在平面直角坐标系中,已知二次函数2(0)y ax bx a =+≠的图象经过点(2,4)A ,与x 轴交于点()6,0B ,一次函数()0y kx n k =+≠的图象经过A ,B 两点.(1)求二次函数和一次函数的函数表达式;(2)若点P 是二次函数图象的对称轴上的点,且PA PB =,如图2,求点P 的坐标;(3)点M 是二次函数的图像位于第一象限部分上的一动点,过点M 作x 轴的垂线交直线AB 于点N ,若点M 的模坐标为m .试探免:是否存在常数m ,使得MN 的长为4?若存在,求出m 的值,若不存在,请说明理由.【答案】(1)2132y x x =−+,6y x =−+(2)()3,1P(3)4−【解析】【分析】(1)把点A 、B 的坐标代入抛物线和直线表达式,即可求解;(2)先求出二次函数的对称轴,设()3,P t ,再用两点间距离公式列方程即可求解;(3)先得点M 坐标为21(,3)2m m m −+,()06m <<,再根据MN 的长为4列出方程()213642m m m −+−−+=求解即可. 【小问1详解】把点(2,4)A ,(6,0)B 代入抛物线2(0)y ax bx a =+≠得:4243660a b a b += += ,解得:123a b =− =, 故二次函数的表达式为:2132y x x =−+, 把(2,4)A ,(6,0)B 代入一次函数表达式()0y kx n k =+≠得: 2460k n k n += +=,解得:16k n =− = , 故一次函数的表达式为:6y x =−+; 【小问2详解】 二次函数的2132y x x =−+的对称轴为直线33122x =−= ×−, 由点P 是二次函数图象的对称轴上的点,可设()3,P t ,PA PB = ,22PA PB ∴=,()()()222232436t t ∴−+−=−+,解得:1t =,()3,1P ∴;【小问3详解】第一象限点M 的模坐标为m .∴点M 坐标为21(,3)2m m m −+,()06m << ∴点N 坐标为(,6)m m −+,MN 的长为4,()213642m m m ∴−+−−+= 214642m m ∴−+−=或214642m m −+−=−∴34m =−,44m =+(舍去),∴m 的值为4−,【点睛】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,两点间距离公式是解题的关键.。

2024年安徽省亳州市谯城区中考二模数学试题(含答案)

2024年安徽省亳州市谯城区中考二模数学试题(含答案)

亳州市2024年4月份九年级模拟考试数学(试题卷)注意事项:1.本试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A ,B 、C ,D 四个选项,其中只有一个是正确的)1.12024-的相反数是( )A .-2024B .2024C .12024D .12024-2.2024年2月5日,据中安在线报道,2023年,安徽省全省生产总值47050.6亿元,按不变价格计算,比上年增长5.8%.将数据47050.6亿用科学记数法表示为( )A .130.47050610⨯B .124.7050610⨯C .1147.050610⨯D .134.7050610⨯3.如图所示的几何体的俯视图是()A .B .C .D .4.下列运算正确的是( )A .235a b ab +=B .2322332a b a b a b -=C .()325a a =D .84422a a a ÷=5.不等式1152x x +>-的解集在数轴上表示正确的是()A .B .C .D .6.中国结寓意团圆、美满,以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴.如图,晓进家有一个菱形中国结装饰,对角线AC ,BD 相交于点O ,测得10cm AB =,16cm BD =,过点A 作AH BC ⊥于点H ,连接OH ,则OH 的长为()第6题图A .6cmB .8cmC .10cmD .12cm7.如图,EF ,CD 是⊙O 的两条直径,点A 是劣弧 DF 的中点.若32COF ∠=︒,则ADC ∠的度数是()第7题图A .47°B .74°C .53°D .63°8.黄山是我国四大名山之一.在学习了“概率初步”这章后,同桌的小明和小波两同学做了一个游戏:小明将分别标有“美”、“丽”、“黄”、“山”四个汉字的小球(除汉字外其余完全相同)装在一个不透明的口袋中搅拌均匀,然后小波同学从口袋中随机摸出一球,不放回.小明再搅拌均匀后,小波又随机摸出一球,两次摸出的球上的汉字组成“黄山”的概率是( )A .14B .16C .18D .5169.一次函数()0y bx a c =-≠和二次函数()20y ax x b a =++≠在同一平面直角坐标系中的图象可能是()A .B .C .D .10.如图,在矩形ABCD 中,AD =,BAD ∠的平分线交BC 于点E ,DH AE ⊥于点H ,连接BH并延长交CD 于点F ,连接DE 交BF 于点O ,则下列结论中错误的是( )A .ED 平分AEC∠B .12OE DE=C .HE DF =D .BC CF -=二、填空题(本大题共4小题,每小题5分,满分20分)11=______.12.若关于x 的一元二次方程()21210k x x +-+=有两个实数根,则实数k 的取值范围是______.13.如图,一次函数123y x =-的图象分别交x 轴、y 轴于点A ,B ,P 为AB 上一点且PC 为AOB △的中位线,PC 的延长线交反比例函数()0k y k x =>的图象于点Q ,52OQC S =△,则PQ 的长是______.第13题图14.如图,在ABC △中,30A ∠=︒,90ACB ∠=︒,4BC =.请解决下列问题:(1)AC 的长是______;(2)若点D 是AC 边上的动点,连接DB ,以DB 为边在DB 的左下方作等边DBE △,连接CE ,则点D 在运动过程中,线段CE 的长的最小值是______.第14题图三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:()23223x x x x --⋅--,其中3x =.16.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.意思是:现有几个人共买一件物品,每人出8文钱多出3文钱;每人出7文钱,还差4文钱.求该物品的价格是多少文钱.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系xOy 中.(1)画出ABC △关于x 轴对称的111A B C △;(2)在y 轴上画出一点D ,使得BD DA +的值最小.(保留作图痕迹,不写作法)18.合肥骆岗中央公园中的一条小路使用六边形、正方形、三角形三种地砖按照如图方式铺设.已知图1中有1块六边形地砖,6块正方形地砖,6块三角形地砖;图2中有2块六边形地砖,11块正方形地砖,10块三角形地砖;….(1)按照以上规律可知,图4中有______块正方形地砖;(2)若铺设这条小路共用去n 块六边形地砖,分别用含n 的代数式表示用去的正方形地砖、三角形地砖的数量;(3)若50n =,求此时三角形地砖的数量.五、(本大题共2小题,每小题10分,满分20分)19.如图,小明同学为了测量塔DE 的高度,他在与山脚B 处同一水平面的A 处测得塔尖点D 的仰角为37°,再沿AC 方向前进30米到达山脚B 处﹐测得塔尖点D 的仰角为63.4°,塔底点E 的仰角为30°,求塔DE 的高度.(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,sin 63.40.89cm ︒≈,cos 63.40.45︒≈,tan 63.4 2.00︒≈ 1.73≈,结果精确到0.1米)20.如图,在ABC △中;90ACB ∠=︒,以BC 为直径的⊙O 交AB 于点D ,连接CD ,⊙O 的切线DE 交AC 于点E .(1)求证:AE =CE ;(2)若10AB =,6BC =,连接OE ,与CD 交于点F ,求OF 的长.六、(本题满分12分)21.安全意识,警钟长鸣,某中学为提高学生的安全防范意识,组织七、八年级学生开展了一次安全知识竞赛.成绩分别为A ,B ,C ,D 四个等级,其中相应等级的得分依次记为10分、9分、8分、7分.学校分别从七、八年级各抽取25名学生的竞赛成绩整理并绘制成如下统计图、表,请根据提供的信息解答下列问题:年级平均分中位数众数方差七年级8.76a 9 1.06八年级8.768b1.38(1)根据以上信息可知:a =______,b =______,并把七年级竞赛成绩,条形统计图补充完整;(2)根据数据分析表,你认为七年级和八年,级哪个年级的竞赛成绩更好,并说明理由;(3)若该校七、八年级共有1200人参加本次知识竞赛,且规定9分及以上的成绩为优秀,请估计该中学七、八年级参加本次知识竞赛的学生中成绩为优秀的共有多少人?七、(本题满分12分)22.已知点C 为ABC △和CDE △的公共顶点,将CDE △绕点C 顺时针旋转()0360αα︒<<︒,连接BD ,AE .(1)问题发现:如图1,若ABC △和CDE △均为等边三角形,则线段BD 与线段AE 的数量关系是______;(2)类比探究:如图2,若90ABC EDC ∠=∠=︒,60ACB ECD ∠=∠=︒,其他条件不变,请写出线段BD 与线段AE 的数量关系,并说明理由;(3)拓展应用:如图3,若90BAC DEC ∠=∠=︒,AB AC =,CE DE =,2BC CD ==B ,D ,E 三点共线时,求BD 的长.八、(本题满分14分)23.在平面直角坐标系中,抛物线223y x x =--交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C .(1)求点A ,B 的坐标;(2)如图1,若在x 轴上方的抛物线上存在一点D ,使得45ACD ∠=︒,求点D 的坐标;(3)如图2,平面上一点()3,2E ,过点E 作任意一条直线交抛物线于P ,Q 两点,连接AP ,AQ ,分别交y 轴于M ,N 两点,则OM 与ON 的积是否为定值?若是,求出此定值;若不是,请说明理由.亳州市2024年4月份九年级模拟考试·数学(参考答案)一、选择题(本大题共10小题,每小题4分,满分40分)1.C 2.B 3.B 4.D 5.B 6.A 7.C 8.B 9.A10.D 【解析】在矩形ABCD 中,∵AE 平分BAD ∠,∴45BAE DAE ∠=∠=︒,∴ABE △是等腰直角三角形,∴AE =.∵AD =,∴AE AD =,∴()11802ADE AED DAE ∠=∠=︒-∠()11804567.52=︒-︒=︒,∴18067.5CED AEB AED ∠=︒-∠-∠=︒,∴AED CED ∠=∠,即ED 平分AEC ∠,故选项A 正确,不符合题意;在ABE △和AHD △中,,90,,BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS ABE AHD ≌△△,∴BE DH =,∴AB BE AH HD ===,∴()()111801804522AHB ABH BAE ∠=∠=︒-∠=︒-︒67.5=︒.∵OHE AHB ∠=∠,∴OHE AED ∠=∠,∴OE OH =.∵DH AE ⊥,∴90DHE ∠=︒,∴9067.522.5OHD DHE OHE ∠=∠-∠=︒-︒=︒.∵67.54522.5ODH ADE ADH ∠=∠-∠=︒-︒=︒,∴OHD ODH ∠=∠,∴OH OD =,∴OE OD OH ==,∴12OE DE =,故选项B 正确;不符合题意;∵9067.522.5EBH ABE ABH ∠=∠-∠=︒-︒=︒,∴EBH OHD ∠=∠.在BEH △和HDF △中,,,45,EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴()ASA BEH HDF ≌△△,∴BH HF =,EH DF =,故选C 正确,不符合题意;综上所述,可得CD BE =,DF EH CE ==,CF CD DF =-,∴()()2BC CF CD EH CD EH EH -=+--=,故选项D 错误,符合题意.二、填空题(本大题共4小题,每小题5分,满分20分)11.-1 12.0k ≤且1k ≠- 13.8314.(1)2)2【解析】(1)∵30A ∠=︒,90ACB ∠=︒,4BC =,∴8AB =.在Rt ABC △中,由勾股定理得AC ===(2)如图,取AB 的中点Q ,连接CQ ,DQ ,则4BQ AQ ==.∵90ACB ∠=︒,30A ∠=︒,∴60CBQ ∠=︒.∵4BQ AQ ==,∴4CQ BQ AQ ===,∴BCQ △是等边三角形∴BC BQ =.∵60DBE CBQ ∠=∠=︒,∴EBC DBQ ∠=∠.在EBC △和DBQ △中,,,,EB DB EBC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴()SAS EBC DBQ ≌△△,∴EC DQ =,∴当QD AC ⊥时,线段QD 最短,即线段EC 的值最小,在Rt AQD △中,4AQ =,30A ∠=︒,∴122DQ AQ ==,∴线段CE 的长的最小值为2.三、(本大题共2小题,每小题8分,满分16分)15.解:原式()2321333x x x x x --=⋅=---.当3x =时,原式===16.解:设该物品的价格为x 文钱,根据题意,得3487x x +-=,解得53x =.答:该物品的价格是53文钱.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)如图,111A B C △即为所求.如图,点D 即为所求.18.解:(1)21【解析】由图形可知,图1中六边形地砖块数为1,正方形地砖块数为6151=⨯+,三角形地砖块数为6142=⨯+;图2中六边形地砖块数为2,正方形地砖块数为11251=⨯+,三角形地砖块数为10242=⨯+;图3中六边形地砖块数为3,正方形地砖块数为16351=⨯+,三角形地砖块数为14342=⨯+;…,由此可见,每增加1块六边形地砖,正方形地砖会增加5块,三角形地砖会增加4块,所以图4中正方形地砖块数为21块.(2)由(1)发现的规律可知,当铺设这条小路共用去n 块六边形地砖时,用去的正方形地砖的块数为()51n +块,三角形地砖的块数为()42n +块.(3)当50n =时,三角形地砖的块数为424502202n +=⨯+=(块).答:此时三角形地砖的数量为202块.五、(本大题共2小题,每小题10分,满分20分)19.解:设BC x =米.在Rt BDC △中,∵63.4DBC ∠=︒,∴tan 63.42DC BC x =⋅︒≈(米).∵30AB =米,∴()30AC AB BC x =+=+米.在Rt ADC △中,∵37A ∠=︒,∴2tan 370.7530DC xAC x ︒==≈+,解得18x =,∴18BC =米,236DC x ==米.在Rt EBC △中,30EBC ∠=︒,∴tan 3018EC BC =⋅︒==(米),∴3625.6225.6DE DC CE =-=-≈≈(米).答:塔DE 的高度约为25.6米.20.(1)证明:∵90ACB ∠=︒,BC 为⊙O 的直径,∴EC 为⊙O 的切线,90BDC ADC ∠=∠=︒.∵DE 为⊙O 的切线,∴CE DE =,∴ECD EDC ∠=∠.∵90A ECD ADE EDC ∠+∠=∠+∠=︒,∴A ADE ∠=∠,∴AE DE ∠=,∴AE CE =.(2)解:如图,连接OD .∵90ACB ∠=︒,BC 为⊙O 的直径,∴AC 为⊙O 的切线.∵DE 是⊙O 的切线,∴EO 平分CED ∠,∴OE CD ⊥,F 为CD 的中.∵AE CE =,BO CO =,∴OE 是ABC △的中位线,∴1110522OE AB ==⨯=,在Rt ACB △中,90ACB ∠=︒,10AB =,6BC =,在勾股定理得8AC ===.在Rt ADC △中,∵AE CE =,∴118422DE AC ==⨯=.在Rt EDO △中,116322DO BC ==⨯=,4DE =,由勾股定理得5OE ===.由三角形的面积公式,得1122EDO S DE DO OE DF =⋅=⋅△,即435DF ⨯=,解得 2.4DF =.在Rt DFO △中,由勾股定理得 1.8OF ===.21.解:(1)9 10七年级竞赛成绩条形统计图补充完整如下.七年级竞赛成绩条形统计图【解析】∵七年级竞赛成绩由高到低排在第13位的是B 等级9分,∴9a =;∵八年级A 等级人数最多,∴10b =;七年级竞赛成绩C 等级人数为2561252---=(人).(2)七年级的竞赛成绩更好.理由:七、八年级的竞赛成绩的平均分相同,七年级竞赛成绩的中位数大于八年级,七年级竞赛成绩的方差小于八年级竞赛成绩的方差,所以七年级的竞赛成绩更好.(3)()61244%4%2512007202525+++⨯⨯=+(人).答:估计该中学七、八年级参加本次知识竞赛的学生中成绩为优秀的共有720人.七、(本题满分12分)22.解:(1)BD AE=【解析】∵ABC △和CDE △都是等边三角形,∴AC BC =,DC EC =,60ACB ECD ∠=∠=︒,∴BCD ACE ∠=∠,∴()SAS BCD ACE ≌△△,∴BD AE =.(2)12BD AE =.理由:∵90ABC EDC ∠=∠=︒,60ACB ECD ∠=∠=︒,∴30BAC DEC ∠=∠=︒,∴12BC CD AC CE ==,BCD ACE ∠=∠.∴BCD ACE ∽△△,∴12BD AE =,∴12BD AE =.(3)当B ,D ,E 三点共线时,有以下两种情况:①如图1,当点D 在线段BE 上的时.∵90BAC DEC ∠=∠=︒,AB AC =,CE DE =,2BC CD ==,∴BC ==,CD ==∴2AC =,1CE DE ==.∵90E ∠=︒,∴BE ==,∴1BD BE DE =-=-;②如图2,当点E 在线段BD 上时,同理得1BD BE DE =+=+.综上所述,BD 1-1.八、(本题满分14分)23.解:(1)令0y =,则2230x x --=,解得11x =-,23x =.∵点A 在点B 的左侧,∴()1,0A -,()3,0B ,即点A 的坐标为()1,0-,点B 的坐标为()3,0.(2)由抛物线223y x x =--,得点()0,3C -.如图1,过点A 作AK AC ⊥交CD 于点K ,过点K 作KH x ⊥轴于点H .∵45ACD ∠=︒,∴CAK △是等腰直角三角形,∴AC AK =.又∵90AOC KHA ∠=∠=︒,90ACO OAC KAH ∠=︒-∠=∠,∴()AAS OAC HKA ≌△△,∴3AH CO ==,1KH OA ==,∴2OH =,∴()2,1K .设直线CD 的解析式为3y kx =-,则231k -=,解得2k =,∴直线CD 的解析式为23y x =-.联立,得223,23,y x x y x ⎧=--⎨=-⎩解得4x =或0x =(舍去),∴点D 的坐标为()4,5.(3)OM 与ON 的积是定值.设直线PQ 的解析式为y ax b =+,()11,P x y ,()22,Q x y .∵直线PQ 过点()3,2E 交抛物线于P ,Q 两点,∴23a b =+,即23b a =-,∴直线PQ 的解析式为23y ax a =+-,联立,得223,23,y x x y ax a ⎧=--⎨=+-⎩整理,得()22350x a x a -++-=,∴122x x a +=+,1235x x a ⋅=-.如图2,过点P 作PS x ⊥轴于点S ,过点Q 作QT x ⊥轴于点T ,则AMO APS ∽△△,∴MO PS AO AS=,即()()2111111132311x x x x MO AO x x +---==++.∵1AO =,∴13OM x =-.同理得()23ON x =--,∴()()1233OM ON x x ⋅=---⎡⎤⎣⎦()()121239353292x x x x a a =-⋅-++=---++=⎡⎤⎡⎤⎣⎦⎣⎦,即OM 与ON 的积为定值,此定值为2.。

2024年安徽省淮南市中考模拟数学试题

2024年安徽省淮南市中考模拟数学试题

2024年安徽省淮南市中考模拟数学试题一、单选题1.2024-的倒数是( )A .2024-B .2024C .12024-D .120242.我国经济结构和区域布局继续优化,粮食产量13700亿斤,创历史新高,把数据13700亿用科学记数法表示为( )A .111.3710⨯B .120.13710⨯C .1213.710⨯D .121.3710⨯ 3.下列运算正确的是( )A .2325a a a +=B .3412a a a ⋅=C .()326328x y x y -=-D .()222a b a b +=+ 4.如图是由8个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,则这个几何体的主视图是( )A .B .C .D .5.如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒6.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S =V ( )A .B .C .12D .167.如图是一个正方形纸板,阴影部分是由4段以正方形边长的一半为半径的弧所围成的,这些弧所在圆的圆心分别是正方形的顶点或中心,这样的图形被称为斯坦因豪斯图形.若将一根针随机投掷到该正方形纸板上,则针尖落在阴影区域的概率是( )A .12B .13C .14 D .158.如图,在平面直角坐标系xOy 中,直线y x =与反比例函数4(0)y x x=>交于点A ,将直线y x =沿y 轴向上平移b 个单位长度,交x 轴于点C ,若2BC OA =,则b 的值为( )A .1.5B .2C .2.5D .39.如图,正方形ABCD 的对角线交于点O ,E 是正方形外一点,且BE CE ⊥,连接OE .若6BC =,13CE BC =,则OE 的长为( )A .5B .4C .D .610.如图,在ABC V 中,8AB AC ==,30A ∠=︒,点P 为AC 边上一动点,PD AB ⊥于点D ,PE BC ⊥于点E ,连接DE ,则以DE 为边长的正方形DEGF 的面积的最小值为( )A .8B .C .16-D .8+二、填空题11.16的算术平方根是.12.如图,直线2y x =与y kx b =+相交于点()1,2P ,则关于x 的方程2kx b x +=的解是.13.如图,四边形ABCD 是正方形,点E 在BC 边上,点F 在CD 的延长线上,满足BE DF =,连接EF 与对角线BD 交于点G ,连接AF ,AG ,若AF =AG 的长为.14.如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,点D 为AB 上一点,点P 在AC 上,且1CP =,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ . (1)当点D 是AB 的中点时,DQ 的最小值为;(2)当CD AB ⊥,且点Q 在直线CD 上时,AQ 的长为.三、解答题15.计算:101(π3)2tan604-⎫⎛--++︒ ⎪⎝⎭. 16.如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作ABC ∠的角平分线;(2)在图2中过点C 作一条直线l ,使点A ,B 到直线l 的距离相等.17.某公园中的一条小路使用六边形、正方形、三角形三种地砖按照如图方式铺设,图1为有1块六边形地砖时,正方形地砖有6块,三角形地砖有6块;图2为有2块六边形地砖时,正方形地砖有11块,三角形地砖有10块;….(1)按照规律,每增加一块六边形地砖,正方形地砖会增加______块,三角形地砖会增加______块;(2)若铺设这条小路共用去a 块六边形地砖,分别用含a 的代数式表示正方形地砖、三角形地砖的数量;(3)当25a =时,求此时正方形地砖和三角形地砖的总数量.18.五四青年节来临之际,某校开展主题为“探寻红色记忆,传承五四精神”的团日活动.学校准备组织全体同学乘坐大巴到红色教育基地接受革命传统教育.经调查发现,如果每辆大巴乘坐38名学生,则有18名学生没座位;如果每辆大巴坐40名学生,则有一辆车空出20个座位.请问该校共有多少名学生?19.图1是某型号挖掘机,该挖掘机是由基座、主臂和伸展臂构成.图2是某种工作状态下的侧面结构示意图(MN 是基座的高,MP 是主臂,PQ 是伸展臂,EM QN ∥).已知基座高度MN 为1m ,主臂MP 长为5m ,测得主臂伸展角37PME ∠=︒. (参考数据:3344sin 37tan 37sin 53tan 535453︒≈︒≈︒≈︒≈,,,).(1)求点P 到地面的高度;(2)当挖掘机挖到地面上的点时,113MPQ ∠=︒,求QN .20.如图,O e 是四边形ABCD 的外接圆,AC 是O e 的直径,BE DC ⊥,交DC 的延长线于点,E CB 平分ACE ∠.(1)求证:BE 是O e 的切线;(2)若2cos ,105BAD AC ∠==,求CE 的长.21.某学校在学生的课余时间安排一些课外社团活动,一共分为四种:唱歌,跳舞,相声,以及体育活动.开展了一段时间后,为了咨询学生对活动的满意度,学校决定从全校参与社团的800名学生中抽取部分学生进行调查,以其结果作为参考标准.现绘制了两幅统计图如下:根据以上信息,回答下列问题:(1)填空:选择跳舞的人数为______,选择相声人数的百分率为______.(2)扇形统计图中“唱歌”的学生人数所对应的圆心角度数为______.(3)请你估计全校参加社团的学生中对相声、唱歌满意的总人数.(4)老师在唱歌的同学中选出了6名唱歌较为优秀者参加学校组织的才艺比赛,其中男生2人,女生4人.比赛需要进行抽签两两上场来配合比赛.请你通过列表或者画树状图的方法求第一次抽签时抽到一男一女的概率.22.在Rt ABC △中,90ACB ∠=︒,tan ABC a ∠=,D 是BC 上一点(不与点B ,C 重合),连接AD ,过点C 作CE AD ⊥于点E ,连接BE 并延长,交AC 于点F .(1)如图1,当1a =时,①求证:45ECD ∠<︒;②求证:BE CD EF CF=; (2)如图2,若D 是BC 的中点,求tan CEF ∠的值(用含a 的代数式表示).23.如图,已知直线443y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线24y ax bx =++经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x -.(1)求抛物线的表达式;(2)D 是第二象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时D 点的坐标;(3)若点P 在抛物线对称轴上,点Q 为任意一点,是否存在点P 、Q ,使以点A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请直接写出P ,Q 两点的坐标,若不存在,请说明理由.。

2023年安徽省中考数学模拟试卷(含答案)

2023年安徽省中考数学模拟试卷(含答案)

2023年安徽省中考模拟试卷数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一项符合题目要求)1.(4分)在5、0、﹣3、﹣5四个数中最小的数是( ) A .5B .0C .﹣3D .﹣52.(4分)2022年1月4日上午备受瞩目的安徽G 3铜陵长江公铁大桥正式动工兴建,新的一年开建的这座大桥总投资87.8亿元,其中87.8亿用科学记数法表示为( ) A .87.8×108B .8.78×109C .87.8×109D .8.78×1083.(4分)如图是某一物体的三视图,则此三视图对应的物体是( )A .B .C .D .4.(4分)下列计算正确的是( ) A .2a +3a =6aB .(﹣2a )2=4a 2C .﹣2(3a +1)=﹣6a ﹣1D .(a +2)(a ﹣2)=a 2﹣25.(4分)已知x ﹣y =2xy (x ≠0),则5x−5y−4xyx−y的值为( )A .−13B .﹣3C .13D .36.(4分)刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y (米)与他行走的时间t (分)(t >15)之间的函数关系为( ) A .y =﹣50t +1350B .y =50t ﹣150C .y =﹣40t +1350D .y =﹣10t +13507.(4分)若a 、b 、c 、d 是正整数,且a +b =c ,b +c =d ,下列结论正确的是( ) A .b <c <aB .a <c <bC .a +d =2cD .a +d =2b8.(4分)如图,在矩形ABCD 中,AB =24,BC =25,以点B 为圆心,BC 长为半径画弧,交边AD 于点E ,则四边形ABCE 的周长为( )A .79B .86C .82D .929.(4分)如图是建平同学收集到的四张“新基建“图标卡片,这四张卡片除正面的图标内容外,其余完全相同,将卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,则抽到的两张卡片恰好是“5G 基站建设“和“大数据中心“的概率是( )A .13B .14C .16D .3810.(4分)正方形ABCD 的边长为8,点E 、F 分别在边AD 、BC 上,将正方形沿EF 折叠,使点A 落在A '处,点B 落在B '处,A 'B '交BC 于G .下列结论错误的是( )A .当A '为CD 中点时,则 tan ∠DA 'E =34 B .当A 'D :DE :A ′E =3:4:5时,则A ′C =163C .连接AA ',则AA '=EFD .当A '(点A '不与C 、D 重合)在CD 上移动时,△A 'CG 周长随着A '位置变化而变化 二、填空题(本大题共4个小题,每小题5分,共20分) 11.(5分)计算:√2×√8+(﹣tan30°)0= .12.(5分)大自然是美的设计师,即使是一片小小的树叶,也蕴含着“美学”,如图.BP AP=√5−12,这个比值介于整数n 和n +1之间,则n 的值是 .13.(5分)如图,△ABC 内接于⊙O .若∠ABC =38°,AC ̂=2AB ̂,OC =12,则BC ̂的长是 .14.(5分)如图,△ABC 是等腰直角三角形,∠ACB =90°,AB 边上高为3.动点P 从点A 开始出发,以每秒3个单位长度的速度在射线AB 上运动.连接CP ,以CP 为直角边向右作等腰Rt △CDP ,使∠DCP =90°,连接BD ,设点P 的运动时间为t 秒. (1)AB 长度为 .(2)当BP :BD =1:2,且t >2时,则t 的值为 .三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解不等式:2−5x+13≤0. 16.(8分)如图,△ABC 在平面坐标内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)先将△ABC 向下平移5个单位长度,再向左平移3个单位长度得到△A 1B 1C 1,请画出△A1B1C1.(2)把△A1B1C1绕点B1顺时针方向旋转90°后得到△A2B1C2,请画出△A2B1C2并直接写出点C2的坐标.四、(本大题共2小题,每小题8分,,满分16分)17.(8分)为了丰富学生社会实践活动,学校组织学生到红色文化基地A和人工智能科技馆C参观学习.如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向的(2+2√3)km处.求学校B和红色文化基地A之间的距离.18.(8分)观察下列等式:第1个等式:a1=22×4=12−14;第2个等式:a2=24×6=14−16;第3个等式:a3=26×8=16−18;第4个等式:a4=28×10=18−110......请解答下列问题:(1)按以上规律列出第5个等式: .(2)用含有n 的代数式表示第n 个等式: (n 为正整数). (3)试比较代数式a 1+a 2+a 3+a 4+…+a 2022的值与12的大小关系.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,一次函数y =x +b 的图象交反比例函数y =mx (x >0)的图象于点A (2,﹣4)和点B . (1)求m ,b 的值.(2)根据图象,写出一次函数y =x +b 的值不小于反比例函数y =mx(x >0)的值时x 取值范围.20.(10分)如图,⊙O 中两条互相垂直的弦AB ,CD 交于点E .(1)OM ⊥CD 于点M ,CD =24,⊙O 的半径长为4√10,求OM 的长. (2)点G 在BD 上,且AG ⊥BD 交CD 于点F ,求证:CE =EF .六、(本题满分12分)21.(12分)2021年12月4日是第八个国家宪法日,11月29日至12月5日是第四个“宪法宣传周“,合肥某校主办了以“学习法理,弘扬法治“为主题的大赛,全校10000名学生都参加了此次大赛,赛后发现所有参赛学生的成绩均不低于50分且没有满分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩进行分组,分别为A 组:50≤x <60;B 组:60≤x <70;C 组:70≤x <80;D 组:80≤x <90;E 组:90≤x <100,并绘制了频数分布直方图. (1)求出频数分布直方图中m 的值.(2)判断这200名学生的成绩的中位数落在哪一组(直接写出结果).(3)根据上述信息,估计全校10000名学生中成绩不低于70分的约有多少人.七、(本题满分12分)22.(12分)已知二次函数y=x2+bx﹣c的图象经过点(3,0),且对称轴为直线x=1.(1)求b+c的值.(2)当﹣4≤x≤3时,求y的最大值.(3)平移抛物线y=x2+bx﹣c,使其顶点始终在二次函数y=2x2﹣x﹣1上,求平移后所得抛物线与y轴交点纵坐标的最小值.八、(本题满分14分)23.(14分)感知:数学课上,老师给出了一个模型:如图1,点A在直线DE上,且∠BDA =∠BAC=∠AEC=90°,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角“模型.应用:(1)如图2,Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证;△BEC≌△CDA.(2)如图3,在△ABC中,D是BC上一点,∠CAD=90°,AC=AD,∠DBA=∠DAB,AB=2√3,求点C到AB边的距离.(3)如图4,在▱ABCD中,E为边BC上的一点,F为边AB上的一点.若∠DEF=∠B,AB=10,BE=6,求EFDE的值.2022年安徽省滁州市全椒县中考数学一模试卷参考答案与详解一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一项符合题目要求)1.(4分)在5、0、﹣3、﹣5四个数中最小的数是()A.5B.0C.﹣3D.﹣5【分析】根据有理数的大小比较法则:正数>0>负数;两个负数,绝对值大的其值反而小,即可得出答案.【解答】解:∵|﹣3|=3,|﹣5|=5,而3<5,∴﹣5<﹣3<0<5,∴在5、0、﹣3、﹣5四个数中最小的数是﹣5.故选:D.2.(4分)2022年1月4日上午备受瞩目的安徽G3铜陵长江公铁大桥正式动工兴建,新的一年开建的这座大桥总投资87.8亿元,其中87.8亿用科学记数法表示为()A.87.8×108B.8.78×109C.87.8×109D.8.78×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:87.8亿=878000000=8.78×109,故选:B.3.(4分)如图是某一物体的三视图,则此三视图对应的物体是()A.B.C .D .【分析】本题可利用排除法解答.从俯视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B ,C ,D .【解答】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,从上面物体的三视图看出这是一个圆柱体,故排除B ,C ,D 选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体. 故选:A .4.(4分)下列计算正确的是( ) A .2a +3a =6aB .(﹣2a )2=4a 2C .﹣2(3a +1)=﹣6a ﹣1D .(a +2)(a ﹣2)=a 2﹣2【分析】直接利用合并同类项、积的乘方运算法则、乘法公式分别化简得出答案. 【解答】解:A 、2a +3a =5a ,故此选项不符合题意; B 、(﹣2a )2=4a 2,故此选项符合题意;C 、﹣2( 3a +1)=﹣6a ﹣2,故此选项不符合题意;D 、(a +2)(a ﹣2)=a 2﹣4,故此选项不符合题意. 故选:B .5.(4分)已知x ﹣y =2xy (x ≠0),则5x−5y−4xyx−y的值为( )A .−13B .﹣3C .13D .3【分析】将分式变形后整体代换. 【解答】解:∵x ﹣2y =2xy , ∴原式=5(x−y)−4xyx−y=10xy−4xy2xy =6xy2xy =3. 故选:D .6.(4分)刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y (米)与他行走的时间t (分)(t >15)之间的函数关系为( ) A .y =﹣50t +1350 B .y =50t ﹣150 C .y =﹣40t +1350D .y =﹣10t +1350【分析】由题意可得前半程所需时间为15分钟,则剩下路程所需时间为(t ﹣15)分,再由1200﹣y =600+50(t ﹣15),可求函数关系式. 【解答】解:∵以每分钟40米的速度行走了前半程, ∴以每分钟40米的速度行走了600米, ∴600÷40=15(分),∴剩下路程所需时间为(t ﹣15)分, ∴1200﹣y =600+50(t ﹣15), 整理得y =﹣50t +1350, 故选:A .7.(4分)若a 、b 、c 、d 是正整数,且a +b =c ,b +c =d ,下列结论正确的是( ) A .b <c <aB .a <c <bC .a +d =2cD .a +d =2b【分析】将已知的两条式子联立方程便可得出等量关系式. 【解答】解:由题意可知:{a +b =c ①b +c =d②,由①﹣②,得a ﹣c =c ﹣d ,得a +d =2c . 故选:C .8.(4分)如图,在矩形ABCD 中,AB =24,BC =25,以点B 为圆心,BC 长为半径画弧,交边AD 于点E ,则四边形ABCE 的周长为( )A .79B .86C .82D .92【分析】根据勾股定理得出AE ,进而利用矩形的性质和勾股定理得出EC 即可. 【解答】解:连接BE ,由题意知,BE =BC =25, ∵四边形ABCD 是矩形,∴∠A =∠D =90°,AB =DC =24,AD =BC =25, 在Rt △ABE 中,AE =√BE 2−AB 2=√252−242=7, ∴DE =AD ﹣AE =25﹣7=18,在Rt △EDC 中,EC =√DE 2+CD 2=√182+242=30, ∴四边形ABCE 的周长=AB +BC +AE +CE =24+25+7+30=86, 故选:B .9.(4分)如图是建平同学收集到的四张“新基建“图标卡片,这四张卡片除正面的图标内容外,其余完全相同,将卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,则抽到的两张卡片恰好是“5G 基站建设“和“大数据中心“的概率是( )A .13B .14C .16D .38【分析】根据题意画出树状图得出所有等可能结果,从中找到符合条件的结果数,根据概率公式求解可得.【解答】解:5G 基站建设、工业互联网、大数据中心、人工智能分别用A 、B 、C 、D 表示,根据题意画图如下:由图可知,共有12种等可能结果,其中恰好是“5G基站建设“和“大数据中心“的有2种,则抽到的两张卡片恰好是“5G基站建设“和“大数据中心“的概率是212=16.故选:C.10.(4分)正方形ABCD的边长为8,点E、F分别在边AD、BC上,将正方形沿EF折叠,使点A落在A'处,点B落在B'处,A'B'交BC于G.下列结论错误的是()A.当A'为CD中点时,则tan∠DA'E=3 4B.当A'D:DE:A′E=3:4:5时,则A′C=16 3C.连接AA',则AA'=EFD.当A'(点A'不与C、D重合)在CD上移动时,△A'CG周长随着A'位置变化而变化【分析】A.当A′为CD中点时,设A'E=AE=x,则DE=8﹣x,根据勾股定理列出方程求解,可推出A正确;B.当△A'DE三边之比为3:4:5时,假设A'D=3a,DE=4a,A'E=5a,根据AD=AE+DE=8,可求得a的值,进一步求得A'D=83,即可判断出B正确;C.过点E作EM⊥BC,垂足为M,连接A'A交EM,EF于点N,Q,证明△AA′D≌△EFM(ASA),即得C正确;D.过点A作AH⊥A'G,垂足为H,连接A'A,AG,先证△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再证Rt△ABG≌Rt△AHG,可得HG=BG,由此证得△A'CG周长=16,即可得出D错误.【解答】解:∵A′为CD中点,正方形ABCD的边长为8,∴AD=8,A'D=12CD=4,∠D=90o,∵折叠,∴设A'E=AE=x,则DE=8﹣x∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=DEDA′=34,故A正确;当△A'DE三边之比为3:4:5时,假设A'D=3a,DE=4a,A'E=5a,则AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=8 9,∴A'D=3a=83,A'C=CD﹣A'D=8−83=163,故B正确;如图,过点E作EM⊥BC,垂足为M,连接A'A交EM,EF于点N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,{∠DAA ′=∠FEMAD =EM ∠D =∠ENF =90°, ∴△AA ′D ≌△EFM (ASA ), ∴AA '=EF , 故C 正确;如图,过点A 作AH ⊥A 'G ,垂足为H ,连接A 'A ,AG ,则∠AHA '=∠AHG =90°,∵折叠,∴∠EA 'G =∠EAB =90°,A 'E =AE , ∵∠D =90o∴∠EAA '+∠DA 'A =90o , ∴∠AA 'G =∠DA 'A , ∴△AA 'D ≌△AA 'H (AAS ), ∴AD =AH ,A 'D =A 'H , ∵AD =AB , ∴AH =AB ,在Rt △ABG 与Rt △AHG 中, {AB =AH AG =AG, ∴Rt △ABG ≌Rt △AHG (HL ), ∴HG =BG ,∴△A 'CG 周长=A 'C +A 'G +CG =A 'C +A 'H +HG +CG =A 'C +A 'D +BG +CG =CD +BC =8+8 =16,∴当A '在CD 上移动时,△A 'CG 周长不变, 故D 错误. 故选:D .二、填空题(本大题共4个小题,每小题5分,共20分) 11.(5分)计算:√2×√8+(﹣tan30°)0= 5 .【分析】根据二次根式的乘法和零指数幂可以计算出所求式子的值. 【解答】解:√2×√8+(﹣tan30°)0 =√16+1 =4+1 =5, 故答案为:5.12.(5分)大自然是美的设计师,即使是一片小小的树叶,也蕴含着“美学”,如图.BP AP=√5−12,这个比值介于整数n 和n +1之间,则n 的值是 0 .【分析】先估计√5,再求n 值. 【解答】解:∵2<√5<3, ∴1<√5−1<2, ∴12<√5−12<1 ∵n <√5−12<n +1,n 为整数,∴n =0. 故答案为0.13.(5分)如图,△ABC 内接于⊙O .若∠ABC =38°,AĈ=2AB ̂,OC =12,则BC ̂的长是 38π5.【分析】连接OA ,OB ,由圆周角定理求得∠AOC =76°,从而求得AC ̂,再根据AC ̂=2AB ̂,BĈ=AC ̂+AB ̂即可求解. 【解答】解:如图,连接OA ,OB ,∵∠ABC =38°, ∴∠AOC =76°, ∴AĈ的长=nπr 180=76×π×12180=7615π, ∵AĈ=2AB ̂, ∴BĈ的长=32AC ̂=385π, 故答案为:385π.14.(5分)如图,△ABC 是等腰直角三角形,∠ACB =90°,AB 边上高为3.动点P 从点A 开始出发,以每秒3个单位长度的速度在射线AB 上运动.连接CP ,以CP 为直角边向右作等腰Rt △CDP ,使∠DCP =90°,连接BD ,设点P 的运动时间为t 秒. (1)AB 长度为 6 .(2)当BP :BD =1:2,且t >2时,则t 的值为 4 .【分析】(1)根据等腰直角三角形的性质解答即可;(2)根据SAS 证明△ACP 与△CBD 全等,利用全等三角形的性质解得即可. 【解答】解:(1)∵△ABC 是等腰直角三角形,∠ACB =90°,AB 边上高为3,∴AB =3×2=6, 故答案为:6;(2)∵△ABC 是等腰直角三角形,∠ACB =90°, ∴AC =BC ,∵∠PCD =90°,△DCP 为等腰直角三角形, ∴CP =CD ,∴∠ACP +∠PCB =90°,∠PCB +∠BCD =90°, ∴∠ACP =∠BCD , 在△ACP 与△CBD 中, {AC =BC∠ACP =∠BCD CP =CD,∴△ACP ≌△CBD (SAS ), ∴AP =BD ,当BP :BD =1:2时,当t >2时,3t−63t=12,解得:t =4, 故答案为:4.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解不等式:2−5x+13≤0. 【分析】根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集. 【解答】解:去分母,得6﹣(5x +1)≤0, 去括号,得6﹣5x ﹣1≤0, 移项,得﹣5x ≤1﹣6, 合并同类项,得﹣5x ≤﹣5, 系数化为1,得x ≥1.16.(8分)如图,△ABC 在平面坐标内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)先将△ABC 向下平移5个单位长度,再向左平移3个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1.(2)把△A 1B 1C 1绕点B 1顺时针方向旋转90°后得到△A 2B 1C 2,请画出△A 2B 1C 2并直接写出点C2的坐标.【分析】(1)根据平移的性质即可画出△A1B1C1;(2)根据旋转的性质即可画出△A2B1C2,进而可以写出点C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B1C2即为所求;点C2的坐标为(﹣2,0).四、(本大题共2小题,每小题8分,,满分16分)17.(8分)为了丰富学生社会实践活动,学校组织学生到红色文化基地A和人工智能科技馆C参观学习.如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向的(2+2√3)km处.求学校B和红色文化基地A之间的距离.【分析】过点B 作BD ⊥AC 于D ,在Rt △BCD 中证得BD =CD ,设BD =xkm ,则CD =xkm ,在Rt △ABD 中,∠BAC =30°,利用三角函数定义表示出AD 的长,在Rt △BDC 中,利用三角函数表示出CD 的长,由AD +CD =AC 列出方程问题得解. 【解答】解:作BD ⊥AC 于D . 依题意得,∠BAE =45°,∠ABC =105°,∠CAE =15°, ∴∠BAC =30°, ∴∠ACB =45°.在Rt △BCD 中,∠BDC =90°,∠ACB =45°, ∴∠CBD =45°, ∴∠CBD =∠DCB , ∴BD =CD ,设BD =xkm ,则CD =xkm , 在Rt △ABD 中,∠BAC =30°, ∴AB =2BD =2xkm ,tan30°=BDAD , ∴√33=x AD, ∴AD =√3x ,在Rt △BDC 中,∠BDC =90°,∠DCB =45°, ∴sin ∠DCB =BDBC =√22, ∴BC =√2x , ∵CD +AD =2+2√3, ∴x +√3x =2+2√3,∴x =2,∴AB =2x =4(km ),答:学校B 和红色文化基地A 之间的距离为4km .18.(8分)观察下列等式: 第1个等式:a 1=22×4=12−14; 第2个等式:a 2=24×6=14−16; 第3个等式:a 3=26×8=16−18; 第4个等式:a 4=28×10=18−110. .....请解答下列问题:(1)按以上规律列出第5个等式: a 5=210×12=110−112; . (2)用含有n 的代数式表示第n 个等式: a n =22n×(2n+2)=12n −12n+2 (n 为正整数).(3)试比较代数式a 1+a 2+a 3+a 4+…+a 2022的值与12的大小关系.【分析】(1)(2)由题意可知:分子为2,分母从2开始,连续偶数的乘积,可以拆成,分子是1,分母是以这两个偶数为分母的差,由此可得出答案; (3)运用以上规律,采用拆项相消法即可解决问题. 【解答】解:(1)由题意可得:a 5=210×12=110−112; 故答案为:a 5=210×12=110−112;(2)a n =22n×(2n+2)=12n −12n+2(n 为正整数);故答案为:a n=22n×(2n+2)=12n−12n+2;(3)原式=12−14+14−16+16−18+⋯⋯+14044−14046=12−14046<1 2.∴a1+a2+a3+a4+…+a2022<1 2.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,一次函数y=x+b的图象交反比例函数y=mx(x>0)的图象于点A(2,﹣4)和点B.(1)求m,b的值.(2)根据图象,写出一次函数y=x+b的值不小于反比例函数y=mx(x>0)的值时x取值范围.【分析】(1)利用待定系数法求得即可;(2)解析式联立成方程组,解方程组求得两函数图象的交点,根据图形可得出结论.【解答】解:(1)∵一次函数y=x+b的图象交反比例函数y=mx(x>0)的图象于点A(2,﹣4),∴﹣4=2+b,﹣4=m 2,∴m=﹣8,b=﹣6;(2)解{y=−8xy=x−6得{x=2y=−4或{x=4y=−2,∴B(4,﹣2),由图象知,一次函数y=x+b的值不小于反比例函数y=mx(x>0)的值时x取值范围是0<x≤2或x≥4.20.(10分)如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD于点M,CD=24,⊙O的半径长为4√10,求OM的长.(2)点G在BD上,且AG⊥BD交CD于点F,求证:CE=EF.【分析】(1)连接OD,由垂径定理和勾股定理可得答案;(2)连接AC,由垂直的定义及等腰三角形的性质可得结论.【解答】(1)解:如图,连接OD,∵OM⊥CD,OM过圆心,CD=24,∴DM=CM=12CD=12,∠OMD=90°,由勾股定理得,OM=√OD2−DM2=√(4√10)2−122=4,即OM的长为4;(2)证明:如图,连接AC,∵AG⊥BD,∴∠DGF=90°,∴∠DFG+∠D=90°,∵AB⊥CD,∴∠CEA=90°,∴∠C+∠EAC=90°,∵∠EAC=∠D,∠DFG=∠AFC,∴∠C=∠AFC,∴AF=AC,∵AB⊥CD,∴CE=EF.六、(本题满分12分)21.(12分)2021年12月4日是第八个国家宪法日,11月29日至12月5日是第四个“宪法宣传周“,合肥某校主办了以“学习法理,弘扬法治“为主题的大赛,全校10000名学生都参加了此次大赛,赛后发现所有参赛学生的成绩均不低于50分且没有满分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩进行分组,分别为A组:50≤x<60;B组:60≤x<70;C组:70≤x<80;D组:80≤x<90;E组:90≤x<100,并绘制了频数分布直方图.(1)求出频数分布直方图中m的值.(2)判断这200名学生的成绩的中位数落在哪一组(直接写出结果).(3)根据上述信息,估计全校10000名学生中成绩不低于70分的约有多少人.【分析】(1)根据各组的频数之和等于总人数即可求出m的值;(2)根据中位数的定义求解即可;(3)用总人数乘以样本中成绩不低于70分的人数所占比例即可.【解答】解:(1)m=200﹣(15+25+80+32)=48;(2)∵这200名学生的成绩的中位数是第100、101个数的平均数,而这两个数据均落在D组,∴这200名学生的成绩的中位数落在D组;(3)48+80+32200×10000=8000(人),答:估计全校10000名学生中成绩不低于70分的约有8000人.七、(本题满分12分)22.(12分)已知二次函数y =x 2+bx ﹣c 的图象经过点(3,0),且对称轴为直线x =1.(1)求b +c 的值.(2)当﹣4≤x ≤3时,求y 的最大值.(3)平移抛物线y =x 2+bx ﹣c ,使其顶点始终在二次函数y =2x 2﹣x ﹣1上,求平移后所得抛物线与y 轴交点纵坐标的最小值.【分析】(1)由对称轴−b 2=1,求出b 的值,再将点(3,0)代入y =x ²+bx ﹣c ,即可求解析式;(2)由题意可得抛物线的对称轴为直线x =1,结合函数图像可知当x =﹣4时,y 有最大值21;(3)设顶点坐标为(h ,2h 2﹣h ﹣1),可求平移后的解析式为y =(x ﹣h )2+2h 2﹣h ﹣1,设平移后所得抛物线与y 轴交点的纵坐标为w ,则w =3h 2﹣h ﹣1=3(h −16)2−1312,即可求解.【解答】解:(1)∵二次函数y =x ²+bx ﹣c 的对称轴为直线x =1,∴−b 2=1,∴b =﹣2,∵二次函数y =x ²+bx ﹣c 的图象经过点(3,0),∴9﹣6﹣c =0,∴c =3,∴b +c =1;(2)由(1)可得y =x ²﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,∵﹣4≤x ≤3,∴当x =﹣4时,y 有最大值21;(3)平移抛物线y =x 2﹣2x ﹣3,其顶点始终在二次函数y =2x 2﹣x ﹣1上,∴.设顶点坐标为(h ,2h 2﹣h ﹣1),故平移后的解析式为y =(x ﹣h )2+2h 2﹣h ﹣1,∴y=x2﹣2hx+h2+2h2﹣h﹣1=x2﹣2hx+3h2﹣h﹣1,设平移后所得抛物线与y轴交点的纵坐标为w,则w=3h2﹣h﹣1=3(h−16)2−1312,∴当h=16时,平移后所得抛物线与y轴交点纵坐标的最小值为−1312.八、(本题满分14分)23.(14分)感知:数学课上,老师给出了一个模型:如图1,点A在直线DE上,且∠BDA =∠BAC=∠AEC=90°,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角“模型.应用:(1)如图2,Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证;△BEC≌△CDA.(2)如图3,在△ABC中,D是BC上一点,∠CAD=90°,AC=AD,∠DBA=∠DAB,AB=2√3,求点C到AB边的距离.(3)如图4,在▱ABCD中,E为边BC上的一点,F为边AB上的一点.若∠DEF=∠B,AB=10,BE=6,求EFDE的值.【分析】(1)由直角三角形的性质得出∠ACD=∠EBC,可证明△BEC≌△CDA(AAS);(2)过点D作DF⊥AB于点F,过点C作CE⊥AB于,交BA的延长线于点E,证明△CAE≌△ADF(AAS),由全等三角形的性质可得出CE=AF=√3,则可得出答案;(3)过点D作DM=DC交BC的延长线于点M,证明△BFE∽△MED,由相似三角形的性质可得出答案.【解答】(1)证明:∵∠ACB=90°,∠BCE+∠ACB+∠ACD=180°,∴∠BCE+∠ACD=180°,∵AD⊥ED,BE⊥ED,∴∠BEC=∠CDA=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△BEC 和△CDA 中,{∠CDA =∠BEC =90°∠ACD =∠EBC CB =CA ,∴△BEC ≌△CDA (AAS );(2)解:过点D 作DF ⊥AB 于点F ,过点C 作CE ⊥AB 于,交BA 的延长线于点E ,∵∠DBA =∠DAB ,∴AD =BD ,∴AF =BF =12AB =√3,∵∠CAD =90°,∴∠DAF +∠CAE =90°,∵∠DAF +∠ADF =90°,∴∠CAE =∠ADF ,在△CAE 和△ADF 中,{∠CEA =∠AFD =90°∠CAE =∠ADF AC =AD ,∴△CAE ≌△ADF (AAS ),∴CE =AF =√3,即点C 到AB 的距离为√3;(3)解:过点D 作DM =DC 交BC 的延长线于点M ,∴∠DCM =∠M ,∵四边形ABCD 是平行四边形,∴DM =CD =AB =10,AB ∥CD ,∴∠B=∠DCM=∠M,∵∠FEC=∠DEF+∠DEC=∠B+∠BFE,∠B=∠DEF,∴∠DEC=∠BFE,∴△BFE∽△MED,∴EFDE =BEDM=610=35.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽中考数学模拟试题及答案一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)(2008•淄博)的相反数是()A .﹣3 B.3 C.D.2.(3分)(2001•安徽)下列运算正确的()A .a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2| D.a3=|a3|3.(3分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是()A .众数是3 B.极差是7 C.平均数是5 D.中位数是44.(3分)(2013•温州模拟)选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A .∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°5.(3分)(2014•沙湾区模拟)如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A .主视图和俯视图B.俯视图C.俯视图和左视图D.主视图6.(3分)(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A .9 B.±3 C.3 D.57.(3分)(2013•上城区一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=1 0,CD=6,则sinC等于()A .B.C.D.8.(3分)(2011•金华)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A .点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)9.(3分)(2013•上城区一模)在平面直角坐标系中,经过二、三、四象限的直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)都在直线l上,则下列判断正确的是()A .a=﹣3 B.b>﹣2 C.c<﹣3 D.d=﹣210.(3分)(2014•江阴市二模)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A .②④B.②③C.①③④D.①②④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(2013•上城区一模)如图,△ABC中,,若△AEF的面积为1,则四边形EBCF的面积为_________ .12.(4分)(2013•上城区一模)在一个口袋中有三个完全相同的小球,把它们分别标上数字﹣1,0,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.则两次的数字和是正数的概率为_________ .13.(4分)(2013•上城区一模)已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为_________ .14.(4分)(2014•沙湾区模拟)某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活“一户一表”用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a= _________ .15.(4分)(2012•南通)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于_________ .16.(4分)(2013•上城区一模)如图,▱ABCD中,AC⊥AB.AB=6cm,BC=10cm,E是CD上的点,DE=2CE.点P从D点出发,以1cm/s的速度沿DA→AB→BC运动至C点停止.则当△EDP为等腰三角形时,运动时间为_________ s.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.(6分)(2014•沙湾区模拟)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为_________ ,第n个方程为_________ ;(2)直接写出第n个方程的解,并检验此解是否正确.18.(8分)(2005•淮安)如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.(1)请在图中画出△COD;(2)求点A旋转过程中所经过的路程(精确到0.1);(3)求直线BC的解析式.19.(8分)(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.20.(10分)(2013•上城区一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各5 0名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有_________ 人,男生最喜欢“乒乓球”项目的有_________ 人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.21.(10分)(2013•上城区一模)在直角梯形ABCD中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E ,F分别为AB,AD的中点,连结EF,EC,BF,CF.(1)求证△CBE≌△CFE;(2)若CD=a,求四边形BCFE的面积.22.(12分)(2014•沙湾区模拟)如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.(1)当AC的长度为多少时,△AMC和△BOD相似;(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC时,求AC的长.23.(12分)(2013•上城区一模)如图,已知一次函数y=kx+b的图象与x轴相交于点A,与反比例函数的图象相交于B(﹣1,5),C(,d)两点.(1)求k,b的值;(2)设点P(m,n)是一次函数y=kx+b的图象上的动点.①当点P在线段AB(不与A,B重合)上运动时,过点P作x轴的平行线与函数的图象相交于点D,求出△PAD面积的最大值.②若在两个实数m与n之间(不包括m和n)有且只有一个整数,直接写出实数m的取值范围.2019年安徽中考数学模拟试题及答案参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)(2008•淄博)的相反数是()A .﹣3 B.3 C.D.考点:相反数.分析:求一个数的相反数,即在这个数的前面加负号.解答:解:根据相反数的定义,得的相反数是.故选D.点评:本题考查的是相反数的求法.2.(3分)(2001•安徽)下列运算正确的()A .a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2| D.a3=|a3|考点:幂的乘方与积的乘方;绝对值.专题:计算题.分析:相反数的平方相等,相反数的立方互为相反数,负数的绝对值等于它的相反数,a3的符号与它本身相同.解答:解:A、相反数的平方相等,故本选项正确;B、相反数的立方互为相反数,a3=﹣(﹣a)3,故本选项错误;C、负数的绝对值等于它的相反数,﹣a2=﹣|﹣a2|,故本选项错误;D、a3的符号与它本身相同,正负情况不能确定,而|a3|是非负数,故本选项错误.故选A.点评:幂运算时,指数的奇偶,直接影响结果的符号.3.(3分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是()A .众数是3 B.极差是7 C.平均数是5 D.中位数是4考点:极差;算术平均数;中位数;众数.分析:根据众数、极差、平均数及中位数的定义,结合数据进行判断即可.解答:解:A、众数为3,说法正确,故本选项错误;B、极差=9﹣2=7,说法正确,故本选项错误;C、平均数==5,说法正确,故本选项错误;D、中位数为4.5,说法错误,故本选项正确.故选D.点评:本题考查了极差、中位数、众数及平均数的知识,属于基础题,注意掌握各部分的定义是关键.4.(3分)(2013•温州模拟)选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少A .∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°考点:反证法.分析:用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.解答:解:用反证法证明命题“∠A,∠B中至少有一个角不大于45°”时,应先假设∠A>45°,∠B>45°.故选:A.点评:此题主要考查了反证法,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口.5.(3分)(2014•沙湾区模拟)如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A .主视图和俯视图B.俯视图C.俯视图和左视图D.主视图考点:简单组合体的三视图;轴对称图形;中心对称图形.分析:首先把此几何体的三视图画出来,然后根据轴对称图形和中心对称图形的定义矩形判断即可.解答:解:该几何体的主视图为既不是轴对称图形又不是中心对称图形;该几何体的左视图为是轴对称图形不是中心对称图形;该几何体的俯视图为既是轴对称图形又是中心对称图形;故选B.点评:此题主要考查了三视图的几何知识,考查了学生的空间思维想象能力.6.(3分)(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A .9 B.±3 C.3 D.5考点:二次根式的化简求值.专题:计算题.分析:原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.解答:解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选C.点评:本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.7.(3分)(2013•上城区一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=1 0,CD=6,则sinC等于()A .B.C.D.考点:三角形中位线定理;勾股定理的逆定理;锐角三角函数的定义.专题:压轴题.分析:连接BD,根据中位线的性质得出EF∥BD,且等于BD,进而利用勾股定理的逆定理得出△BDC是直角三角形,求解即可.解答:解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,且等于BD,∴BD=8,∵BD=8,BC=10,CD=6,∴△BDC是直角三角形,∴sinC===,故选D.点评:此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.8.(3分)(2011•金华)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()。

相关文档
最新文档