安徽中考数学模拟试题及答案

合集下载

安徽省芜湖市中考数学一模试卷(含答案解析)

安徽省芜湖市中考数学一模试卷(含答案解析)

安徽省芜湖市中考数学一模试卷一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:94.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.165.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:29.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为.12.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.安徽省芜湖市中考数学一模试卷参考答案与试题解析一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【解答】解:A、=,则5y=6x,故此选项错误;B、=,则5x=6y,故此选项正确;C、=,则5y=6x,故此选项错误;D、=,则xy=30,故此选项错误;故选:B.【点评】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°【分析】根据相似多边形对应角的比相等,就可以求解.【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.【点评】主要考查了相似多边形的性质和四边形的内角和是360度的实际运用.3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC 是解题关键.5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒【分析】已知函数式为二次函数解析式,最高点即为抛物线顶点,求达到最高点所用时间,即求顶点的横坐标.【解答】解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.【点评】本题考查的是二次函数在实际生活中的应用,比较简单.7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率为=,故选:C.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:2【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.【解答】解:∵矩形纸片对折,折痕为EF,∴AF=AB=a,∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选:B.【点评】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB =2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q 点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选:D.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y =x 2向左平移1个单位,所得的新抛物线的解析式为 y =(x +1)2 .【分析】先确定抛物线y =x 2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y =x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(﹣1,0),所以新抛物线的解析式为y =(x +1)2. 故答案为y =(x +1)2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是 8﹣2π (结果保留π).【分析】根据S 阴=S △ABD ﹣S 扇形BAE 计算即可; 【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为4.【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(﹣a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(a,),∴点B的坐标为(0,),∴=1,解得,k=4,故答案为:4.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=或2或6.【分析】由AD∥BC,∠ABC=90°,易得∠PAD=∠PBC=90°,又由AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,然后分别从△APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.所以AP=或AP=2或AP=6.故答案是:或2或6.【点评】此题考查了相似三角形的性质.注意利用分类讨论思想求解是关键.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.【分析】原方程转化为x=0或x+2=0,然后解一次方程即可.【解答】解:∵x=0或x+2=0,∴x1=0,x2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【解答】解:(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.【分析】一般用增长后的量=增长前的量×(1+增长率),要投入教育经费是2500(1+x)万元,在的基础上再增长x,就是的教育经费数额,即可列出方程求解.【解答】解:设增长率为x,根据题意为2500(1+x)万元,为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【解答】解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.【分析】(1)根据圆周角定理得到∠D=∠B,证明△DMA∽△BMC,根据相似三角形的性质列出比例式,即可证明结论;(2)连接OA,OC,过O作OH⊥AC于H点,根据圆周角定理、垂径定理计算即可.【解答】(1)证明:∵=,∴∠D=∠B,又∵∠DMA=∠BMC,∴△DMA∽△BMC,∴=,∴DM•MC=BM•MA;(2)连接OA,OC,过O作OH⊥AC于H点,∵∠D=60°,∴∠AOC=120°,∠OAH=30°,AH=CH,∵⊙O半径为2,∴AH=∵AC=2AH,∴AC=2.【点评】本题考查的是相似三角形的判定和性质、圆周角定理、垂径定理,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.【分析】(1)根据抛物线与x轴有两个交点,得到△>0,由此求得m的取值范围.(2)利用(1)中m的取值范围确定m=2,然后根据抛物线解析式求得点A、B的坐标,利用三角形的面积公式解答即可.【解答】解:(1)∵抛物线y=x2﹣4x+2m﹣1与x轴有两个交点,令y=0.∴x2﹣4x+2m﹣1=0.∵与x轴有两个交点,∴方程有两个不等的实数根.∴△>0.即△=(﹣4)2﹣4•(2m﹣1)>0,∴m<2.5.(2)∵m<2.5,且m取最大整数,∴m=2.当m=2时,抛物线y=x2﹣4x+2m﹣1=x2﹣4x+3=(x﹣2)2﹣1.∴C坐标为(2,﹣1).令y=0,得x2﹣4x+3=0,解得x1=1,x2=3.∴抛物线与x轴两个交点的坐标为A(1,0),B(3,0),∴△ABC的面积为=1.【点评】考查了抛物线与x轴的交点坐标,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点,解题时,注意二次函数与一元二次方程间的转化关系.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.【分析】(1)列表得出所有等可能的情况数即可;(2)找出点(x,y)落在反比例函数y=的图象上的情况数,即可求出所求的概率;(3)找出所确定的数x,y满足y的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的结果有16种,分别为(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4);(2)其中点(x,y)落在反比例函数y=的图象上的情况有:(2,3);(3,2)共2种,则P(点(x,y)落在反比例函数y=的图象上)==;(3)所确定的数x,y满足y的情况有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8种,则P(所确定的数x,y满足y)==.【点评】此题考查了列表法与树状图法,以及反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=3;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.【分析】(1)由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;(2)设A点坐标为(a,),则D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合∠P=∠P 可得出△PDC∽△PAB,由相似三角形的性质可得出∠CDP=∠A,再利用“同位角相等,两直线平行”可证出CD∥AB;(3)由四边形ABCD的面积和△PCD的面积相等可得出S△PAB =2S△PCD,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.【解答】(1)解:∵B点(1,3)在反比例函数y=的图象,∴k=1×3=3.故答案为:3.(2)证明:∵反比例函数解析式为,∴设A点坐标为(a,).∵PB⊥x轴于点C,PA⊥y轴于点D,∴D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,∴,,∴.又∵∠P=∠P,∴△PDC∽△PAB,∴∠CDP=∠A,∴CD∥AB.(3)解:∵四边形ABCD的面积和△PCD的面积相等,∴S△PAB =2S△PCD,∴×(3﹣)×(1﹣a)=2××1×(﹣),整理得:(a﹣1)2=2,解得:a1=1﹣,a2=1+(舍去),∴P点坐标为(1,﹣3﹣3).【点评】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)利用相似三角形的判定定理找出△PDC∽△PAB;(3)由三角形的面积公式,找出关于a的方程.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.【分析】(1)由余角的性质可得∠ABE=∠BCF,即可证△ABE∽△BCF;(2)由相似三角形的性质可得==,由等腰三角形的性质可得BP=2BE,即可求的值;(3)由题意可证△DPH∽△CPB,可得==,可求AE=,由等腰三角形的性质可得AE平分∠BAP,可证∠EAG=∠BAH=45°,可得△AEG是等腰直角三角形,即可求AG 的长.【解答】证明:(1)∵AB⊥BC,∴∠ABE+∠FBC=90°又∵CF⊥BF,∴∠BCF+∠FBC=90°∴∠ABE=∠BCF又∵∠AEB=∠BFC=90°,∴△ABE∽△BCF(2)∵△ABE∽△BCF,∴==又∵AP=AB,AE⊥BF,∴BP=2BE∴==(3)如图,延长AD与BG的延长线交于H点∵AD∥BC,∴△DPH∽△CPB∴==∵AB=BC,由(1)可知△ABE≌△BCF∴CF=BE=EP=1,∴BP=2,代入上式可得HP=,HE=1+=∵△ABE∽△HAE,∴=,=,∴AE=∵AP=AB,AE⊥BF,∴AE平分∠BAP又∵AG平分∠DAP,∴∠EAG=∠BAH=45°,∴△AEG是等腰直角三角形.∴AG=AE=3【点评】本题是相似综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.。

2023年安徽省合肥市庐江县庐州学校中考数学模拟试卷(含答案解析)

2023年安徽省合肥市庐江县庐州学校中考数学模拟试卷(含答案解析)

2023年安徽省合肥市庐江县庐州学校中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣6的相反数是()A .﹣6B .﹣16C .6D .162.粮食是人类赖以生存的重要物质基础,2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A .46.828510⨯吨B .46828510⨯吨C .76.828510⨯吨D .86.828510⨯吨3.如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A .平移B .旋转C .轴对称D .黄金分割5.如图,Rt ABC △是一块直角三角板,其中90,30C BAC ∠=︒∠=︒.直尺的一边DE 经过顶点A ,若DE CB ∥,则DAB ∠的度数为()A .100°B .120°C .135°D .150°6.如图,ABC 内接于O ,AD 是O 的直径,若20B ∠=︒,则CAD ∠的度数是()A .60°B .65°C .70°D .75°7.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大暑”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A .23B .12C .16D .188.如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在 AB 上的点C 处,图中阴影部分的面积为()A .3π-B .3πC .2π-D .6π9.如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形1111D C B A ;第二次,顺次连接四边形1111D C B A 各边的中点,得到四边形2222A B C D ;…如此反复操作下去,则第n 次操作后,得到四边形n n n n A B C D 的面积是()A .2nab B .12n ab -C .12n ab +D .22nab 二、填空题10.勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;⋯,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;⋯,若此类勾股数的勾为2m (3m ≥,m 为正整数),则其弦是______(结果用含m 的式子表示).11.若一元二次方程2430x x -+=的两个根是1x ,2x ,则12x x ⋅的值是__.12.如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.13.如图,在菱形ABCD 中,60A ∠=︒,6AB =.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,.F 当点M 与点B 重合时,EF 的长为______;当点M 的位置变化时,DF 长的最大值为______.三、解答题14.计算:012022sin302--︒.15.解方程:1 122 x xx x-=--.16.如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.17.观察下面的点阵图形和与之相对应的等式探究其中的规律.①•→4×0+1=4×1﹣3;②→4×1+1=4×2﹣3;③→4×2+1=4×3﹣3;④→;⑤→.(1)请在④和⑤后面的横线上分别写出相对应的等式;(2)猜想第n(n是正整数)个图形相对应的等式为.18.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin700.94cos700.34tan70 1.73︒≈︒≈︒≈≈,,).19.首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A .8小时及以上;B .6~8小时;C .4~6小时;D .0~4小时.第二项您阅读的课外书的主要来源是(可多选)E .自行购买;F .从图书馆借阅;G .免费数字阅读;H .向他人借阅.调查结论……请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务用函数观点认识一元二次方程根的情况我们知道,一元二次方程20(0)ax bx c a ++=≠的根就是相应的二次函数2(0)y ax bx c a =++≠的图象(称为抛物线)与x 轴交点的横坐标.抛物线与x 轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x 轴的交点个数确定一元二次方程根的情况下面根据抛物线的顶点坐标(2b a -,244ac b a -)和一元二次方程根的判别式24b ac =-△,分别分0a >和a<0两种情况进行分析:(1)0a >时,抛物线开口向上.①当240b ac =-> 时,有240ac b -<.∵0a >,∴顶点纵坐标2404ac b a -<.∴顶点在x 轴的下方,抛物线与x 轴有两个交点(如图1).②当240b ac =-= 时,有240ac b -=.∵0a >,∴顶点纵坐标2404ac b a -=.∴顶点在x 轴上,抛物线与x 轴有一个交点(如图2).∴一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根.③当240b ac =-= 时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A .数形结合B .统计思想C .分类讨论.D .转化思想(2)请参照小论文中当0a >时①②的分析过程,写出③中当0,0a ><△时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为21.综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30︒的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD 按照(1)中的方式操作,并延长PM 交CD 于点Q ,连接BQ .①如图2,当点M 在EF 上时,MBQ ∠=______︒,CBQ ∠=______︒;②改变点P 在AD 上的位置(点P 不与点A ,D 重合),如图3,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD 的边长为8cm ,当1cm FQ =时,直接写出AP 的长.参考答案:1.C【分析】根据相反数的意义,即可解答.【详解】解:6-的相反数是6,故选:C.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.2.D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:68285万=6.8285×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.4.D【分析】根据黄金分割的定义即可求解.【详解】解:动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割.故选:D【点睛】本题考查了黄金分割的定义,黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为12,约等于0.618,这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.熟知黄金分割的定义是解题关键.5.B【分析】先根据平行线的性质可得90DAC C ∠=∠=︒,再根据角的和差即可得.【详解】解:DE CB ∥ ,90C ∠=︒90DAC C ∴∠=∠=︒,30BAC ∠=︒ ,120DAB D C AC BA ∠=∠+=∴∠︒,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.6.C【分析】首先连接CD ,由AD 是O 的直径,根据直径所对的圆周角是直角,可求得=90ACD ∠︒,又由圆周角定理,可得20D B ∠=∠=︒,再用三角形内角和定理求得答案.【详解】解:连接CD ,∵AD 是O 的直径,∴=90ACD ∠︒.∵20D B ∠=∠=︒,∴18090180902070CAD D ∠=︒-︒-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查了圆周角定理、三角形的内角和定理.熟练掌握圆周角定理是解此题的关键.7.C【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:将“立春”、“立夏”、“秋分”、“大暑”的图片分别记为A 、B 、C 、D .根据题意,列表如下:ABCDA(A ,B )(A ,C )(A ,D )B (B ,A )(B ,C )(B ,D )C(C ,A )(C ,B )(C ,D )D (D ,A )(D ,B )(D ,C )由表格可知,共有12种等可能的结果,其中抽到的两张卡片恰好是“立春”和“立夏”的结果有2种,故其概率为:21126=.故选:C .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.8.B【分析】根据折叠,ACB AOB ≌△△,进一步得到四边形OACB 是菱形;进一步由3OC OB BC ===得到OBC △是等边三角形;最后阴影部分面积=扇形AOB 面积-菱形的面积,即可【详解】依题意:ACB AOB ≌△△,3AO BO ==∴3AC BC AO BO ====∴四边形OACB 是菱形∴AB CO⊥连接OC∵3OC OB ==∴3OC OB BC ===∴OBC △是等边三角形同理:OAC 是等边三角形故120AOB ∠=︒由三线合一,在Rt OBD △中:1302OBD OBC ∠=∠=︒1322OD OB ==BD ==1132222222OACB S BD OD =⨯⋅=⨯⨯⨯=菱形212033360AOB S ππ︒=⋅⋅=︒扇形3OACB AOB S S S π=-=阴影菱形扇形故选:B【点睛】本题考查菱形的判定,菱形面积公式,扇形面积公式;解题关键是发现OBC △是等边三角形9.A【分析】利用中位线、菱形、矩形的性质可知,每一次操作后得到的四边形面积为原四边形面积的一半,由此可解.【详解】解:如图,连接AC ,BD ,11A C ,11B D .∵四边形ABCD 是矩形,∴AC BD =,AD BC =,AB CD =.∵1A ,1B ,1C ,1D 分别是矩形四个边的中点,∴1111111111,22A DBC BD A B C D AC ====,∴11111111A D B C A B C D ===,∴四边形1111D C B A 是菱形,∵11AC AD a ==,11B D AB b ==,∴四边形1111D C B A 的面积为:1111111222ABCD A C B D ab S ⋅== .同理,由中位线的性质可知,22221122D C A B AD a ===,2222////D C A B AD ,22221122D A C B AB b ===,2222////D A C B AB ,∴四边形2222A B C D 是平行四边形,∵AD AB ⊥,∴2222C D D A ⊥,∴四边形2222A B C D 是矩形,∴四边形2222A B C D 的面积为:1111222211112242ABC A B C D D C D A D a b S S ⋅=⋅== 菱形.∴每一次操作后得到的四边形面积为原四边形面积的一半,∴四边形n n n n A B C D 的面积是2nab .故选:A .【点睛】本题考查矩形的性质,菱形的性质以及中位线的性质,证明四边形1111D C B A 是菱形,四边形2222A B C D 是矩形是解题的关键.10.21m +【分析】根据题意得2m 为偶数,设其股是a ,则弦为2a +,根据勾股定理列方程即可得到结论.【详解】解:m 为正整数,∴2m 为偶数,设其股是a ,则弦为2a +,根据勾股定理得,222(2)(2)m a a +=+,222444m a a a +=++,2444a m =-,解得21a m =-,∴弦为222121a m m +=-+=+,故答案为:21m +.【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.11.3【分析】根据根与系数的关系直接可得答案.【详解】解:1x ,2x 是一元二次方程2430x x -+=的两个根,123x x ∴⋅=,故答案为:3.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是掌握一元二次方程根与系数的关系.12.5或354【分析】过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =3x ,由△ACN ≌△CDM 可得AN =CM =10+x ,CN =DM =3x ,由点C 、M 、D 、E 四点共圆可得△NME 是等腰直角三角形,于是NE =10-2x ,由勾股定理求得AC 可得CE ,在Rt △CNE 中由勾股定理建立方程求得x ,进而可得BE ;【详解】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =,Rt △ECD 中,CD =AC ,CE =2CD ,Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦,2425250x x -+=,()()4550x x --=,x =5或x =54,∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354;故答案为:5或354;【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.13.6-【分析】如图1中,求出等边ADB 的高DE 即可.如图2中,连接AM 交EF 于点O ,过点O 作OK AD ⊥于点K ,交BC 于点T ,过点A 作AG CB ⊥交CB 的延长线于点G ,取AD 的中点R ,连接OR .证明OK =AF 的最小值,可得结论.【详解】解:如图1中,四边形ABCD 是菱形,AD AB BC CD ∴===,60A C ∠=∠=︒,ADB ∴ ,BDC 都是等边三角形,当点M 与B 重合时,EF 是等边ADB 的高,sin 606EF AD =⋅︒=⨯.如图2中,连接AM 交EF 于点O ,过点O 作OK AD ⊥于点K ,交BC 于点T ,过点A 作AG CB ⊥交CB 的延长线于点G ,取AD 的中点R ,连接OR .∵AD CG ,OK AD ⊥,OK CG ∴⊥,90G AKT GTK ∴∠=∠=∠=︒,∴四边形AGTK 是矩形,sin 60AG TK AB ∴==⋅︒=OA OM =∵,AOK MOT ∠=∠,90AKO MTO ∠=∠=︒,()AAS AOK MOT ∴ ≌,OK OT ∴==OK AD ⊥ ,OR OK ∴≥=90AOF ∠=︒ ,AR RF =,2AF OR ∴=≥AF ∴的最小值为DF ∴的最大值为6-.故答案为:6-【点睛】本题考查菱形的性质,矩形的判定和性质,垂线段最短等知识,解题的关键是学会填空常用辅助线,构造特殊四边形解决问题,属于中考填空题中的压轴题.14.3【分析】先化简每项,再加减计算,即可求解.【详解】原式111222=++-3=【点睛】本题考查零次幂,二次根式,绝对值,三角函数;注意先每项正确化简,再加减计算即可求解.15.=1x -【分析】两边同时乘以公分母()1x -,先去分母化为整式方程,计算出x ,然后检验分母不为0,即可求解.【详解】1122x x x x -=--,()112x x =-,解得=1x -,经检验=1x -是原方程的解,故原方程的解为:=1x -【点睛】本题考查解分式方程,注意分式方程要检验.16.(1)作图见解析(2)AE CF =,证明见解析【分析】(1)根据垂直平分线的尺规作图的画法,分别以A 、C 为圆心,以大于12AC 的长为半径画弧,交于两点,过两点作直线即可得到线段AC 的垂直平分线.(2)利用矩形及垂直平分线的性质,可以证得AEO CFO ≌,根据全等三角形的性质即可得出结论.【详解】(1)解:如图,(2)解:AE CF =.证明如下:∵四边形ABCD 是矩形,∴AD BC ∥.∴EAO FCO AEO CFO ∠=∠∠=∠,.∵EF 为AC 的垂直平分线,∴OA OC =.∴AEO CFO ≌.∴AE CF =.【点睛】本题主要考查了垂直平分线的尺规作图的画法、矩形的性质、全等三角形的判定和性质.17.(1)④431443⨯+=⨯-,⑤441453⨯+=⨯-;(2)4(1)143n n -+=-.【分析】(1)根据从同一顶点向外作出的四条线上的点的个数解答;(2)根据变化的层数和相应的图形的序数解答.【详解】解: ①401413→⨯+=⨯- ;②411423→⨯+=⨯-;③421433→⨯+=⨯-;∴④431443⨯+=⨯-,⑤441453⨯+=⨯-;(2)第n 个图形:4(1)143n n -+=-.【点睛】本题是对图形变化规律的考查,仔细观察图形,从每一条线上的点的个数考虑求解是解题的关键.18.58m【分析】延长AB 和CD 分别与直线OF 交于点G 和点H ,则90AGO EHO ∠=∠=︒,再根据图形应用三角函数即可求解.【详解】解:延长AB 和CD 分别与直线OF 交于点G 和点H ,则90AGO EHO ∠=∠=︒.又∵=90GAC ∠︒,∴四边形ACHG 是矩形.∴GH AC =.由题意,得60,24,70,30,60AG OF AOG EOF EFH ==∠=︒∠=︒∠=︒.在Rt AGO △中,90,tan AG AGO AOG OG ∠=︒∠=,∴606021.822tan tan 70 2.75AG OG AOG ==≈≈≈∠︒(m )﹒∵EFH ∠是EOF 的外角,∴603030FEO EFH EOF ∠=∠-∠=︒-︒=︒.∴EOF FEO ∠=∠.∴24EF OF ==m .在Rt EHF 中,90,cos FHEHF EFH EF∠=︒∠=∴cos 24cos 6012FH EF EFH =⋅∠=⨯︒=(m).∴()22241258m AC GH GO OF FH ==++=++≈.答:楼AB 与CD 之间的距离AC 的长约为58m .【点睛】本题主要考查三角函数的综合应用,正确构造直角三角形并应用三角函数进行求解是解题的关键.19.(1)参与本次抽样调查的学生人数为300人,这些学生中选择“从图书馆借阅”的人数为186人;(2)1152人(3)答案见解析【分析】(1)用D类人数除以所占百分比即可得到总人数;再用总人数乘以F类所占百分比,即可求解;(2)利用样本估计总体的思想即可解决问题;(3)从平均每周阅读课外书的时间和阅读的课外书的主要来源写出一条你获取的信息即可.÷=(人).【详解】(1)解:3311%300⨯=(人);30062%186答:参与本次抽样调查的学生人数为300人,这些学生中选择“从图书馆借阅”的人数为186人;⨯=(人).(2)解:360032%1152答:估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数有1152人;(3)解:答案不唯一.例如:第一项:①平均每周阅读课外书的时间在“4~6小时”的人数最多;②平均每周阅读课外书的时间在“0~4小时”的人数最少;③平均每周阅读课外书的时间在“8小时及以上”的学生人数占调查总人数的32%;第二项:①阅读的课外书的主要来源中选择“从图书馆借阅”的人数最多;②阅读的课外书的主要来源中选择“向他人借阅”的人数最少.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.20.(1)AC(2)分析见解析;作图见解析(3)答案见解析【分析】(1)解一元二次方程的解转化为抛物线与x轴交点的横坐标;还体现了分类讨论思想;(2)依照例题,画出图形,数形结合,可以解答;(3)结合所学知识,找到用转化思想或数形结合或分类讨论思想解决问题的一种情况即可.【详解】(1)解:上面解一元二次方程的过程中体现了转化思想、数形结合、分类讨论思想,故答案为:AC ;(2)解:a >0时,抛物线开口向上.当△=b 2−4ac <0时,有4ac −b 2>0﹒∵a >0,∴顶点纵坐标24>04ac b a-﹒∴顶点在x 轴的上方,抛物线与x 轴无交点(如图):∴一元二次方程ax 2+bx +c =0(a ≠0)无实数根.(3)解:可用函数观点认识二元一次方程组的解.(答案不唯一.又如:可用函数观点认识一元一次不等式的解集,等)【点睛】本题考查的二次函数与一元二次方程的关系,根据转化思想将一元二次方程的解的问题转化成抛物线与x 轴交点的横坐标的问题,再根据数形结合的思想用抛物线与x 轴的交点个数确定一元二次方程根的情况是本题的关键.21.(1)EMB ∠或CBM ∠或ABP ∠或PBM ∠(任写一个即可);(2)①15,15;②CBQ MBQ ∠=,理由见解析;(3)40cm 11或24cm 13【分析】(1)由折叠的性质可得12AE BE AB ==,90AEF BEF ∠=∠=︒,AB BM =,ABP PBM ∠=∠,由锐角三角函数可求30EMB ∠=°,即可求解;(2)由“HL ”可证Rt BCQ △≌Rt BMQ △,,可得15CBQ MBQ ∠=∠=︒;②由“HL ”可证Rt BCQ △≌Rt BMQ △,可得CBQ MBQ ∠=∠;(3)分两种情况讨论,由折叠的性质和勾股定理可求解.【详解】(1) 对折矩形纸片ABCD ,12AE BE AB ∴==,90AEF BEF ∠=∠=︒, 沿BP 折叠,使点A 落在矩形内部点M 处,AB BM ∴=,ABP PBM ∠=∠,1sin 2BE BME BM ∠== ,30EMB ∴∠=︒,60ABM ∴∠=︒,30CBM ABP PBM ∴∠=∠=∠=︒,故答案为:EMB ∠或CBM ∠或ABP ∠或(PBM ∠任写一个即可);(2)①由()1可知30CBM ∠=︒,四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴=,90BMQ C ∠=∠=︒,又BQ BQ = ,在Rt BCQ △和Rt BMQ △中BQ BQ BC BM=⎧⎨=⎩Rt BCQ ∴ ≌()Rt HL BMQ ,15CBQ MBQ ∴∠=∠=︒,故答案为:15,15;MBQ CBQ ∠=∠②,理由如下:四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴=,90BMQ C ∠=∠=︒,在Rt BCQ △和Rt BMQ △中,,BM BC BQ BQ =⎧⎨=⎩Rt BCQ ∴ ≌()Rt HL BMQ ,CBQ MBQ ∴∠=∠;(3)由折叠的性质可得4cm DF CF ==,AP PM =,Rt BCQ ≌Rt BMQ △,CQ MQ ∴=,当点Q 在线段CF 上时,1cm FQ = ,3cm MQ CQ ∴==,5cm DQ =,222PQ PD DQ =+ ,22(3)(8)25AP AP ∴+=-+,4011AP ∴=,当点Q 在线段DF 上时,1cm FQ = ,5cm MQ CQ ∴==,3cm DQ =,222PQ PD DQ =+ ,22(5)(8)9AP AP ∴+=-+,2413AP ∴=,综上所述:AP 的长为40cm 11或24cm 13.【点睛】本题是四边形综合题,考查了矩形的性质,正方形的性质,折叠的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.。

2024年安徽省合肥市名校联考中考数学模拟试卷及答案解析

2024年安徽省合肥市名校联考中考数学模拟试卷及答案解析

2024年安徽省合肥市名校联考中考数学模拟试卷一、选择题(共10小题,满分40分,每小题4分)1.(4分)﹣2024的绝对值是()A.2024B.﹣2024C.D.2.(4分)下列计算正确的是()A.a3+a3=a6B.a3•a4=a7C.(﹣a)6÷a3=﹣a3D.(﹣2a)3=﹣6a33.(4分)如图是由四个相同的小正方体组成的几何体,该几何体的左视图是()A.B.C.D.4.(4分)若代数式和的值互为相反数,则x等于()A.1B.C.2D.5.(4分)如图,将一个等腰直角三角尺GEF放置在一张矩形纸片上,使点G,E,F分别在矩形的边AD,BC,CD上,若∠EFC=70°,则∠AGE的度数为()A.130°B.120°C.110°D.100°6.(4分)在反比例函数的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4可以用完全平方公式进行因式分解,则该反比例函数的表达式为()A.B.C.D.7.(4分)每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.8.(4分)如图,四边形ABCD中,AB=AD,△ABC沿着AC折叠,则点B恰好落在CD 的点B′上处,若∠BAD=90°,则B′D=6,AD=9,则CD=()A.B.C.D.9.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE,DE,P,Q分别是AE,DE上的点,且PE=DQ.设△EPQ的面积为y,PE的长为x,则y关于x 的函数关系式的图象大致是()A.B.C.D.10.(4分)如图,正方形ABCD中,点M,N分别为AB,BC上的动点,且AM=BN,DM,AN交于点E,点F为AB的中点,点P为BC上一个动点,连接PE,PF.若AB=4,则PE+PF的最小值为()A.B.2C.5D.二.填空题(共4小题,满分20分,每小题5分)11.(5分)计算:﹣2=.12.(5分)为实现我国2030年前碳达峰、2060年前碳中和的目标,光伏发电等可再生能源将发挥重要作用.去年全国光伏发电量为3259亿千瓦时,数据“3259亿”用科学记数法表示为.13.(5分)如图,在△ABC中AB=AC=4,∠BAC=120°,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线交AC于点E.则DE的长为.14.(5分)在平面直角坐标系中,G(x1,y1)为抛物线y=x2+4x+2上一点,H(﹣3x1+1,y1)为平面上一点,且位于点G右侧.(1)此抛物线的对称轴为直线;(2)若线段GH与抛物线y=x2+4x+2(﹣6≤x<1)有两个交点,则的x1取值范围是.三.(本答题共2题,每小题8分,满分16分)15.(8分)计算:.16.(8分)2024年春节联欢晚会的吉祥物“龙辰辰”具有龙年吉祥,幸福安康的寓意,深受大家喜欢.某商场第一次用2400元购进一批“龙辰辰”玩具,很快售完;该商场第二次购进该“龙辰辰”玩具时,进价提高了20%,同样用2400元购进的数量比第一次少10件,求第一次购进的“龙辰辰”玩具每件的进价是多少钱?四.(本答题共2题,每小题8分,满分16分)17.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)以原点O为位似中心,在第三象限画出与△A1B1C1位似的图形△A2B2C2,且△A2B2C2与△A1B1C1的相似比为2:1.18.(8分)观察以下等式:第1个等式:12+2×1=1×(1+2)第2个等式:22+2×2=2×(2+2)第3个等式:32+2×3=3×(3+2)…按照以上规律,解决下列问题:(1)写出第4个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五.(本答题共2题,每小题10分,满分20分)19.(10分)小亮为测量某铁桥的长度BC,乘车在与该铁桥平行且处于同一水平面的一段东西走向的公路上行驶时,在A处发现桥的起点B在A点的北偏东30°的方向上,并测得AB=160米,当车前进146米到达D处时,测得桥的终点C在D点的北偏东55°的方向上,求该桥的长度BC.(结果保留整数,参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,≈1.73)20.(10分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且∠DCF=∠CAD.(1)求证:CF是⊙O的切线;(2)若AD=10,cos B=,求FD的长.六.(本大题满分12分)21.(12分)为弘扬学生爱国主义教育,某校在清明节来临之际开展“走进清明•缅怀英烈”知识竞赛活动,现从七年级和八年级参加活动的学生中各随机抽取20名同学的成绩进行整理、描述和分析(成绩用x表示,共分为四组:A.x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100,下面给出了部分信息:七年级学生成绩为:66,76,77,78,79,81,82,83,84,86,86,86,88,88,91,91,92,95,96,99;八年级C组学生成绩为:88,81,84,86,87,83,89.七、八年级学生成绩统计表:年级平均数中位数众数方差七年级85.286b62.1八年级85.2a9185.3根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)根据以上数据,你认为哪个年级对爱国主义教育知识掌握更好?请说明理由(写出一条理由即可);(3)该校七、八年级共840名学生参加了此次知识竞赛活动,估计两个年级成绩为优秀(90分及以上)的学生共有多少人?七.(本大题满分12分)22.(12分)为了丰富学生的课余生活,加强同学们户外锻炼的意识,学校举办了排球赛.如图,已知学校排球场的长度OD为18米,位于球场中线处球网的高度AB为2.24米,一队员站在点O处发球,排球从点O的正上方1.7米的点C向正前方做抛物线运动,当排球运行至离点O的水平距离OE为5米时,到达最高点G,建立如图所示的平面直角坐标系.(1)这名队员发球后,当球上升的最大高度为3.7米时,他此次发球是否会过网?请说明理由;(2)在(1)的条件下,对方距球网1米的点F处站有一队员,她起跳后够到的最大高度为2.02米,则这次她是否可以拦网成功(假设她够到球一定拦网成功)?请通过计算说明.八、(本大题满分14分)23.(14分)已知正方形ABCD,E,F为平面内两点.(1)如图1,当点E在边AB上时,DE⊥DF,且B,C,F三点共线.求证:AE=CF;(2)如图2,当点E在正方形ABCD外部时,DE⊥DF,AE⊥EF,且E,C,F三点共线.猜想并证明线段AE,CE,DE之间的数量关系;(3)如图3,当点E在正方形ABCD外部时,AE⊥EC,AE⊥AF,DE⊥BE,且D,F,E三点共线,DE与AB交于G点.若DF=3,AE=,求CE的长.2024年安徽省合肥市名校联考中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,满分40分,每小题4分)1.【分析】根据绝对值的意义解答即可.【解答】解:﹣2024的绝对值是2024.故选:A.【点评】本题主要考查了绝对值的意义,解题的关键是熟练掌握.2.【分析】根据合并同类项,同底数幂相乘,同底数幂相除,积的乘方,逐项判断即可求解.【解答】解:A、a3+a3=2a3,故本选项错误,不符合题意;B、a3•a4=a7,故本选项正确,符合题意;C、(﹣a)6÷a3=a3,故本选项错误,不符合题意;D、(﹣2a)3=﹣8a3,故本选项错误,不符合题意;故选:B.【点评】本题主要考查了合并同类项、同底数幂相乘、同底数幂相除、积的乘方,熟练掌握运算法则是解题的关键.3.【分析】画出从左面看到的图形即可.【解答】解:该几何体的左视图故选:B.【点评】本题考查三视图,掌握从左面看到的图形是左视图是关键..4.【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:+=0,去分母得:x+3(x﹣2)=0,解得:x=,检验:把x=代入得:x(x﹣2)≠0,∴分式方程的解为x=.故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.【分析】先根据直角三角形的两锐角互余可得∠CEF=20°,最后由平行线的性质可得结论.【解答】解:如图,在矩形ABCD中,∴∠C=90°,AD∥BC,∵∠EFC=70°,∴∠CEF=20°,∵∠GEF=90°,∴∠CEG=90°+20°=110°,∵AD∥BC,∴∠AGE=∠CEG=110°.故选:C.【点评】本题考查了矩形的性质,直角三角形的性质,平行线的性质,熟练掌握直角三角形两锐角互余是本题的关键.6.【分析】先根据反比例函数的性质得到k>1,再根据完全平方式的特点a2±2ab+b2求得k=4,进而求得k即可求解.【解答】解:∵在反比例函数的图象的每一支上,y都随x的增大而减小∴k﹣1>0,则k>1,∵整式x2﹣kx+4可以用完全平方公式进行因式分解.∴﹣k=2×1×2=±4,则k=±4,故k=4,∴该反比例函数的表达式为.故选:B.【点评】本题考查反比例函数的图象与性质、完全平方公式,熟练掌握相关公式运算法则是关键.7.【分析】画树状图(用A、B、C分别表示“二胡课”“轮滑课”“围棋课”三种课程)展示所有9种等可能的结果数,找出两人恰好选择同一课程的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“二胡课”“轮滑课”“围棋课”三种课程)∵共有9种等可能的结果数,其中两人恰好选择同一课程的结果数为3,∴两人恰好选择同一课程的概率=.故选:A.【点评】本题考查了列表法与树状图法,解答本题的关键要明确:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.8.【分析】连接BD,作AE⊥CD于点E,由折叠得AB′=AB,B′C=BC,∠CAB′=∠CAB=∠BAB′,则AB′=AD,所以∠EAB′=∠EAD=∠DAB′,所以∠EAC=∠BAD=45°,可证明∠B′CA=∠BCA=45°,则∠BCD=90°,所以BC2+CD2=AB2+AD2=BD2,设B′C=BC=m,则m2+(m+6)2=92+92,求得m=6﹣3,则CD =6+3,于是得到问题的答案.【解答】解:连接BD,作AE⊥CD于点E,则∠AEC=90°,∵△ABC沿着AC折叠,则点B恰好落在CD的点B′上处,∴AB′=AB,B′C=BC,∠CAB′=∠CAB=∠BAB′,∵AB=AD,∠BAD=90°,∴AB′=AD,∴∠EAB′=∠EAD=∠DAB′,∴∠EAC=∠CAB′+∠EAB′=(∠BAB′+∠DAB′)=∠BAD=45°,∴∠ECA=∠EAC=45°,∴∠B′CA=∠BCA=45°,∴∠BCD=∠B′CA+∠BCA=90°,∴BC2+CD2=AB2+AD2=BD2,∴设B′C=BC=m,∵B′D=6,AB=AD=9,∴CD=m+6,∴m2+(m+6)2=92+92,正理得m2+6m﹣63=0,解得m1=6﹣3,m2=﹣6﹣3(不符合题意,舍去),∴CD=6﹣3+6=6+3,故选:B.【点评】此题重点考查轴对称的性质、等腰三角形的“三线合一”、等腰直角三角形的判定与性质、勾股定理等知识,正确地作出辅助线是解题的关键.9.【分析】证明△ADE为等边三角形,利用y=×PH×EQ=××(4﹣x)=﹣,即可求解.【解答】解:∵BC=4,E为BC的中点,则BE=2,在Rt△ABE中,AE=,BE=2,则AE=4,同理可得ED=4=AE=AD,故△ADE为等边三角形,则∠AED=60°,∵PE=QD=x,则QE=4﹣x,在△PQE中,过点P作PH⊥ED于点H,则PH=PE sin∠AED=x•sin60°=,则y=×PH×EQ=×(4﹣x)=,该函数为开口向下的抛物线,x=2时,y的最大值为,故选:C.【点评】本题考查的是动点图象问题,涉及到二次函数、解直角三角形等知识,有一定的综合性,难度适中.10.【分析】先确定点E的运动路线,再根据轴对称,以及点与圆周上点的最短路线将PE+PF 的最小值表示成两确定长度的线段差,最后可用勾股定理解决问题.【解答】解:∵四边形ABCD是正方形,∴AD=AB,∠DAM=∠ABN=90°,又∵AM=BN,∴△DAM≌△ABN(SAS),∴∠ADM=∠BAN,∵∠DAE+∠BAN=∠DAM=90°,∴∠DAE+∠ADM=90°,∴∠AFD=90°,∴点F在以AD为直径的⊙O上,作点F关于直线BC的对称点F',连接OF'交⊙O于点E',PF',则PF=PF',∴PE+PF=PE+PF'≥E'F'=OF'﹣OE',即PE+PF的最小值为OF'﹣OE',∵AD=AB=4,点F为AB的中点,∴OA=OE'=2,AF'=AB+BF'=4+2=6,在Rt△OAF'中,由勾股定理,得OF'===2,∴OF'﹣OE'=2﹣2,即PE+PF的最小值为:2﹣2,故选:B.【点评】本题考查轴对称﹣最短路线问题,点到圆周的最短路线问题,解答中涉及轴对称,正方形性质,三角形确定的判定和性质,隐圆的确定,勾股定理等知识,能灵活运用相关知识是解题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=3﹣2=.故答案为:.【点评】本题考查的是二次根式的加减,熟知二次根式的加减实质上是合并同类项是解答此题的关键.12.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:3259亿=325900000000=3.259×1011,故答案为:3.259×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【分析】连接AD、OD,则∠ODB=∠B,由AB=AC=4,∠BAC=120°,得∠C=∠B=30°,所以∠ODB=∠C,则OD∥AC,由AB为⊙O的直径,得∠ADB=90°,则=cos30°=,求得CD=BD=AB=2,由切线的性质得DE⊥OD,则∠CED =∠ODE=90°,所以DE=CD=,于是得到问题的答案.【解答】解:连接AD、OD,则OD=OB,∴∠ODB=∠B,∵AB=AC=4,∠BAC=120°,∴∠C=∠B=×(180°﹣120°)=30°,∴∠ODB=∠C,∴OD∥AC,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC,=cos B=cos30°=∴CD=BD=AB=×4=2,∴DE与⊙O相切于点D,∴DE⊥OD,∴∠CED=∠ODE=90°,∴DE=CD=×2=,故答案为:.【点评】此题重点考查直角所对的圆周角是直角、等腰三角形的“三线合一”、三角形内角和定理、平行线的判定与性质、切线的性质、锐角三角函数与解直角三角形等往右,正确地作出辅助线是解题的关键.14.【分析】(1)利用对称轴公式即可求解;(2)画出函数y=x2+4x+2(﹣6≤x<1)的图象,由图象知当﹣2≤x1<1或﹣6≤x1<﹣5时,线段GH与抛物线y=x2+4x+2(﹣6≤x<1)只有1个交点;当﹣5≤x1<﹣2时,求得9<GH≤21,则GH>MN,此时线段GH与抛物线y=x2+4x+2(﹣6≤x<1)有2个交点.【解答】解:(1)∵y=x2+4x+2,∴此抛物线的对称轴为直线x=﹣=﹣2,故答案为:x=﹣2.(2)如图,当x=1时,y=x2+4x+2=7,即M(1,7),∵对称轴为直线x=﹣2,∴M(1,7)关于直线x=﹣2的对称点为N(﹣5,7),∴MN=1﹣(﹣5)=6,由图象知当﹣2≤x1<1或﹣6≤x1<﹣5时,线段GH与抛物线y=x2+4x+2(﹣6≤x<1)只有1个交点;当﹣5≤x1<﹣2时,GH=﹣3x1+1﹣x1=﹣4x1+1,∴9<GH≤21,∴GH>MN,此时线段GH与抛物线y=x2+4x+2(﹣6≤x<1)有2个交点.综上所述,x1的取值范围是﹣5≤x1<﹣2,故答案为:﹣5≤x1<﹣2.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,数形结合是解题的关键.三.(本答题共2题,每小题8分,满分16分)15.【分析】根据特殊角的三角函数值、立方根、零指数幂、有理数的乘方运算法则分别计算即可.【解答】解:==1﹣2+1﹣1=﹣1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、立方根、零指数幂、有理数的乘方运算法则是解题的关键.16.【分析】设第一次购进的“龙辰辰”玩具每件的进价是x元钱,则第二次购进的“龙辰辰”玩具每件的进价是(1+20%)x元钱,根据该商场第二次同样用2400元购进的数量比第一次少10件,列出分式方程,解方程即可.【解答】解:设第一次购进的“龙辰辰”玩具每件的进价是x元钱,则第二次购进的“龙辰辰”玩具每件的进价是(1+20%)x元钱,由题意得:﹣=10,解得:x=40,经检验,x=40是原方程的解,且符合题意,答:第一次购进的“龙辰辰”玩具每件的进价是40元钱.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.四.(本答题共2题,每小题8分,满分16分)17.【分析】(1)分别作出点A、B、C关于x轴的对称点,顺次连接即可;(2)分别连接A1O、B1O、C1O并分别延长到A2、B2、C2,使得OA2=2A1O、OB2=2B1O、OC2=2C1O,顺次连接A2、B2、C2即可.【解答】解:(1)如图,△A1B1C1即为所作.(2)如图,△A2B2C2即为所作.【点评】本题考查轴对称图形和位似图形的作图,熟练掌握作图方法是解题的关键.18.【分析】(1)根据提供的算式写出第4个算式即可;(2)根据规律写出通项公式然后证明即可.【解答】解:(1)∵第1个等式:12+2×1=1×(1+2);第2个等式:22+2×2=2×(2+2);第3个等式:32+2×3=3×(3+2);…由上可知,这些算式的规律为等式左边为序号的平方加上序号数的2倍,右边为序号数与比序号大2的数的积,∴第4个等式:42+2×4=4×(4+2),故答案为:42+2×4=3×(4+2);(2)由规律可知,第n个等式为:n2+2n=n(n+2).理由如下:∵左边=n2+2n,右边=n(n+2)=n2+2n,∴左边=右边,即n2+2n=n(n+2).故答案为:n2+2n=n(n+2).【点评】本题考查了数字的变化类问题,解题的关键是仔细观察各个等式并从中找到规律.五.(本答题共2题,每小题10分,满分20分)19.【分析】过B作BE⊥AD于E,过C作CF⊥AD于F,根据矩形的性质得到BE=CF,BC=EF,解直角三角形即可得到结论.【解答】解:过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF,BC=EF,有题意可得∠BAD=90°﹣30°=60°,AB=160米,AD=146米,∴(米),∴米,∵∠DCF=55°,∴DF=CF•tan55°≈197.91米,∴BC=EF=AD﹣AE+DF≈146﹣80+197.91=263.91≈264(米),答:桥BC的长度约为264米.【点评】此题考查了解直角三角形的应用一方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20.【分析】(1)根据切线的判定,连接OC,证明出OC⊥FC即可,利用直径所得的圆周角为直角,三角形的内角和以及等腰三角形的性质可得答案;(2)由cos B=,根据锐角三角函数的意义和勾股定理可得CD:AC:AD=3:4:5,再根据相似三角形的性质可求出答案.【解答】(1)证明:连接OC,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ADC+∠CAD=90°,又∵OC=OD,∴∠ADC=∠OCD,又∵∠DCF=∠CAD.∴∠DCF+∠OCD=90°,即OC⊥FC,∴FC是⊙O的切线;(2)解:∵∠B=∠ADC,cos B=,∴cos∠ADC=,在Rt△ACD中,∵cos∠ADC==,AD=10,∴CD=AD•cos∠ADC=10×=6,∴AC==8,∴=,∵∠FCD=∠FAC,∠F=∠F,∴△FCD∽△FAC,∴===,设FD=3x,则FC=4x,AF=3x+10,又∵FC2=FD•FA,即(4x)2=3x(3x+10),解得x=(取正值),∴FD=3x=.【点评】本题考查切线的判定和性质,圆周角定理,直角三角形的边角关系以及相似三角形,掌握切线的判定方法,直角三角形的边角关系以及相似三角形的性质是正确解答的前提.六.(本大题满分12分)21.【分析】(1)分别根据中位数、众数的意义求解即可求出a、b,用“1”分别减去其它组所占百分比可得m的值;(2)从平均数、中位数、众数的角度比较得出结论;(3)用总人数乘七、八年级不低于90分人数所占百分比即可.【解答】解:(1)由题意可知,八年级A组有:20×10%=2(人),B组有:20×=3(人),把被抽取八年级20名学生的数学竞赛成绩从小到大排列,排在中间的两个数分别为87,88,故中位数a==87.5;在被抽取的七年级20名学生的数学竞赛成绩中,8(6分)出现的次数最多,故众数b=86;m%=1﹣10%﹣﹣=40%,故m=40.故答案为:87.5,86,40;(2)八年级成绩较好,理由:因为八年级学生成绩的中位数比七年级的高,所以八年级成绩较好;(3)840×=294(人),答:估计两个年级成绩为优秀(9(0分)及以上)的学生大约共有294人.【点评】本题考查了中位数、众数以及用样本估计总体,理解中位数、众数的意义是正确解答的关键.七.(本大题满分12分)22.【分析】(1)根据题意,抛物线的顶点坐标(5,3.7),设抛物线的解析式为y=a(x﹣5)2+3.7,把C(0,1.7)代入解析式计算即可.(2)根据题意,当x=9+1=10时,求对应的函数值,与在2.02米比较,计算解答即可.【解答】解:(1)他此次发球会过网,理由如下:根据题意,抛物线的顶点坐标(5,3.7),设抛物线的解析式为y=a(x﹣5)2+3.7,把C(0,1.7)代入解析式,得1.7=a(0﹣5)2+3.7,解得.∴.∵OD=18,点A为OD中点,∴OA=9.将x=9代入解析式得,.∵2.42>2.24,∴他此次发球会过网.(2)这次她可以拦网成功;理由如下:OF=OA+AF=9+1=10(米).把x=9+1=10代入,得y=1.7,∵2.02>1.7,故她可以拦网成功.【点评】本题考查了抛物线的应用,熟练掌握顶点式抛物线解析式的确定,把生活问题转化为函数值的大小比较是解题的关键.八、(本大题满分14分)23.【分析】(1)证明△DAE≅△DCF(ASA),可得结论;(2)猜想:AE=CF,证明△DAE≅△DCF(ASA),推出DE=DF.AE=CF即可;(3)连接AC,取AC的中点O,连接OE,OD.证A、E、C、D四点共圆,得∠AED =∠ACD=45°,则∠AED=∠DEC=45°,再由(2)可知,.然后证,即可解决问题.【解答】(1)证明:如图一中,∵四边形ABCD是正方形,∴DA=DC,∠A=∠ADC=∠DCB=∠DCF=90°,∵DE⊥DF,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴AE=CF.(2)解:猜想:EA+EC=DE.理由:如图2中,∵四边形ABCD是正方形,∴DA=DC,∠ADC=90°,∵DE⊥DF,AE⊥EF,∴∠AEF=∠EDF=90°,∴∠ADC=∠EDF,∴∠ADE=∠CDF,∵∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°,∵∠DCF+∠DCE=180°,∴∠DAE=∠DCF,∴△DAE≌△DCF(AAS),∴AE=CF,DE=DF,∴EF=DE,∵AE+EC=EC+CF=EF,∴EA+EC=DE.(3)解:如图3中,连接AC,取AC的中点O,连接OE,OD.∵四边形ABCD是正方形,AE⊥EC,∴∠AEC=∠ADC=90°,∵OA=OC,∴OD=OA=OC=OE,∴A,E,C,D四点共圆,∴∠AED=∠ACD=45°,∴∠AED=∠DEC=45°,由(2)可知,AE+EC=DE,∵AE⊥AF,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴AE=AF=,∴EF=AE=2,∵DF=3,∴DE=5,∴+EC=5,∴EC=4.【点评】本题是四边形综合题,考查了正方形的性质、全等三角形的判定和性质、四点共圆、圆周角定理、等腰直角三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用建模的思想思考问题,属于中考压轴题。

2023年安徽省名校大联考中考数学模拟试卷(一)及答案解析

2023年安徽省名校大联考中考数学模拟试卷(一)及答案解析

2023年安徽省名校大联考中考数学模拟试卷(一)一、选择题(本大题共9小题,每小题4分,满分36分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的。

1.(4分)下面四个数中,比1小的数是()A.1B.C.﹣2D.2.(4分)下列计算正确的是()A.(﹣a3)2=a6B.3a+2b=5abC.a6÷a3=a2D.(a﹣b)=a2﹣b23.(4分)据安徽省教育招生考试院消息,2023年硕士研究生招生考试,安徽省共约23.2万名考生参考,比2022年研考报名人数增加7%,再创历史新高,其中23.2万用科学记数法表示为()A.23.2×104B.2.32×104C.2.32×105D.2.32×106 4.(4分)如下列各图片所示的景德镇瓷器中,主视图和左视图一样的是(不考虑瓷器花纹等因素)()A.B.C.D.5.(4分)如图是两圆柱形连通容器,向甲容器匀速注水,则下面可以近似地刻画甲容器的水面高度h(cm)随时间t(分)的变化情况的是()A.B.C.D.6.(4分)在矩形ABCD中,AC交BD于O,AO:BO:AB的值可以是()A.1:1:2B.1::1C.2:3:2D.2:2:37.(4分)已知的整数部分是方程x2﹣3x﹣m=0的一个根,则该方程的另一根是()A.﹣2B.2C.﹣1D.18.(4分)垃圾分类可以把有用的垃圾回收再利用,减少了对环境的危害.随机将一节废旧的电池(有害垃圾)和矿泉水空瓶(可回收垃圾)分别放入不同的垃圾桶,则投放正确的概率为()A.B.C.D.9.(4分)在Rt△ABC中,斜边AC=10,点B为动点,以AC为边长作等边△ACD,连接BD,则BD的最大值是()A.10B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)10.(5分)不等式的解集是.11.(5分)因式分解:2x2﹣8=.12.(5分)如图,已知⊙O的两条弦AC,BD相交于点E,∠BAC=70°,∠ACD=50°,连接OE,若E为AC的中点,则∠OEB的度数是.13.(5分)如图,在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=45°,AE交BD于点M,AF交BD于点N,EF=2.则:(1)DF+BE的值为.(2)若F是CD的中点,则tan∠AEF=.三、(本大题共2小题,每小题8分,满分16分)14.(8分)计算:.15.(8分)如图,在小正方形的边长为1个单位的网格中,已知△ABC各顶点都在格点上.(1)画出△ABC向右平移5个单位得到的△A1B1C1;(2)画出△A1B1C1绕点B1逆时针旋转90°得到的△A2B1C2.四、(本大题共2小题,每小题8分,满分16分)16.(8分)【数学阅读】计算:1+2+3+ (100)解:设S=1+2+3+6+…+100,①则S=100+99+98+…+1,②①+②(即左右两边分别相加),得:2S=(1+100)+(2+99)+(3+98)+…+(100+1)=100×101.所以,所以1+2+3+…+100=5050.【问题解决】利用上面的方法解答下面的问题:(1)猜想:1+2+3+…+n=(用含n的式子表示);(2)利用(1)中的结论,计算:1001+1002+ (2000)17.(8分)为了慰问北京冬奥会志愿者,某物流公司调用了卡车12辆和6辆分别从甲、乙两地运送慰问物资,其中10辆车到张家口赛区,8辆车到延庆赛区.已知每辆卡车从甲地运送物资到张家口赛区和延庆赛区的运费分别为40元和80元,从乙地运送物资到张家口赛区和延庆赛区的运费分别为30元和50元.设从甲地去往张家口赛区的卡车有x 辆.(1)用含x的代数式填表;张家口赛区延庆赛区甲地(12辆)x12﹣x乙地(6辆)10﹣x支付运费(元)10x+300(2)若该公司共支付运费980元,求车辆的运输方案是如何安排的?五、(本大题共5小题,每小题10分,满分58分)18.(10分)如图,某人以3.6公里/小时的速度在南北方向的公路上行走,在A处时,他观测到在点A的东北方向有一古塔B.他沿正北行走40分钟后到达C处,观测到古塔B 在点C的北偏东75°方向,求点C与古塔B的距离(结果精确到0.1公里,参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,).19.(10分)为了解学校七年级学生的身高情况,九年级数学兴趣小组进行了抽样调查,并将收集的数据进行整理,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm),请根据统计图所提供的信息,回答下列问题:(1)一共调查了多少名七年级学生?补全频数分布直方图;(2)样本的中位数在统计图所示的哪个小组范围内?(3)如果上述样本的平均数为157cm,方差为0.8;该校八年级学生身高的平均数为159cm,方差为0.6,那么(填“七年级”或“八年级”)学生的身高比较整齐.20.(12分)如图,Rt△ABC的直角顶点C在⊙O上,⊙O与斜边AB相切于点E,⊙O交边AC于点D、交BC于点F,连接EF,ED,且EF∥AC.(1)求证:四边形CDEF为矩形;(2)若CD=2,∠BAC=30°,求AE的长.21.(12分)已知二次函数y=ax2+bx+2的图象经过点(1,m)、(﹣1,n).(1)小明判断m,n满足关系式:m﹣n=2b,请判断他的说法是否正确,并说明理由;(2)若m=2,n=0,求该二次函数的表达式;(3)当a<0,且满足a+b=0时,若该函数图象上的任意两点P(x1,y1),Q(x2,y2)满足x1=﹣2,y1>y2,求x2的取值范围.22.(14分)如图1,BD是菱形ABCD的对角线,点E是边CD上一点,将△BCE沿着BE 翻折,点C的对应点F恰好落在AD的延长线上,且AB=5.(1)求证:FB平分∠AFE;(2)如图2,若点F落在AD上.①猜想∠ABF与∠DBE之间的数量关系,并证明你的结论;②若,求证:EC=3DE.2023年安徽省名校大联考中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共9小题,每小题4分,满分36分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的。

安徽省中考数学模拟试卷(一)及答案

安徽省中考数学模拟试卷(一)及答案

密学校 班级姓名 考号密 封 线 内 不 得 答 题安徽省中考数学模拟试卷(一)(满分150分,时间120分钟)一、选择题(本大题共10小题,每小题4分,共40分.) 1.—3的绝对值是( )A .3B .—3C .13D .— 132.下列等式成立的是A.a 2+a 3=a 5 B.a 3-a 2=a C.a 2.a 3=a 6 D.(a 2)3=a6 3.用科学记数法表示537万正确的是( )A 、537×104B 、5.37×105C 、5.37×106D 、0.537×1074.如图所示,下列选项中,正六棱柱的左视图是( )第4题图A .B .C .D . 5.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为( )A .26元 B .27元 C .28元 D .29元 6.分式方程131x x x x +=--的解为( ) A .1x = B .1x =- C .3x = D .3x =-7.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( )A .30°B .45°C .60°D .75° 8.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) 第7题图 A .45 B .35 C .25 D .159.某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是( )10.如图,是某几何体的三视图及相关数据,则下面判断正确的是A. a>cB. b>cC. a 2+4b 2=c 2D. a 2+b 2=c 2二、填空题(本大题共4小题,每小题5分,共20分)11.函数y= 2x+1x-1中,自变量x 的取值范围是 .12.因式分解:2221a b b ---= . 13.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 14.如图,在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③ CH CA =;④ED BE 3=, 所有正确结论的序号是 . 三、(本大题共2小题,每小题8分,满分16分) 15.计算:|2-|o 2o 12sin30((tan45)-+-+16.解不等式组:331213(1)8x x x x -⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来. 第14题图 四、(本大题共2小题,每小题8分,满分16分)17.如图,MP 切⊙O 于点M ,直线PO 交⊙O 于点A 、B ,弦AC ∥MP ,求证:MO ∥BC .第9题图深 水 区 浅水区 P第17题图18.如图,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1.(1)写出点D1的坐标_________,点D旋转到点D1所经过的路线长______________;(2)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角..是________,则它所对应的正弦函数值是_________;(3)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若点D2(4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)五、(本大题共2小题,每小题10分,满分20分)19.在不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为1 2 .(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率20.某地震救援队探测出某建筑物废墟下方点C点A、B相距4m,探测线与地面的夹角分别是30º和(结果精确到0.1m,参考数据:2≈1.414,3≈1.六、(本题满分12分)21个乙种零件的进价少2元,且用80数量相同.(1(2件的总数量不超过95销售价格为15总利润(利润=售价-进价)超过371两种零件哪有几种方案?密学校 班级姓名 考号密 封 线 内 不 得 答 题E P D C B A E P D C B A 七、(本题满分12分)22.某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:⑴在这次问卷调查中,一共抽查了 名学生; ⑵请将上面两幅统计图补充完整;⑶图①中,“踢毽”部分所对应的圆心角为 度;⑷如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?八、(本题满分14分)23.已知:正方形ABCD 的边长为1,点P 为对角线BD 上一点,连接CP . (1)如图1,当BP =BC 时,作PE ⊥PC ,交AB 边于E ,求BE 的长; (2)如图2,当DP =DC 时,作PE ⊥PC ,交BC 边于E ,求BE 的长.图1 图2参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.A 2.C 3.D 4.B 5.C 6.D 7.C 8.C9.A 10.B 二、填空题(本大题共4小题,每小题5分,共20分) 11.)2)(2(2-+a a a 12.2 13.-8 14.②③④ 三、(本大题共2小题,每小题8分,满分16分) 15.解:原式=2+1-3+1………………6分 =1………………8分 16.解:解不等式23-x >x +1,得x <1, ……………………………………2分 解不等式)1(31--x ≤x -8,得x ≥-2, …………………………4分所以,原不等式组的解集是-2≤x <1. …………………………………6分 它的解集在数轴上表示为: ………………8分四、(本大题共2小题,每小题8分,满分16分)17.证:∵AB 是⊙O 的直径,∴∠ACB=90°.∵MP 为⊙O 的切线,∴∠PMO=90°. ∵MP ∥AC ,∴∠P=∠CAB ∴∠MOP=∠B ………………6分 从而,MO ∥BC.……8分18.解:(1)(3,-l ),10π; ………………………………………………3分(2)∠ACD ,22 (或∠DAC ,55) ………………………………………6分 (3)画出正确图形 …………………………………………………………8分 五、(本大题共2小题,每小题10分,满分20分) 19.解:(1)设蓝球个数为x 个则由题意得(2)密学校 班级姓名 考号密 封 线 内 不 得 答 题 七、(本题满分12分) 22.解:(1)200(2)补充图:扇形图中补充的跳绳25% ,其它20% 条形图中补充的高为50 (3)54(4)解:1860×40%=744(人).答:最喜欢“球类”活动的学生约有744人.八、(本题满分14分) 23.(1)∵四边形ABCD 是正方形,∴∠ABD =∠BDC =45°,∠BCP +∠DCP =90°, ∵PE ⊥PC ,∴∠BPE +∠BPC =90°, ∵BP =BC ,∴∠BPC =∠BCP , ∴∠BPE =∠DCP , 又BP =BC =DC , ∴△BPE ≌△DCP , ∴BE =PD .∵BC =CD =1,∴BD =2,又BP =BC =1,∴BE =PD =BD -BP =12-.………………………………7分 (2)∵BC =CD =DP =1,∴BD =2,PB =12-.∵PE ⊥PC ,∴∠EPC =90°,∴∠BPE +∠DPC =90°. ∵DP =DC ,∴∠DPC =∠DCP , 又∠BCP +∠DCP =90°,∴∠BPE =∠BCP , 又∠PBE =∠CBP , ∴△BPE ≌△BCP ,∴BP BE BC BP =,∴2231)12(22-=-==BC BP BE .……………………14分图①球类 40% 其它20% 踢毽15% 跳绳 25%图②。

【2020年】安徽省中考数学模拟试题(含答案)

【2020年】安徽省中考数学模拟试题(含答案)

2020年安徽省中考数学模拟试题含答案一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简: = .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.数学试题含答案解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD 面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE 和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。

2023年安徽省合肥市庐阳区中考数学模拟试卷及答案解析

2023年安徽省合肥市庐阳区中考数学模拟试卷及答案解析

2023年安徽省合肥市庐阳区中考数学模拟试卷一.选择题(每题4分,共10小题,满分40分)1.(4分)﹣2023的相反数是()A.B.2023C.D.32022.(4分)2月5日,合肥市统计局发布2022年全市经济运行情况.根据地区生产总值统一核算结果,2022年合肥全市生产总值(GDP)为12013.1亿元,连续七年每年跨越一个千亿台阶.数据12013.1亿用科学记数法表示为()A.1.20131×108B.12.0131×1012C.0.120131×1013D.1.20131×1012 3.(4分)如图所示几何体的俯视图是()A.B.C.D.4.(4分)下列运算正确的是()A.a6+a3=a9B.a3•a4=a12C.(a+1)2=a2+1D.(a5)2=a10 5.(4分)下列因式分解正确的是()A.y2﹣x2=(y+x)(x﹣y)B.x2﹣4x+2=(x﹣2)2C.9xy2+6xy+x=x(3y+1)2D.x2y﹣xy2=x(x+y)(x﹣y)6.(4分)下列命题是真命题的是()A.内错角相等B.四边形的外角和为180°C.等腰三角形两腰上高相等D.平面内任意三点都可以在同一个圆上7.(4分)骑自行车是一种健康自然的运动旅游方式,长期坚持骑自行车可增强心血管功能,提高人体新陈代谢和免疫力.如图是骑行爱好者老刘2023年2月12日骑自行车行驶路程(km)与时间(h)的关系图象,观察图象得到下列信息,其中错误的是()A.点P表示出发4h,老刘共骑行80kmB.老刘的骑行在0~2h的速度比3~4h的速度慢C.0~2h老刘的骑行速度为15km/hD.老刘实际骑行时间为4h8.(4分)如图,已知:平行四边形ABCD中,BE⊥CD于E,BE=AB,∠DAB=60°,∠DAB的平分线交BC于F,连接EF.则∠EFA的度数等于()A.30°B.40°C.45°D.50°9.(4分)函数与y=﹣kx2+k(k为常数且k≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.10.(4分)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.二.填空题(每题5分,共4小题,满分20分)11.(5分)﹣的立方根是.12.(5分)如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是.13.(5分)如图,在⊙O中,直径AB与弦CD交于点E,CD=2,四边形BCOD是菱形,则的长是.14.(5分)正方形ABCD中,AB=2,点P为射线BC上一动点,BE⊥AP,垂足为E,连=;在点P运动的过程中,的最小接DE、DP,当点P为BC中点时,S△ADE值为.三.(本答题共2题,每小题8分,满分16分)15.(8分)计算:(3﹣π)0﹣cos45°+()﹣1﹣|﹣4|.16.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?四.(本答题共2题,每小题8分,满分16分)17.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣4,﹣1),B(﹣2,﹣4),C(﹣1,﹣2).(1)请画出△ABC向右平移5个单位后得到的△A1B1C1;(2)请画出△ABC关于直线y=﹣x对称的△A2B2C2;(3)线段B1B2的长是.18.(8分)如图,下列图案都是由同样大小的基本图形⊙按一定规律所组成的,其中:第1个图案中基本图形的个数:1+2×2=5,第2个图案中基本图形的个数:2+2×3=8,第3个图案中基本图形的个数:3+2×4=11,第4个图案中基本图形的个数:4+2×5=14,….按此规律排列,解决下列问题:(1)写出第5个图案中基本图形的个数:;(2)如果第n个图案中有2024个基本图形,求n的值.五.(本答题共2题,每小题10分,满分20分)19.(10分)引江济淮工程是国家重大水利工程,也是安徽省的“一号工程”,2022年11月24日,引江济淮金寨南路桥主塔如图1顺利完成封项,犹如一颗“明珠”镶刻在派河大道之上,某校数学综合实践社团的同学们为了测量该主塔的高OA,在地面上选取点B 放置测倾仪,测得主塔顶端A的仰角∠AMN=45°,将测倾仪向靠近主塔的方向前移10米至点C处(点O,C,B在同一水平线上),测得主塔顶端A的仰角∠ANE=47.7°,测量示意图如图2所示,已知测倾仪的高度BM=1.5米,求金寨南路桥主塔的高OA.(精确到1米.参考数据:sin47.7°≈0.74,cos47.7°≈0.67,tan47.7°≈1.10)20.(10分)如图,点B为圆O外一点,过点B作圆O的切线,切点为A,点P为OB上一点,连接AP并延长交圆O于点C,连接OC,若OB与OC垂直.(1)求证:BP=AB;(2)若OB=10,圆O的半径为8,求AP的长.六.(本大题满分12分)21.(12分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.七.(本大题满分12分)22.(12分)某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y (件)、月销售利润w(元)的部分对应值如表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价﹣进价)(1)求y关于x的函数表达式;(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(3)现公司决定每销售1件商品就捐赠m元利润(m≤6)给“精准扶贫”对象,要求:在售价不超过52元时,每月扣除捐赠后的月销售利润随售价x的增大而增大,求m的取值范围.八.(本大题满分14分)23.(14分)如图①,△ABC是等腰直角三角形,在两腰AB、AC外侧作两个等边三角形ABD和ACE,AM和AN分别是等边三角形ABD和ACE的角平分线,连接CM、BN,CM与AB交于点P.(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求的值.2023年安徽省合肥市庐阳区中考数学模拟试卷参考答案与试题解析一.选择题(每题4分,共10小题,满分40分)1.【分析】根据相反数的定义,即可求解.【解答】解:﹣2023的相反数是2023,故选:B.【点评】本题考查的是相反数的定义,掌握只有符号不同的两个数叫做相反数是解题的关键.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:12013.1亿=12013.1×108=1.20131×1012,故选:D.【点评】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解本题的关键.3.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:如图所示:几何体的俯视图是:.故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.4.【分析】分别根据合并同类项、同底数幂的乘法、完全平方公式、幂的乘方等知识逐项判断即可求解.【解答】解:A.a6和a3不是同类项,不能相加,故原选项计算错误,不合题意;B.a3•a4=a7,故原选项计算错误,不合题意;C.(a+1)2=a2+2a+1,故原选项计算错误,不合题意;D.(a5)2=a10,故原选项计算正确,符合题意.故选:D.【点评】本题考查了合并同类项、同底数幂的乘法、完全平方公式、幂的乘方等知识,熟知相关计算法则是解题关键.5.【分析】各式分解得到结果,即可作出判断.【解答】解:A、原式=(y+x)(y﹣x),不符合题意;B、原式不能分解,不符合题意;C、原式=x(9y2+6y+1)=x(3y+1)2,符合题意;D、原式=xy(x﹣y),不符合题意.故选:C.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.【分析】根据平行线的性质,多边形的外角和定理,等腰三角形的性质,圆的有关性质解答即可.【解答】解:A.内错角相等,是假命题,不符合题意;B.四边形的外角和为180°,是假命题,不符合题意;C.等腰三角形两腰上高相等,是真命题,符合题意;D.平面内任意三点都可以在同一个圆上,是假命题,不符合题意;故选:C.【点评】本题主要考查了命题和定理,熟练掌握平行线的性质,多边形的外角和定理,等腰三角形的性质,圆的有关性质是解答本题的关键.7.【分析】观察所给图象,结合横纵坐标的意义得出骑自行车的速度,再分别分析选项的描述即可解答.【解答】解:由图象可知,A.点P表示出发4h,老刘共骑行80km,故本选项正确,不符合题意;B.0~2h老刘的骑行速度为=15(km/h),3~4h老刘的骑行速度为=50(km/h),∵15<50,∴老刘的骑行在0~2h的速度比3~4h的速度慢,故本选项正确,不符合题意;C.由上述可知,0~2h老刘的骑行速度为=15(km/h),故本选项正确,不符合题意;D.2~3h,时间增加,但路程没有增加,老刘处于停止状态,因此实际骑行时间为3h,故本选项错误,符合题意故选:D.【点评】本题考查了函数的图象,读懂题意,从所给图象中获取相关信息是解题关键.8.【分析】根据平行四边形的性质得到AD∥BC,根据平行线的性质得到∠DAF=∠AFB,根据角平分线的定义得到∠DAF=∠BAF=DAB=30°,求得∠BAF=∠AFB=30°,求得∠EBF=30°,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠AFB,∵AF平分∠∠DAB,∴∠DAF=∠BAF=DAB=30°,∴∠BAF=∠AFB=30°,∴AB=BF,∵BE=AB,∴BE=BF,∴∠BEF=∠BFE,∵BE⊥CD,∴∠BEC=90°,∵DAB=60°,∴∠C=∠DAB=60°,∴∠EBF=30°,∴∠BFE=(180°﹣30°)=75°,∴∠EFA=∠BFE﹣∠BFA=45°,故选:C.【点评】本题考查了平行四边形的性质,角平分线的定义,等腰三角形的性质,熟练掌握平行四边形的性质是解题的关键.9.【分析】根据题意中的函数解析式和分类讨论的方法,可以判断哪个选项中的图象是正确的.【解答】解:当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx2+k的图象开口向下,顶点在y轴的正半轴上,故选项B符合题意,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx2+k的图象开口向上,顶点在y轴的负半轴上,选项A、C、D不符合题意.故选:B.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴∠BED=90°,∵∠B=60°,∴∠BDE=30°,∴BE=BD=,∴DE==,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.二.填空题(每题5分,共4小题,满分20分)11.【分析】先根据算术平方根的定义求出,再利用立方根的定义解答.【解答】解:∵82=64,∴=8,∴﹣=﹣8,∵(﹣2)3=﹣8,∴﹣的立方根是﹣2.故答案为:﹣2.【点评】本题考查了立方根与算术平方根的定义,是易错题,熟记概念是解题的关键.12.【分析】将所求式子化简后再将已知条件中a﹣b=2整体代入即可求值;【解答】解:∵a﹣b﹣2=0,∴a﹣b=2,∴1+2a﹣2b=1+2(a﹣b)=1+4=5;故答案为5.【点评】本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键.13.【分析】根据四边形BCOD是菱形,得OC=BC,OB⊥CD,△OBC是等边三角形,所以∠BOC=60°,根据垂径定理得CE=CD=,再求出半径即可求出答案.【解答】解:∵四边形BCOD是菱形,∴OC=BC,OB⊥CD,∵OC=OB,∴OC=OB=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵AB为⊙O的直径,∴CE=CD=,∴OC=CE÷sin∠COE=÷=2,∴的长是=π.故答案为:π.【点评】本题考查了弧长的计算,菱形的性质,关键是根据菱形的性质得∠BOC=60°.14.【分析】过点E作EF⊥AD于F,由cos∠BAP=cos∠AEF=cos∠BAE以及AP=;把△APB绕点A逆时针旋转90°得=,可得EF=,即可求得S△ADE到△ADG,取AG的中点H,连接HD、HP,由旋转的性质,得:AG=AP,∠1=∠2,∠ADG=∠ABP=90°,由勾股定理得HP=AP,再由两点之间线段最短得HD+DP≥HP,即得AP+DP≥AP,从而可得的最小值为.【解答】解:如图,过点E作EF⊥AD于F,∵∠BAD=∠EFD=90°,∴EF∥AB,∴∠BAP=∠AEF=∠BAE,∴cos∠BAP=cos∠AEF=cos∠BAE,∴,∵点P为BC中点,∴BP=AB=1,∴AP==,∴==,∴AE=,∴EF=,=AD•EF=×2×=;∴S△ADE如图,把△APB绕点A逆时针旋转90°得到△ADG,取AG的中点H,连接HD、HP,由旋转的性质,得:AG=AP,∠1=∠2,∠ADG=∠ABP=90°,∴∠2+∠3=∠1+∠3=90°,AH=HD=AP,∵AH2+AP2=HP2,∴HP=AP,∵HD+DP≥HP,∴AP+DP≥AP,∴DP≥AP,∴的最小值为.故答案为:;.【点评】本题主要考查了正方形的性质、勾股定理、锐角三角函数、旋转的性质、直角三角形斜边中线等于斜边一半、两点之间线段最短,解决此题的关键是把△APB绕点A 逆时针旋转90°得到△ADG,取AG的中点H,构造直角三角形斜边中线等于斜边一半以及两点之间线段最短,从而得到AP+DP≥AP.三.(本答题共2题,每小题8分,满分16分)15.【分析】本题涉及零指数幂、特殊角的三角函数值、负指数为正指数的倒数、取绝对值四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣×+2﹣4=﹣2.【点评】此题主要考查了实数的运算,其中特殊角的三角函数值是常考的知识点,因此要熟记特殊角的三角函数值;另外,负指数为正指数的倒数;任何非0数的0次幂等于1 16.【分析】(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为a,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据题意得:=,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为a,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.【点评】本题考查了一元二次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,列出分式方程;(2)找准等量关系,列出一元二次方程.四.(本答题共2题,每小题8分,满分16分)17.【分析】(1)根据平移的性质即可画出△ABC向右平移5个单位后得到的△A1B1C1;(2)根据对称性即可画出△ABC关于直线y=﹣x对称的△A2B2C2;(3)根据勾股定理即可得线段B1B2的长.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)线段B1B2的长是=.故答案为:.【点评】本题考查了作图﹣轴对称变换、作图﹣平移变换,解决本题的关键是掌握轴对称的性质和平移的性质.18.【分析】(1)根据所给的规律进行求解即可;(2)总结出第n个图形中基本图形的个数,从而可求解.【解答】解:(1)由题意得:第5个图案中基本图形的个数:5+2×6=17,故答案为:17;(2)由题意得:第n个图形中基本图形的个数为:n+2(n+1)=3n+2,∵第n个图案中有2024个基本图形,∴3n+2=2024,解得:n=674.【点评】本题主要考查图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.五.(本答题共2题,每小题10分,满分20分)19.【分析】延长MN交AO于点F,根据题意可得:MF⊥AO,OF=NC=MB=1.5米,MN =BC=10米,然后设AF=x米,在Rt△AFM中,利用锐角三角函数的定义求出FM的长,从而求出FN的长,再在Rt△AFN中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:延长MN交AO于点F,由题意得:MF⊥AO,OF=NC=MB=1.5米,MN=BC=10米,设AF=x米,在Rt△AFM中,∠AMF=45°,∴MF==x(米),∴FN=MF﹣MN=(x﹣10)米,在Rt△AFN中,∠ANF=47.7°,∴tan47.7°==≈1.1,解得:x=110,经检验:x=110是原方程的根,∴AF=110米,∴AB=AF+FO=111.5≈112(米),∴金寨南路桥主塔的高OA约为112米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.【分析】(1)由垂直的定义,等腰三角形的性质得到∠OAC+∠BPA=90°,由切线的性质得到∠OAC+∠BAP=90°因此∠BAP=∠BPA得到AB=PB;(2)作BH⊥AP于H,由勾股定理求出AB的长,CP的长,由△BPH∽△CPO,即可求出PH=,从而求出AP的长.【解答】(1)证明:∵OB⊥OC,∴∠POC=90°,∴∠C+∠CPO=90°,∵OC=OA,∴∠C=∠OAC,∴∠OAC+∠CPO=90°,∵∠BPA=∠CPO,∴∠OAC+∠BPA=90°,∵BA与圆切于A,∴半径OA⊥AB,∴∠OAC+∠BAP=90°,∴∠BAP=∠BPA,∴AB=PB;(2)解:作BH⊥AP于H,∵AB=PB,∴AP=2PH,∵OB=10,圆O的半径为8,∴AB===6,∴BP=AB=6,∴OP=OB﹣PB=10﹣6=4,∴PC===4,∵∠BHP=∠COP,∠BPH=∠CPO,∴△BPH∽△CPO,∴PH:PO=BP:CP,∴PH:4=6:4,∴PH=,∴AP=2PH=,∴AP的长是.【点评】本题考查切线的性质,余角的性质,勾股定理,相似三角形的判定和性质,关键是通过作辅助线构造相似三角形.六.(本大题满分12分)21.【分析】(1)先利用跳绳的人数和它所占的百分比计算出调查的总人数,再用总人数分别减去喜欢其它项目的人数可得到喜欢篮球项目的人数,再计算出喜欢乒乓球项目的百分比,然后用800乘以样本中喜欢篮球项目的百分比可估计全校学生中喜欢篮球项目的人数;(2)画树状图展示所有20种等可能的结果数,再找出所抽取的2名同学恰好是1名女同学和1名男同学的结果数,然后根据概率公式求解【解答】解:(1)调查的总人数为20÷40%=50(人),所以喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);“乒乓球”的百分比=×100%=20%,因为800××100%=80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)如图,(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七.(本大题满分12分)22.【分析】(1)设出函数解析式,用待定系数法求函数解析式即可;(2)根据表中数据可以求出每件进价,设该商品的月销售利润为w元,根据利润=单件利润×销售量列出函数解析式,根据函数的性质求出函数最值;(3)根据总利润=(单件利润﹣m)×销售量列出函数解析式,再根据x≤52时,每月扣除捐赠后的月销售利润随售价x的增大而增大,利用函数性质求m的取值范围.【解答】解:(1)设一次函数解析式为y=kx+b,根据题意,得,解得:,所以y与x的函数表达式为y=﹣10x+700;(2)由表中数据知,每件商品进价为=30(元),设该商品的月销售利润为w元,则w =(x ﹣30)y =(x ﹣30)(﹣10x +700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,∵﹣10<0,∴当x =50时,w 最大,最大值为4000,∴当该商品的售价是50元时,月销售利润最大,最大利润为4000元;(3)根据题意得:w =(x ﹣30﹣m )(﹣10x +700)=﹣10x 2+(1000+10m )x ﹣21000﹣700m ,对称轴为直线x =﹣=50+,∵﹣10<0,∴当x ≤50+时,w 随x 的增大而增大,∵x ≤52时,每月扣除捐赠后的月销售利润随售价x 的增大而增大,∴50+>51.5,解得:m >3,∵3<m ≤6,∴m 的取值范围为3<m ≤6.【点评】本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.八.(本大题满分14分)23.【分析】(1)根据△ABC 是等腰直角三角形,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,即可得到AB =AC ,∠BAC =90°,∠BAM =∠CAN =30°,AM =AN ,进而得出△BAN ≌△CAM ,进而得到CM =BN ;(2)依据∠APF =∠AMC ,∠MAC =∠PAF =120°,即可判定△APF ∽△AMC ;(3)连接CF ,依据A ,F ,C ,P 四点共圆,可得∠AFP +∠CFN =90°,根据∠CFN +∠FCN =90°,可得∠FCN =∠AFP =∠ACM .再根据∠FNC =∠PAC =90°,可得△PAC∽△FNC ,进而得出==2①;根据△APF ∽△AMC ,可得===②,联立①②可得=,进而得到====.【解答】解:(1)∵△ABC 是等腰直角三角形,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,∴AB=AC,∠BAC=90°,∠BAM=∠CAN=30°,AM=AN,∴∠BAN=∠CAM=120°,∴△BAN≌△CAM,∴CM=BN;(2)∵∠APF=∠APC﹣∠CPF=∠APC﹣30°,∠AMC=∠APC﹣∠MAB=∠APC﹣30°,∴∠APF=∠AMC,又∵∠MAC=∠PAF=120°,∴△APF∽△AMC;(3)如图②,连接CF,∵△APF∽△AMC,∴∠AFP=∠ACM,∴A,F,C,P四点共圆,∴∠PFC=∠PAC=90°,∴∠AFP+∠CFN=90°,∵∠CFN+∠FCN=90°,∴∠FCN=∠AFP=∠ACM.又∵∠FNC=∠PAC=90°.∴△PAC∽△FNC,∴==2①;∵△APF∽△AMC,∴===②,由①可得,FN=AP;由②可得,AF=AP,∴==.∴====.【点评】本题属于相似形综合题,主要考查了相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可。

安徽省宿州市2022年中考一模数学试题(含答案与解析)

安徽省宿州市2022年中考一模数学试题(含答案与解析)
A.46.49×108B.4.649×108
C.4.649×109D.0.4649×1010
【2题答案】
【答案】C
【解析】
【分析】科学记数法的表现形式为 的形式,其中 ,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.
【9题答案】
【答案】D
【解析】
【分析】根据tan∠EAH=tan∠BCA求得AE=2x,再利用勾股定理列得方程,求解即可.
【详解】解:设正方形EFGH的边长为x,
∵∠EAH=∠BCA,
∴ ,
∴ ,
∴AE=2x.
在△AFG中, ,
解得 .
故选:D.
【点睛】本题主要考查了正方形、解直角三角形,勾股定理,解题的关键是转化角进行求解.
【详解】解:当x=-4时, ,
∴点A的坐标为 ,
将A 代入y=kx得:2=-4k,
解得: ,①正确;
∵正比例函数y=kx与反比例函数 相交于A,C两点,点A的坐标为 ,
∴点C的坐标为 ,
由函数图象可得不等式 的解集为:-4<x<0或x>4,②正确;
∵ ,点A、C到x轴 距离相等,
∴ ,③错误.
故选:C.
5.某校为丰富学生课余活动,开展了一次“校园书法绘画”比赛,共有20名学生入围,他们的决赛成绩如下表:
成绩(分)
94
95
96
97
98
99
人数
1
3
6
5
3
2
则入围学生决赛成绩的中位数和众数分别是()
A.96.5分,96分B.96分,96分C.96.5分,97分D.96分,97分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽中考数学模拟试题及答案一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)(2008•淄博)的相反数是()A .﹣3 B.3 C.D.2.(3分)(2001•安徽)下列运算正确的()A .a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2| D.a3=|a3|3.(3分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是()A .众数是3 B.极差是7 C.平均数是5 D.中位数是44.(3分)(2013•温州模拟)选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A .∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°5.(3分)(2014•沙湾区模拟)如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A .主视图和俯视图B.俯视图C.俯视图和左视图D.主视图6.(3分)(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A .9 B.±3 C.3 D.57.(3分)(2013•上城区一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=1 0,CD=6,则sinC等于()A .B.C.D.8.(3分)(2011•金华)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A .点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)9.(3分)(2013•上城区一模)在平面直角坐标系中,经过二、三、四象限的直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)都在直线l上,则下列判断正确的是()A .a=﹣3 B.b>﹣2 C.c<﹣3 D.d=﹣210.(3分)(2014•江阴市二模)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A .②④B.②③C.①③④D.①②④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(2013•上城区一模)如图,△ABC中,,若△AEF的面积为1,则四边形EBCF的面积为_________ .12.(4分)(2013•上城区一模)在一个口袋中有三个完全相同的小球,把它们分别标上数字﹣1,0,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.则两次的数字和是正数的概率为_________ .13.(4分)(2013•上城区一模)已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为_________ .14.(4分)(2014•沙湾区模拟)某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活“一户一表”用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a= _________ .15.(4分)(2012•南通)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于_________ .16.(4分)(2013•上城区一模)如图,▱ABCD中,AC⊥AB.AB=6cm,BC=10cm,E是CD上的点,DE=2CE.点P从D点出发,以1cm/s的速度沿DA→AB→BC运动至C点停止.则当△EDP为等腰三角形时,运动时间为_________ s.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.(6分)(2014•沙湾区模拟)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为_________ ,第n个方程为_________ ;(2)直接写出第n个方程的解,并检验此解是否正确.18.(8分)(2005•淮安)如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.(1)请在图中画出△COD;(2)求点A旋转过程中所经过的路程(精确到0.1);(3)求直线BC的解析式.19.(8分)(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.20.(10分)(2013•上城区一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各5 0名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有_________ 人,男生最喜欢“乒乓球”项目的有_________ 人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.21.(10分)(2013•上城区一模)在直角梯形ABCD中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E ,F分别为AB,AD的中点,连结EF,EC,BF,CF.(1)求证△CBE≌△CFE;(2)若CD=a,求四边形BCFE的面积.22.(12分)(2014•沙湾区模拟)如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.(1)当AC的长度为多少时,△AMC和△BOD相似;(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC时,求AC的长.23.(12分)(2013•上城区一模)如图,已知一次函数y=kx+b的图象与x轴相交于点A,与反比例函数的图象相交于B(﹣1,5),C(,d)两点.(1)求k,b的值;(2)设点P(m,n)是一次函数y=kx+b的图象上的动点.①当点P在线段AB(不与A,B重合)上运动时,过点P作x轴的平行线与函数的图象相交于点D,求出△PAD面积的最大值.②若在两个实数m与n之间(不包括m和n)有且只有一个整数,直接写出实数m的取值范围.2019年安徽中考数学模拟试题及答案参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)(2008•淄博)的相反数是()A .﹣3 B.3 C.D.考点:相反数.分析:求一个数的相反数,即在这个数的前面加负号.解答:解:根据相反数的定义,得的相反数是.故选D.点评:本题考查的是相反数的求法.2.(3分)(2001•安徽)下列运算正确的()A .a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2| D.a3=|a3|考点:幂的乘方与积的乘方;绝对值.专题:计算题.分析:相反数的平方相等,相反数的立方互为相反数,负数的绝对值等于它的相反数,a3的符号与它本身相同.解答:解:A、相反数的平方相等,故本选项正确;B、相反数的立方互为相反数,a3=﹣(﹣a)3,故本选项错误;C、负数的绝对值等于它的相反数,﹣a2=﹣|﹣a2|,故本选项错误;D、a3的符号与它本身相同,正负情况不能确定,而|a3|是非负数,故本选项错误.故选A.点评:幂运算时,指数的奇偶,直接影响结果的符号.3.(3分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是()A .众数是3 B.极差是7 C.平均数是5 D.中位数是4考点:极差;算术平均数;中位数;众数.分析:根据众数、极差、平均数及中位数的定义,结合数据进行判断即可.解答:解:A、众数为3,说法正确,故本选项错误;B、极差=9﹣2=7,说法正确,故本选项错误;C、平均数==5,说法正确,故本选项错误;D、中位数为4.5,说法错误,故本选项正确.故选D.点评:本题考查了极差、中位数、众数及平均数的知识,属于基础题,注意掌握各部分的定义是关键.4.(3分)(2013•温州模拟)选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少A .∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°考点:反证法.分析:用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.解答:解:用反证法证明命题“∠A,∠B中至少有一个角不大于45°”时,应先假设∠A>45°,∠B>45°.故选:A.点评:此题主要考查了反证法,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口.5.(3分)(2014•沙湾区模拟)如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A .主视图和俯视图B.俯视图C.俯视图和左视图D.主视图考点:简单组合体的三视图;轴对称图形;中心对称图形.分析:首先把此几何体的三视图画出来,然后根据轴对称图形和中心对称图形的定义矩形判断即可.解答:解:该几何体的主视图为既不是轴对称图形又不是中心对称图形;该几何体的左视图为是轴对称图形不是中心对称图形;该几何体的俯视图为既是轴对称图形又是中心对称图形;故选B.点评:此题主要考查了三视图的几何知识,考查了学生的空间思维想象能力.6.(3分)(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A .9 B.±3 C.3 D.5考点:二次根式的化简求值.专题:计算题.分析:原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.解答:解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选C.点评:本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.7.(3分)(2013•上城区一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=1 0,CD=6,则sinC等于()A .B.C.D.考点:三角形中位线定理;勾股定理的逆定理;锐角三角函数的定义.专题:压轴题.分析:连接BD,根据中位线的性质得出EF∥BD,且等于BD,进而利用勾股定理的逆定理得出△BDC是直角三角形,求解即可.解答:解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,且等于BD,∴BD=8,∵BD=8,BC=10,CD=6,∴△BDC是直角三角形,∴sinC===,故选D.点评:此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.8.(3分)(2011•金华)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()。

相关文档
最新文档