凝胶电泳(PAGE)测定蛋白质分子量
SDS-PAGE凝胶电泳测蛋白质分子量
SDS-PAGE凝胶电泳测蛋白质分子量一、药剂准备a、SDS-PAGE凝胶配制试剂:1、30%Acr-Bis(29:1) 100ml2、1M Tris-HCL,PH8.8 100 ml3、10%SDS 5ml4、Ammonium persulfate (过硫酸铵) 0.5克先配制成10%的溶液以备用,如0.0625g/625ul无菌水。
可可5、TEMED 0.5 ml6、1M Tris-HCL,PH6.8 15mlb、SDS-PAGE蛋白上样缓冲液(5X)2ml,1ml/管,共2管c、蛋白质分子量标准(200ul)d、SDS-PAGE电泳液(1L)由SDS-PAGE电泳液(粉剂)1瓶,已配置好1L在玻璃大试剂瓶中保存,可重复利用。
(不宜超过两周)e、考马斯亮染色液(250ml)f、考马斯亮染色脱色液(500ml)注:脱色液可按如下比例配制(按说明书):甲醇或者乙醇乙酸250ml 80ml去离子水补至 1000ml,混匀,备用。
二、器材准备移液枪(绿色:100-1000ul, 蓝色:10-100ul, 白色:2-20ul),不同规格的微量进样针,电泳仪,电泳槽,烧杯,加热器,培养皿,浮子,镊子三、SDS-PAGE 分析操作过程:1、配制蛋白质溶液用试管配制好0.05g/10ml的蛋白质清液。
确保质量分数为3~5g/L。
试管依次标号1、2、3、4、5。
用保鲜膜和皮筋封口保存备用。
最好当天现配。
2、制分离胶(即下胶层)鉴于本蛋白质的最佳分离范围是10-40kD,所以SDS-PAGE分离胶浓度取15%。
按说明书“SDS-PAGE凝胶配制试剂盒”后表格。
依照15%胶,5ml(打勾)一栏。
如图:注意单位,表格中以ml计,操作时用移液枪以ul计,同时注意移液枪量程。
a. 按上图配方制分离胶,迅速摇匀。
b. 安装好电泳仪,组装模具,沿着固定好的大小玻璃板形成的槽边侧分次用移液枪迅速向槽中注入分离胶,注意勿打入气泡,高度至槽高2/3-3/4。
SDS-PAGE电泳实验步骤
SDS-PAGE电泳实验步骤垂直板聚丙烯酰胺凝胶电泳分离蛋⽩质⼀、实验⽬的学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋⽩质的分⼦量的原理和基本操作技术。
⼆、实验原理蛋⽩质是两性电解质,在⼀定的pH条件下解离⽽带电荷。
当溶液的pH⼤于蛋⽩质的等电点(pI)时,蛋⽩质本⾝带负电,在电场中将向正极移动;当溶液的pH⼩于蛋⽩质的等电点时,蛋⽩质带正电,在电场中将向负极移动;蛋⽩质在特定电场中移动的速度取决于其本⾝所带的净电荷的多少、蛋⽩质颗粒的⼤⼩和分⼦形状、电场强度等。
聚丙烯酰胺凝胶是由⼀定量的丙烯酰胺和双丙烯酰胺聚合⽽成的三维⽹状孔结构。
本实验采⽤不连续凝胶系统,调整双丙烯酰胺⽤量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分⼦量的蛋⽩质溶液通过这两层凝胶时,受阻滞的程度不同⽽表现出不同的迁移率。
由于上层胶的孔径较⼤,不同⼤⼩的蛋⽩质分⼦在通过⼤孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进⼊⼩孔胶时,分⼦量⼤的蛋⽩质移动速度减慢,因⽽在两层凝胶的界⾯处,样品被压缩成很窄的区带。
这就是常说的浓缩效应和分⼦筛效应。
同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采⽤两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris⽤于维持溶液的电中性及pH,是缓冲配对离⼦;CI-是前导离⼦。
在pH6.8时,缓冲液中的Gly-为尾随离⼦,⽽在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离⼦的解离度,进⽽达到控制其有效迁移率之⽬的。
不同蛋⽩质具有不同的等电点,在进⼊分离胶后,各种蛋⽩质由于所带的静电荷不同,⽽有不同的迁移率。
由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分⼦筛效应及电荷效应,使不同的蛋⽩质在同⼀电场中达到有效的分离。
如果在聚丙烯酰胺凝胶中加⼊⼀定浓度的⼗⼆烷基硫酸钠(SDS),由于SDS带有⼤量的负电荷,且这种阴离⼦表⾯活性剂能使蛋⽩质变性,特别是在强还原剂如巯基⼄醇存在下,蛋⽩质分⼦内的⼆硫键被还原,肽链完全伸展,使蛋⽩质分⼦与SDS充分结合,形成带负电性的蛋⽩质—SDS复合物;此时,蛋⽩质分⼦上所带的负电荷量远远超过蛋⽩质分⼦原有的电荷量,掩盖了不同蛋⽩质间所带电荷上的差异。
06 生物化学实验--SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量
SDS- 聚丙烯酰胺凝胶电泳法测定蛋白质分子量【目的】1 .掌握 SDS-PAGE 测定蛋白质分子量的操作方法。
2 .熟悉 SDS-PAGE 测定蛋白质分子量的原理。
【原理】带电粒子在电场中向着与其自身电荷方向相反的电极移动,称为电泳。
不同蛋白质分子具有不同的大小、形状,在一定的 pH 环境中带有不同的电荷量,因而在一定的电场中所受的电场引力及介质对其的阻力不同,二者的作用结果使不同蛋白质分子在介质中以不同的速率移动,经过一定的时间后得以分离,这就是电泳分离蛋白质及核酸生物大分子的基本原理。
聚丙烯酰胺凝胶电泳就是以聚丙烯酰胺凝胶作为电泳介质的电泳。
在电泳时,蛋白质在介质中的移动速率与其分子的大小,形状和所带的电荷量有关,为了使其只与蛋白质分子的大小有关,从而利用蛋白质在介质中的迁移率来测定蛋白质的分子量,就需要消除蛋白质分子的形状和所带电荷量的不同对迁移率的影响或减小到可忽略不计的程度。
SDS 是十二烷基硫酸钠( sAium dAecyl sulfate )的简称,它是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(在一定条件下,大多数蛋白质与 SDS 的结合比为 1.4 g SDS/ 1 g 蛋白质),使各种蛋白质 -SDS 复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而掩盖了不同种类蛋白质间原有的电荷差别,使电泳迁移率只取决于分子大小这一因素,于是根据标准蛋白质分子量的对数和迁移率所作的标准曲线,可求得未知物的分子量。
SDS 与蛋白质结合后引起蛋白质构象的改变。
SDS- 蛋白质复合物的流体力学和光学性质表明,它们在水溶液中的形状,近似于雪茄烟形状的长椭园棒,不同蛋白质的 SDS 复合物的短轴长度都一样(约为 18? ,即 1.8 nm ),而长轴则随蛋白质分子量成正比的变化。
说明, SDS 和蛋白质的结合所形成的 SDS- 蛋白质复合物消除了由于天然蛋白质形状不同而对电泳迁移率的影响。
SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量
(4)聚丙烯胺凝胶的生成:
四、实验步骤:
1、贮液的配制:
2、凝胶的制备: 2.1 胶板的制备: 2.2 分离胶的制备: 2.3 浓缩胶的制备:
3、蛋白样品的制备:
4、装槽、点样: 5、电泳: 6、剥胶、染色、脱色:
2.1 胶板的制备:
3、植物组织蛋白质提取:
称取大豆叶片1g放在研钵中用液氮研磨,加
第二、不连续系统中的三种物理效应:
①电荷效应:
②分子筛效应: ③浓缩效应:
三、实验材料、仪器和试剂:
1、实验材料:黄瓜叶片(芽黄叶和正常叶)
2、仪器、器皿:
(1)垂直板电泳装置
(电泳槽,玻璃板,胶条,电泳梳子,制胶架等); (2)稳流稳压电泳仪; (4)电子天平; (6)瓷盘、微量进样器; (3)高速冷冻离心机; (5)电冰箱;
②光聚合:
催化剂是核黄素(VB2 ),在痕量氧存在下,核黄素光
解形成无色基,无色基再被氧氧化成自由基,激活单体发 生聚合。光聚合形成的凝胶孔径较大,且不稳定,适于制 备大孔径的浓缩胶。
5)聚丙烯酰胺凝胶结构上的特点:
① 聚丙烯酰胺的基本结构为丙烯酰胺单体构成的长 链,链与链之间通过甲叉桥联结在一起;
⑧支持物筛孔大小:
孔径小,电泳速度慢,反之则快。
2、SDS-聚丙烯酰胺凝胶电泳(SDSPAGE)
SDS-聚丙烯酰胺凝胶电泳PAGE测定蛋白质分子量
02 实验材料
所需的试剂和溶液
丙烯酰胺(AA):用于制备凝胶,是聚合反应 的单体。
甲叉双丙烯酰胺(MBA):交联剂,增加凝胶 的交联度。
N,N,N',N'-四甲基乙二胺(TEMED):催化剂, 加速交联聚合反应。
所需的试剂和溶液
过硫酸铵(APS)
引发剂,产生自由基,引发聚合反应。
SDS
十二烷基硫酸钠,用于变性蛋白质并促使其 带负电荷。
发展新型分离技术
随着生物技术的不断发展,可以发展新型的蛋白质分离技术, 如二维电泳、毛细管电泳等,以提高蛋白质分离的分辨率和准
确性。
应用多维度分析
在后续实验中,可以将SDS-PAGE与其他蛋白质分析技术相结 合,如质谱技术、免疫学检测等,进行多维度分析,更全面地
了解蛋白质的性质和功能。
THANKS FOR WATCHING
白质带负电荷,从而在电场中向正极移动。
聚丙烯酰胺凝胶作为支持介质,能够根据蛋白质分子量的不同
03
对其进行分离。
蛋白质的分子量测定
通过比较标准蛋白的迁移率和已知分 子量的标准蛋白,可以大致测定出待 测蛋白质的分子量。
蛋白质的迁移率与其分子量的对数成 反比,因此可以通过计算待测蛋白与 标准蛋白的相对迁移率来推算其分子 量。
甘氨酸
作为分子量标准品。
Tris-HCl缓冲液
维持电泳过程中的pH值稳定。
所需的仪器和设备
电源
为电泳提供电力。
凝胶板
放置凝胶的框架。
垂直电泳槽
提供电泳所需的基 本结构。
移液器
精确添加试剂和溶 液。
紫外透射仪
检测蛋白质条带。
实验前的准备事项
清洗电泳槽和相关器具,确保无残留物。 准备好所需的试剂和溶液,并确保其在有效期内。
SDS-PAGE法测定蛋白质相对分子量
SDS-PAGE电泳法测定蛋白质相对分子质量实验目的了解SDS-PAGE垂直板型电泳法的基本原理及操作技术学习SDS-PAGE法测定蛋白质相对分子量的技术实验原理SDS-PAGE即十二烷基硫酸钠-聚丙烯酰胺凝胶电泳法(sodium dodecyl sulfate-polyacrylamide gel electrophoresis):1. 在混合样品中各蛋白质组分的迁移率主要取决于分子大小和形状以及所带电荷量。
2. 在聚丙烯酰胺凝胶系统中,加入适量SDS (阴离子表面活性剂),使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(一定条件下,大多数蛋白质与之结合比为1.4g SDS/1g protein),使各种蛋白质-SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而掩盖了不同种类蛋白质之间原有的电荷差别。
此时特定蛋白质分子的电泳迁移率主要取决于其分子量大小,而其它因素对电泳迁移率的影响几乎可以忽略不计。
3. 蛋白质分子量在15,000~200,000之间时,其电泳迁移率与分子量的对数值线性相关:若将已知分子量的标准蛋白质的迁移率对分子量的对数作图,可以获得一条标准曲线,而从未知蛋白质在相同电泳条件下的迁移率即可在标准曲线上求得其分子量。
实验设备与试剂垂直板型电泳槽直流稳压电源微量注射器移液器水浴锅染色槽烧杯试管滴管分离胶缓冲液(1.5 mol/L Tris-HCl, pH8.8):称取Tris 18.15g,加约80ml 无离子水,用1 mol/L HCl调pH至8.8,无离子水定容至100ml,4℃保存浓缩胶缓冲液(0.5 mol/L Tris-HCl液, pH6.8):称取Tris 6g,加约60ml 无离子水,用1 mol/L HCl调pH至6.8,无离子水定容至100ml,4℃保存凝胶贮液:称取丙烯酰胺(Acr) 29.2g及N,N’-甲叉双丙烯酰胺(Bis)0.8g,重蒸水定容至100ml,过滤后置棕色试剂瓶于4℃保存10%浓缩胶贮液:称Acr 10g及Bis 0.5g,溶于重蒸水中并定容至100ml,过滤后置棕色试剂瓶于4℃保存10%SDS溶液:10g SDS加重蒸水定容至100ml,室温保存(低温下易析出结晶,用前微热,使其完全溶解)1%TEMED (四甲基二乙胺)10%过硫酸铵(AP):配制后分装,-20℃保存电泳缓冲液(Tris-Gly缓冲液pH8.3):称取Tris 6.0g,甘氨酸28.8g, SDS 1.0g, 用无离子水溶解后定容至1L染色液:0.25g考马斯亮蓝G-250,加入454ml 50%甲醇溶液和46ml冰乙酸即可脱色液:75ml冰乙酸,875ml重蒸水与50ml甲醇混匀实验步骤1. 安装夹心式垂直板电泳槽:夹心式垂直板电泳槽有很多型号,主要结构相同,且操作简单,不易泄漏。
生物化学实验十一 SDS-聚丙烯酰胺凝胶电泳(PAGE)测
实验十一SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子质量一、目的要求学习和掌握采用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子质量的基本原理和方法。
二、实验原理聚丙烯酰胺凝胶是由丙烯酰胺(Acr)和少量交联剂甲叉双丙烯酰胺(Bis)在催化剂的作用下聚合交联形成的三围网状结构。
通过改变单体Acr浓度或单体与交联剂的比例可以控制凝胶孔径的大小,这取决于两个重要的参数T和C,其中T是两个单体(Acr和Bis)的总百分浓度,C是与总浓度有关的交联百分浓度。
T=(a+b)/m×100(%) C=b/(a+b)×100(%)式中,a为Acr质量(g);b为Bis质量(g);m为水或缓冲液的终体积(mL)。
聚丙烯酰胺凝胶电泳分为连续的和不连续系统两种。
在连续系统中,电泳槽中缓冲液的pH与凝胶中一致,而在不连续系统中上述两者的pH不相同,不连续系统的分辨率较高。
从凝胶形式上可分为柱式或板式。
将凝胶装于垂直的玻璃管中进行电泳分离称柱式电泳,此法制备凝胶方便,样品需要量少,凝胶条便于长期保存;板式电泳的优点是可以在同一凝胶板上同时检测盒比较多个样品,在平板电泳的基础上还建立了分辨率更高的双向电泳。
不连续聚丙烯酰胺凝胶电泳系统具备三种效应,因此大大提高了分辨率。
(1)浓缩效应:在电泳开始时,样品在浓缩胶与分离胶界面上形成了高度压缩的薄层,作为在分离胶中进一步分离的起始样层,有时甚至能浓缩几百倍。
(2)电荷效应:蛋白质混合物在界面处被高度浓缩,形成一狭小的高浓度的蛋白质区带。
由于每种蛋白质分子所带的电荷不同,因而泳动率不同,各种蛋白质就以一定的顺序排列成一个一个的蛋白质区带。
(3)分子筛效应:当蛋白质分子通过浓缩胶进入分离胶时,颗粒小、呈球形的样品分子移动快,柯利达、形状不规则的分子在通过凝胶空洞时的阻力大,移动就缓慢。
聚丙烯酰胺凝胶电泳分离不同的蛋白质分子的主要极力为上述的电荷效应和分子筛效应,即这些分子所带净电荷的差异和分子质量大小的不同。
SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量
四. 实验过程
8.电泳槽中加入缓冲液,接通电源,进行电泳,开始电流恒
定在10mA,当进入分离胶后改为20mA,溴酚蓝距凝胶边 缘约5mm时,停止电泳。
9.凝胶板剥离与染色:电泳结束后,撬开玻璃板,将凝胶板
做好标记后放在大培养皿内,加入染色液,染色1小时左右。 10.脱色:染色后的凝胶板用蒸馏水漂洗数次,再用脱色液脱 色,直到蛋白质区带清晰。 ※剥胶时要小心,保持胶完好无损,染色要充分.
•
二. 实验原理
• PAGE根据其有无浓缩效应,分为连续系统
和不连续系统两大类,连续系统电泳体系 中缓冲液pH 值及凝胶浓度相同,带电颗粒 在电场作用下,主要靠电荷和分子筛效应。 不连续系统中由于缓冲液离子成分,pH , 凝胶浓度及电位梯度的不连续性,带电颗 粒在电场中泳动不仅有电荷效应,分子筛 效应,还具有浓缩效应,因而其分离条带 清晰度及分辨率均较前者佳。
三.
实验试剂和器材
低分子量标准蛋白: 兔磷酸化酶B MW=97,400 牛血清白蛋白 MW=66,200 兔肌动蛋白 MW=43,000 牛碳酸酐酶 MW=31,000 胰蛋白酶抑制剂 MW=20,100 鸡蛋清溶菌酶 MW=14,400 开封后溶于200µl蒸馏水,置-20℃保存,使用前室温融 化,沸水浴中加热3-5分钟后上样。 样品1:称3mg样品1,加2 ml蒸馏水溶解。
1.材料: 低分子量标准蛋白试剂盒:
2.实验试剂
(1) 30%丙烯酰胺(Acr):称Acr30g,甲叉双丙烯酰胺 (Bis)0.8g,加蒸馏水至100ml,过滤后置棕色瓶中, 4℃贮存可用1-2月。 (2)10%SDS(十二烷基磺酸钠) (3)1.5mol/L pH8.8 Tris-HCl缓冲液:称取Tris18.2g, 加入50ml水,用1mol/L盐酸调pH8.8, 最后用蒸馏 水定容至100ml。 (4)1.0mol/LpH6.8Tris-HCl缓冲液:称取Tris12.1g,加 入50ml水,用1mol/L盐酸调pH6.8, 最后用蒸馏水 定容至100ml。 (5)0.05mol/LpH8.0Tris-HCl缓冲液:称取Tris0.6g,加 入50ml水,用1mol/L盐酸调pH8.0,最后用蒸馏水定 容至100ml。
聚丙烯酰胺凝胶电泳法
SDS聚丙烯酰胺凝胶电泳法—蛋白质的分子量测定【实验目的】1.掌握SDS—聚丙烯酰胺电泳法的原理。
2.学会用此种方法测定蛋白质的分子量。
【实验原理】SDS—聚丙烯酰胺凝胶电泳(SDS-PAGE)是对蛋白质进行量化,比较及特性鉴定的一种经济、快速、而且可重复的方法。
该法主要依据蛋白质的分子量对其进行分离。
SDS与蛋白质的疏水部分相结合,破坏其折叠结构,并使其稳定地存在于一个广泛均一的溶液中。
SDS—蛋白质复合物的长度与其分子量成正比。
由于在样品介质和聚丙烯酰胺凝胶中加入离子去污剂和强还原剂后,蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小,而电荷因素可以被忽略。
SDS—PAGE因易于操作和广泛的用途,使它成为许多研究领域中一种重要的分析技术。
SDS是十二烷基硫酸钠(sodium dodecyl sulfate)的简称,它是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(在一定条件下,大多数蛋白质与SDS的结合比为1.4gSDS/1g蛋白质),使各种蛋白质—SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而掩盖了不同种类蛋白质间原有的电荷差别。
这样就使电泳迁移率只取决于分子大小这一因素,于是根据标准蛋白质分子量的对数和迁移率所作的标准曲线,可求得未知物的分子量。
【实验材料】1.实验器材微型凝胶电泳装置;电源(电压200V,电流500mA);100℃沸水浴;Eppendorf管;微量注射器(50μl或100μl);干胶器、真空泵或水泵;带盖的玻璃或塑料小容器;摇床。
2.实验试剂⑴ 2mol/L Tris-HCl (pH8.8):取24.2g Tris, 加50ml蒸馏水,缓慢的加浓盐酸至pH8.8(约加4ml);让溶液冷却至室温,pH将会升高,加蒸馏水至100ml。
⑵ 1mol/L Tris-HCl (pH8.8):取12.1g Tris, 加50ml蒸馏水,缓慢的加浓盐酸至pH6.8(约加8ml);让溶液冷却至室温,pH将会升高,加蒸馏水至100ml。
SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量
实验七SDS-聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量实验数据:标准蛋白质条带第一条第二条第三条第四条第五条溴酚蓝前沿距离/cm 4.70距离/cm 0.50 0.95 1.60 2.10 3.95 相对迁移率mr 0.11 0.20 0.34 0.45 0.84 分子量Mr 97400 66200 43000 31000 14400LgMr 4.99 4.82 4.63 4.49 4.16样品 1 2 3溴酚蓝前沿/cm 4.90 4.80 4.60样品迁移距离/cm 4.20 1.20 1.70相对迁移率mr 0.86 0.25 0.37标准曲线:y=5.05-1.10x结果:样品 1 2 3Mr 12706 59566 43954mr 4.104 4.775 4.643一. 实验目的和要求1 学习SDS-PAGE测定蛋白质分子量的原理。
2 掌握垂直板电泳的操作方法。
3 运用SDS-PAGE测定蛋白质分子量及染色鉴定。
二 .实验原理带电质点在电场中向带有异相电荷的电极移动,这种现象称为电泳。
区带电泳是在半固相或胶状介质上加一个点或一薄层样品溶液,然后加电场,分子在支持介质上或支持介质中迁移。
支持介质的作用主要是为了防止机械干扰和由于温度变化以及大分子溶液的高密度而产生的对流。
区带电泳使用不同的支持介质,早期有滤纸、玻璃珠、淀粉粒、纤维素粉、海砂、海绵、聚氯乙烯树脂;以后有淀粉凝胶、琼脂凝胶、醋酸纤维素膜,现在则多用聚丙烯酰胺(PAGE)和琼脂糖凝胶。
PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。
SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠), SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。
简述SDS-PAGE凝胶电泳测定蛋白质分子量的原理
2005-2006学年第二学期考试试题答案考试科目:现代分子生物学大实验考试时间:120分钟试卷总分100分一、名词解释(本大题共5小题,每小题3分,总计15分)1、探针:能够与靶分子特异结合的核酸分子,带有供杂交后检测的合适标记物。
2、显色反应:在IPTG的诱导下,载体可与宿主菌产生有活性的β-半乳糖苷酶,此酶能使显色底物X-gal分解成不溶于水的蓝色化合物,从而使菌落变蓝。
若有外源片段插入此位点,则使载体的β-半乳糖苷酶基因失活,不能形成有活性的β-半乳糖苷全酶,X-gal 不能被分解,菌落为白色。
3、PCR:聚合酶链式反应,在聚合酶、引物、buffer、模板、dNTPs存在的条件下,经过变性、退火、延伸3步多个循环后,使模板上介于两个引物之间的特异性DNA片段得到大量复制。
4、质粒:独立于染色体DNA之外的,能稳定遗传的共价闭合双链DNA分子。
5、BLAST:是基本的局部对比排列搜索工具(basic local alignment search tool)的简称。
可以从数据库中找出与查询序列的某些子序列相似的子序列。
二、填空题(本大题共5小题,每小题3分,总计15分)1、染色体DNA、结构的大小差异2、最快,最慢,中间3、3.24、乳糖,操纵子5、IPTG浓度、诱导时间、诱导温度6、电荷效应、分子筛效应、还具有浓缩效应7、等电聚焦(IEF)二、简答题(本大题共4小题,每小题10分,总计40分)1、如有一核苷酸序列A,未知其功能,请用至少一种方法对其进行初步地功能标示。
答:通过国际生物信息数据库,如美国国立生物信息中心,对未知序列A进行基本局部序列比对BLAST,找到与其同源性较高的序列,将其功能用来注释未知序列(6分)。
步骤如下:登录,点击BLAST网页,在序列对话框内粘贴序列A,点击BLAST按钮,等待其返回同源性结果,选择含有mRNA序列的GenBank文件,将其功能作为未知序列的功能(10分)。
SDS-PAGE电泳实验步骤
垂直板聚丙烯酰胺凝胶电泳分离蛋白质一、实验目得学习SDS—聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质得分子量得原理与基本操作技术、二、实验原理蛋白质就是两性电解质,在一定得pH条件下解离而带电荷。
当溶液得pH大于蛋白质得等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液得pH小于蛋白质得等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动得速度取决于其本身所带得净电荷得多少、蛋白质颗粒得大小与分子形状、电场强度等。
聚丙烯酰胺凝胶就是由一定量得丙烯酰胺与双丙烯酰胺聚合而成得三维网状孔结构、本实验采用不连续凝胶系统,调整双丙烯酰胺用量得多少,可制成不同孔径得两层凝胶;这样,当含有不同分子量得蛋白质溶液通过这两层凝胶时,受阻滞得程度不同而表现出不同得迁移率。
由于上层胶得孔径较大,不同大小得蛋白质分子在通过大孔胶时,受到得阻滞基本相同,因此以相同得速率移动;当进入小孔胶时,分子量大得蛋白质移动速度减慢,因而在两层凝胶得界面处,样品被压缩成很窄得区带。
这就就是常说得浓缩效应与分子筛效应。
同时,在制备上层胶(浓缩胶)与下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6、7—6。
8,下层胶pH=8.9;Tris—HCI缓冲液中得Tris用于维持溶液得电中性及pH,就是缓冲配对离子;CI-就是前导离子。
在pH6.8时,缓冲液中得Gly—为尾随离子,而在pH=8、9时,Gly得解离度增加;这样浓缩胶与分离胶之间pH得不连续性,控制了慢离子得解离度,进而达到控制其有效迁移率之目得。
不同蛋白质具有不同得等电点,在进入分离胶后,各种蛋白质由于所带得静电荷不同,而有不同得迁移率、由于在聚丙烯酰胺凝胶电泳中存在得浓缩效应,分子筛效应及电荷效应,使不同得蛋白质在同一电场中达到有效得分离。
如果在聚丙烯酰胺凝胶中加入一定浓度得十二烷基硫酸钠(SDS),由于SDS带有大量得负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别就是在强还原剂如巯基乙醇存在下,蛋白质分子内得二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性得蛋白质—SDS复合物;此时,蛋白质分子上所带得负电荷量远远超过蛋白质分子原有得电荷量,掩盖了不同蛋白质间所带电荷上得差异、蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。
sds-page测定蛋白质的相对分子量
03 SDS-PAGE测定蛋白质相 对分子量的原理
蛋白质的相对分子量与迁移率的关系
蛋白质在SDS-PAGE电泳中的迁移率 与其相对分子量成反比,即相对分子 量越大,迁移速度越慢。
在电场的作用下,SDS将蛋白质分子 包裹起来,消除了蛋白质分子间的电 荷差异,使相对分子量成为影响迁移 率的唯一因素。
电泳
加样
将准备好的样品用微量移液器加到加 样孔中。
开始电泳
接通电源,开始电泳,注意控制电流 和电压,确保电泳过程稳定。
染色和脱色
染色
电泳结束后,将凝胶取出,放入含有染色液的容器中,染色一定时间,以便观 察蛋白质条带。
脱色
染色完成后,将凝胶取出,放入含有脱色液的容器中,脱色一定时间,以便观 察清晰的蛋白质条带。
将SDS和β-巯基乙醇加入样品中,以促进蛋白 质变性并带上负电荷。
煮沸处理
通过煮沸处理使蛋白质变性,并使SDS充分结合到蛋白质上。
凝胶制备
01
制备分离胶
按照分离胶的配方,将各组分混 合均匀,并迅速注入到玻璃板中 的凹槽内。
聚合凝胶
02
03
制备浓缩胶
加入适量水,使分离胶聚合凝固。
按照浓缩胶的配方,将各组分混 合均匀,并迅速注入到分离胶上。
计算相对分子量时需考虑实验条件、电泳缓冲液、电压等因素的影响,以 确保结果的准确性。
04 SDS-PAGE实验注意事项
避免样品降解
确保样品储存于低温环境
01
在实验过程中,应将未使用的样品保存在低温环境中,以避免
蛋白质降解。
避免样品反复冻融
02
反复冻融会使蛋白质发生变性,影响实验结果,因此应尽量减
SDS-PAGE可用于测定各种相对分子 量范围的蛋白质,从低到高均可。
PAGE测定蛋白质分子量
PAGE测定蛋白质分子量一、实验目的1. 理解SDS-PAGE测定蛋白质分子量的原理2. 掌握垂直板电泳的操作方法3. 掌握运用SDS-PAGE测定蛋白质分子量二、实验原理带电质点在电场中向带有异相电荷的电极移动,这种现象称为电泳。
聚丙烯酰胺凝胶是由单体丙烯酰胺和交联剂N,N-甲叉双丙烯酰胺在催化剂和加速剂的作用下聚合并联成三维网状结构的凝胶,以此凝胶为支持物的电泳称为聚丙烯酰胺凝胶电泳(简称PAGE)。
蛋白质在普通PAGE凝胶中的电泳速度取决于蛋白质分子的大小、分子形状和所带电荷量。
而SDS-PAGE凝胶电泳在样品及电泳缓冲溶液中加入了SDS。
SDS(十二烷基磺酸钠)是一种阴离子去污剂,它能破坏蛋白质分子之间及其他物质分子之间的非共价键,使蛋白质变性解离成亚基,并且和蛋白质亚基结合成带负电荷的蛋白质-SDS棒状复合物。
当蛋白质样品中加入SDS后,由于SDS与蛋白质分子的结合,使蛋白质分子带上大量的负电荷,其电荷量远远超过蛋白质分子原来所带的电荷量,因而掩盖了不同蛋白质之间的电荷差异。
同时,所有蛋白质-SDS复合物的形状均近似于长的椭圆棒,他们的短轴是恒定的,约1.8nm。
而长轴与蛋白质分子量的大小成正比,从而又消除了不同蛋白质分子之间分子形状的差异。
这样电泳的速度只取决于蛋白质分子量的大小,蛋白质分子在电泳中的相对迁移率和分子质量的对数成直线关系。
可用下式表示:lgde M A Bdo =-⨯(de =样品迁移距离,do=电泳前沿距离,A、B均为常数)以标准蛋白质分子质量的对数和其相对迁移率作图,绘制出标准曲线,根据所测样品的相对迁移率,从标准曲线上便可查出其分子质量。
该方法快速、简便、分辨率高,在很多情况下超过超速离心、常用的层析及一般的电泳技术,是一种既经济又快速测量分子量的方法。
并且所需样品少,可同时测定多个样品,是实验室常用的蛋白质分子测定方法之一。
三、实验所需的试剂与仪器(一)试剂1. 凝胶贮备液丙烯酰胺29.2g和亚甲基双丙烯酰胺0.8g重蒸水溶解后,定容至100ml,棕色试剂瓶4℃保存,30天内使用。
SDS—聚丙烯酰胺凝胶电泳(PAGE)测定蛋白质分子量
一. 实验目的
学习DNA提取的原理及方法。 学习DNA提取的原理及方法。 DNA提取的原理及方法 掌握琼脂糖凝胶电泳的操作方法。 掌握琼脂糖凝胶电泳的操作方法。 运用琼脂糖凝胶电泳检测DNA 运用琼脂糖凝胶电泳检测DNA。 DNA。
2. 核酸提取的步骤 1)破碎细胞(材料不同,方法不同) 破碎细胞(材料不同,方法不同) 匀浆器,捣碎器,溶菌酶消化,碱裂解等。 匀浆器,捣碎器,溶菌酶消化,碱裂解等。 2) 除杂质,提DNA 除杂质, 杂质:蛋白,多糖,脂类,DNase, RNase 杂质:蛋白,多糖,脂类, A. DNase的抑制 DNase的抑制 DNase需 Mg2+,Ca2 激活, 所以提取时加EDTA DNase 需 Mg2+,Ca2+ 激活 , 所以提取时加 EDTA 或 EDTA EDTA或 钠盐。 螯合金属离子) 钠盐。(螯合金属离子) 加去垢剂或变性剂(SDS) 可使DNase 加去垢剂或变性剂(SDS),可使DNase变性失活 DNase变性失活 B. 除RNA 酶法: 酶法:加RNase
琼脂糖凝胶法检测DNA (二) 琼脂糖凝胶法检测
1. 琼脂糖是从海藻中提取的一种线状高聚物。其结构单 琼脂糖是从海藻中提取的一种线状高聚物。 元是D-半乳糖和 半乳糖和3.6-脱水 半乳糖。许多琼脂糖链 脱水-L-半乳糖 元是 半乳糖和 脱水 半乳糖。 依氢键及其它力的作用使其互相盘绕形成绳状琼脂糖 构成大网孔型凝胶。 束,构成大网孔型凝胶。在一定浓度的琼脂糖凝胶介 质中, 质中,DNA分子的电泳迁移率与其分子量的常用对 分子的电泳迁移率与其分子量的常用对 数成反比。 数成反比。 2. 溴化乙锭 溴化乙锭(ethidium bromide,EB)是一种荧光染料, 是一种荧光染料, , 是一种荧光染料 EB分子可嵌入核酸双链的碱基对之间,在紫外线激 分子可嵌入核酸双链的碱基对之间, 分子可嵌入核酸双链的碱基对之间 发下,发出红色荧光.根据情况可在凝胶电泳液中加 发下,发出红色荧光 根据情况可在凝胶电泳液中加 入终浓度为0.5ug/ml的EB,有时亦可在电泳后,将 入终浓度为 的 ,有时亦可在电泳后, 凝胶浸入该浓度的溶液中染色10~15min.琼脂糖凝 凝胶浸入该浓度的溶液中染色 ~ 琼脂糖凝 染色, 胶EB染色,则肉眼可见核酸电泳带 . 染色
SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量
. 样作为实验组来 同上项目三 SDS -聚丙烯酰胺凝胶电泳(SDS-PAGE )测定蛋白质分子量一实训目的1 掌握 SDS-PAGE 测定蛋白质分子量的操作步骤2 学会聚丙烯酰胺凝胶电泳测定蛋白质分子量的原理 二实训原理用聚丙烯酰胺凝胶电泳法分离鉴定蛋白质(protein ),主要依赖于电荷效应和分子筛效应。
再与标准样品对照即可确定各区带的成分。
要利用凝胶电泳测定某样品的蛋白质分子量就必须去掉其电荷效应,因此,当电泳时,蛋白质分子的迁移率取决于其分子大小。
SDS 能破坏蛋白质分子间以及其他物质分子间的非共价键使蛋白质的构象发生变化,继而使蛋白质变性解离成单一亚基,从而降低或消除了各种蛋白质分子间的天然电荷差异,形成 S DS-蛋白质负离子,因此,当电泳时,蛋白质分子的迁移率取决于其分子大小,当蛋白质分子量在 1.2X104~16.5X104 之间时,蛋白质的迁移率和分子量的对数呈直线关系,符合下列方程。
LogMW =K -bm(LogMW 为分子量的对数,K 、b 为常数,m 为迁移率)若将已知分子量的标准蛋白质的迁移率对分子量的对数作图,可获得一条标准曲线,未知蛋 白质在相同条件下进行电泳根据它的电泳迁移率即可在标准曲线上求得其分子量 三、实训器材序号 1 2 3 4 56 设备名称垂直板电泳槽及附件 直流稳压稳流电泳仪 微量进样器玻璃注射器玻璃平板电炉 规格,型号可变压数量1 12 1 41序 试剂纯度、浓度 作用配 制 需要工具 需要工具号 方法1低分子量标 准蛋白质样 2mg /ml以标准样品为 对照即可确定 见 表 格 下 水浴锅、小烧 杯,玻璃棒 本样品各区带的 方成分210~20mg/ml水浴锅、小烧品3浓缩胶缓冲 液测定蛋白质的 分子量呈弱酸性,使甘 同上 氨酸解离很少, 在电场作用下, 涌动效率低,二 氯离子含量高,杯,玻璃棒天平、容量 瓶、棕色试剂 瓶保 证 电 泳 的 作为催化剂,产去掉其电荷效SDS加速剂,可催化4分离胶缓冲 液形成较高的电 位梯度压着蛋 白质聚集在一 起,凝缩为一狭 小区带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 实验器材
• 垂直板电泳装置 • 直流稳压电源 • 移液管
• 滤纸 • 微量注射器 • 大培养皿
各部分凝胶配制
分离胶(10%.5ml)
浓缩胶(5%.3ml)
H2O
2.6ml
Acr
ቤተ መጻሕፍቲ ባይዱ
30%, 1.7ml
0.7ml 10%, 1.5ml
Buffer 3.0mol/L pH=8.8 Tris-HCl 0.6ml 0.5mol/L pH=6.8 Tris-HCl 0.75ml
根据说明书处理标准蛋白 样品:称3mg样品,加2 ml蒸馏水溶解。
2.实验试剂
(1) 30%丙烯酰胺(Acr):称Acr30g,甲叉双丙烯酰胺 (Bis)0.8g,加蒸馏水至100ml,过滤后置棕色瓶中, 4℃贮存可用1-2月。
(2)10%SDS(十二烷基磺酸钠) (3)1.5mol/L pH8.8 Tris-HCl缓冲液:称取Tris18.2g,
二. 实验原理
• SDS电泳的成功关键之一是电泳过程中,待别
是样品制备过程中蛋白质与SDS的结合程度。影 响它们结合的因素主要有三个:
1) 溶液中SDS单体的浓度,当单体浓度大于
1mmol/L时大多数蛋白质与SDS结合的重量比 为1:1.4,如果单休浓度降到0.5 mmol/L以下 时,两者的结合比仅为1: 0.4这样就不能消除蛋 白质原有的电荷差别,为保证蛋白质与SDS的充 分结合,它们的重量比应该为1:4或1:3
SDS-聚丙烯酰胺凝胶电泳 (PAGE)测定蛋白质分子量
授课教师:周杰
一. 实验目的
• 学习SDS-PAGE测定蛋白质分子量
的原理。
• 掌握垂直板电泳的操作方法。 • 运用SDS-PAGE测定蛋白质分子量
及染色鉴定。
二 .实验原理
• 带电质点在电场中向带有异相电荷的电极移动,这
种现象称为电泳。
• 电泳分类:移动界面电泳、区带电泳、稳态电泳。 • 区带电泳是在半固相或胶状介质上加一个点或一薄
层样品溶液,然后加电场,分子在支持介质上或支 持介质中迁移。支持介质的作用主要是为了防止机 械干扰和由于温度变化以及大分子溶液的高密度而 产生的对流。
• 区带电泳使用不同的支持介质,早期有滤纸、玻璃
珠、淀粉粒、纤维素粉、海砂、海绵、聚氯乙烯树 脂;以后有淀粉凝胶、琼脂凝胶、醋酸纤维素膜, 现在则多用聚丙烯酰胺(PAGE)和琼脂糖凝胶。
做好标记后放在大培养皿内,加入染色液,染色1小时左右。
10.脱色:染色后的凝胶板用蒸馏水漂洗数次,再用脱色液脱
色,直到蛋白质区带清晰。
※剥胶时要小心,保持胶完好无损,染色要充分.
.
11.实验结果分析。
五.分析计算
绘制标准曲线:
按下式计算相对迁移率:
相对迁移率 =
蛋白样品距加样端迁移距离(cm) 溴酚蓝区带中心距加样端距离(cm)
m为水或缓冲液体积(ml)。式中a与b的比例很重要。富 有弹性,且完全透明的凝胶,a与b的重量比应在30左右。
二. 实验原理
• PAGE根据其有无浓缩效应,分为连续系统
和不连续系统两大类,连续系统电泳体系 中缓冲液pH值及凝胶浓度相同,带电颗粒 在电场作用下,主要靠电荷和分子筛效应。 不连续系统中由于缓冲液离子成分,pH, 凝胶浓度及电位梯度的不连续性,带电颗 粒在电场中泳动不仅有电荷效应,分子筛 效应,还具有浓缩效应,因而其分离条带 清晰度及分辨率均较前者佳。
胶中均含有TEMED和AP,试述其作用?
注意事项
• 丙烯酰胺具有中等毒性。常人每天允许的
最大暴露量不超过0.5μg/kg,皮肤接触可 致中毒,症状为红斑、脱皮、眩晕、动作 机能失调、四肢无力等。
• 丙烯酰胺是神经毒剂,可以透过皮肤 • 不要接触皮肤,戴手套、口罩操作
注意事项
• 没有聚合的丙烯酰胺不要倾倒到水源附近 • 一定要催化充分,使之完全聚合 • 集中处理,实验中全部的胶由专门受过训
四. 实验过程
※水封的目的是为了使分离胶上延平直,并隔绝 空气
※凝胶聚合好的标志是胶与水层之间形成清晰的 界面. 4.倒出水并用滤纸把剩余的水分吸干,按比例配好 浓缩胶,连续平稳加入浓缩胶至离边缘5mm处,迅速 插入样梳,静置40分钟.
※样梳需一次平稳插入,梳口处不得有气泡,梳底 需水平.
四. 实验过程
10%SDS
0.05ml
0.03ml
10%Ap
0.05ml
0.03ml
TEMED
5µl
4µl
四. 实验过程
1.将玻璃板用蒸馏水洗净晾干, 准备2个干净的 锥形瓶. 2.把玻璃板在灌胶支架上固定好. ※固定玻璃板时,两边用力一定要均匀,防止夹 坏玻璃板. 3.按比例配好分离胶,用移液管快速加入,大约5 厘米左右,之后加少许蒸馏水,静置40分钟. ※凝胶配制过程要迅速, 催化剂TEMED要在注胶 前再加入,否则凝结无法注胶.注胶过程最好一次 性完成,避免产生气泡.
凝胶浓度的计算
• 聚合后的聚丙烯酰胺凝胶的强度、弹性、透明度、粘度和孔
径大小均取决于两个重要参数T和C,T是丙烯酰胺和甲叉双 丙烯酰胺两个单体的总百分浓度。C是与T有关的交联百分 浓度。T与C的计算公式是:
C
b a+b
10(0 %)T
a b 100 (%)
m
• 上式中a为丙烯酰胺的克数,b为甲叉双丙烯酰胺的克数,
• 有许多蛋白质是由亚基(如血红蛋白)或两条以上肽链(如胰
凝乳蛋白酶)组成的,它们在SDS和巯基乙醇作用下,解离成 亚基或单条肽链,因此这一类蛋白质,测定时只是它们的亚基 或单条肽链的MW。
• 已发现有些蛋白质不能用SDS-PAGE测定分子量。如电荷异常
或构象异常的蛋白质,带有较大辅基的蛋白质(某些糖蛋白) 以及一些结构蛋白,如胶原蛋白等。
2) 样品缓冲液的离子强度。SDS电泳的样品缓冲液
离子强度较低,通常是10~100mmol/L
3) 二硫键是否完全被还原
二. 实验原理
• 采用SDS-聚丙烯酰胺凝胶电泳法测蛋白质分子量时,只有完全
打开二硫键, 蛋白质分子才能被解聚,SDS才能定量地结合到 亚基上而给出相对迁移率和分子量对数的线性关系。因此在用 SDS处理样品同时往往用巯基乙醇处理,巯基乙醇是一种强还 原剂,它使被还原的二硫键不易再氧化,从而使很多不溶性蛋 白质溶解而与SDS定量结合。
以每个蛋白标准的分子量对数对它的 相对迁移率作图得标准曲线,量出未 知蛋白的迁移率即可测出其分于量, 这样的标难曲线只对同一块凝胶上的 样品的分子量测定才具有可靠性。
六.思考题
• 在不连续体系SDS-PAGE中,当分离胶加完
后,需在其上加一层水,为什么?
• 样品溶解液中各种试剂的作用是什么? • 在不连续体系SDS-PAGE中,分离胶与浓缩
2.实验试剂
(7)10%过硫酸铵(AP) (8)TEMED(四甲基乙二胺) (9)样品溶解液:SDS(100mg)+巯基乙醇(0.1ml)+
溴酚蓝(2mg)+甘油(2g) +0.05mol/L pH8.0TrisHCl(2ml),最后定容至10ml。 (10)固定液:取50%甲醇454ml,冰乙酸46ml混匀。 (11)染色液:称取考马斯亮蓝R250 0.125g,加上述固定液 250ml, 过滤后备用。 (12)脱色液:冰乙酸75ml,甲醇50ml,加蒸馏水定容至 1000ml。 (13)电极缓冲液(内含0.1%SDS,0.05mol/LTris0.384mol/L甘氨酸缓冲液pH8.3):称Tris6.0g,甘 氨酸28.8g, 加入SDS1g,加蒸馏水使其溶解后定容至1000ml。
沸水中加热3分钟,去掉亚稳态聚合。 ※注射器不可过低,以防刺破胶体,也不可过高,在样下
沉时会发生扩散. ※为避免边缘效应,最好选用中部的孔注样.
四. 实验过程
8.电泳槽中加入缓冲液,接通电源,进行电泳,开始电流恒
定在10mA,当进入分离胶后改为20mA,溴酚蓝距凝胶边 缘约5mm时,停止电泳。
9.凝胶板剥离与染色:电泳结束后,撬开玻璃板,将凝胶板
5. 在上槽内加入缓冲液后,拔出样梳。
※要使锯齿孔内的气泡全部排出,否则会影响加样效果.
6、加样(1)取10µl标准蛋白溶解液于EP管内,再加入
10µl 2倍样品缓冲液,上样量为10µl。 (2)取10µl样品溶液,再加入10µl 2倍样品缓冲液,上样
量分别为5µl和3µl。
7.用微量注射器距槽底三分之一处进样,加样前,样品在
• 一般至少采用两种方法测定未知样品的分子量,互相验证。
三. 实验试剂和器材
1.材料: 低分子量标准蛋白试剂盒:
低分子量标准蛋白: 兔磷酸化酶B MW=97,400 牛血清白蛋白 MW=66,200 兔肌动蛋白 MW=43,000 牛碳酸酐酶 MW=31,000 胰蛋白酶抑制剂 MW=20,100 鸡蛋清溶菌酶 MW=14,400
二. 实验原理
• SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中
引进SDS(十二烷基磺酸钠), SDS能断裂分子内和分 子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使 半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强 还原剂的SDS溶液中,与SDS分子按比例结合,形成带负 电荷的SDS-蛋白质复合物,这种复合物由于结合大量的 SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分 子大小为特征的负离子团块,从而降低或消除了各种蛋白 质分子之间天然的电荷差异,由于SDS与蛋白质的结合是 按重量成比例的,因此在进行电泳时,蛋白质分子的迁移 速度取决于分子大小。当分子量在15KD到200KD之间时, 蛋白质的迁移率和分子量的对数呈线性关系,符合下式: logMW=K-bX,式中:MW为分子量,X为迁移率,k、b 均为常数,若将已知分子量的标准蛋白质的迁移率对分子 量对数作图,可获得一条标准曲线,未知蛋白质在相同条 件下进行电泳,根据它的电泳迁移率即可在标准曲线上求 得分子量。