(完整版)最新2020年高考数学各大题型答题模板

合集下载

【高考宝典】高考数学解答题常考公式及答题模板

【高考宝典】高考数学解答题常考公式及答题模板

高考数学解答题常考公式及答题模板题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan = 奇:2π的奇数倍 偶:2π的偶数倍8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

2020年高考数学(理)解答题核心题型与答题模板(专题05)

2020年高考数学(理)解答题核心题型与答题模板(专题05)

2020年高考数学(理)解答题核心题型与答题模板(专题05)专题05 解析几何核心考点一 直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系是圆锥曲线中的重要问题,也是高考考查的热点,研究此类一般要用到方程思想,常 见类型为交点个数、切线、弦长、对称等问题.【经典示例】在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2p x (p >0)于点P ,M 关于 点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |; (2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.【答题模板】解决直线与圆锥曲线的位置关系的一般步骤第一步,联立方程,得关于x 或y 的一元二次方程;第二步,写出根与系数的关系,并求出Δ>0时参数范围(或指出直线过曲线内一点);第三步,根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果;第四步,反思回顾,查看有无忽略特殊情况.【满分答案】(1)由已知得M (0,t ),P ⎝⎛⎭⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =p tx ,代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2. (2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2t p(y -t ). 代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.【解题技巧】1.将直线方程与圆锥曲线方程联立,消去一个变量得到关于x (或y )的一元方程:ax 2+bx +c =0(或ay 2+by +c = 0).若a ≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.2.判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根 的判别式来确定,需注意利用判别式的前提是二次项系数不为0.3.依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是 否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.4.设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=1+k 2|x 2-x 1|=1+1k2|y 2-y 1|. 5.有关圆锥曲线弦长问题的求解方法涉及弦长的问题中,应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系 数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.6.处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知 量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且 A ,B 的中点在直线l 上的应用. 【模拟训练】1.已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中曲线E 于A ,B 两点,求△AOB 面积的最大值.核心考点二 圆锥曲线中的定点、定值问题以直线与圆锥曲线为载体,结合其他条件探究直线或曲线过定点,或与动点有关的定值问题,一般常出现在解答题 第二问中,难度多为中等. 【经典示例】已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于点Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.【答题模板】证明直线过定点的步骤:第一步,设出直线方程为y kx b =+(或x my n =+);.第二步,证明b ks t =+ (或n ms t =+);.第三步,确定直线过点(),s t − (或(),t s −).【满分答案】(1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2,又a 2=b 2+c 2,∴a 2=3.∴椭圆的方程为x 23+y 2=1. (2)证明 由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2),设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1),∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=m y 1-1. 同理由PN →=λ2NQ →知λ2=m y 2-1. ∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①[来源学。

2020年高考数学答题模板

2020年高考数学答题模板

高考数学解答题常考公式及答题模板(文理通用)题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan = 8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

高考数学答题模板

高考数学答题模板

高考数学答题模板
1. 解法一:代数法
解题步骤:
(1)分析题目,根据所给条件设定变量;
(2)建立方程或不等式,表示已知的条件和要求的关系;(3)求解方程或不等式,得到结果;
(4)结合题意判断答案是否合理;
(5)若需求解区间或范围,还需分析边界条件。

2. 解法二:几何法
解题步骤:
(1)绘制清晰准确的图形,标注已知条件和要求的关系;(2)根据已知条件和要求,运用几何定理推导、引理等,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

3. 解法三:综合法
解题步骤:
(1)综合分析题目条件,确定使用代数法或几何法或两者结合进行解答;
(2)根据分析的方法,进行相应的计算和推导;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

4. 解法四:特殊问题解法
解题步骤:
(1)针对特殊问题的特点,寻找相应的解题技巧;
(2)应用特殊问题解法,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

5. 解法五:分类讨论法
解题步骤:
(1)将题目所给条件进行分类讨论;
(2)对不同情况分别进行解答;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

注意:上述为解题模板的基本框架,具体情况下可根据题目的要求和条件进行适当的调整和变化。

高考数学答题模板

高考数学答题模板

高考数学答题模板
一、选择题
1. 易错点归纳:对于选择题,首先要避开常见的易错点和混淆点。

这些易错点可能包括概率与频率概念的混淆、数列求和公式的记忆错误等。

解决这些问题需要强化基础知识点记忆,理解每个概念和公式的具体含义和应用条件。

2. 答题方法:选择题有一些常用的速解方法,如排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法和分析选项法。

掌握这些方法可以大大提高解题速度和准确性。

二、填空题
1. 易错点归纳:填空题主要考察学生对基础知识的理解和应用能力,常见的失误可能包括审题不仔细、解题思路不严谨等。

例如,在集合题型中未考虑空集情况,在函数问题中未考虑定义域等。

2. 答题方法:对于填空题,有直接法、特殊化法、数形结合法和等价转化法等速解方法。

这些方法可以帮助学生在短时间内找到问题的突破口,提高解题效率。

三、解答题
1. 解题路线图:对于解答题,首先要明确解题的步骤和思路。

例如,三角变换与三角函数的性质问题,解题步骤可以归纳为:不同角化同角、降幂扩角、化f(x)=Asin(ωx+φ)+h形式,然后结合性质求解。

2. 构建答题模板:针对不同类型的题目,需要构建不同的答题模板。

例如,对于三角函数式,一般需要化简为y=Asin(ωx+φ)+h 的形式,即化为“一角、一次、一函数”的形式。

这样可以方便后续的计算和理解。

高考数学高分答题模板

高考数学高分答题模板

高考数学高分答题模板高考数学答题黄金模板1选择填空题易错点归纳:九大模块易混淆难经历考点分析,如概率和频率概念混淆、数列求和公式经历错误等,强化基础知识点经历,躲开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情形、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

答题方法:选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感受法、分析选项法;填空题四大速解方法:直截了当法、专门化法、数形结合法、等价转化法。

2突破解答题三角函数:考点题型归纳:通常考察正弦、余弦公式、三角形差不多性质、三种差不多三角函数之间的转化与角度的化简。

通常题型:Q1:带入求值,化简等;Q2:利用正弦、余弦公式转化,依照角度取值范畴确定正负号,求某角某边等。

答题方法:七大解题思想:如巧用数形结合、化归转化等方法解题。

概率统计:考点题型归纳:通常考察排列、组合运用分布列排列、期望运算等知识点。

通常题型:Q1:求某条件的概率;Q2:利用Q1所求的概率,求分布列以及期望。

答题方法:如互斥时刻和对立事件的巧妙运用等数列:考点题型归纳:通常考察通项公式和求和公式的运用。

通常题型:Q1:求某一项,求通项公式,求数列和通式;Q2:证明,求新数列第N项和,绝对值比较等。

答题方法:如通项公式三大解法:和作差,积作商,找规律叠加化简等;求和公式三大解法:直截了当公式,错位相减,分组求和等。

立体几何:通常题型:Q1:证明线面,线线,面面垂直等;Q2:求距离,求二面角等。

答题方法:如直截了当逻辑法:面面,线面,线面垂直平行等性质的运用;空间向量法:线面垂直,平行时用向量如何表达,公式;等面积、体积法:找到最方便运算的图形。

解析几何:考点题型归纳:椭圆,双曲线,抛物线方程的长短轴性质,离心率等,直线与圆锥曲线联立,求解某点,证明某直线与圆锥曲线的关系等。

通常题型:Q1:求圆锥曲线方程式;Q2:证明某点在某线某面上,求位置关系,求直线方程等。

2020年高考数学答题模板(最终版)

2020年高考数学答题模板(最终版)

高考数学解答题常考公式及答题模板(文理通用) 嬴本德题型一:解三角形1、正弦定理:R CcB bA a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R cB R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan =8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

2020年高考数学答题步骤模板

2020年高考数学答题步骤模板

6、诱导公式:奇变偶不变,符号看象限
sin( A B) sin C
cos( A B) cos C
利用以上关系和诱导公式可得公式: sin( A C) sin B 和 cos( A C) cos B
sin(B C) sin A
cos(B C) cos A
奇: 的奇数倍 2
高考数学解答题常考公式及答题模板
(文理通用)
题型一:解三角形
1、正弦定理: a b c 2R ( R 是 ABC 外接圆的半径) sin A sin B sin C
a 2R sin A 变式①: b 2R sin B
c 2R sin C
sin
A
a 2R
变式②:
sin
B
b 2R
sin C
Sn
a1 2, a2 a4 8
an a1 (n 1)d
a2 a4 (a1 d ) (a1 3d ) 2a1 4d 8
a1 2d 4 d 1
an a1 (n 1)d n 1
a3 am
a1 3d 4 a1 (m 1)d
m
1
a1, a3 , am
9、基本不等式:① ab a b (a,b R ) 2
② ab a b 2 (a,b R ) 2
③ ab a2 b2 (a, b R) 2
注意:基本不等式一般在求取值范围或最值问题中用到,比如求 ABC 面积的最大值时。
说明:颜色加深的是重点记忆的公式哦!
第 1 页 共 33 页
②若已知
an 1 an
q 和 a1
a ,则用等比数列通项公式 an
a1q n1
(2) an 与 Sn 的关系: an
S1 Sn

高考数学答题模板12个

高考数学答题模板12个

高考数学答题模板12个高考数学答题模板12个选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2.答题方法:选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。

2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x 的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

(完整版)新课标全国卷高考数学答题卡模板

(完整版)新课标全国卷高考数学答题卡模板

请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 21、
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
选考题
请从 22、23、24 三道题中任选一题作答,并用 2B 铅笔将所选题 目的题号右侧方框涂黑,按所涂题号进行评分;多涂,多答,按所涂 的首题进行评分;不涂,按本选考题的首题进行评分
3A B C D
4A B C D
5A B C D 6A B C D 7A B C D 8A B C D
二、填空题〔每题 5 分,共 20 分〕
9 ABCD 10 A B C D 11 A B C D 12 A B C D
13、______ ___ __ ___
14、_______ _______
15、______ __ ______
2.选择题必须用 2B 铅笔填涂,解答题必须用 0.5 毫米黑 色签字笔书写,字体工整,笔迹清楚;
须 3.请按照题号顺序在各题目的答题区域内作答,超出答题

区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
一、选择题〔每题 5 分,共 60 分〕
1A B C D 2A B C D
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
16、
三、解答题〔共 70 分,解容许写出文字说明,证明过程或演算步骤〕
17、
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 18、
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效

2020年高考数学(理)解答题核心题型与答题模板(专题04)

2020年高考数学(理)解答题核心题型与答题模板(专题04)

2020年高考数学(理)解答题核心题型与答题模板(专题04)专题04 立体几何核心考点一平行关系的证明平行关系包括直线与直线平行、直线与平面平行及平面与平面平行,平行关系的证明一般作为解答题的第一问,难度中等或中等以下,解答此类问题要注意步骤的规范.【经典示例】如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.【答题模板】证明BE∥平面DMF的步骤第一步,在平面DMF内找出一条直线MO与BE平行;第二步,指出BE⊄平面DMF,MO⊂平面DMF;第三步,由线面平行的判断定理得BE∥平面DMF.【满分答案】证明(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.【解题技巧】1.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).2. 证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.3.平行关系之间的转化在证明线面、面面平行时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向是由题目的具体条件而定的,不可过于“模式化”【模拟训练】1.如图所示,斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值.核心考点二 垂直关系的证明平行关系包括直线与直线垂直、直线与平面垂直及平面与平面垂直,垂直关系的证明一般作为解答题的第一 问,难度中等或中等以下,解答此类问题要注意步骤的规范.【经典示例】如图所示,在四棱锥P ­ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【答题模板】证明PD⊥平面ABE(线面垂直)的步骤:第一步,证明AE⊥PD,AB⊥PD(在平面ABE内找出两条直线与AD垂直);.第二步,指出AB∩AE=A (两直线相交);.第三步,利用线面垂直的判定定理确定PD⊥平面ABE.【满分答案】(1)在四棱锥P­ABCD中,∵P A⊥底面ABCD,CD⊂平面ABCD,∴P A⊥CD.∵AC⊥CD,P A∩AC=A,∴CD⊥平面P AC.而AE⊂平面P AC,∴CD⊥AE.(2)P A=PB=PC,∠ABC=60°,可得AC=P A∵E是PC的中点,∴AE⊥PC由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD而PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,∴P A⊥AB.又∵AB⊥AD且P A∩AD=A,∴AB⊥平面P AD,而PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.【解题技巧】1.证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.2. 判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.3. 垂直关系之间的转化在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件.同时抓住线线、线面、面面垂直的转化关系,即:在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线在图中不存在,则可通过作辅助线来解决.【模拟训练】2.如图,在直三棱柱ABC­A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,AC1⊥A1B1.1求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.核心考点三利用空间向量证明平行与垂直立体几何中的线面位置关系的证明,也可利用向量,用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.【经典示例】如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,设E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)求证:平面P AB⊥平面PDC.【答题模板】用向量证明平行或垂直的步骤第一步, 恰当建立空间直角坐标系,准确表示各点与相关向量的坐标;.第二步,把平行与垂直问题转化为直线方向向量或平面法向量之间的数量关系;第三步,通过计算得出结论;第四步,还原结论.【满分答案】(1)如图,取AD的中点O,连接OP,OF.∵PA=PD ,∴PO ⊥AD∵侧面PAD ⊥底面ABCD ,平面PAD∩平面ABCD=AD所以PO ⊥平面ABCD又∵OF 分别为AD ,BD 的中点,所以OF ∥AB ,又ABCD 是正方形,所以OF ⊥AD∵,PA PD = ∴PA ⊥AD ,2a OP OA == 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A (a 2,0,0),F (0,a 2,0),D (-a 2,0,0),P (0,0,a 2),B (a 2,a,0),C (-a 2,a,0). 因为E 为PC 的中点,所以E (-a 4,a 2,a 4). 易知平面P AD 的一个法向量为OF →=(0,a 2,0), 因为EF →=(a 4,0,-a 4), 且OF →·EF →=(0,a 2,0)·(a 4,0,-a 4)=0, 所以EF ∥平面P AD .(2)因为P A →=(a 2,0,-a 2),CD →=(0,-a,0), 所以P A →·CD →=(a 2,0,-a 2)·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .[来源学科网]【解题技巧】1.证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面 内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.2.证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.3. 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.【模拟训练】3.如图所示,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E 为BC的中点.(1)求异面直线NE与AM所成角的余弦值;(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.核心考点四利用空间向量求空间角利用空间向量求空间角是全国卷高考必考内容。

高考数学答题模板12个

高考数学答题模板12个

高考数学答题模板12个1500字高考数学答题模板12个1. 解方程模板:首先列出方程:a(x - m)^2 + n = b然后展开方程:ax^2 - 2amx + am^2 + n = b移项并化简:ax^2 - 2amx + am^2 + n - b = 0将方程视为一元二次方程,使用求根公式:x = (2am ±√(4a(b-n) + 4a^2m^2))/ (2a)化简并整理得最终答案。

2. 圆的相关模板:圆的标准方程:(x - a)^2 + (y - b)^2 = r^2其中,圆心为 (a, b),半径为 r。

根据题目给出的条件,代入方程中求解。

3. 三角形的模板:勾股定理:a^2 + b^2 = c^2 (三角形中,a、b 为直角边,c 为斜边)根据给出的条件,利用勾股定理求解。

4. 几何图形的模板:首先画出几何图形,标出已知的条件和需要求解的量。

根据已知条件,利用几何定理、相似性原理等,搭建等式或者比例关系,并解方程求解。

5. 求导模板:根据给出的函数关系,利用求导公式对函数进行求导。

注意计算过程的细节,利用链式法则、乘积法则等进行计算。

最后化简求解得结果。

6. 极限求解模板:对于一般的函数极限求解,可以利用函数极限的性质进行求解。

根据题目的要求,利用夹逼准则、洛必达法则等方法求解极限。

7. 统计问题模板:根据题目的要求计算平均数、方差、标准差等统计量。

注意计算过程的细节,并进行适当的整理和化简。

8. 概率问题模板:根据已知的概率模型和条件,利用概率公式计算概率。

注意计算过程的细节,并进行适当的整理和化简。

9. 计算题模板:根据题目给出的计算式和条件,一步一步进行计算。

注意计算的细节,进行适当的化简和整理。

10. 综合题模板:综合题一般包含多个题目要求,根据每个小题的要求进行分析和求解。

先分析每个小题的要求,并给出解题思路。

然后分别解答每个小题,并按照题目要求进行整理和化简。

高考数学答题模板

高考数学答题模板

加速做数学选择题的七项策略一、特殊法是“小题小作”的重要策略,辩证法认为矛盾的特殊性是矛盾的一般性的突出表现,是矛盾的一般性的集中反映。

特殊法就是利用数学问题中的普遍与特殊的关系来简化解题过程的一种方法,只能用选择题和填空题的解答.一般有特殊函数法,特殊数列法,特殊值法,特殊图形法. (一)特殊数列法1. 如果等比数列{a n }的首项是正数,公比大于1,则数列}log {31n a ⎪⎭⎫ ⎝⎛是( )A.是递增等比数列B.是递减等比数列C.是递增等差数列D.是递减的等差数列. 2.一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )A .-24B .84C .72D .363.已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有 ( )A 、11010a a +>B 、21020a a +<C 、3990a a +=D 、5151a = (二)特殊函数法4.已知定义域是实数集R 上的函数y=f(x)不恒为0,同时满足f(x+y)=f(x)f(y),且当x>0时,f(x)>1,那么当x<0时,一定有_____. A.f(x)<-1 B. -1<f(x)<0 C . f(x)>1 D. 0<f(x)<15.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-56.定义在R 上的奇函数f(x)为减函数,设a+b ≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b)。

其中正确的不等式序号是( ) A .①②④B .①④C .②④D .①③(三)特殊数值法7.双曲线b 2x 2-a 2y 2=a 2b 2(a>b>0)的渐近线夹角为α,离心率为e ,则2cos α等于( ) A .e B.e 2 C.1eD.21e0,1,a b a b <<+=8.设()则下列不等式中正确的是()2A b ab <<22()2B ab b a b <<+<22()2C ab a b b <+<<22()2D ab a b b <+<49.0||().sin 2sin .cos2cos .tan 2tan .cot 2cot A B C D πααααααααα<<><><若则10.若sin α>tan α>cot α(24παπ<<-),则α∈( )A .(2π-,4π-) B .(4π-,0) C .(0,4π) D .(4π,2π) 2020高考数学答案模板(四)特殊形状法11. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。

精排打印版】新课标高考数学答题卡模板

精排打印版】新课标高考数学答题卡模板

精排打印版】新课标高考数学答题卡模板请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。

普通高等学校招生全国统一考试数学答题卡姓名:_______________________________准考证号:__________________________注:条形码粘贴处缺考考生由监考员填涂右边的缺考标记。

1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真检查监考员所粘贴的条形码。

2.选择题必须用2B铅笔填涂,解答题必须用0.5毫米黑色签字笔书写,字体工整,笔迹清楚;样式错误填涂无效。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠、不要弄破。

一、选择题(每小题5分,共60分)1.ABCD2.ABCD3.ABCD4.ABCD5.ABCD6.ABCD7.ABCD8.ABCD9.ABCD10.ABCD11.ABCD12.ABCD二、填空题(每小题5分,共20分)13、____________________14、____________________15、____________________16、____________________三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分12分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。

18、删除明显有问题的段落。

19、小幅度改写每段话:1.在作答前,考生需认真填写自己的姓名和准考证号,并仔细核对监考员所粘贴的条形码。

2.选择题必须使用2B铅笔填涂,解答题必须使用0.5毫米黑色签字笔书写,字迹清晰、工整,样式错误的填涂无效。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题也无效。

4.请保持答题卡面清洁,不要折叠或弄破。

20、请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。

新高考数学试卷答题卡模板

新高考数学试卷答题卡模板

一、基本信息1. 姓名:___________2. 准考证号:___________3. 考试科目:数学二、选择题部分(共20题,每题5分,共100分)1. ()若a、b、c为等差数列,且a+c=2b,则b的值为:A. 2B. 1C. 0D. -12. ()下列函数中,有最小值的是:A. y=2x+1B. y=x^2C. y=x^3D. y=x^43. ()若向量a=(2,3),向量b=(-1,2),则向量a与向量b的夹角θ的余弦值为:A. 1/5B. 2/5C. 3/5D. 4/54. ()已知函数f(x)=x^2-2ax+1,若f(x)的图像关于直线x=a对称,则a的值为:A. 1B. 2C. 3D. 45. ()下列命题中,正确的是:A. 平方根为正数的数一定是正数B. 平方根为负数的数一定是负数C. 平方根为0的数一定是0D. 平方根为1的数一定是16. ()已知等差数列{an}的前n项和为Sn,若a1=1,公差d=2,则S10的值为:A. 55B. 60C. 65D. 707. ()若复数z满足|z+1|=|z-1|,则复数z的实部为:A. 0B. 1C. -1D. 28. ()下列函数中,是奇函数的是:A. y=x^2B. y=x^3C. y=x^4D. y=x^59. ()若等比数列{an}的前n项和为Sn,若a1=1,公比q=2,则S6的值为:A. 63B. 64C. 65D. 6610. ()若向量a=(1,2),向量b=(2,3),则向量a与向量b的模长分别为:A. 1,2B. 2,3C. 3,4D. 4,511. ()下列命题中,正确的是:A. 等差数列的通项公式为an=a1+(n-1)dB. 等比数列的通项公式为an=a1q^(n-1)C. 等差数列的前n项和公式为Sn=n(a1+an)/2D. 等比数列的前n项和公式为Sn=n(a1-an)/q12. ()若复数z满足|z|=1,则复数z的实部与虚部的和为:A. 0B. 1C. -1D. 213. ()下列函数中,是偶函数的是:A. y=x^2B. y=x^3D. y=x^514. ()若等比数列{an}的前n项和为Sn,若a1=1,公比q=2,则S7的值为:A. 127B. 128C. 129D. 13015. ()若向量a=(1,2),向量b=(2,3),则向量a与向量b的数量积为:A. 5B. 6C. 7D. 816. ()下列命题中,正确的是:A. 平方根为正数的数一定是正数B. 平方根为负数的数一定是负数C. 平方根为0的数一定是0D. 平方根为1的数一定是117. ()若复数z满足|z+1|=|z-1|,则复数z的虚部为:A. 0B. 1C. -1D. 218. ()下列函数中,是奇函数的是:B. y=x^3C. y=x^4D. y=x^519. ()若等比数列{an}的前n项和为Sn,若a1=1,公比q=2,则S8的值为:A. 255B. 256C. 257D. 25820. ()若向量a=(1,2),向量b=(2,3),则向量a与向量b的模长分别为:A. 1,2B. 2,3C. 3,4D. 4,5三、解答题部分(共2题,共50分)21. (20分)已知函数f(x)=x^3-3x^2+2,求:(1)函数f(x)的图像的顶点坐标;(2)函数f(x)在区间[0,2]上的最大值和最小值。

2020年高考数学答题模板

2020年高考数学答题模板

高考数学解答题常考公式及答题模板(文理通用)题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABCsin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan =8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考数学各大题型答题模板
数学是高中生学习的最重要科目之一,数学的学习对于学生而言至关重要,数学
成绩的好坏直接决定着你的总成绩的排名。

以下是小编搜索整理的关于2020年高考数学各大题型的答题模板,供参考借鉴,希望对大家有所帮助!
【选择题十大万能解题方法】
1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特
殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪
存真的目的。

2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何
上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解
决问题。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误
的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者
有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直
观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚
至可以用量角尺直接量出结果来。

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得
出结果的方法。

7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条
件的结论,或从反面出发得出结论。

9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断
的方法。

10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运
算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的
方法。

【填空题四大速解方法】
直接法、特殊化法、数形结合法、等价转化法。

【解答题答题模板】
专题一、三角变换与三角函数的性质问题
1、解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。

2、构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的
方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全
部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法
或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

专题四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

③用向量工具求空间的角和距离。

2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

专题五、圆锥曲线中的范围问题
点击查看:高中数学知识点总结及复习资料
1、解题路线图
①设方程。

②解系数。

③得结论。

2、构建答题模板
①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素的制约。

专题六、解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。

③得出结论。

2、构建答题模板
①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果,经验证成立则肯。

定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

专题七、离散型随机变量的均值与方差
1、解题路线图
(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

2、构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

专题八、函数的单调性、极值、最值问题
1、解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。

(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

2、构建答题模板
①求导数:求f(x)的导数f′(x)。

(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根。

③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

④得结论:从表格观察f(x)的单调性、极值、最值等。

⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。

2020年高考数学各大题型答题模板相关文章:
1.2020高考数学的12个答题模板!
2.2020届高三数学解答题8个答题模板
3.2020年高考数学应试技巧
4.2020高三数学知识点总结与答题套路
5.2020年高考数学备考策略有哪些
6.2020高考数学的12种解题思路!
7.2020高考数学答题技巧
8.2020高考数学压轴题常用解题形式和解题策略分享
9.2020高考数学176个知识点题型归纳,高考数学如何达到及格
10.2020高考数学快速解题方法。

相关文档
最新文档