2013年高考数学一轮复习 11.2 古典概型精品教学案(教师版)新人教版

合集下载

高考数学一轮复习 11.3 几何概型精品教学案(教师版)新人教版

高考数学一轮复习 11.3 几何概型精品教学案(教师版)新人教版

2013年高考数学一轮复习精品教学案11.3 几何概型(新课标人教版,教师版)1.了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.概率是历年来高考重点内容之一,在选择题、填空题与解答题中均有可能出现,一般以实际应用题的形式考查,又经常与其它知识结合,在考查概率等基础知识的同时,考查转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持以实际应用题的形式考查概率,或在选择题、填空题中继续搞创新,命题形式会更加灵活.【要点梳理】1.几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关.满足以上条件的试验称为几何概型.2.几何概型中,事件A 的概率计算公式P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积. 3.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.【例题精析】考点一 与长度、角度有关的几何概型例1.(2009年高考山东卷理科11) 在区间[-1,1]上随机取一个数x ,cos2x π的值介于0到21之间的概率为( ) A. 31 B.π2 C.21 D. 32 【答案】A【解析】当10cos 22xπ<<时,在区间[]1,1-上,只有223x πππ-<<-或322x πππ<<,即22(1,)(,1)33x ∈--,根据几何概型的计算方法,这个概率值是13.【名师点睛】本小题主要考查与三角函数结合的有关长度的几何概型的计算,熟练基本概念是解决本类问题的关键.【变式训练】1.点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.考点二 与面积、体积有关的几何概型例2. (2012年华东师大附中模拟)设有关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.【变式训练】2.(2012年高考北京卷文科3)设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )(A )4π (B )22π- (C )6π (D )44π-【易错专区】问题:综合应用例.(2012年高考陕西卷理科10)右图是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入( )(A ) 1000N P =(B ) 41000N P = (C ) 1000M P = (D ) 41000M P =1.(2009年高考山东卷文科第11题)在区间[,]22ππ-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ) A.31 B.π2 C.21 D. 32 【答案】A 【解析】当10cos 2x <<时,在区间[,]22ππ-上,只有23x ππ-<<-或32x ππ<<,根据几何概型的计算方法,这个概率值是13. 2. (湖南省十二校2011届高三第二次联考) 在区间[-3,5]上随机取一个数x ,则[1,3]的概率为( )A.B.C. D.【答案】C 【解析】本题考查几何概型,所求的概率为2184=,故选C. 3.(2010年高考湖南卷文科11)在区间[-1,2]上随即取一个数x ,则x ∈[0,1]的概率为 。

高考数学一轮复习 第十一章概率与统计11.2古典概型教学案 理 新人教A版

高考数学一轮复习 第十一章概率与统计11.2古典概型教学案 理 新人教A版

11.2 古典概型考纲要求1.理解古典概型及其概率计算公式.2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.1.基本事件有如下特点:(1)任何两个基本事件是______的;(2)任何事件(除不可能事件)都可以表示成__________.2.古典概型具有以下两个特点的概率模型称为古典概型:(1)有限性,即在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是相等的. 判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:试验结果的有限性和每一个试验结果出现的等可能性.3.如果一次试验中所有可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是______;如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=______.4.古典概型的概率公式:P (A )=__________.1.从集合A ={2,3,-4}中随机选取一个数记为k ,从集合B ={-2,-3,4}中随机选取一个数记为b ,则直线y =kx +b 不经过第二象限的概率为( ).A.29B.13C.49D.592.先后抛掷两颗质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( ).A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 13.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个数的两倍的概率是__________.4.盒子中共有大小相同的3个白球,1个黑球,若从中随机摸出两个球,则它们颜色不同的概率是__________.一、古典概型及其概率计算【例1】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?方法提炼1.判断一个概率问题是否为古典概型,关键是看它是否同时满足两个特征:有限性和等可能性,同时满足这两个特征的概率模型才是古典概型.2.求古典概型的概率时,一般是先用列举法把试验所包含的基本事件一一列举出来,然后再找出所求事件A 所包含的基本事件的个数,利用公式P (A )=m n即可求得事件A 的概率.请做演练巩固提升1二、古典概型的应用【例2-1】 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.【例2-2】 甲、乙两人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j )分别表示甲、乙抽到的牌的数字,写出甲、乙两人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.方法提炼由于古典概型所包含的基本事件的个数是有限的,所以可先用列举法把试验所包含的基本事件一一列举出来,然后再求出某事件A 所包含的基本事件的个数,利用公式P (A )=m n便可求出事件A 的概率.请做演练巩固提升3概率主观题的规范解答【典例】 (12分)(2012山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.规范解答:(1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.(3分)由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.(5分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(6分) (2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.(8分) 由于每一张卡片被取到的机会均等, 因此这些基本事件的出现是等可能的.(9分)从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.(11分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.(12分) 答题指导:事件A 的概率的计算方法,关键要分清基本事件总数n 与事件A 包含的基本事件数m .因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A 是什么,它包含的基本事件有多少个.回答好这三个方面的问题,解题才不会出错.1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ).A.13B.12C.23D.342.若a∈{1,2},b∈{-2,-1,0,1,2},方程x2+ax+b=0的两根均为实数的概率为( ).A.35B.710C.14D.383.(2012安徽高考)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( ).A.15B.25C.35D.454.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ).A.110B.18C.16D.155.某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X 1234 5f a 0.20.45 b c(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.参考答案基础梳理自测知识梳理1.(1)互斥 (2)基本事件的和3.1n m n4.A 包含的基本事件的个数基本事件的总数基础自测1.C 解析:依题意k 和b 的所有可能的取法一共有3×3=9种,其中当直线y =kx +b 不经过第二象限时应有k >0,b <0,一共有2×2=4种,所以所求概率为49. 2.B 解析:先后抛掷两颗骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112. 3.13解析:所有情况共有6种,而其中一个数为另一个数两倍的有2种情况. 故所求概率为26=13. 4.12解析:基本事件总数为6种情况,其中颜色不同的共有3种情况,所以所求概率为P =36=12. 考点探究突破【例1】 解:(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸中白球的可能性为511,同理可知摸中黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型.【例2-1】 解:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个.因此所求事件的概率P =26=13. (2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n ≥m +2的事件的概率为P 1=316. 故满足条件n <m +2的事件的概率为1-P 1=1-316=1316. 【例2-2】 解:(1)甲、乙两人抽到的牌的所有情况(方片4用4′表示,红桃2,红桃3,红桃4分别用2,3,4表示)为:(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4)共12种不同情况.(2)甲抽到3,乙抽到的牌只能是2或4或4′,因此乙抽到的牌的数字大于3的概率为23. (3)由甲抽到的牌的牌面数字比乙大的有(3,2),(4,2),(4,3),(4′,2),(4′,3)共5种,甲胜的概率为P 1=512,乙胜的概率为P 2=712, ∵512<712,∴此游戏不公平. 演练巩固提升1.A 解析:由题意得,甲、乙两位同学参加小组的所有可能的情况共3×3=9种,又两位同学参加同一个兴趣小组的种数为3,故概率为39=13. 2.B 解析:若方程有两实根,则a 2-4b ≥0,即a 2≥4b .则满足条件的基本事件(a ,b )有:(1,0),(2,-1),(2,0),(1,-1),(1,-2),(2,-2),(2,1)共有7种情况,而基本事件总数为10,∴所求概率为710. 3.B 解析:记1个红球为A,2个白球为B 1,B 2,3个黑球为C 1,C 2,C 3,则从中任取2个球,基本事件空间Ω={(A ,B 1),(A ,B 2),(A ,C 1),(A ,C 2),(A ,C 3),(B 1,B 2),(B 1,C 1),(B 1,C 2),(B 1,C 3),(B 2,C 1),(B 2,C 2),(B 2,C 3),(C 1,C 2),(C 1,C 3),(C 2,C 3)},共计15种,而两球颜色为一白一黑的有如下6种:(B 1,C 1),(B 1,C 2),(B 1,C 3),(B 2,C 1),(B 2,C 2),(B 2,C 3),所以所求概率为615=25. 4.D 解析:在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB 与DE ),共有3种,∴所求概率为315=15. 5.解:(1)由频率分布表得a +0.2+0.45+b +c =1,即a +b +c =0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b =320=0.15. 等级系数为5的恰有2件,所以c =220=0.1. 从而a =0.35-b -c =0.1,所以a =0.1,b =0.15,c =0.1.(2)从日用品x 1,x 2,x 3,y 1,y 2中任取两件,所有可能的结果为:{x 1,x 2},{x 1,x 3},{x 1,y 1},{x 1,y 2},{x 2,x 3},{x 2,y 1},{x 2,y 2},{x 3,y 1},{x 3,y 2},{y 1,y 2}.设事件A 表示“从日用品x 1,x 2,x 3,y 1,y 2中任取两件,其等级系数相等”,则A 包含的基本事件为{x 1,x 2},{x 1,x 3},{x 2,x 3},{y 1,y 2},共4个.又基本事件的总数为10,故所求的概率P (A )=410=0.4.。

《古典概型》教案

《古典概型》教案

《古典概型》教案一、教学目标【知识与技能】会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。

【过程与方法】通过从实际问题中抽象出数学模型的过程,提升运用从具体到抽象从特殊到一般的分析问题的能力和解决问题的能力。

【情感态度与价值观】增加合作学习交流的机会,在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神,在次过程中还可以增加学习数学的学习兴趣。

二、教学重难点【重点】古典概型的概念以及概率公式。

【难点】如何判断一个试验是否是古典概型;分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

三、教学过程(一)导入新课师:好,同学们,我们开始上课,大家看看我手里拿的是什么?对,是5张扑克牌,在上课前大家想不想玩玩游戏呢?,好我们现在5人为一小组,一个人记录,另外4个人来抓袋子里面的小球,抓到红桃的奖励,抓到黑桃的惩罚,现在开始玩起来吧。

师:好了,大家都玩完了,现在请同学把你们的记录的数据都拿出来看看吧,看看怎么样?有什么特点呢?生:发现抓住红桃和黑桃的机会是一样的。

师:我听到有同学说了,可以把每种都找出来,在加起来就知道总的概率了,这中方法也可,但是大家想想如果我不是5张,是50张,甚至500张,这样还行吗?有没有什么简便的方法呢?好,今天我们就一起来学习一个简单快速计算的方法-古典概型(二)探究新知1.探索基本事件和古典概型的概念师生活动:师生共同探讨两个概念的生成如果把抽到红心记为事件B,那么事件B相当于抽到红心1,抽到红心2,抽到红心3,这三种情况,而抽到黑桃相当于,抽到黑桃4,黑桃5,这两种情况,因为是任意抽取的,可以认为出现这五种情况是都相等的。

当出现抽到红心1.2.3这三种情形之一时,事件B就发生了,于是P(B)=,追问1:这里所说的抽到红心1.2.3就是我们这组事件中的一个基本事件,那大家可以根据老师刚刚的分析总结出基本事件的概念吗?如果在一次实验中,每个基本事件发生的可能性相同,又叫什么呢?生:在一次实验中可能出现的每一个基本结果称为基本事件。

2013届高考数学总复习教学案:古典概型

2013届高考数学总复习教学案:古典概型

古_典_概_型[知识能否忆起]一、基本事件的特点1.任何两个基本事件是互斥的.2.任何事件(除不可能事件)都可以表示成基本事件的和. 二、古典概型的两个特点1.试验中所有可能出现的基本事件只有有限个,即有限性. 2.每个基本事件出现的可能性相等,即等可能性.[提示] 确定一个试验为古典概型应抓住两个特征:有限性和等可能性. 三、古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.[小题能否全取]1.(教材习题改编)从甲、乙、丙三人中任选两名代表,甲被选中的概率为( ) A.12 B.13 C.23D .1解析:选C 基本事件总数为(甲、乙)、(甲、丙)、(乙、丙)共三种,甲被选中共2种.则P =23.2.(教材习题改编)从1,2,3,4,5,6六个数中任取2个数,则取出的两个数不是连续自然数的概率是( )A.35B.25C.13D.23解析:选D 从六个数中任取2个数有15种方法,取出的两个数是连续自然数有5种情况,则取出的两个数不是连续自然数的概率P =1-515=23. 3.甲、乙两同学每人有两本书,把四本书混放在一起,每人随机拿回两本,则甲同学拿到一本自己书一本乙同学书的概率是( )A.13B.23C.12D.14解析:选B 记甲同学的两本书为A ,B ,乙同学的两本书为C ,D ,则甲同学取书的情况有AB ,AC ,AD ,BC ,BD ,CD 共6种,有一本自己的书,一本乙同学的书的取法有AC ,AD ,BC ,BD 共4种,所求概率P =23.4.(2012·南通一调)将甲、乙两球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有一个球的概率为________.解析:依题意得,甲、乙两球各有3种不同的放法,共9种放法,其中有1,2号盒子中各有一个球的放法有2种,故有1,2号盒子中各有一个球的概率为29.答案:295.(教材习题改编)从3台甲型彩电和2台乙型彩电中任选两台,其中两种品牌的彩电齐全的概率是________.解析:P =3×210=35.答案:351.古典概型的判断:一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概率模型才是古典概型.2.对于复杂的古典概型问题要注意转化为几个互斥事件的概率问题去求.简单的古典概型典题导入[例1] (2012·安徽高考)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45[自主解答] (文)设袋中红球用a 表示,2个白球分别用b 1,b 2表示,3个黑球分别用c 1,c 2,c 3表示,则从袋中任取两球所含基本事件为(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 1,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3)共15个.两球颜色为一白一黑的基本事件有(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3)共6个.因此其概率为615=25.(理)从6个球中任取两球有C 26=15种取法,颜色一黑一白的取法有C 12C 13=6种,故概率P =615=25.[答案] B在本例条件下,求两球不同色的概率.解:两球不同色可分三类:一红一白,一红一黑,一白一黑. 故P =1×2+1×3+2×315=1115.由题悟法计算古典概型事件的概率可分三步:(1)算出基本事件的总个数n ;(2)求出事件A 所包含的基本事件个数m ;(3)代入公式求出概率P .以题试法1.“≺数”是指每个数字比其左边的数字大的自然数(如1 469),在两位的“≺数”中任取一个数比36大的概率是( )A.12 B.23 C.34D.45解析:选A 在两位数中,十位是1的“≺数”有8个;十位是2的“≺数”有7个;……;十位是8的“≺数”有1个.则两位数中,“≺数”共有8+7+6+5+4+3+2+1=36个,比36大的“≺数”共有3+5+4+3+2+1=18个.故在两位的“≺数”中任取一个数比36大的概率是1836=12.复杂的古典概型典题导入[例2] (2012·江西高考)如图所示,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率; (2)求这3点与原点O 共面的概率.[自主解答] (文)从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种; y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种; z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P 1=220=110.(2)法一:选取的这3个点与原点O 共面的所有可能结果有:A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P 2=1220=35.法二:选取的这3个点与原点不共面的所有可能的结果有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种,因此这3个点与原点O 共面的概率为P 2=1-820=35.(理)从这6个点中任取3个点可分三类:在x 轴上取2个点、1个点、0个点,共有C 22C 14+C 12C 24+C 34=20种取法.(1)选取的3个点与原点O 恰好是正三棱锥项点的取法有2种,概率P 1=220=110.(2)法一:选取的3个点与原点O 共面的取法有C 22·C 14·3=12种,所求概率P 2=1220=35. 法二:选取的3个点与原点不共面的取法有C 12·C 12·C 12=8种,因此这3个点与原点O 共面的概率P 2=1-820=35.由题悟法求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型.必要时将所求事件转化成彼此互斥的事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.以题试法2.一个小朋友任意敲击电脑键盘上的0到9十个键,则他敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( )A.425 B .215 C.25D.29解析:选A 任意敲击两次有10×10=100种方法,两次都是3的倍数有4×4=16种方法,故所求概率为P =16100=425.1.(2013·惠州调研)一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )A.12B.13C.14D.25解析:选A 把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P =816=12.2.(2012·鸡西模拟)在40根纤维中,有12根的长度超过30 mm ,从中任取一根,取到长度超过30 mm 的纤维的概率是( )A.34B.310C.25D .以上都不对解析:选B 在40根纤维中,有12根的长度超过30 mm ,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为310.3.(2013·宿州质检)一颗质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这一颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为( )A.112 B.118 C.136D.7108解析:选A 基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P =186×6×6=112.4.已知某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件,n 件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过.则第一天通过检查的概率为( )A.25B.35C.23D.67解析:选B 因为随意抽取4件产品检查是随机事件,而第一天有1件次品,所以第一天通过检查的概率P =C 49C 410=35.5.(2012·宁波模拟)设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上有零点的概率为( )A.12B.58C.1116D.34解析:选C 因为f (x )=x 3+ax -b ,所以f ′(x )=3x 2+a .因为a ∈{1,2,3,4},因此f ′(x )>0,所以函数f (x )在区间[1,2]上为增函数.若存在零点,则⎩⎪⎨⎪⎧f (1)≤0,f (2)≥0,解得a +1≤b ≤8+2a .因此可使函数在区间[1,2]上有零点的有a =1,2≤b ≤10,故b =2,b =4,b =8;a =2,3≤b ≤12,故b =4,b =8,b =12;a =3,4≤b ≤14,故b =4,b =8,b =12;a =4,5≤b ≤16,故b =8,b =12.根据古典概型可得有零点的概率为1116.6.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.115 B.35 C.815D.1415解析:选B 从“6听饮料中任取2听饮料”这一随机试验中所有可能出现的基本事件共有15个,而“抽到不合格饮料”含有9个基本事件,所以检测到不合格饮料的概率为P =915=35. 7.(2012·南京模拟)从分别写有0,1,2,3,4的五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.则两次取出的卡片上的数字之和恰好等于4的概率是________.解析:从0,1,2,3,4五张卡片中取出两张卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),所以数字和恰好等于4的概率是P =15.答案:158.(2012·重庆高考)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答).解析:基本事件是对这6门课排列,故基本事件的个数为A 66.“课表上的相邻两节文化课之间至少间隔1节艺术课”就是“任何两节文化课不能相邻”,利用“插空法”,可得其排列方法种数为A 33A 34.根据古典概型的概率计算公式可得事件“课表上的相邻两节文化课之间至少间隔1节艺术课”发生的概率为A 33A 34A 66=15.答案:159.(2012·江苏高考)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35.答案:3510.暑假期间,甲、乙两个学生准备以问卷的方式对某城市市民的出行方式进行调查.如图是这个城市的地铁二号线路图(部分),甲、乙分别从太平街站(用A 表示)、南市场站(用B 表示)、青年大街站(用C 表示)这三站中,随机选取一站作为调查的站点.(1)求甲选取问卷调查的站点是太平街站的概率;(2)求乙选取问卷调查的站点与甲选取问卷调查的站点相邻的概率.解:(1)由题知,所有的基本事件有3个,甲选取问卷调查的站点是太平街站的基本事件有1个,所以所求事件的概率P =13.(2)由题知,甲、乙两人选取问卷调查的所有情况见下表:乙 甲 A B CA (A ,A ) (A ,B ) (A ,C ) B (B ,A ) (B ,B ) (B ,C ) C(C ,A )(C ,B )(C ,C )由表格可知,共有9种可能结果,其中甲、乙在相邻的两站进行问卷调查的结果有4种,分别为(A ,B ),(B ,A ),(B ,C ),(C ,B ).因此乙选取问卷调查的站点与甲选取问卷调查的站点相邻的概率为49.11.(2012·济南模拟)将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a ,正四面体的三个侧面上的数字之和为b ”.设复数为z =a +b i.(1)若集合A ={z |z 为纯虚数},用列举法表示集合A ;(2)求事件“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的概率.解:(1)A ={6i,7i,8i,9i}.(2)满足条件的基本事件的个数为24.设满足“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的事件为B . 当a =0时,b =6,7,8,9满足a 2+(b -6)2≤9; 当a =1时,b =6,7,8满足a 2+(b -6)2≤9; 当a =2时,b =6,7,8满足a 2+(b -6)2≤9; 当a =3时,b =6满足a 2+(b -6)2≤9.即B 为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个.所以所求概率P =1124.12.(2012·福州模拟)已知A 、B 、C 三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A 、B 、C 三个箱子中各摸出1个球.(1)若用数组(x ,y ,z )中的x ,y ,z 分别表示从A 、B 、C 三个箱子中摸出的球的号码,请写出数组(x ,y ,z )的所有情形,并回答一共有多少种;(2)如果请您猜测摸出的这三个球的号码之和,猜中有奖,那么猜什么数获奖的可能性最大?请说明理由.解:(1)数组(x ,y ,z )的所有情形为(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.(2)记“所摸出的三个球号码之和为i ”为事件A i (i =3,4,5,6),易知,事件A 3包含有1个基本事件,事件A 4包含有3个基本事件,事件A 5包含有3个基本事件,事件A 6包含有1个基本事件,所以,P (A 3)=18,P (A 4)=38,P (A 5)=38,P (A 6)=18.故所摸出的两球号码之和为4或5的概率相等且最大.故猜4或5获奖的可能性最大.1.(2012·温州十校联考)从x 2m -y 2n =1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为( )A.12B.47C.23D.34解析:选B 当方程x 2m -y 2n =1表示椭圆、双曲线、抛物线等圆锥曲线时,不能有m <0,n >0,所以方程x 2m -y 2n =1表示椭圆双曲线、抛物线等圆锥曲线的(m ,n )有(2,-1),(3,-1),(2,2),(3,2),(2,3),(3,3),(-1,-1)共7种,其中表示焦点在x 轴上的双曲线时,则m >0,n >0,有(2,2),(3,2),(2,3),(3,3)共4种,所以所求概率P =47.2.设连续掷两次骰子得到的点数分别为m 、n 则直线y =mn x 与圆(x -3)2+y 2=1相交的概率为________.解析:由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种.由直线与圆的位置关系得,d =|3m |m 2+n 2<1,即m n <24,共有13,14,15,16,26,5种,所以直线y =m n x 与圆(x -3)2+y 2=1相交的概率为536.答案:5363. (2012·天津高考)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率.解:(1)由分层抽样定义知,从小学中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从大学中抽取的学校数目为6×721+14+7=1.因此,从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6}共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为{A 1,A 2},{A 1,A 3},{A 2,A 3}共3种.所以P (B )=315=15.1.已知A ={1,2,3},B ={x ∈R |x 2-ax +b =0},a ∈A ,b ∈A ,则A ∩B =B 的概率是( ) A.29B.13C.89 D .1解析:选C ∵A ∩B =B ,∴B 可能为∅,{1},{2},{3},{1,2},{2,3},{1,3}.当B =∅时,a 2-4b <0,满足条件的a ,b 为a =1,b =1,2,3;a =2,b =2,3;a =3,b =3.当B ={1}时,满足条件的a ,b 为a =2,b =1.当B ={2},{3}时,没有满足条件的a ,b .当B ={1,2}时,满足条件的a ,b 为a =3,b =2.当B ={2,3},{1,3}时,没有满足条件的a ,b .∴A ∩B =B 的概率为83×3=89. 2.将一颗骰子投掷两次分别得到点数a 、b ,则直线ax -by =0与圆(x -2)2+y 2=2相交的概率为________.解析:圆心(2,0)到直线ax -by =0的距离d =|2a |a 2+b 2,当d <2时,直线与圆相交,则有d =|2a |a 2+b 2<2,得b >a ,满足题意的b >a ,共有15种情况,因此直线ax -by =0与圆(x -2)2+y 2=2相交的概率为1536=512. 答案:5123.(2012·福建高考)在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2,所以a n =n ,b n =2n -1.(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个(1,1),(2,2).故所求的概率P =29.。

高三数学一轮复习 第十一章 第2课时 古典概型课件

高三数学一轮复习 第十一章 第2课时 古典概型课件

3.概率的一般加法公式 P(A∪B)=P(A)+P(B)- P(A∩B) 公式使用中要注意: (1)公式的作用是求 A∪B 的概率,当 A∩B=∅时, A、B 互斥,此时 P(A∩B)=0,∴P(A∪B)=P(A) +P(B); (2)要计算 P(A∪B),需要求 P(A)、P(B),更重要 的是把握事件 A∩B,并求其概率;
(3)记“至少摸出 1 个黑球”为事件 B,则事 件 B 包含的基本事件为 ab,ac,ad,ae,bc, bd,be,共 7 个基本事件. 所以 P(B)=170=0.7. 答:至少摸出 1 个黑球的概率为 0.7.
求较复杂的古典概型概率
对于较复杂事件的概率,关键是理解题目的 实际含义,把实际问题转化为概率模型,用 分析法、列表法求出基本事件的总数,必要 时将所求事件转化成彼此互斥的事件的和, 或者先去求对立事件的概率,进而再用互斥 事件的概率加法公式或对立事件的概率公式 求出所求事件的概率.
(3)该公式可以看作一个方程,知三可求一.
从近两年的高考试题来看,古典概型是高考 的热点,可在选择题、填空题中单独考查, 也可在解答题中与统计或随机变量的分布列 一起考查,属容易或中档题.以考查基本概 念、基本运算为主.
(本小题满分12分)(2010·天津卷)有编号为A1, A2,…,A10的10个零件,测量其直径(单位: cm),得到下面数据:
解析: 由集合 P={x|x(x2+10x+24)=0} 可得 P={-6,-4,0}, 由 Q={y|y=2n-1,1≤n≤2,n∈N*},可得 Q ={1,3}, M=P∪Q={-6,-4,0,1,3}. 因为点 A(x′,y′)的坐标 x′∈M,y′∈M, 所以满足条件的 A 点共有 5×5=25 个. (1)正 好在第 三象限的 点有 (- 6,- 6), (- 4, -6),(-6,-4),(-4,-4)4 个点.

高三数学一轮复习精品教案3:古典概型教学设计

高三数学一轮复习精品教案3:古典概型教学设计

10.5.1 古典概型1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.『梳理自测』1.一枚硬币连掷2次,恰有一次正面朝上的概率为( )A.23B.14C.13D.122.甲、乙、丙三名同学站成一排,甲站在中间的概率是( )A.16B.12C.13D.233.甲乙两同学每人有两本书,把四本书混放在一起,每人随机拿回两本,则甲同学拿到一本自己书一本乙同学书的概率是( )A.13B.23C.12D.144.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.5.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则a<b的概率为________.『答案』1.D 2.C 3.B 4.135.15◆以上题目主要考查了以下内容: (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型 ①定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.a .试验中所有可能出现的基本事件只有有限个.b .每个基本事件出现的可能性相等.②概率公式:P(A)=A 包含的基本事件的个数基本事件的总数.『指点迷津』1.一条规律从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I ,基本事件的个数n 就是集合I 的元素个数,事件A 是集合I 的一个包含m 个元素的子集.故P(A)=card (A )card (I )=mn.2.两个特征一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.3.两种方法(1)列举法:适合于较简单的试验.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.考向一 简单古典概型的概率(2014·辽宁省大连市调研)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2』,(4.2,4.5』,…,(5.1,5.4』.经过数据处理,得到如下频率分布表:分组频数频率(3.9,4.2』 3 0.06 (4.2,4.5』 6 0.12 (4.5,4.8』 25 x (4.8,5.1』 y z (5.1,5.4』2 0.04 合计n1.00(1)求频率分布表中未知量n ,x ,y ,z 的值;(2)从样本中视力在(3.9,4.2』和(5.1,5.4』的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.『审题视点』 依频数、频率之间的关系求n ,x ,y ,z ,列举所有随机事件的结果,由古典概型求概率.『典例精讲』 (1)由频率分布表可知,样本容量为n ,由2n =0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.(2)记样本中视力在(3.9,4.2』的三人为a ,b ,c ,在(5.1,5.4』的两人为d ,e. 由题意,从五人中随机抽取两人,所有可能的结果有:(a ,b),(a ,c),(a ,d),(a ,e),(b ,c),(b ,d),(b ,e),(c ,d),(c ,e),(d ,e),共10种.记事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:(a ,b),(a ,c),(b ,c),(d ,e),共4种.所以P(A)=410=25.故两人的视力差的绝对值低于0.5的概率为25.『类题通法』 根据公式P(A)=mn 进行概率计算时,关键是求出n ,m 的值,在求n 值时应注意这n 种结果必须是等可能的,对一些比较简单的概率问题,求m ,n 的值只需列举即可.1.(2014·武汉市适应性训练)编号为A 1,A 2,…,A 10的10名学生参加投篮比赛,每人投20个球,各人投中球的个数记录如下:学生编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 投中个数41311171069151112(1)将投中个数在对应区间内的人数填入表的空格内;区间『0,5)『5,10)『10,15)『15,20)人数(2)从投中个数在区间『10,15)内的学生中随机抽取2人, ①用学生的编号列出所有可能的抽取结果; ②求这2人投中个数之和大于23的概率.『解析』(1)依题意得,投中个数在对应区间内的人数如下表:区间 『0,5) 『5,10)『10,15)『15,20)人数1252(2)①投中个数在区间『10,15)内的学生编号为A 2,A 3,A 5,A 9,A 10,从中随机抽取2名学生,所有可能的抽取结果为(A 2,A 3),(A 2,A 5),(A 2,A 9),(A 2,A 10),(A 3,A 5),(A 3,A 9),(A 3,A 10),(A 5,A 9),(A 5,A 10),(A 9,A 10),共10种.②将“从投中个数在区间『10,15)内的学生中随机抽取2人,这2人投中个数之和大于23”记为事件B ,事件B 的所有可能的结果为(A 2,A 3),(A 2,A 9),(A 2,A 10),共3种.所以P(B)=310.考向二 有放回抽样与无放回抽样(2014·大连模拟)盒中有3只灯泡,其中2只是正品,1只是次品. (1)从中取出1只,然后放回,再取1只,求①连续2次取出的都是正品所包含的基本事件总数;②两次取出的一个为正品,一个为次品所包含的基本事件总数;(2)从中一次任取出2只,求2只都是正品的概率.『审题视点』 从中取一只再放回,属于有放回抽样,每次取灯泡的总数不变,还是3只,可列举事件个数,属于古典概型.『典例精讲』 (1)将灯泡中2只正品记为a 1,a 2,1只次品记为b 1, 则第一次取1只,第二次取1只,基本事件总数为9个, a 1a 1a 2b 1 a 2a 1a 2b 1 b 1a 1a 2b 1①连续2次取出的都是正品所包含的基本事件为(a 1,a 1)(a 1,a 2)(a 2,a 1)(a 2,a 2)共4个基本事件;②两次取出的一个为正品,一个为次品所包含的基本事件为(a 1,b 1)(a 2,b 1)(b 1,a 1)(b 1,a 2)共4个基本事件.(2)“从中一次任取2只”得到的基本事件总数是3,即a 1a 2,a 1b 1,a 2b 1,“2只都是正品”的基本事件数是1,所以其概率为P =13.『类题通法』 有“放回抽样”,被抽取的元素总数不变,同一个元素可以被重复抽取.“无放回抽样”,被抽取的元素总数随抽取的次数逐渐减少,同一个元素不会被重复抽取.2.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.『解析』(1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D),(A ,E),(A ,F),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),共9种,从中选出的2名教师性别相同的结果有:(A ,D),(B ,D),(C ,E),(C ,F),共4种. 所以选出的2名教师性别相同的概率为P =49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B),(A ,C),(A ,D),(A ,E),(A ,F),(B ,C)(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),(D ,E),(D ,F),(E ,F),共15种.从中选出的2名教师来自同一学校的结果为:(A ,B),(A ,C),(B ,C),(D ,E),(D ,F),(E ,F),共6种,所以选出的2名教师来自同一学校的概率为P =615=25.考向三 古典概型与互斥(对立)事件概率的综合应用(2014·山东莱芜模拟)中国共产党第十八次全国代表大会期间,某报刊媒体要选择两名记者去进行专题采访,现有记者编号分别为1,2,3,4,5的五名男记者和编号分别为6,7,8,9的四名女记者.要从这九名记者中一次随机选出两名,每名记者被选到的概率是相等的,用符号(x ,y)表示事件“抽到的两名记者的编号分别为x 、y ,且x<y”.(1)共有多少个基本事件?并列举出来;(2)求所抽取的两名记者的编号之和小于17但不小于11或都是男记者的概率. 『审题视点』 列举所有基本事件从中找出,满足11≤x+y <17且x <y 或“x<y≤5”的个数,用古典概型求概率.『典例精讲』 (1)共有36个基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9),共36个.(2)记事件“所抽取的记者的编号之和小于17但不小于11”为事件A ,即事件A 为“x,y ∈{1,2,3,4,5,6,7,8,9},且11≤x+y<17,其中x<y”,由(1)可知事件A 共含有15个基本事件,列举如下:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),共15个.“都是男记者”记作事件B ,则事件B 为“x<y≤5”,包含:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.故P(A)+P(B)=1536+1036=2536. 『类题通法』 (1)本题属于求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型.必要时将所求事件转化成彼此互斥的事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.(2)在求基本事件总数和所求事件包含的基本事件数时,要保证计数的一致性,就是在计算基本事件数时,都按排列数求,或都按组合数求.3.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n<m +2的概率.『解析』(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个. 因此所求事件的概率P =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n≥m +2的事件的概率为P 1=316.故满足条件n<m +2的事件的概率为 1-P 1=1-316=1316.古典概型的规范解答(2013·高考江西卷)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图所示)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X>0就去打球,若X =0就去唱歌,若X<0就去下棋.(1)写出数量积X 的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.『审题视点』 (1)根据题意得出向量的坐标,进一步求出其数量积;(2)根据(1)的结果求出各数量积的两个向量的个数,应用古典概型概率的求法求解.『思维流程』列举X 的所有结果.分类写出数量积X =-2,-1,0,1的各种情形(基本事件). 根据古典概型求概率. 根据对立事件求概率.『解答过程』 (1)X 的所有可能取值为-2,-1,0,1. (2)数量积为-2的有OA 2→·OA 5→,共1种;数量积为-1的有OA 1→·OA 5→,OA 1→·OA 6→,OA 2→·OA 4→,OA 2→·OA 6→,OA 3→·OA 4→,OA 3→·OA 5→,共6种; 数量积为0的有OA 1→·OA 3→,OA 1→·OA 4→,OA 3→·OA 6→,OA 4→·OA 6→,共4种; 数量积为1的有OA 1→·OA 2→,OA 2→·OA 3→,OA 4→·OA 5→,OA 5→·OA 6→,共4种. 故所有可能的情况共有15种. 所以小波去下棋的概率为p 1=715;因为去唱歌的概率为p 2=415,所以小波不去唱歌的概率p =1-p 2=1-415=1115.『规范建议』 (1)为了列举各种结果,把向量终点A 1,A 2,A 3,A 4,A 5,A 6的坐标写出来,分别计算数量积,再分类整理,写在卷面上,可使解题过程规范,条理清晰.(2)“不去唱歌”,即“X≠0”的事件数较多,故利用对立事件的求法.1.(2013·高考新课标Ⅰ卷)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A .12B .13C .14D .16『解析』选B .用列举法求出事件的个数,再利用古典概型求概率.从1,2,3,4中任取2个不同的数,有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情形,而满足条件“2个数之差的绝对值为2”的只有(1,3),(2,4),(3,1),(4,2),共4种情形,所以取出的2个数之差的绝对值为2的概率为412=13.2.(2013·高考新课标Ⅱ卷)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.『解析』先找出两数之和等于5的各种情况,再利用古典概型的概率知识求解. 两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种.∴P=210=0.2.『答案』0.23.(2013·高考浙江卷)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.『解析』分别列出所有的选法和都是女生的选法,利用古典概型概率公式计算概率. 用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为:AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc ,共15种选法,其中都是女同学的选法有3种,即ab ,ac ,bc ,故所求概率为315=15.『答案』154.(2013·高考重庆卷)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.『解析』首先写出甲、乙、丙三人站成一排的所有结果及甲、乙相邻而站的所有结果,然后将两结果数相除可得.甲、乙、丙三人随机地站成一排有(甲乙丙)、(甲丙乙)、(乙甲丙)、(乙丙甲)、(丙甲乙)、(丙乙甲)共6种排法,甲、乙相邻而站有(甲乙丙)、(乙甲丙)、(丙甲乙)、(丙乙甲)共4种排法,由概率计算公式得甲、乙两人相邻而站的概率为46=23.『答案』231.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.『对应学生用书P 155』『梳理自测』1.一枚硬币连掷2次,恰有一次正面朝上的概率为( )A .23B .14C .13D .122.甲、乙、丙三名同学站成一排,甲站在中间的概率是( ) A .16 B .12C .13D .233.甲乙两同学每人有两本书,把四本书混放在一起,每人随机拿回两本,则甲同学拿到一本自己书一本乙同学书的概率是( )A .13B .23C .12D .144.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.5.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则a <b 的概率为________.『答案』1.D 2.C 3.B 4.13 5.15◆以上题目主要考查了以下内容: (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型 ①定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型. a .试验中所有可能出现的基本事件只有有限个. b .每个基本事件出现的可能性相等.②概率公式:P(A)=A 包含的基本事件的个数基本事件的总数.『指点迷津』1.一条规律从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I ,基本事件的个数n 就是集合I 的元素个数,事件A 是集合I 的一个包含m 个元素的子集.故P(A)=card (A )card (I )=mn.2.两个特征一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.3.两种方法(1)列举法:适合于较简单的试验.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.『对应学生用书P 155』考向一 简单古典概型的概率(2014·辽宁省大连市调研)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2』,(4.2,4.5』,…,(5.1,5.4』.经过数据处理,得到如下频率分布表:分组 频数 频率 (3.9,4.2』 3 0.06 (4.2,4.5』 6 0.12 (4.5,4.8』 25 x (4.8,5.1』 y z (5.1,5.4』2 0.04 合计n1.00(1)求频率分布表中未知量n ,x ,y ,z 的值;(2)从样本中视力在(3.9,4.2』和(5.1,5.4』的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.『审题视点』 依频数、频率之间的关系求n ,x ,y ,z ,列举所有随机事件的结果,由古典概型求概率.『典例精讲』 (1)由频率分布表可知,样本容量为n ,由2n =0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.(2)记样本中视力在(3.9,4.2』的三人为a ,b ,c ,在(5.1,5.4』的两人为d ,e. 由题意,从五人中随机抽取两人,所有可能的结果有:(a ,b),(a ,c),(a ,d),(a ,e),(b ,c),(b ,d),(b ,e),(c ,d),(c ,e),(d ,e),共10种.记事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:(a ,b),(a ,c),(b ,c),(d ,e),共4种.所以P(A)=410=25.故两人的视力差的绝对值低于0.5的概率为25.『类题通法』 根据公式P(A)=mn 进行概率计算时,关键是求出n ,m 的值,在求n 值时应注意这n 种结果必须是等可能的,对一些比较简单的概率问题,求m ,n 的值只需列举即可.1.(2014·武汉市适应性训练)编号为A 1,A 2,…,A 10的10名学生参加投篮比赛,每人投20个球,各人投中球的个数记录如下:学生编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 投中个数41311171069151112(1)将投中个数在对应区间内的人数填入表的空格内;区间 『0,5)『5,10)『10,15)『15,20)人数(2)从投中个数在区间『10,15)内的学生中随机抽取2人, ①用学生的编号列出所有可能的抽取结果; ②求这2人投中个数之和大于23的概率.『解析』(1)依题意得,投中个数在对应区间内的人数如下表:区间 『0,5) 『5,10)『10,15)『15,20)人数1252(2)①投中个数在区间『10,15)内的学生编号为A 2,A 3,A 5,A 9,A 10,从中随机抽取2名学生,所有可能的抽取结果为(A 2,A 3),(A 2,A 5),(A 2,A 9),(A 2,A 10),(A 3,A 5),(A 3,A 9),(A 3,A 10),(A 5,A 9),(A 5,A 10),(A 9,A 10),共10种.②将“从投中个数在区间『10,15)内的学生中随机抽取2人,这2人投中个数之和大于23”记为事件B ,事件B 的所有可能的结果为(A 2,A 3),(A 2,A 9),(A 2,A 10),共3种.所以P(B)=310.考向二 有放回抽样与无放回抽样(2014·大连模拟)盒中有3只灯泡,其中2只是正品,1只是次品. (1)从中取出1只,然后放回,再取1只,求①连续2次取出的都是正品所包含的基本事件总数;②两次取出的一个为正品,一个为次品所包含的基本事件总数;(2)从中一次任取出2只,求2只都是正品的概率.『审题视点』 从中取一只再放回,属于有放回抽样,每次取灯泡的总数不变,还是3只,可列举事件个数,属于古典概型.『典例精讲』 (1)将灯泡中2只正品记为a 1,a 2,1只次品记为b 1, 则第一次取1只,第二次取1只,基本事件总数为9个, a 1a 1a 2b 1 a 2a 1a 2b 1 b 1a 1a 2b 1①连续2次取出的都是正品所包含的基本事件为(a 1,a 1)(a 1,a 2)(a 2,a 1)(a 2,a 2)共4个基本事件;②两次取出的一个为正品,一个为次品所包含的基本事件为(a 1,b 1)(a 2,b 1)(b 1,a 1)(b 1,a 2)共4个基本事件.(2)“从中一次任取2只”得到的基本事件总数是3,即a 1a 2,a 1b 1,a 2b 1,“2只都是正品”的基本事件数是1,所以其概率为P =13.『类题通法』 有“放回抽样”,被抽取的元素总数不变,同一个元素可以被重复抽取.“无放回抽样”,被抽取的元素总数随抽取的次数逐渐减少,同一个元素不会被重复抽取.2.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.『解析』(1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D),(A ,E),(A ,F),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),共9种,从中选出的2名教师性别相同的结果有:(A ,D),(B ,D),(C ,E),(C ,F),共4种. 所以选出的2名教师性别相同的概率为P =49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B),(A ,C),(A ,D),(A ,E),(A ,F),(B ,C)(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),(D ,E),(D ,F),(E ,F),共15种.从中选出的2名教师来自同一学校的结果为:(A ,B),(A ,C),(B ,C),(D ,E),(D ,F),(E ,F),共6种,所以选出的2名教师来自同一学校的概率为P =615=25.考向三 古典概型与互斥(对立)事件概率的综合应用(2014·山东莱芜模拟)中国共产党第十八次全国代表大会期间,某报刊媒体要选择两名记者去进行专题采访,现有记者编号分别为1,2,3,4,5的五名男记者和编号分别为6,7,8,9的四名女记者.要从这九名记者中一次随机选出两名,每名记者被选到的概率是相等的,用符号(x ,y)表示事件“抽到的两名记者的编号分别为x 、y ,且x<y”.(1)共有多少个基本事件?并列举出来;(2)求所抽取的两名记者的编号之和小于17但不小于11或都是男记者的概率. 『审题视点』 列举所有基本事件从中找出,满足11≤x+y <17且x <y 或“x<y≤5”的个数,用古典概型求概率.『典例精讲』 (1)共有36个基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9),共36个.(2)记事件“所抽取的记者的编号之和小于17但不小于11”为事件A ,即事件A 为“x,y ∈{1,2,3,4,5,6,7,8,9},且11≤x+y<17,其中x<y”,由(1)可知事件A 共含有15个基本事件,列举如下:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),共15个.“都是男记者”记作事件B ,则事件B 为“x<y≤5”,包含:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.故P(A)+P(B)=1536+1036=2536. 『类题通法』 (1)本题属于求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型.必要时将所求事件转化成彼此互斥的事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.(2)在求基本事件总数和所求事件包含的基本事件数时,要保证计数的一致性,就是在计算基本事件数时,都按排列数求,或都按组合数求.3.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n<m +2的概率.『解析』(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个. 因此所求事件的概率P =26=13.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n≥m+2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n≥m+2的事件的概率为P1=3 16 .故满足条件n<m+2的事件的概率为1-P1=1-316=1316.『对应学生用书P157』古典概型的规范解答(2013·高考江西卷)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图所示)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1)写出数量积X的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.『审题视点』(1)根据题意得出向量的坐标,进一步求出其数量积;(2)根据(1)的结果求出各数量积的两个向量的个数,应用古典概型概率的求法求解.『思维流程』列举X的所有结果.分类写出数量积X =-2,-1,0,1的各种情形(基本事件). 根据古典概型求概率. 根据对立事件求概率.『解答过程』 (1)X 的所有可能取值为-2,-1,0,1. (2)数量积为-2的有OA 2→·OA 5→,共1种;数量积为-1的有OA 1→·OA 5→,OA 1→·OA 6→,OA 2→·OA 4→,OA 2→·OA 6→,OA 3→·OA 4→,OA 3→·OA 5→,共6种; 数量积为0的有OA 1→·OA 3→,OA 1→·OA 4→,OA 3→·OA 6→,OA 4→·OA 6→,共4种; 数量积为1的有OA 1→·OA 2→,OA 2→·OA 3→,OA 4→·OA 5→,OA 5→·OA 6→,共4种. 故所有可能的情况共有15种. 所以小波去下棋的概率为p 1=715;因为去唱歌的概率为p 2=415,所以小波不去唱歌的概率p =1-p 2=1-415=1115.『规范建议』 (1)为了列举各种结果,把向量终点A 1,A 2,A 3,A 4,A 5,A 6的坐标写出来,分别计算数量积,再分类整理,写在卷面上,可使解题过程规范,条理清晰.(2)“不去唱歌”,即“X≠0”的事件数较多,故利用对立事件的求法.1.(2013·高考新课标Ⅰ卷)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A .12B .13C .14D .16『解析』选B .用列举法求出事件的个数,再利用古典概型求概率.从1,2,3,4中任取2个不同的数,有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情形,而满足条件“2个数之差的绝对值为2”的只有(1,3),(2,4),(3,1),(4,2),共4种情形,所以取出的2个数之差的绝对值为2的概率为412=13.2.(2013·高考新课标Ⅱ卷)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.『解析』先找出两数之和等于5的各种情况,再利用古典概型的概率知识求解.两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种.∴P=210=0.2.『答案』0.23.(2013·高考浙江卷)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.『解析』分别列出所有的选法和都是女生的选法,利用古典概型概率公式计算概率. 用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为:AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc ,共15种选法,其中都是女同学的选法有3种,即ab ,ac ,bc ,故所求概率为315=15.『答案』154.(2013·高考重庆卷)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.『解析』首先写出甲、乙、丙三人站成一排的所有结果及甲、乙相邻而站的所有结果,然后将两结果数相除可得.甲、乙、丙三人随机地站成一排有(甲乙丙)、(甲丙乙)、(乙甲丙)、(乙丙甲)、(丙甲乙)、(丙乙甲)共6种排法,甲、乙相邻而站有(甲乙丙)、(乙甲丙)、(丙甲乙)、(丙乙甲)共4种排法,由概率计算公式得甲、乙两人相邻而站的概率为46=23.『答案』23。

高中优秀教案高三数学教案:《古典概型复习》教学设计

高中优秀教案高三数学教案:《古典概型复习》教学设计

高三数学教案:《古典概型复习》教学设计本文题目:高三数学复习教案:古典概型复习教案【高考要求】古典概型(B); 互斥大事及其发生的概率(A)【学习目标】:1、了解概率的频率定义,知道随机大事的发生是随机性与规律性的统一;2、理解古典概型的特点,会解较简洁的古典概型问题;3、了解互斥大事与对立大事的概率公式,并能运用于简洁的概率计算.【学问复习与自学质疑】1、古典概型是一种抱负化的概率模型,假设试验的结果数具有性和性.解古典概型问题关键是推断和计数,要把握简洁的记数方法(主要是列举法).借助于互斥、对立关系将大事分解或转化是很重要的方法.2、(A)在10件同类产品中,其中8件为正品,2件为次品。

从中任意抽出3件,则下列4个大事:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必定大事的是 .3、(A)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是。

4、(A)同时抛两个各面上分别标有1、2、3、4、5、6匀称的正方体玩具一次,"向上的两个数字之和为3'的概率是 .5、(A)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是 .6、(B)若实数 ,则曲线表示焦点在y轴上的双曲线的概率是 .【例题精讲】1、(A)甲、乙两人参与学问竞答,共有10道不同的题目,其中选择题6道,推断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到推断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?2、(B)黄种人群中各种血型的人所占的比例如下表所示:血型 A B AB O该血型的人所占的比(%) 28 29 8 35已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能相互输血.小明是B型血,若小明因病需要输血,问:(1) 任找一个人,其血可以输给小明的概率是多少?(2) 任找一个人,其血不能输给小明的概率是多少?3、(B)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8 的概率;(3)向上的点数之和不超过10的概率.4、(B)将一个各面上均涂有颜色的正方体锯成 (n个同样大小的正方体,从这些小正方体中任取一个,求下列大事的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.【矫正反馈】1、(A)一个三位数的密码锁,每位上的数字都可在0到10这十个数字中任选,某人遗忘了密码最终一个号码,开锁时在对好前两位号码后,随便拨动最终一个数字恰好能开锁的概率是 .2、(A)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是 .3、(A)某射击运动员在打靶中,连续射击3次,大事"至少有两次中靶'的对立大事是 .4、(B)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产状况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率 .5、(B)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)其次次摸出黑球的概率;(3)第一次及其次次都摸出黑球的概率.【迁移应用】1、(A)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是 .2、(A)从鱼塘中打一网鱼,共M条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共N条,其中K条有标记,估量池塘中鱼的条数为 .3、(A)从分别写有A,B,C,D,E的5张卡片中,任取2张,这两张上的字母恰好按字母挨次相邻的概率是 .4、(B)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是 .5、(B)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.(1)若点P(a,b)落在不等式组表示的平面区域记为A,求大事A 的概率;(2)求P(a,b)落在直线x+y=m(m为常数)上,且使此大事的概率最大,求m的值.。

高中高三数学古典概型教案

高中高三数学古典概型教案

高中高三数学古典概型教案教学目标:
1. 理解古典概型的基本概念和应用。

2. 解决实际问题中的概率计算。

3. 提高学生的数学思维和应用能力。

教学重点:
1. 古典概型的定义和特点。

2. 古典概型在实际问题中的应用。

3. 概率计算和概率分布。

教学难点:
1. 复杂问题的古典概型解题方法。

2. 概率计算过程中的逻辑性。

教学准备:
1. 教师准备课件和教学素材。

2. 学生准备相关教材和笔记。

教学过程:
一、导入(5分钟)
教师简要介绍古典概型的概念和应用,并提出学习目标。

二、知识讲解(20分钟)
1. 古典概型的定义和特点。

2. 古典概型的应用举例。

3. 概率计算公式和概率分布。

三、示范演练(15分钟)
教师通过几个案例演示古典概型的解题方法和计算过程。

四、分组讨论(15分钟)
学生分组讨论并解决几个古典概型的实际问题。

五、小结(5分钟)
教师复习本节课的重点内容,并总结学习收获。

六、作业布置(5分钟)
布置相关练习和作业,巩固学生对古典概型的理解和运用能力。

教学反思:
本节课通过理论讲解、示范演练和实际问题解决的方式,帮助学生深入理解古典概型的概念和应用,提高了他们的数学思维和实际问题解决能力。

在教学中要注重培养学生的逻辑推理能力和分析问题的能力,引导他们灵活运用数学知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年高考数学一轮复习精品教学案11.2 古典概型(新课标人教版,教师版)【考纲解读】1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率. 【考点预测】高考对此部分内容考查的热点与命题趋势为:1.概率是历年来高考重点内容之一,在选择题、填空题与解答题中均有可能出现,一般以实际应用题的形式考查,又经常与其它知识结合,在考查概率等基础知识的同时,考查转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持以实际应用题的形式考查概率,或在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等. 3.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.【例题精析】考点一 古典概型 例1.(2010年高考山东卷文科19) 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率.【解析】(I )从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个。

从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个。

因此所求事件的概率为1/3。

(II )先从袋中随机取一个球,记下编号为m ,放回后,在从袋中随机取一个球,记下编号为n ,其一切可能的结果(m, n)有:(1,1)(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2), (3,3) (3,4),(4,1) (4,2),(4,3)(4,4),共16个有满足条件n≥ m+2 的事件为(1,3)(1,4)(2,4),共3个所以满足条件n ≥ m+2 的事件的概率为 P=3/16故满足条件n<m+2 的事件的概率为【名师点睛】本小题主要考查古典概型,考查了学生分析问题、解决问题的能力.【变式训练】1.(2012年高考山东卷文科18)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.考点二古典概型与其它知识的结合例2.(2011年高考广东卷文科17)在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第6位同学的成绩x6(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.【解析】(1)∵这6位同学的平均成绩为75分,∴16(70+76+72+70+72+x6)=75,解得x6=90,这6位同学成绩的方差【变式训练】2.(2009年高考山东卷文科第19题)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件【易错专区】问题:综合应用例.(2010年高考浙江卷文科17)在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、Q 、M 、N 分别是线段OA 、OB 、OC 、OD 的中点,在APMC 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为F ,设G为满足向量OG OE OF =+的点,则在上述的点G 组成的集合中的点,落在平行四边形ABCD 外(不含边界)的概率为 。

【解析】由题意知,G 点共有16种取法,而只有E 为P 、M 中一点,F 为Q 、N 中一点时,落在平行四边形内,故符合要求的G 的只有4个,因此概率为43.【名师点睛】本小题主要考查了平面向量与古典概型的综合运用,熟练基本知识是解决本类问题的关键. 【课时作业】1. (浙江省宁波市鄞州区2012年3月高考适应性考试文科8)先后掷两次正方体骰子(骰子的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为,m n ,则mn 是奇数的概率是( ) 21.A 31.B 41.C 61.D2. (2012年高考广东卷理科7)从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是( ) A.49B.13C.29D.193.(2010年高考上海卷文科10)从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 (结果用最简分数表示)。

【答案】351【解析】“抽出的2张均为红桃”的概率为513252213=C C .4.(2010年高考辽宁卷文科13)三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为 . 【答案】13【解析】题中三张卡片随机地排成一行,共有三种情况:,,BEE EBE EEB ,∴概率为:1.35.(2010年高考天津卷文科18)有编号为1A ,2A ,…10A 的10个零件,测量其直径(单位:cm ),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率。

6. (2012年高考江西卷文科18)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0,)B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点。

(1)求这3点与原点O恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点O共面的概率。

【解析】【考题回放】1.(2012年高考安徽卷文科10)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于()(A)15(B)25(C)35(D)452.(2012年高考江苏卷6)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.【答案】53【解析】组成满足条件的数列为:.19683,6561,2187,729,243,81,27.9,3,1-----从中随机取出一个数共有取法10种,其中小于8的取法共有6种,因此取出的这个数小于8的概率为53.3.(2012年高考重庆卷文科15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为 (用数字作答)。

【答案】154. (2012年高考上海卷文科11)三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是 (结果用最简分数表示). 【答案】32【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32 .5.(2012年高考重庆卷理科15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答).6.(2012年高考天津卷文科15)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

(I )求应从小学、中学、大学中分别抽取的学校数目。

(II )若从抽取的6所学校中随机抽取2所学校做进一步数据分析, (1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率。

、7. (2012年高考福建卷文科17)在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55. (Ⅰ)求a n 和b n ;(Ⅱ)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。

【答案】(1)n a n =,2nn b = (2)29。

相关文档
最新文档