小学奥数30个知识点及公式总结

合集下载

最新小学奥数30个知识点大汇总

最新小学奥数30个知识点大汇总

小学奥数30个知识点大汇总1.和差倍问题2.年龄问题的三个基本特征:3.归一问题4.植树问题5.鸡兔同笼问题6.盈亏问题7.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理11.定义新运算12.数列求和13.二进制及其应用14.加法乘法原理和几何计数15.质数与合数16.约数与倍数17.数的整除18.余数及其应用19.余数、同余与周期20.分数与百分数的应用21.分数大小的比较22.分数拆分23.完全平方数24.比和比例25.综合行程26.工程问题27.逻辑推理28.几何面积29.立体图形30.时钟问题—快慢表问题1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

小学奥数30类知识详解

小学奥数30类知识详解

小学奥数30类知识详解1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数的主要知识点(30个)

小学奥数的主要知识点(30个)

小学奥数的主要知识点(30个)1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学常用奥数知识点及公式汇总情况(必备)

小学常用奥数知识点及公式汇总情况(必备)

合用文档小学常用奥数知识点及公式汇总( 必备 ).doc1.和差倍问题22.年龄问题的三个基本特点:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题37.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理411.定义新运算12.数列求和13.二进制及其应用514.加法乘法原理和几何计数15.质数与合数616.约数与倍数17.数的整除718.余数及其应用19.余数、同余与周期20.分数与百分数的应用821.分数大小的比较922.分数拆分23.完好平方数24.比和比率1025.综合行程26.工程问题27.逻辑推理1128.几何面积29.立体图形30.时钟问题—快慢表问题1231.时钟问题—钟面追及32.浓度与配比33.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍和差和倍差倍已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式合用范已知两个数的和,差,倍数关系①( 和-差 ) ÷2=小数小数+差 =大数和÷ ( 倍数+ 1)=差÷ ( 倍数 -1)= 小和-小数 =大数小数数公式小数×倍数 =大数小数×倍数 =大数②( 和+差 ) ÷2=大数和-小数 =大数小数+差 =大数大数-差 =小数和-大数 =小数关求出同一条件下的和与差和与倍数差与倍数2.年的三个基本特点:①两个人的年差是不的;②两个人的年是同增加或许同减少的;③两个人的年的倍数是生化的;3.一的基本特点:中有一个不的量,一般是那个“ 一量”,目一般用“照的速度”⋯⋯等来表示。

关:依照目中的条件确定并求出一量;4.植在直或许不封在直或许不封的在直或许不封曲基本封的曲上的曲上植,两端曲上植,两端都不上植型植,只有一端都植植植基本公棵数 =段数+ 1棵数 =段数- 1棵数 =段数式棵距×段数 =棵距×段数 =棵距×段数 =关确定所属型,从而确定棵数与段数的关系5.兔同基本见解:兔同又称置、假,就是把假的那部分置出来;基本思路:①假设,即假设某种现象存在(甲和乙同样或许乙和甲同样):②假设后,发生了和题目条件不同样的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再依照这两个差作合适的调整,消去出现的差。

(完整版)小学奥数知识点及公式总汇(必背)

(完整版)小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理 411.定义新运算12.数列求和13.二进制及其应用 514.加法乘法原理和几何计数15.质数与合数 616.约数与倍数17.数的整除718.余数及其应用19.余数、同余与周期20.分数与百分数的应用821.分数大小的比较922.分数拆分23.完全平方数24.比和比例1025.综合行程26.工程问题27.逻辑推理1128.几何面积29.立体图形30.时钟问题—快慢表问题1231.时钟问题—钟面追及32.浓度与配比33.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍问题2①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

小学数学】小升初必考奥数30个知识点大汇总

小学数学】小升初必考奥数30个知识点大汇总

小学数学】小升初必考奥数30个知识点大汇总1.和差倍问题和差问题和倍问题是常见的数学问题,而差倍问题则是二者的结合。

已知条件可以是几个数的和与差,几个数的和与倍数,或者几个数的差与倍数。

公式适用范围是已知两个数的和、差或倍数关系。

关键问题是求出同一条件下的和与差或和与倍数或差与倍数。

2.年龄问题年龄问题有三个基本特征:两个人的年龄差是不变的,两个人的年龄是同时增加或者同时减少的,两个人的年龄的倍数是发生变化的。

3.归一问题归一问题的基本特点是问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。

关键问题是根据题目中的条件确定并求出单一量。

4.植树问题植树问题有几种基本类型:在直线或者不封闭的曲线上植树,两端都植树,在直线或者不封闭的曲线上植树,两端都不植树,在封闭曲线上植树,只有一端植树。

基本公式是棵数=段数+1,棵距×段数=总长或者棵数=段数-1,棵距×段数=总长或者棵数=段数,棵距×段数=总长。

关键问题是确定所属类型,从而确定棵数与段数的关系。

5.鸡兔同笼问题鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来。

基本思路是假设某种现象存在(甲和乙一样或者乙和甲一样),假设后发生了和题目条件不同的差,找出这个差是多少,每个事物造成的差是固定的,从而找出出现这个差的原因。

基准数法:为了求一组数的平均数,我们可以选择一个基准数,并计算每个数与基准数的差。

将这些差加起来,求出它们的平均数,再将这个平均数加上基准数,就是所求的平均数。

一般来说,我们会选择与所有数比较接近的数或者中间数作为基准数。

具体关系可以参考基本公式②。

抽屉原理:抽屉原理指出,如果将(n+1)个物体放在n个抽屉里,那么至少会有一个抽屉中放有2个或多于2个物体。

例如,将4个物体放在3个抽屉里,就会有至少一个抽屉中放有2个或多于2个物体。

我们可以通过将4分解成三个整数的和来验证这一点。

小学奥数30个知识点大汇总情况

小学奥数30个知识点大汇总情况

小学奥数30个知识点大汇总1.和差倍问题2.年龄问题的三个基本特征:3.归一问题4.植树问题5.鸡兔同笼问题6.盈亏问题7.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理11.定义新运算12.数列求和13.二进制及其应用14.加法乘法原理和几何计数15.质数与合数16.约数与倍数17.数的整除18.余数及其应用19.余数、同余与周期20.分数与百分数的应用21.分数大小的比较22.分数拆分23.完全平方数24.比和比例25.综合行程26.工程问题27.逻辑推理28.几何面积29.立体图形30.时钟问题—快慢表问题1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)

⼩学奥数知识点及公式总汇(必背)⼩学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归⼀问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.⽜吃草问题8.周期循环与数表规律9.平均数10.抽屉原理 411.定义新运算12.数列求和13.⼆进制及其应⽤ 514.加法乘法原理和⼏何计数15.质数与合数 616.约数与倍数17.数的整除 718.余数及其应⽤19.余数、同余与周期20.分数与百分数的应⽤ 821.分数⼤⼩的⽐较 922.分数拆分23.完全平⽅数24.⽐和⽐例 1025.综合⾏程26.⼯程问题27.逻辑推理 1128.⼏何⾯积29.⽴体图形30.时钟问题—快慢表问题 1231.时钟问题—钟⾯追及32.浓度与配⽐33.经济问题 1333.经济问题34.简单⽅程35.不定⽅程36.循环⼩数 14和差倍问题和差问题和倍问题差倍问题已知条件⼏个数的和与差⼏个数的和与倍数⼏个数的差与倍数公式适⽤范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较⼩数较⼩数+差=较⼤数和-较⼩数=较⼤数②(和+差)÷2=较⼤数较⼤数-差=较⼩数和-较⼤数=较⼩数和÷(倍数+1)=⼩数⼩数×倍数=⼤数和-⼩数=⼤数差÷(倍数-1)=⼩数和-⼩数=⼤数差÷(倍数-1)=⼩数⼩数×倍数=⼤数⼩数+差=⼤数关键问题求出同⼀条件下的和与差和与倍数差与倍数 2.年龄问题的三个基本特征:①两个⼈的年龄差是不变的;②两个⼈的年龄是同时增加或者同时减少的;③两个⼈的年龄的倍数是发⽣变化的;3.归⼀问题的基本特点:问题中有⼀个不变的量,⼀般是那个“单⼀量”,题⽬⼀般⽤“照这样的速度”……等词语来表⽰。

关键问题:根据题⽬中的条件确定并求出单⼀量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有⼀端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从⽽确定棵数与段数的关系 5.鸡兔同笼问题基本概念:鸡兔同笼问题⼜称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和⼄⼀样或者⼄和甲⼀样):②假设后,发⽣了和题⽬条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从⽽找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.抽屉原理 410.定义新运算11.数列求和12.加法乘法原理和几何计数13.质数与合数 614.约数与倍数15.数的整除716.余数及其应用17.余数、同余与周期18.分数与百分数的应用819.分数大小的比较920.分数拆分21.完全平方数22.比和比例1023.综合行程24.工程问题25.逻辑推理1126.几何面积27.立体图形28.时钟问题—快慢表问题1229.时钟问题—钟面追及30.浓度与配比31.经济问题1332.经济问题33.循环小数142①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)6.盈亏问题.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.平均数101112131415161718192021222324252627282930313233.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍问题②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差78闰年平年9②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

奥数知识点分类汇总(包含公式)

奥数知识点分类汇总(包含公式)

奥数知识点分类汇总(包含公式)奥数知识点分类汇总(包含公式)1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数必背公式和相关知识点

小学奥数必背公式和相关知识点

小学奥数必背公式和相关知识点题型一:归一问题【含义】在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

【数量关系】总量÷份数=单一量单一量×所占份数=所求几份的数量或总量A÷(总量B÷份数B)=份数A【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。

【例】买5支铅笔需要0.6元钱,买同样的铅笔16支,需要多少钱?解:先求出一支铅笔多少钱——0.6÷5=0.12(元)再求买16支铅笔需要多少钱——0.12×16=1.92(元)综合算式:0.6÷5×16=0.12×16=1.92(元)题型二:归总问题【含义】解题时先找出“总数量”,再根据已知条件解决问题的题型。

所谓“总数量”可以指货物总价、几天的工作量、几亩地的总产量、几小时的总路程等。

【数量关系】1份数量×份数=总量总量÷一份数量=份数【解题思路】先求出总数量,再解决问题。

【例】服装厂原来做一套衣服用布3.2米,改进剪裁方法后,每套衣服用布2.8米。

问原来做791套衣服的布,现在可以做多少套衣服?解:先求这批布总共多少米——3.2×791=2531.2(米)再求现在可以做多少套——2531.2÷2.8=904(套)综合算式:3.2×791÷2.8=904(套)题型三:和差问题【含义】已知两个数量的和与差,求这两个数量各是多少。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路】简单题目直接套用上述公式,复杂题目变通后再套用公式。

【例1】某机床厂第一、二两个车间共有车床96部,如果第一车间拨给第二车间8部,那么两个车间车床数相等。

两个车间各有车床多少部?解:已知第一、二两个车间共有车床96部,又根据“如果第一车间拨给第二车间8部,两个车间车床数相等”,从线段图上我们可以看出第一车间原来比第二车间多8×2=16部车床。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档