极坐标练习题(含详细答案)
极坐标练习题(含详细答案)
极坐标练习题(含详细答案)1.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧ x ′=5x ,y ′=3y后,曲线C 变为曲线x ′2+y ′2=1,则曲线C 的方程为( )A .25x 2+9y 2=1 B .9x 2+25y 2=1 C .25x +9y =1 D.x 225+y 29=12.极坐标方程ρ=cos θ化为直角坐标方程为( ) A .(x +12)2+y 2=14B .x 2+(y +12)2=14C .x 2+(y -12)2=14D .(x -12)2+y 2=14答案 D解析 由ρ=cos θ,得ρ2=ρcos θ,∴x 2+y 2=x .选D. 3.极坐标方程ρcos θ=2sin2θ表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆 答案 C4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A .(1,π2)B .(1,-π2)C .(1,0)D .(1,π) 答案 B解析 由ρ=-2sin θ,得ρ2=-2ρsin θ,化为普通方程x 2+(y +1)2=1,其圆心坐标为(0,-1),所以其极坐标为(1,-π2),故应选B.5.设点M 的直角坐标为(-1,-3,3),则它的柱坐标为( ) A .(2,π3,3)B .(2,2π3,3) C .(2,4π3,3) D .(2,5π3,3) 答案 C6.(2013·安徽)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2B.θ=π2(ρ∈R)和ρcosθ=2C.θ=π2(ρ∈R)和ρcosθ=1D.θ=0(ρ∈R)和ρcosθ=1答案 B解析由题意可知,圆ρ=2cosθ可化为普通方程为(x-1)2+y2=1.所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方程化为极坐标方程分别为θ=π2(ρ∈R)和ρcosθ=2,故选B.7.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是()A.ρ=cosθB.ρ=sinθC.ρcosθ=1 D.ρsinθ=1答案 C解析过点(1,0)且与极轴垂直的直线,在直角坐标系中的方程为x=1,所以其极坐标方程为ρcosθ=1,故选C.8.(2013·天津)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,π3),则|CP|=________.答案2 3解析由圆的极坐标方程为ρ=4cosθ,得圆心C的直角坐标为(2,0),点P 的直角坐标为(2,23),所以|CP|=2 3.9.(2014·唐山一中)在极坐标系中,点P(2,-π6)到直线l:ρsin(θ-π6)=1的距离是________.答案3+1解析依题意知,点P(3,-1),直线l为x-3y+2=0,则点P到直线l 的距离为3+1.10.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.答案 x 2+y 2-4x -2y =0解析 由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ⇒cos θ=x ρ,sin θ=yρ,ρ2=x 2+y 2,代入ρ=2sin θ+4cos θ,得ρ=2y ρ+4xρ⇒ρ2=2y +4x ⇒x 2+y 2-4x -2y =0.11.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.答案 4 3解析 直线ρsin(θ+π4)=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式,得2r 2-d 2=242-(222)2=4 3.12.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是________,它与方程θ=π4(ρ>0)所表示的图形的交点的极坐标是________. 答案 (1,0) (2,π4)解析 ρ=2cos θ表示以点(1,0)为圆心,1为半径的圆,故圆心的极坐标为(1,0).当θ=π4时,ρ=2,故交点的极坐标为(2,π4).13.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.答案 (2,3π4) 解析 ρ=2sin θ的直角坐标方程为x 2+y 2-2y =0,ρcos θ=-1的直角坐标方程为x =-1.联立方程,得⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x =-1,解得⎩⎪⎨⎪⎧x =-1,y =1,即两曲线的交点为(-1,1).又0≤θ<2π,因此这两条曲线的交点的极坐标为(2,3π4). 14.在极坐标系中,直线ρ(cos θ-sin θ)+2=0被曲线C :ρ=2所截得弦的中点的极坐标为________.答案 ⎝ ⎛⎭⎪⎫2,3π4解析 直线ρ(cos θ-sin θ)+2=0化为直角坐标方程为x -y +2=0,曲线C :ρ=2化为直角坐标方程为x 2+y 2=4.如图,直线被圆截得弦AB ,AB 中点为M ,则|OA |=2,|OB |=2,从而|OM |=2,∠MOx =3π4. ∴点M 的极坐标为⎝ ⎛⎭⎪⎫2,3π4.15.已知点M 的极坐标为(6,11π6),则点M 关于y 轴对称的点的直角坐标为________.答案 (-33,-3) 解析 ∵点M 的极坐标为(6,11π6), ∴x =6cos11π6=6cos π6=6×32=33, y =6sin 11π6=6sin(-π6)=-6×12=-3.∴点M 的直角坐标为(33,-3).∴点M 关于y 轴对称的点的直角坐标为(-33,-3).16.在极坐标系中,点P (2,3π2)到直线l :3ρcos θ-4ρsin θ=3的距离为________.答案 1解析 在相应直角坐标系中,P (0,-2),直线l 方程为3x -4y -3=0,所以P 到l 的距离d =|3×0-4×(-2)-3|32+42=1.17.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,试求|RP |的最小值. 答案 (1)ρ=3cos θ (2)1解析 (1)设动点P 的坐标为(ρ,θ), M 的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.(2)由(1)知P 的轨迹是以(32,0)为圆心,半径为32的圆,易得|RP |的最小值为1.18.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标. 答案 (1)x 2+y 2-x -y =0,x -y +1=0 (2)(1,π2)解析 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x 2+y 2-x -y =0.直线l :ρsin(θ-π4)=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1.故直线l 与圆O 公共点的极坐标为(1,π2).。
高中极坐标试题及答案
高中极坐标试题及答案一、选择题1. 在极坐标系中,点P的极坐标为(ρ,θ),则点P的直角坐标为:A. (ρcosθ, ρsinθ)B. (ρsinθ, ρcosθ)C. (ρcosθ, -ρsinθ)D. (-ρcosθ, ρsinθ)答案:A2. 极坐标方程ρ = 2cosθ表示的曲线是:A. 圆B. 椭圆C. 双曲线D. 抛物线答案:A二、填空题3. 已知点A的极坐标为(3, π/3),求点A的直角坐标。
答案:(3/2, 3√3/2)4. 将极坐标方程ρ= 4sinθ转化为直角坐标方程。
答案:x² + (y - 2)² = 4三、解答题5. 已知极坐标方程ρ = 6cosθ,求该曲线的圆心和半径。
答案:圆心为(3, 0),半径为3。
6. 将极坐标方程ρ = 2θ转换为直角坐标方程,并说明其代表的图形。
答案:直角坐标方程为x² + y² - 2y = 0,代表的图形是一个圆心在(0, 1),半径为1的圆。
四、计算题7. 已知点P的极坐标为(5, π/4),求点P到原点O的距离。
答案:58. 已知极坐标方程ρ = 4sinθ + 2cosθ,求该曲线与极坐标轴的交点。
答案:交点为(2, π/4)和(2, 5π/4)。
五、证明题9. 证明极坐标方程ρ² = 2ρcosθ表示的曲线是一条直线。
答案:将极坐标方程ρ² = 2ρcosθ转换为直角坐标方程,得到x²+ y² = 2x,即(x - 1)² + y² = 1,这是一个以(1, 0)为圆心,半径为1的圆的方程,因此原极坐标方程表示的曲线是一条直线。
六、应用题10. 一个圆的极坐标方程为ρ = 4,求该圆的面积。
答案:圆的面积为16π。
极坐标参数方程经典练习题带详细解答
1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为1222x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。
5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值. 6.(本小题满分10分) 选修4-4坐标系与参数方程 在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数)M 是曲线1C 上的动点,点P 满足OM OP 2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程.8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x t x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为24π⎛⎫⎪ ⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t=⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。
高中极坐标试题及答案
高中极坐标试题及答案
一、选择题
1. 点P(3,4)在极坐标系中,其极径ρ的值为多少?
A. 1
B. 5
C. 3
D. 4
2. 若点A的极坐标为(ρ,θ),且ρ>0,θ∈(0,2π),则点A的直角坐标为:
A. (ρcosθ, ρsinθ)
B. (ρsinθ, ρcosθ)
C. (ρsinθ, -ρcosθ)
D. (-ρsinθ, ρcosθ)
3. 在极坐标系中,点M的直角坐标为(1,1),其对应的极坐标为:
A. (√2, π/4)
B. (√2, 3π/4)
C. (2, π/4)
D. (2, 3π/4)
二、填空题
4. 若点P的极坐标为(ρ,π/3),则点P的直角坐标为_________。
5. 已知点A的直角坐标为(3,4),求点A的极坐标ρ的值。
三、解答题
6. 点Q的极坐标为(6,π/6),求点Q的直角坐标。
7. 已知点B的直角坐标为(-2,3),求点B的极坐标。
四、综合题
8. 某圆的极坐标方程为ρ=4cosθ,求该圆的直角坐标方程,并说明
圆心和半径。
答案:
1. B
2. A
3. A
4. (3, √3)
5. 5
6. (3√3, 3)
7. (1, 2π/3)
8. 圆的直角坐标方程为 (x-2)² + y² = 4,圆心在(2,0),半径为2。
结束语:
通过本试题的练习,同学们可以更好地理解和掌握极坐标与直角坐标
之间的转换方法,以及极坐标方程与直角坐标方程之间的相互转换,
为进一步学习高等数学打下坚实的基础。
极坐标方程基础习题附答案
极坐标方程基础习题附答案Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】1.已知点P 的极坐标为,则点P 的直角坐标为( ) A .(1,) B . (1,﹣) C . (,1) D . (,﹣1) 2.极坐标系中,B A ,分别是直线05sin 4cos 3=+-θρθρ和圆θρcos 2=上的动点,则B A ,两点之间距离的最小值是 .3.已知曲线C 的极坐标方程为2ρ=(0,02ρθπ>≤< ),曲线C 在点(2,4π)处的切线为l ,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,则l 的直角坐标方程为 ▲ .4.在极坐标系中,已知直线把曲线所围成的区域分成面积相等的两部分,则常数a 的值是 .5.在极坐标系中,圆2cos ρθ=的圆心到直线cos 2ρθ=的距离是____________.6.在极坐标系中,圆4sin ρθ=的圆心到直线()6R πθρ=∈的距离是______________.7.在极坐标系(),ρθ(0,02πρθ>≤<)中,曲线2sin ρθ=与2cos ρθ=的交点的极坐标为_____8.(坐标系与参数方程选做题)曲线2cos 4πρθθ==关于直线对称的曲线的极坐标方程为 。
试卷答案考点:点的极坐标和直角坐标的互化.专题:计算题. 分析: 利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,可求出点的直角坐标.解答: 解:x=ρcosθ=2×cos =1, y=ρsinθ=2×sin = ∴将极坐标(2,)化为直角坐标是(1,). 故选A .点评: 本题主要考查了点的极坐标和直角坐标的互化,同时考查了三角函数求值,属于基础题. 2.略3. 4.1a =-略5.曲线θρcos 2=即()2211x y -+=,表示圆心在(1,0),半径等于1的圆,直线cos 2ρθ=即直线2=x ,故圆心到直线的距离为1。
最新数学理科选修4-4《极坐标》完整版-经典习题及详细答案
数学理科选修4-4第一讲《极坐标》习题一.选择题1.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( ) A .⎪⎭⎫ ⎝⎛-3,5π B .⎪⎭⎫ ⎝⎛34,5π C .⎪⎭⎫ ⎝⎛-32,5π D .⎪⎭⎫ ⎝⎛--35,5π2.点()3,1-P ,则它的极坐标是( ) A .⎪⎭⎫ ⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2π C .⎪⎭⎫ ⎝⎛-3,2π D .⎪⎭⎫ ⎝⎛-34,2π3.极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 表示的曲线是( ) A .双曲线 B .椭圆 C .抛物线 D .圆4.圆)sin (cos 2θθρ+=的圆心坐标是( )A .⎪⎭⎫ ⎝⎛4,1π B .⎪⎭⎫ ⎝⎛4,21π C .⎪⎭⎫ ⎝⎛4,2π D .⎪⎭⎫⎝⎛4,2π5.在极坐标系中,与圆θρsin 4=相切的一条直线方程为( ) A .2sin =θρ B .2cos =θρ C .4cos =θρ D .4cos -=θρ6、 已知点()0,0,43,2,2,2O B A ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--ππ则ABO ∆为( ) A 、正三角形 B 、直角三角形 C 、锐角等腰三角形 D 、直角等腰三角形 7、)0(4≤=ρπθ表示的图形是( )A .一条射线B .一条直线C .一条线段D .圆8、直线αθ=与1)cos(=-αθρ的位置关系是( )A 、平行B 、垂直C 、相交不垂直D 、与有关,不确定9.两圆θρcos 2=,θρsin 2=的公共部分面积是( ) A.214-πB.2-πC.12-πD.2π10.已知点1P 的球坐标是)4,,32(1πϕP ,2P 的柱坐标是)1,,5(2θP ,求21P P .A .2B .3C .22D .22二.填空题11.极坐标方程52sin 42=θρ化为直角坐标方程是12.圆心为⎪⎭⎫⎝⎛6,3πC ,半径为3的圆的极坐标方程为 13.已知直线的极坐标方程为22)4sin(=+πθρ,则极点到直线的距离是 14、在极坐标系中,点P ⎪⎭⎫⎝⎛611,2π到直线1)6sin(=-πθρ的距离等于____________。
极坐标与参数方程测试题(有详解答案)
极坐标与参数方程测试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2π B 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
极坐标练习题
一、选择题1.将曲线y =sin 2x 按照伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后得到的曲线方程为( )A.y =3sin xB.y =3sin 2xC.y =3sin 12xD.y =13sin 2x2.极坐标方程sin θ=12(ρ∈R ,ρ≥0)表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线 3.极坐标方程ρ=cos θ化为直角坐标方程为( )A.⎝ ⎛⎭⎪⎫x +122+y 2=14B.x 2+⎝ ⎛⎭⎪⎫y +122=14C.x 2+⎝ ⎛⎭⎪⎫y -122=14D.⎝ ⎛⎭⎪⎫x -122+y 2=144.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A.x 2+y 2=3 B.x 2+2xy =1(x ≠±1) C.y =1-x 2D.x 2+y 2=9(x ≠0)5.如图1,已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线的极坐标方程是( ) A.ρ=1 B.ρ=cos θC.ρ=-1cos θD.ρ=1cos θ6.圆ρ=4cos θ的圆心到直线tan θ=1的距离为( ) A.22 B.2 C.2D.2 27.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R )的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3C.⎝ ⎛⎭⎪⎫1,π3D.⎝ ⎛⎭⎪⎫1,-7π6 8.极坐标方程ρcos θ=2sin 2θ表示的曲线为( )A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆 9.圆ρ=r 与圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4(r >0)的公共弦所在直线的方程为( )A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-rC.2ρ(sin θ+cos θ)=rD.2ρ(sin θ+cos θ)=-r 10.圆ρ=2a sin θ关于极轴对称的圆的方程为( )A.ρ=2a cos θB.ρ=-2a cos θC.ρ=-2a sin θD.ρ=2a sin θ 11.直线θ=α和直线ρsin (θ-α)=1的位置关系是( ) A.垂直 B.平行 C.相交但不垂直 D.重合 二、填空题12.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.13.已知极坐标系中,极点为O ,将点A ⎝ ⎛⎭⎪⎫4,π6绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.三、解答题14.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C 变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.15.已知⊙C :ρ=cos θ+sin θ, 直线l :ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4.求⊙C 上点到直线l 距离的最小值.16.(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C 的方程; (2)将上述圆C 绕极点逆时针旋转π2得到圆D ,求圆D 的方程.17.在极坐标系中,极点为O ,已知曲线C 1:ρ=2与曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4=2交于不同的两点A ,B .(1)求|AB |的值;(2)求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程. 一、选择题1.将曲线y =sin 2x 按照伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后得到的曲线方程为( )A.y =3sin xB.y =3sin 2xC.y =3sin 12xD.y =13sin 2x【解析】 由伸缩变换,得x =x ′2,y =y ′3. 代入y =sin 2x ,有y ′3=sin x ′,即y ′=3sin x ′. ∴变换后的曲线方程为y =3sin x . 【答案】 A2.极坐标方程sin θ=12(ρ∈R ,ρ≥0)表示的曲线是( ) A.两条相交直线 B.两条射线 C.一条直线 D.一条射线【解析】 ∵sin θ=12,所以θ=π6(ρ≥0)和θ=56π(ρ≥0),故其表示两条射线. 【答案】 B3.极坐标方程ρ=cos θ化为直角坐标方程为( )A.⎝ ⎛⎭⎪⎫x +122+y 2=14B.x 2+⎝ ⎛⎭⎪⎫y +122=14C.x 2+⎝ ⎛⎭⎪⎫y -122=14D.⎝ ⎛⎭⎪⎫x -122+y 2=14 【解析】 由ρ=cos θ,得ρ2=ρcos θ,所以x 2+y 2=x ,即⎝ ⎛⎭⎪⎫x -122+y 2=14.故选D.【答案】 D4.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A.x 2+y 2=3 B.x 2+2xy =1(x ≠±1) C.y =1-x 2D.x 2+y 2=9(x ≠0)【解析】 设P (x ,y ),则k P A =y x +1(x ≠-1),k PB =yx -1(x ≠1). 又k P A +k PB =-1,即y x +1+y x -1=-1,得 x 2+2xy =1(x ≠±1),故选B. 【答案】 B5.如图1,已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线的极坐标方程是( )A.ρ=1B.ρ=cos θC.ρ=-1cos θD.ρ=1cos θ【解析】 由题图可知ρcos(π-θ)=1, 即ρ=-1cos θ,故选C. 【答案】 C6.圆ρ=4cos θ的圆心到直线tan θ=1的距离为( ) A.22 B.2 C.2D.2 2【解析】 圆ρ=4cos θ的圆心C (2,0),如图,|OC |=2, 在Rt △COD 中, ∠ODC =π2,∠COD =π4, ∴|CD |= 2.即圆ρ=4cos θ的圆心到直线tan θ=1的距离为 2. 【答案】 B7.点M ⎝ ⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R )的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3C.⎝ ⎛⎭⎪⎫1,π3D.⎝ ⎛⎭⎪⎫1,-7π6 【解析】 点M ⎝ ⎛⎭⎪⎫1,7π6的直角坐标为⎝ ⎛⎭⎪⎫cos 7π6,sin 7π6=⎝ ⎛⎭⎪⎫-32,-12,直线θ=π4(ρ∈R ),即直线y =x ,点⎝ ⎛⎭⎪⎫-32,-12关于直线y =x 的对称点为⎝ ⎛⎭⎪⎫-12,-32,再化为极坐标,即⎝ ⎛⎭⎪⎫1,4π3.【答案】 A8.极坐标方程ρcos θ=2sin 2θ表示的曲线为( ) A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆【解析】 方程ρcos θ=2sin 2θ可化为ρcos θ=4sin θcos θ,即cos θ=0或ρ=4sin θ,方程cos θ=0即θ=k π+π2,表示y 轴,方程ρ=4sin θ即x 2+y 2=4y ,表示圆,故选C.【答案】 C9.圆ρ=r 与圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4(r >0)的公共弦所在直线的方程为( )A.2ρ(sin θ+cos θ)=rB.2ρ(sin θ+cos θ)=-rC.2ρ(sin θ+cos θ)=rD.2ρ(sin θ+cos θ)=-r 【解析】 圆ρ=r 的直角坐标方程为 x 2+y 2=r 2,① 圆ρ=-2r sin ⎝ ⎛⎭⎪⎫θ+π4=-2r ⎝ ⎛⎭⎪⎫sin θcos π4+cos θsin π4=-2r (sin θ+cos θ).两边同乘以ρ得ρ2=-2r (ρsin θ+ρcos θ). ∵x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2, ∴x 2+y 2+2rx +2ry =0.②①-②整理得2(x +y )=-r ,即为两圆公共弦所在直线的普通方程.再将直线2(x +y )=-r 化为极坐标方程为2ρ(cos θ+sin θ)=-r .【答案】 D10.圆ρ=2a sin θ关于极轴对称的圆的方程为( )A.ρ=2a cos θB.ρ=-2a cos θC.ρ=-2a sin θD.ρ=2a sin θ 【解析】 法一:根据对称规律,把⎩⎪⎨⎪⎧θ′=-θ,ρ′=ρ代入原方程,可得原方程表示的曲线关于极轴对称的曲线方程.∴ρ=2a sin θ关于极轴对称的曲线方程为ρ′=2a sin (-θ),即ρ=-2a sin θ. 法二:因为圆ρ=2a sin θ的圆心是⎝ ⎛⎭⎪⎫a ,π2,半径为a ,该圆关于极轴对称的圆的圆心应为⎝ ⎛⎭⎪⎫a ,3π2,半径仍为a , 其方程应为:ρ=2a cos ⎝ ⎛⎭⎪⎫θ-3π2,即ρ=-2a sin θ. 【答案】 C11.直线θ=α和直线ρsin (θ-α)=1的位置关系是( ) A.垂直 B.平行 C.相交但不垂直 D.重合【解析】 直线θ=α化为直角坐标方程为y =x tan α,ρsin (θ-α)=1化为ρsin θcos α-ρcos θsin α=1,即y =x tan α+1cos α.所以两直线平行. 【答案】 B 二、填空题12.在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.【解析】 点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1),直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1化为ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=1,32y -12x =1,12x -32y +1=0,点(3,1)到直线12x -32y +1=0的距离为⎪⎪⎪⎪⎪⎪12×3-32×1+1⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-322=1.【答案】 113.已知极坐标系中,极点为O ,将点A ⎝ ⎛⎭⎪⎫4,π6绕极点逆时针旋转π4得到点B ,且|OA |=|OB |,则点B 的直角坐标为________.【解析】 依题意,点B 的极坐标为⎝ ⎛⎭⎪⎫4,5π12,∵cos 5π12=cos ⎝ ⎛⎭⎪⎫π4+π6=cos π4cos π6-sin π4sin π6=22·32-22·12=6-24, sin 5π12=sin ⎝ ⎛⎭⎪⎫π4+π6=sin π4cos π6+cos π4sin π6=22·32+22·12=6+24,∴x =ρcos θ=4×6-24=6-2,∴y =ρsin θ=4×6+24=6+2, ∴点B 的直角坐标为(6-2,6+2). 【答案】 (6-2,6+2) 三、解答题14.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=2x ,y ′=2y 后,曲线C 变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状. 【解】 将⎩⎪⎨⎪⎧x ′=2x ,y ′=2y 代入(x ′-5)2+(y ′+6)2=1,得(2x -5)2+(2y +6)2=1, 即⎝ ⎛⎭⎪⎫x -522+(y +3)2=14, 故曲线C 是以⎝ ⎛⎭⎪⎫52,-3为圆心,半径为12的圆.15.已知⊙C :ρ=cos θ+sin θ, 直线l :ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4.求⊙C 上点到直线l 距离的最小值.【解】 ⊙C 的直角坐标方程是x 2+y 2-x -y =0, 即⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=12.又直线l 的极坐标方程为ρ(cos θ-sin θ)=4, 所以直线l 的直角坐标方程为x -y -4=0.设M ⎝ ⎛⎭⎪⎫12+22cos θ,12+22sin θ为⊙C 上任意一点,M 点到直线l 的距离d =⎪⎪⎪⎪⎪⎪12+22cos θ-⎝ ⎛⎭⎪⎫12+22sin θ-42=4-cos ⎝ ⎛⎭⎪⎫θ+π42,当θ=7π4时,d min =32=322.16.(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C 的方程; (2)将上述圆C 绕极点逆时针旋转π2得到圆D ,求圆D 的方程. 【解】 (1)设M (ρ,θ)为圆上任意一点,如图,圆C 过极点O ,∠COM =θ-1,作CK ⊥OM 于K , 则|OM |=2|OK |=2cos(θ-1), 故圆C 的极坐标为ρ=2cos(θ-1).(2)将圆C :ρ=2cos(θ-1)按逆时针旋转π2得到圆D :ρ=2cos ⎝ ⎛⎭⎪⎫θ-1-π2,即ρ=-2sin(1-θ),故ρ=2sin(θ-1)为所求.17.在极坐标系中,极点为O ,已知曲线C 1:ρ=2与曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4=2交于不同的两点A ,B .(1)求|AB |的值;(2)求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程. 【解】 (1)法一:∵ρ=2,∴x 2+y 2=4. 又∵ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,∴y =x +2. ∴|AB |=2r 2-d 2=24-⎝ ⎛⎭⎪⎫222=2 2. 法二:设A (ρ,θ1),B (ρ,θ2),θ1,θ2∈[0,2π), 则sin ⎝ ⎛⎭⎪⎫θ1-π4=22,sin ⎝ ⎛⎭⎪⎫θ2-π4=22.∵θ1,θ2∈[0,2π),∴|θ1-θ2|=π2,即∠AOB =π2, 又|OA |=|OB |=2, ∴|AB |=2 2.(2)法一:∵曲线C 2的斜率为1,∴过点(1,0)且与曲线C 2平行的直线l 的直角坐标方程为y =x -1,∴直线l 的极坐标为ρsin θ=ρcos θ-1, 即ρcos ⎝ ⎛⎭⎪⎫θ+π4=22.法二:设点P (ρ,θ)为直线l 上任一点,因为直线AB 与极轴成π4的角, 则∠PCO =3π4或∠PCO =π4, 当∠PCO =3π4时,在△POC 中,|OP |=ρ,|OC |=1,∠POC =θ,∠PCO =3π4,∠OPC =π4-θ, 由正弦定理可知:1sin ⎝ ⎛⎭⎪⎫π4-θ=ρsin 34π, 即ρsin ⎝ ⎛⎭⎪⎫π4-θ=22, 即直线l 的极坐标方程为:ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.同理,当∠PCO =π4时,极坐标方程也为 ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.当P 为点C 时显然满足ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.综上,所求直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π4-θ=22.。
极坐标与参数方程大题及答案
极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
极坐标练习题
日测极坐标1.曲线cos 10ρθ+=的直角坐标方程为( )A .1x = B. 1x =- C. 1y = D. 1y =- 2.若M 点的极坐标为(2,)6π--,则M 点的直角坐标是( )A .(B .(1)-C .1)-D . 3.曲线的极坐标方程θρsin 4=化成直角坐标方程为( ) A.4)2(22=++y xB.4)2(22=-+y xC.4)2(22=+-yx D.4)2(22=++yx4.在极坐标系中,圆心为(1,)2π,且过极点的圆的方程是 ( )(A )2sin =ρθ (B )2sin =-ρθ (C )2cos =ρθ ( D )2cos =-ρθ5.极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A 、圆、直线B 、直线、圆C 、圆、圆D 、直线、直线 6.在极坐标方程中,曲线C 的方程是ρ=4sinθ,过点(4,6π)作曲线C 的切线,则切线长为( ) A . C . D .7.在极坐标系中,圆θρcos 2=的垂直于极轴的两条切线方程分别为( )(A )2cos R 0=∈=θρρθ)和((B )2cos R 2=∈=θρρπθ)和( (C )1cos R 2=∈=θρρπθ)和( (D )1cos R 0=∈=θρρθ)和(8.极坐标方程0))(1(=--πθρ)0(≥ρ表示的图形是( )A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线 9.(极坐标)以直角坐标系的原点为极点,x 轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位,点M 的极坐标是)32,4(π,则点M 直角坐标是 A .)3,2( B .)3,2(- C .)2,3( D .)2,3(- 10.极坐标方程cos 2sin 2ρθθ=表示的曲线为A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆 11.下列结论中不正确的是( ) A .(2,)6π与(2,)6π-是关于极轴对称 B .(2,)6π与7(2,)6π是关于极点对称C .(2,)6π与5(2,)6π-是关于极轴对称 D .(2,)6π与5(2,)6π--是关于极点对称 12.极坐标系中,以(9,3π)为圆心,9为半径的圆的极坐标方程为( ) A. )(θπρ-3cos 18= B. )(θπρ-3cos 18-= C. )(θπρ-3sin 18= D. )(θπρ-3cos 9=13.圆5cos ρθθ=-的圆心坐标是( ) A.4(5,)3π--B.(5,)3π-C.(5,)3πD.5(5,)3π- 14.在极坐标系中,与圆相切的一条直线方程为( ) A . B . C . D . 15.极坐标方程cos 2ρθ=0 表示的曲线为( )A 、极点B 、极轴C 、一条直线D 、两条相交直线 16.在极坐标系中,曲线cos sin 2ρθρθ+=(0θ≤﹤2π)与4πθ=的交点的极坐标为( )(A)(1,1) (B)(1,)4π(C))4π (D)()4π17.直线45395x t y t⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)与圆2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的位置关系是A .相离B .相切 C.过圆心 D .相交不过圆心 18.已知圆22:4C x y +=,直线:2l x y +=,以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上且满足2|OQ ||OP ||OR |⋅=,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.19.在平面直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 是圆心在极轴上,且经过极点的圆,已知曲线1C 上的点)23,1(M 对应的参数3πϕ=,射线3πθ=与曲线2C 交于点)3,1(πD(1)求曲线1C ,2C 的方程; (2)若点),(1θρA ,)2,(2πθρ+B 在曲线1C 上,求222111ρρ+的值20.已知曲线C 的极坐标方程为θθρ2sin cos 4=,直线l 的参数方程为⎩⎨⎧+==ααsin 1cos t y t x ( t为参数,0≤α<π).(Ⅰ)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状; (Ⅱ)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长.参考答案1.B【解析】考点:极坐标方程【解析】A 。
极坐标与参数方程经典题型(附含详细解答)
专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
极坐标方程基础习题(附答案),DOC
1.已知点P 的极坐标为,则点P 的直角坐标为( ) A .(1,) B . (1,﹣) C . (,1) D . (,﹣1) 2.极坐标系中,B A ,分别是直线05sin 4cos 3=+-θρθρ和圆θρcos 2=上的动点,则B A ,两点之间距离的最小值是.3.已知曲线C 的极坐标方程为2ρ=(0,02ρθπ>≤<),曲线C 在点(2,4π)处的切线为l ,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,则l 的直角坐标方程为▲.4.在极坐标系中,已知直线把曲线所围成的区域分成面积相等的两部分,则常数a 的值是.5.在极坐标系中,圆2cos ρθ=的圆心到直线cos 2ρθ=的距离是____________.6.在极坐标系中,圆4s i n ρθ=的圆心到直线()6R πθρ=∈的距离是______________.7.在极坐标系(),ρθ(0,02πρθ>≤<)中,曲线2sin ρθ=与2cos ρθ=的交点的极坐标为_____8.(坐标系与参数方程选做题)曲线2cos 4πρθθ==关于直线对称的曲线的极坐标方程为。
试卷答案1.A 考点:点的极坐标和直角坐标的互化.专题:计算题. 分析: 利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,可求出点的直角坐标.解答:解:x=ρcos θ=2×cos =1, y=ρsin θ=2×sin =∴将极坐标(2,)化为直角坐标是(1,). 故选A .点评: 本题主要考查了点的极坐标和直角坐标的互化,同时考查了三角函数求值,属于基础题.2.略3. 4.1a =-略5.曲线θρcos 2=即()2211x y -+=,表示圆心在(1,0),半径等于1的圆,直线cos 2ρθ=即直线2=x ,故圆心到直线的距离为1。
6.3略7.2,4π⎛⎫ ⎪⎝⎭两式相除得tan 12sin 244ππθθρ=⇒=⇒==,交点的极坐标为2,4π⎛⎫ ⎪⎝⎭ 8.2sin ρθ=略。
最新经典高三极坐标练习题
师道教育高三极坐标练习题一.解答题(共30小题)1.在平面直角坐标系中,已知曲线C的参数方程方程为(α为参数),在极坐标系中,点M的极坐标为(,π).(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;(Ⅱ)设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程.2.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.3.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.4.已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数).(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求的最小值.5.已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.6.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.7.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.8.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.9.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.10.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.11.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.12.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.13.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.14.(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)15.选修4﹣4:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上.(Ⅰ)求a的值及直线l的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.16.选修4﹣﹣4;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.17.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.18.在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.19.在直角坐标系xOy中,直线C1的参数方程为(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为ρ=﹣2cosθ+2sinθ.(Ⅰ)求直线C1的普通方程和圆C2的圆心的极坐标;(Ⅱ)设直线C1和圆C2的交点为A,B,求弦AB的长.20.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.21.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点P是曲线C上的动点,求P到直线l的距离的最小值,并求出P点的坐标.23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.24.在平面直角坐标系xOy中,已知C1:(θ为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O 为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.25.选修4﹣4:坐标系与参数方程已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(Ⅰ)写出直线l与曲线C的直角坐标系下的方程;(Ⅱ)设曲线C经过伸缩变换得到曲线C′设曲线C′上任一点为M(x,y),求的取值范围.26.已知曲线C1的极坐标方程是,曲线C2的参数方程是是参数).(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;(2)求t的取值范围,使得C1,C2没有公共点.27.已知平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1方程为ρ=2sinθ;C2的参数方程为(t为参数).(Ⅰ)写出曲线C1的直角坐标方程和C2的普通方程;(Ⅱ)设点P为曲线C1上的任意一点,求点P 到曲线C2距离的取值范围.28.已知直线l的参数方程:(t为参数),曲线C的参数方程:(α为参数),且直线交曲线C于A,B两点.(Ⅰ)将曲线C的参数方程化为普通方程,并求θ=时,|AB|的长度;(Ⅱ)已知点P:(1,0),求当直线倾斜角θ变化时,|PA|•|PB|的范围.29.在平面直角坐标系中,曲线C1的参数方程为(ϕ为参数),以O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线与曲线C2交于点.(1)求曲线C1,C2的普通方程;(2)是曲线C1上的两点,求的值.30.己知圆C1的参数方程为(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2cos(θ﹣).(Ⅰ)将圆C1的参数方程他为普通方程,将圆C2的极坐标方程化为直角坐标方程;(Ⅱ)圆C1,C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.20161105高三极坐标练习题参考答案与试题解析一.解答题(共30小题)1.(2016•江西校级二模)在平面直角坐标系中,已知曲线C的参数方程方程为(α为参数),在极坐标系中,点M的极坐标为(,π).(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;(Ⅱ)设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程.【分析】(I)利用同角三角函数的关系消参数得出曲线C的普通方程,将M点坐标代入曲线C的方程即可判断点M与曲线C的位置关系;(II)由|AB|=2|MB|,可知M为AB的中点,将直线l的参数方程代入曲线的方程则方程有两个互为相反数的实根,根据根与系数的关系求出l的斜率,得出l方程.【解答】解:(I)由(α为参数)消α得:,将化成直角坐标得M(﹣1,1),∵,故点M在曲线C内.(Ⅱ)设直线l的参数方程为(t为参数,α为l的倾斜角).代入得:(3+sin2α)t2+(8sinα﹣6cosα)t﹣5=0.∵|AB|=2|MB|,∴M为AB的中点,即t1+t2=0.∴8sinα﹣6cosα=0,∴tanα=.∴l的方程为:,即3x﹣4y+7=0.2.(2016•鹰潭一模)已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.3.(2016•洛阳二模)已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.【分析】(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,利用可得直角坐标方程.直线L的参数方程是(t为参数),把t=2y代入+m消去参数t即可得出.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,得﹣1<m<3.利用|PA|•|PB|=t1t2,即可得出.【解答】解:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.直线L的参数方程是(t为参数),消去参数t可得.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,解得﹣1<m<3.∴t1t2=m2﹣2m.∵|PA|•|PB|=1=|t1t2|,∴m2﹣2m=±1,解得,1.又满足△>0.∴实数m=1,1.4.(2016•汕头模拟)已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数).(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求的最小值.【分析】(1)利用ρ2=x2+y2,将ρ=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x﹣1)代入下式消去参数t即可;(2)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出最小值.【解答】解:(1)直线l的参数方程为为参数).由上式化简成t=2(x﹣1)代入下式得根据ρ2=x2+y2,进行化简得C:x2+y2=1(2分)(2)∵代入C得∴(5分)设椭圆的参数方程为参数)(7分)则(9分)则的最小值为﹣4.(10分)5.(2016•邯郸二模)已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.【分析】(1)利用公式x=ρcosθ,y=ρsinθ即可把曲线C的极坐标方程化为普通方程;消去参数t即可得到直线l的方程;(2)利用弦长|PQ|=2和圆的内接矩形,得对角线是圆的直径即可求出圆的内接矩形的面积.【解答】解:(1)对于C:由ρ=4cosθ,得ρ2=4ρcosθ,进而x2+y2=4x;对于l:由(t为参数),得,即.(5分)(2)由(1)可知C为圆,且圆心为(2,0),半径为2,则弦心距,弦长,因此以PQ为边的圆C的内接矩形面积.(10分)6.(2016•太原三模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.【分析】(Ⅰ)曲线C1:(t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(θ为参数),利用cos2θ+sin2θ=1化为普通方程.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C1:(t为参数),化为(x+4)2+(y﹣3)2=1,∴C1为圆心是(﹣4,3),半径是1的圆.C2:(θ为参数),化为.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,M到C3的距离d==|5sin(θ+φ)+13|,从而当cossinθ=,sinθ=﹣时,d取得最小值.7.(2016•漳州二模)极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.【分析】(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C 的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.【解答】解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)8.(2016•梅州二模)在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.【分析】(1)利用点在直线上,代入方程求出a,利用极坐标与直角坐标的互化,求出直线的直角坐标方程.(2)化简圆的参数方程与直角坐标方程,求出圆心与半径,利用圆心到直线的距离与半径比较即可得到直线与圆的位置关系.【解答】解:(1)点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.可得:cos(﹣)=a,解得a=.直线l的极坐标方程为ρcos(θ﹣)=,即:ρcosθ+ρsinθ=2,直线l的直角坐标方程为:x+y﹣2=0.(2)圆C的参数方程为(α为参数),可得圆的直角坐标方程为:(x﹣1)2+y2=1.圆心(1,0),半径为:1.因为圆心到直线的距离d==<1,所以直线与圆相交.9.(2016•开封四模)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.【分析】(Ⅰ)把曲线C的极坐标方程、直线l的参数方程化为普通方程即可;(Ⅱ)把直线l的参数方程代入曲线C的直角坐标方程中,得关于t的一元二次方程,由根与系数的关系,求出t1、t2的关系式,结合参数的几何意义,求出a的值.【解答】解:(Ⅰ)曲线C的极坐标方程ρsin2θ=acosθ(a>0),可化为ρ2sin2θ=aρcosθ(a>0),即y2=ax(a>0);(2分)直线l的参数方程为(t为参数),消去参数t,化为普通方程是y=x﹣2;(4分)(Ⅱ)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a>0)中,得;设A、B两点对应的参数分别为t1,t2,则;(6分)∵|PA|•|PB|=|AB|2,∴t1•t2=,∴=+4t1•t2=5t1•t2,(9分)即;解得:a=2或a=﹣8(不合题意,应舍去);∴a的值为2.(12分)10.(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,【分析】即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.【解答】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.11.(2014•新课标I)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.12.(2014•新课标II)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C 的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).13.(2014•辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.【分析】(Ⅰ)在曲线C上任意取一点(x,y),再根据点(x,)在圆x2+y2=1上,求出C的方程,化为参数方程.(Ⅱ)解方程组求得P1、P2的坐标,可得线段P1P2的中点坐标.再根据与l垂直的直线的斜率为,用点斜式求得所求的直线的方程,再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程.【解答】解:(Ⅰ)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(Ⅱ)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+=0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.14.(2013•新课标Ⅰ)(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)【分析】(Ⅰ)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(Ⅱ)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.【解答】解:(Ⅰ)曲线C1的参数方程式(t为参数),得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,即x2+y2﹣8x﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;(Ⅱ)曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴C1与C2交点的极坐标分别为(,),(2,).15.(2013•福建)选修4﹣4:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上.(Ⅰ)求a的值及直线l的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.【分析】(Ⅰ)根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化成直角坐标的转换公式求出直线l的直角坐标方程;(Ⅱ)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.【解答】解:(Ⅰ)点A在直线l上,得,∴a=,故直线l的方程可化为:ρsinθ+ρcosθ=2,得直线l的直角坐标方程为x+y﹣2=0;(Ⅱ)消去参数α,得圆C的普通方程为(x﹣1)2+y2=1圆心C到直线l的距离d=<1,所以直线l和⊙C相交.16.(2013•新课标Ⅱ)选修4﹣﹣4;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(I)根据题意写出P,Q两点的坐标:P(2cosα,2sinα),Q(2cos2α,2sin2α),再利用中点坐标公式得PQ的中点M的坐标,从而得出M的轨迹的参数方程;(II)利用两点间的距离公式得到M到坐标原点的距离d==,再验证当α=π时,d=0,故M的轨迹过坐标原点.【解答】解:(I)根据题意有:P(2cosα,2sinα),Q(2cos2α,2sin2α),∵M为PQ的中点,故M(cosα+cos2α,sin2α+sinα),∴求M的轨迹的参数方程为:(α为参数,0<α<2π).(II)M到坐标原点的距离d==(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.17.(2013•江苏)在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.【分析】运用代入法,可将直线l和曲线C的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标.【解答】解:直线l的参数方程为(为参数),由x=t+1可得t=x﹣1,代入y=2t,可得直线l的普通方程:2x﹣y﹣2=0.曲线C的参数方程为(t为参数),化为y2=2x,联立,解得,,于是交点为(2,2),.18.(2011•辽宁)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.【分析】(I)有曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数),消去参数的C1是圆,C2是椭圆,并利用.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合,求出a及b.(II)利用C1,C2的普通方程,当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,利用面积公式求出面积.【解答】解:(Ⅰ)C1是圆,C2是椭圆.当α=0时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3当时,射线l与C1,C2交点的直角坐标分别为(0,1)(0,b),因为这两点重合所以b=1.(Ⅱ)C1,C2的普通方程为x2+y2=1和.当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为.当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形.故四边形A1A2B2B1的面积为.19.(2016•离石区二模)在直角坐标系xOy中,直线C1的参数方程为(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为ρ=﹣2cosθ+2sinθ.(Ⅰ)求直线C1的普通方程和圆C2的圆心的极坐标;(Ⅱ)设直线C1和圆C2的交点为A,B,求弦AB的长.【分析】(Ⅰ)把参数方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标.(Ⅱ)由(Ⅰ)求得(﹣1,)到直线x﹣y+1=0 的距离d,再利用弦长公式求得弦长.【解答】解:(Ⅰ)由C1的参数方程消去参数t得普通方程为x﹣y+1=0,圆C2的直角坐标方程(x+1)2+=4,所以圆心的直角坐标为(﹣1,),所以圆心的一个极坐标为(2,).(Ⅱ)由(Ⅰ)知(﹣1,)到直线x﹣y+1=0 的距离d==,所以AB=2=.20.(2016•焦作一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.【分析】(Ⅰ)利用极坐标方程的定义即可求得;(Ⅱ)数形结合:作出图象,根据图象即可求出有两交点时a的范围.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ(sinθ+cosθ)=a,∴曲线C1的直角坐标方程为x+y﹣a=0.(Ⅱ)曲线C2的直角坐标方程为(x+1)2+(y+1)2=1(﹣1≤y≤0),为半圆弧,如图所示,曲线C1为一族平行于直线x+y=0的直线,当直线C1过点P时,利用得a=﹣2±,舍去a=﹣2﹣,则a=﹣2+,当直线C1过点A、B两点时,a=﹣1,∴由图可知,当﹣1≤a<﹣2+时,曲线C1与曲线C2有两个公共点.21.(2016•衡水校级一模)已知曲线C1:(t为参数),C2:(θ为参数).。
极坐标参数方程15道典型题(有答案)
联立方程解得交点坐标为 ………5分
(2)由(1)知: , 所以直线 : ,
化参数方程为普通方程: ,
对比系数得: , ………10分
2.极坐标系与直角坐标系 有相同的长度单位,以原点 为极点,以 轴正半轴为极轴,曲线 的极坐标方程为 ,曲线 的参数方程为 ,( 是参数, 是常数)
(1)求 的直角坐标方程和 的普通方程;
【解答】解:(I)设P(x,y),则由条件知M( , ).由于M点在C1上,
所以 即
从而C2的参数方程为
(α为参数)
(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.
射线θ= 与C1的交点A的极径为ρ1=4sin ,
射线θ= 与C2的交点B的极径为ρ2=8sin .
所以|AB|=|ρ2﹣ρ1|= .
(Ⅱ)设MN的中点为P,求直线OP的极坐标方程.
解:(1)将极坐标方程ρcos =1化为:
ρcosθ+ ρsinθ=1.
则其直角坐标方程为: x+ y=1,M(2,0),N(0, ),其极坐标为M(2,0),N .
(2)由(1)知MN的中点P .
直线OP的直角坐标方程为y= x,化为极方程为:ρsinθ= ·ρcosθ.
(Ⅱ)设P(2cosθ, sinθ),则|AP|= =2-cosθ,
P到直线l的距离d= = .
由|AP|=d得3sinθ-4cosθ=5,又sin2θ+cos2θ=1,得sinθ= , cosθ=- .
故P(- , ).…10分
4..在极坐标系Ox中,直线C1的极坐标方程为ρsinθ=2,M是C1上任意一点,点P在射线OM上,且满足|OP|·|OM|=4,记点P的轨迹为C2.
极坐标与参数方程专项训练及详细答案
一.选择题(共4小题)1.在极坐标系中,圆C :ρ2+k 2cos ρ+ρsin θ﹣k=0关于直线l :θ=(ρ∈R )对称的充要条件是( )2.过点A (4,﹣)引圆ρ=4sin θ的一条切线,则切线长为( ). B C二.填空题(共11小题) 5.极坐标系下,直线与圆的公共点个数是 __ .6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为 _________ .7.在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d= _________ . 8.极坐标方程所表示曲线的直角坐标方程是 _________ .9.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 _________ . 10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 _________ . 11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为_________ .12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=13.在平面直角坐标下,曲线,曲,若曲线C 1、C 2有公共点,则实数a 的取值范围为 _________ .14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|.15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= _________ .三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C上的一个动点,求点P到直线l距离的最小值.17.在平面直角坐标系xOy中,圆C 的参数方程为(θ为参数),直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程;(2)设l与圆圆C相交与两点A,B,求点P到A,B两点的距离之积.18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C 的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.参考答案与试题解析一.选择题(共4小题)1.在极坐标系中,圆C:ρ2+k2cosρ+ρsinθ﹣k=0关于直线l:θ=(ρ∈R)对称的充要条件是()在直线所以,即2.过点A(4,﹣)引圆ρ=4sinθ的一条切线,则切线长为(),运算求得结果.)即==43.在平面直角坐标系xOy中,点P的坐标为(﹣1,1),若取原点O为极点,x轴正半轴为极轴,建(|OP|=﹣.∴圆心的极坐标二.填空题(共11小题)5.(坐标系与参数方程选做题)极坐标系下,直线与圆的公共点个数是1.解:直线,即x+y=圆心到直线的距离等于=6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为.d=|CQ||PQ|=d+r=故答案为:7.(2004•上海)在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d=.,)化成直角坐标方程为()==故填:8.极坐标方程所表示曲线的直角坐标方程是.解:∵极坐标方程=59.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 .=,,根据中点坐标的性质可得中点对应的参数为中点的距离为×…故答案为:.10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 4 .,我们可以求出直线的一般方程,代入点到圆心距为.所以11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为1 .2|x 则由•,|x |x 12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=.解:把曲线化为普通方程得:=,即把曲线联立得:,消去,﹣.213.在平面直角坐标下,曲线,曲线,若曲线C 1、C 2有公共点,则实数a 的取值范围为 . 解:曲线曲线∴,﹣22,故答案为:14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|. 的方程为∴的直角坐标方程:(Ⅱ),即由于所以15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= 7 .(其中×t=7=0三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C 上的一个动点,求点P 到直线l 距离的最小值.)=2化简为:ρ,即===﹣17.在平面直角坐标系xOy 中,圆C 的参数方程为(θ为参数),直线l 经过点P (1,1),倾斜角,(1)写出直线l 的参数方程;(2)设l 与圆圆C 相交与两点A ,B ,求点P 到A ,B 两点的距离之积. 化为普通方程为,把直线,∴18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.的距离为=。
极坐标习题精练及答案
坐标系一、选择题1.将点的直角坐标(-2,23)化成极坐标得( ). A .(4,32π) B .(-4,32π) C .(-4,3π) D .(4,3π) 2.极坐标方程 ρ cos θ=sin2θ( ρ≥0)表示的曲线是( ). A .一个圆B .两条射线或一个圆C .两条直线D .一条射线或一个圆3.极坐标方程θρcos +12= 化为普通方程是( ).A .y 2=4(x -1)B .y 2=4(1-x )C .y 2=2(x -1)D .y 2=2(1-x )4.点P 在曲线 ρ cos θ +2ρ sin θ =3上,其中0≤θ ≤4π,ρ>0,则点P 的轨迹是( ). A .直线x +2y -3=0B .以(3,0)为端点的射线C . 圆(x -2)2+y =1D .以(1,1),(3,0)为端点的线段5.设点P 在曲线 ρ sin θ =2上,点Q 在曲线 ρ=-2cos θ上,则|PQ |的最小值为 ( ).A .2B .1C .3D .06.在满足极坐标和直角坐标互的化条件下,极坐标方程θθρ222sin 4+ cos 312=经过直角坐标系下的伸缩变换⎪⎩⎪⎨⎧''y =y x = x 3321后,得到的曲线是( ). A .直线B .椭圆C . 双曲线D . 圆7.在极坐标系中,直线2= 4π+ sin )(θρ,被圆 ρ=3截得的弦长为( ).A .22B .2C .52D .328.ρ=2(cos θ -sin θ )(ρ>0)的圆心极坐标为( ). A .(-1,4π3) B .(1,4π7) C .(2,4π) D .(1,4π5) 9.极坐标方程为lg ρ=1+lg cos θ,则曲线上的点(ρ,θ)的轨迹是( ).A .以点(5,0)为圆心,5为半径的圆B .以点(5,0)为圆心,5为半径的圆,除去极点C .以点(5,0)为圆心,5为半径的上半圆D .以点(5,0)为圆心,5为半径的右半圆10.方程θθρsin + cos 11= -表示的曲线是( ).A . 圆B .椭圆C . 双曲线D . 抛物线二、填空题11.在极坐标系中,以(a ,2π)为圆心,以a 为半径的圆的极坐标方程为 . 12.极坐标方程 ρ2cos θ-ρ=0表示的图形是 . 13.过点(2,4π)且与极轴平行的直线的极坐标方程是 . 14.曲线 ρ=8sin θ 和 ρ=-8cos θ(ρ>0)的交点的极坐标是 . 15.已知曲线C 1,C 2的极坐标方程分别为ρ cos θ =3,ρ=4cos θ (其中0≤θ<2π),则C 1,C 2交点的极坐标为 .16.P 是圆 ρ=2R cos θ上的动点,延长OP 到Q ,使|PQ |=2|OP |,则Q 点的轨迹方程是 .三、解答题17.求以点A (2,0)为圆心,且经过点B (3,3π)的圆的极坐标方程.18.先求出半径为a ,圆心为(ρ0,θ0)的圆的极坐标方程.再求出 (1)极点在圆周上时圆的方程;(2)极点在周上且圆心在极轴上时圆的方程.19.已知直线l 的极坐标方程为)(4π+ cos 24θρ=,点P 的直角坐标为(3cos θ,sin θ),求点P 到直线l 距离的最大值及最小值.20.A ,B 为椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)上的两点,O 为原点,且AO ⊥BO . 求证:(1)221+1OBOA为定值,并求此定值;(2)△AOB 面积的最大值为ab 21,最小值为2222 + b a b a .参考答案一、选择题 1.A解析:ρ=4,tan θ=3=232--,θ=3π2.故选A . 2.D解析:∵ ρ cos θ=2sin θ cos θ,∴cos θ=0或 ρ=2sin θ,ρ=0时,曲线是原点;ρ>0时,cos θ=0为一条射线,ρ=2sin θ 时为圆.故选D .3.B解析:原方程化为2cos =+θρρ,即x -y x2 = +22,即y 2=4(1-x ).故选B . 4.D解析:∵x +2y =3,即x +2y -3=0,又∵ 0≤θ ≤4π,ρ>0,故选D . 5. B解析:两曲线化为普通方程为y =2和(x +1)2+y 2=1,作图知选B . 6.D解析:曲线化为普通方程后为13422=+y x ,变换后为圆. 7.C解析: 直线可化为x +y =22,圆方程可化为x 2+y 2=9.圆心到直线距离d =2, ∴弦长=22223-=52.故选C. 8.B解析: 圆为:x 2+y 2-y x 2 + 2=0,圆心为⎪⎪⎭⎫ ⎝⎛2222-,,即) ,(4π71,故选B . 9.B解析: 原方程化为ρ=10cos θ,cos θ>0.∴0≤θ <2π和23π<θ<2π,故选B .10.C解析:∵1=ρ-ρcos θ+ρsin θ,∴ρ=ρcos θ-ρsin θ+1,∴x 2+y 2=(x -y +1)2,∴2x -2y -2xy +1=0,即xy -x +y =21,即(x +1)(y -1)=-21,是双曲线xy =-21的平移,故选C.二、填空题 11.ρ=2a sin θ.解析:圆的直径为2a ,在圆上任取一点P (ρ,θ), 则∠AOP =2π-θ 或θ-2π, ∵ρ=2a cos ∠AOP , 即2cos 2 = πθρ-a =2a sin θ.12.极点或垂直于极轴的直线.解析:∵ ρ·(ρ cos θ -1)=0,∴ρ=0为极点,ρ cos θ -1=0为垂直于极轴的直线. 13.ρ sin θ =1.解析:2= sin θρ×1 = 4πsin .14.(42,4π3).O (第11题)(第12题)解析:由8sin θ=-8cos θ 得tan θ=-1.ρ>0得⎩⎨⎧θθ cos sin ∴θ=4π3; 又由 ρ=8sin4π3得 ρ=42. 15.⎪⎭⎫ ⎝⎛6π32 ,. 解析:由 ρ cos θ=3有 ρ=θ cos 3,θcos 3=4cos θ,cos 2θ =43,θ =6π;消去θ 得 ρ2=12,ρ=23. 16.ρ=6R cos θ.解析:设Q 点的坐标为(ρ,θ),则P 点的坐标为⎪⎭⎫⎝⎛θρ ,31,代回到圆方程中得31ρ=2R cos θ,ρ=6R cos θ. 三、解答题17.解析:在满足互化条件下,先求出圆的普通方程,然后再化成极坐标方程. ∵A (2,0),由余弦定理得AB 2=22+32-2×2×3×cos 3π=7, ∴圆方程为(x -2)2+y 2=7,由⎩⎨⎧θρθρsin= cos =y x 得圆的极坐标方程为(ρcos θ-2)2+(ρsin θ)2=7,即 ρ2-4ρ cos θ -3=0.18.(1)解析:记极点为O ,圆心为C ,圆周上的动点为P (ρ,θ), 则有CP 2=OP 2+OC 2-2OP ·OC ·cos ∠COP ,即a 2=ρ2+20ρ-2 ρ·ρ0·cos (θ-θ 0).当极点在圆周上时,ρ0=a ,方程为 ρ=2a cos (θ-θ 0);(2)当极点在圆周上,圆心在极轴上时,ρ0=a ,θ 0=0,方程为 ρ=2a cos θ. 19.解析:直线l 的方程为42=ρ(22cos θ -22sin θ),即x -y =8. ∴点P (3cos θ ,sin θ )到直线x -y =8的距离为28sin cos 3=--d θθ>0, <0.286π+ cos 2=-)(θ,∴最大值为25,最小值为23. 20.解析:(1)将方程化为极坐标方程得θθρ2222222+ = sin cos a b b a , 设A (ρ1,θ1),B ⎪⎭⎫ ⎝⎛2π+ 12θρ ,,则221+1OBOA22211+1=ρρ+sin +cos =22122122b a a b θθ221221222π+sin +2π+cos b a a b ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛θθ 2222+=b a b a ,为定值.(2) S △AOB =21ρ1ρ2=12212222+21θθsin a cos b b a 12212222+θθcos a sin b b a221222222+2sin 4121=b a b -a b a θ)(,当4π = 1θ时,S △AOB 最小值为2222+ba b a , 当θ 1=0时,S △AOB 最大值为ab 21.。
极坐标(含答案 )
极坐标x cos sin y ρθρθ=⎧⎨=⎩ 222x y ρ+= 考点一。
直角坐标化极坐标(1)点M 的直角坐标是(1-,则点M 的极坐标为______. 解:点M 极坐标为:2(2,2),()3k k Z ππ+∈. (2)求直线3x-2y+1=0的极坐标方程。
解:极坐标方程为01sin 2cos 3=+-θρθρ。
(3)在极坐标系中,圆心在π)且过极点的圆的极坐标方程为______.解:圆心:)02(,-,22(2x y +=。
圆的极坐标方程为ρθ。
考点二。
极坐标化直角坐标(1)求普通方程)3R ∈=ρπθ(。
解:y=kx,且k=33tan=π,则直线方程为x 3y =。
(2)将曲线的极坐标方程ρ=4sin θ化 成直角坐标方程。
解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.(3)求过圆4cos =ρθ的圆心,且垂直于极轴的直线极坐标方程.解:由θρcos 4=得θρρcos 42=.所以x y x 422=+,22(2)4x y -+=圆心坐标(2,0)直线方程为2=x .直线的极坐标方程为2cos =θρ。
(4)将极坐标方程4sin 2θ=3化为普通方程。
解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3. (5)化极坐标方程24sin 52θρ⋅=为普通方程。
解:21cos 4sin422cos 522θθρρρρθ-⋅=⋅=-=,即25x =,化简22554y x =+.表示抛物线.(6)求点 (,)π23到圆2cos ρθ= 的圆心的距离。
解:)3,2(π化为)3,1(,圆θρcos 2=化为0222=-+x y x ,圆心的坐标是)0,1(,故距离为3。
(7)求点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离.(8)已知21,C C 极坐标方程分别为θρθρcos 4,3cos ==(20,0θρ<≤≥),求曲线1C 与2C 交点极坐标.解:21,C C 分别为4)2(,322=+-=y x x ,且0≥y ,两曲线交点为(3,3). 所以,交点的极坐标为⎪⎭⎫⎝⎛6,32π。
空间极坐标系练习题
空间极坐标系练习题1. 问题描述在空间中,有一点P,其极坐标为(r, θ, φ),其中 r 表示点P与原点的距离,θ 表示点P在x-y平面上的方位角,φ 表示点P与z 轴的夹角。
现给定一系列点的极坐标,请计算相应的直角坐标。
2. 解答步骤- 根据极坐标的定义可知,点P的直角坐标为:x = r × sin θ × cos φy = r × sin θ × sin φz = r × cos θ3. 练题3.1 已知点A的极坐标为(2, π/4, π/6),求其直角坐标。
解答:根据上述的公式,可得:x = 2 × sin(π/4) × cos(π/6) = 2 × (√2/2) × (√3/2) = √3y = 2 × sin(π/4) × sin(π/6) = 2 × (√2/2) × (1/2) = √2/2z = 2 × cos(π/4) = 2 × (√2/2) = √2所以点A的直角坐标为(√3, √2/2, √2)。
3.2 已知点B的极坐标为(3, 3π/2, π/3),求其直角坐标。
解答:根据上述的公式,可得:x = 3 ×sin(3π/2) × cos(π/3) = 3 × (-1) × (1/2) = -3/2y = 3 × sin(3π/2) × sin(π/3) = 3 × (-1) × (√3/2) = -3√3/2z = 3 × cos(3π/2) = 3 × 0 = 0所以点B的直角坐标为 (-3/2, -3√3/2, 0)。
3.3 已知点C的直角坐标为 (-4, 0, 0),求其极坐标。
解答:根据上述公式的逆运算,可得:$r = \sqrt{x^2 + y^2 + z^2} = \sqrt{(-4)^2 + 0^2 + 0^2} = 4$$\theta = \arctan \left(\frac{y}{x}\right) = \arctan \left(\frac{0}{-4}\right) = \arctan(0) = 0$$\phi = \arccos \left(\frac{z}{r}\right) = \arccos\left(\frac{0}{4}\right) = \arccos(0) = \frac{\pi}{2}$所以点C的极坐标为(4, 0, π/2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在同一平面直角坐标系中,经过伸缩变换⎩⎨
⎧ x ′=5x ,y ′=3y
后,曲线C 变为曲线
x ′2+y ′2=1,则曲线C 的方程为( )
A .25x 2
+9y 2
=1 B .9x 2
+25y 2
=1 C .25x +9y =1 D.x 225+y 2
9=1
2.极坐标方程ρ=cos θ化为直角坐标方程为( ) A .(x +12)2+y 2=1
4 B .x 2+(y +12)2=1
4 C .x 2+(y -12)2=1
4 D .(x -12)2+y 2=1
4
答案 D
解析 由ρ=cos θ,得ρ2=ρcos θ,∴x 2+y 2=x .选D. 3.极坐标方程ρcos θ=2sin2θ表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆 答案 C
4.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A .(1,π
2) B .(1,-π
2) C .(1,0) D .(1,π) 答案 B
解析 由ρ=-2sin θ,得ρ2=-2ρsin θ,化为普通方程x 2+(y +1)2=1,其圆心坐标为(0,-1),所以其极坐标为(1,-π
2),故应选B.
5.设点M 的直角坐标为(-1,-3,3),则它的柱坐标为( ) A .(2,π
3,3) B .(2,2π
3,3) C .(2,4π
3,3) D .(2,5π
3,3) 答案 C
6.(2013·安徽)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( )
A.θ=0(ρ∈R)和ρcosθ=2
B.θ=π
2(ρ∈R)和ρcosθ=2
C.θ=π
2(ρ∈R)和ρcosθ=1
D.θ=0(ρ∈R)和ρcosθ=1
答案 B
解析由题意可知,圆ρ=2cosθ可化为普通方程为(x-1)2+y2=1.
所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方
程化为极坐标方程分别为θ=π
2(ρ∈R)和ρcosθ=2,故选B.
7.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是()
A.ρ=cosθB.ρ=sinθ
C.ρcosθ=1 D.ρsinθ=1
答案 C
解析过点(1,0)且与极轴垂直的直线,在直角坐标系中的方程为x=1,所以其极坐标方程为ρcosθ=1,故选C.
8.(2013·天津)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标
为(4,π
3),则|CP|=________.
答案2 3
解析由圆的极坐标方程为ρ=4cosθ,得圆心C的直角坐标为(2,0),点P 的直角坐标为(2,23),所以|CP|=2 3.
9.(2014·唐山一中)在极坐标系中,点P(2,-π
6)到直线l:ρsin(θ-π
6)=1的
距离是________.
答案3+1
解析依题意知,点P(3,-1),直线l为x-3y+2=0,则点P到直线l的距离为3+1.
10.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.
答案 x 2+y 2-4x -2y =0
解析 由⎩⎪⎨⎪⎧
x =ρcos θ,y =ρsin θ⇒cos θ=x ρ,sin θ=y ρ,ρ2=x 2+y 2
,代入ρ=2sin θ+4cos θ,
得ρ=2y ρ+4x
ρ⇒ρ2=2y +4x ⇒x 2+y 2-4x -2y =0.
11.在极坐标系中,直线ρsin(θ+π
4)=2被圆ρ=4截得的弦长为________.
答案 4 3
解析 直线ρsin(θ+π
4)=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式,得
2
r 2
-d 2
=2
42
-(222
)2
=4 3.
12.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是________,它与方程θ=π
4(ρ>0)所表示的图形的交点的极坐标是________.
答案 (1,0) (2,π
4)
解析 ρ=2cos θ表示以点(1,0)为圆心,1为半径的圆,故圆心的极坐标为(1,0). 当θ=π4时,ρ=2,故交点的极坐标为(2,π4).
13.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.
答案 (2,3π
4)
解析 ρ=2sin θ的直角坐标方程为x 2+y 2-2y =0, ρcos θ=-1的直角坐标方程为x =-1.
联立方程,得⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x =-1,解得⎩⎪⎨⎪⎧
x =-1,
y =1,
即两曲线的交点为(-1,1).又0≤θ<2π,因此这两条曲线的交点的极坐标为(2,3π
4).
14.在极坐标系中,直线ρ(cos θ-sin θ)+2=0被曲线C :ρ=2所截得弦的中点的极坐标为________.
答案 ⎝ ⎛
⎭
⎪⎫2,3π4
解析 直线ρ(cos θ-sin θ)+2=0化为直角坐标方程为x -y +2=0,曲线C :ρ=2化为直角坐标方程为x 2+y 2=4.如图,直线被圆截得弦AB ,AB 中点为M ,则|OA |=2,|OB |=2,从而|OM |=2,∠MOx =3π
4.
∴点M 的极坐标为⎝ ⎛
⎭
⎪⎫2,3π4.
15.已知点M 的极坐标为(6,11π
6),则点M 关于y 轴对称的点的直角坐标为________.
答案 (-33,-3)
解析 ∵点M 的极坐标为(6,11π
6), ∴x =6cos 11π6=6cos π6=6×3
2=33, y =6sin 11π6=6sin(-π6)=-6×1
2=-3. ∴点M 的直角坐标为(33,-3).
∴点M 关于y 轴对称的点的直角坐标为(-33,-3).
16.在极坐标系中,点P (2,3π
2)到直线l :
3ρcos θ-4ρsin θ=3的距离为________.
答案 1
解析 在相应直角坐标系中,P (0,-2),直线l 方程为3x -4y -3=0,所
以P 到l 的距离d =|3×0-4×(-2)-3|
32
+4
2
=1.
17.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12.
(1)求点P 的轨迹方程;
(2)设R 为l 上的任意一点,试求|RP |的最小值. 答案 (1)ρ=3cos θ (2)1
解析 (1)设动点P 的坐标为(ρ,θ), M 的坐标为(ρ0,θ),则ρρ0=12.
∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.
(2)由(1)知P 的轨迹是以(32,0)为圆心,半径为3
2的圆,易得|RP |的最小值为1.
18.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=2
2. (1)求圆O 和直线l 的直角坐标方程;
(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标. 答案 (1)x 2+y 2-x -y =0,x -y +1=0 (2)(1,π
2)
解析 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x 2+y 2-x -y =0.
直线l :ρsin(θ-π4)=2
2,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1,即x -y +1=0.
(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧
x =0,
y =1.。