接触器并联电阻和电容原因
二极管串并和串并电容电阻问题
一般是降低二极管等效电阻,并上电阻后二极管两端压降没有减小,但是通过去的电流小了,被并联的电阻分流了,这也是保护二极管的一种办法。
但你这里后面接了电容就有别的作用了,因为二极管是正向电阻小,反向电阻很大,电容放电就不可能走二极管这里走,除非二极管的漏电流很大。
加个电阻就可以提供电容放电的途径,当然这样你这个电阻就要比较大,正向通路,二极管电阻小,电流大都走二极管过去,反向时候二极管电阻大,电流走电阻回来。
开关电源初级绕组一般都有这样的吸收回路,吸收回路由电容电阻二极管等组成;其功能是吸收因开关变压器T原方(初级)绕组自感电势,避免在开关管集电极截止瞬间出现过高的反峰高电压损坏开关管而设立的。
我们知道开关管工作的时候一直是导通、截止...循环工作的,所以吸收回路一直都是有电流流过的,这个电流的大小随开关电源的功率大小不同而不同(所要吸收的峰值不同),使得吸收回路的元器件取值也不一样,通常电容可选222P--103P/2KV,二极管可选HER207或RU2等,电阻可选120欧--100K/2W不等。
开关电源功率小,电阻阻值就可选的大些,反之亦反。
如果电路中电阻发热严重可适当加大功率至3瓦。
從樓主的描述看,並不是上面各位所述的電源電路開關管的吸收網路,因為吸收網絡是電阻與電容並聯再與diode串聯. 我認為:1. 可能是一個驅動網絡,diode的負极與激勵級連接, 當激勵級輸出為低時,二极管用於快速吸取后一級被驅動管內的電荷,使其快速動作,以降低損耗.2. 電容串在回路中,我想什麼作用應該不用我講都知道.3. 此電路應該用在快速的功率驅動電路中.阻容吸收网络。
用于过电压保护。
如果断路(不用)或虚焊(接触不良),当电网有尖峰脉冲时,容易击穿整流管。
阻容吸收网络吸收尖峰电压,保护二级管整流二极管上并联的电阻和电容起:消除这个整流二极管的开关噪声,就象功放的电源开关并联电容的效果类同二极管反向关断时起分流作用,这样能加快二极管反向关断速度,同时对降低噪声有一定作用. c之所以要串R是因為干擾會在R上產生壓降,起到降噪的作用.同時此電阻也不能太大.因為他還有第二貼所說的作用.直流电源经开关变压器后整流二极管并联一个电容和电阻,其中电容和电阻的作用是什么常见的是组成一个峰值吸收电路,当变压器的半个周期尖峰到来时,峰值通过电阻限流以后给电容充电,当周期尖峰转换到下半个周期的时候,电容通过限流电阻放电,大概这这样的一个工作过程。
继电器_接触器_触头常见故障原因分析及处理方法
继电器(接触器)触头常见故障原因分析及处理方法刘兴全摘要:介绍继电器触头的构造及材料,分析继电器触头常见故障及原因并给出可行的解决方法。
关键词:继电器 接触器 触头 故障原因 处理方法刘兴全,沈阳铁路局,110001辽宁省沈阳市收稿日期:1998-09-041 概述担负着铁路运输牵引的内燃机车、电力机车及供给铁路运输生产供电的供电系统中,大量使用继电器(接触器)。
它的种类多、用途广、功能全,既适用于近距离、又适用于远距离的接通与断开;它既适用交、直流控制电路,也可用于作传递信息的中间元件,当输入量达到预先整定和需要动作值时,继电器即动作,和原来输出量相反,而发出指令。
铁路内燃、电力机车及供电系统中,按使用范围分保护、控制、信号继电器;按用途分电流、电压、中间、时间、温度、热、同步、光照等继电器,重合闸装置及各种用途的接触器。
控制线圈可分交流和直流继电器(接触器)。
因用途广泛,使用中易发生故障,故如何分析常见故障原因,进行处理,对于保证供电安全生产极为重要。
2 继电器触头的构造及材料继电器(接触器)的触头包括静触头和动触头及其它部件。
其触头做成双断点桥形和单断点簧片式两种,各种接触对、触点形状,有圆锥面对平面、圆锥面对平面滚动、球面对平面、球面对锥突网纹状面、球面对平面滚动等等,它直接构成继电器(接触器)的输出。
继电器触点的材料,过去多用纯银制造,由于工业不断发展,新材料不断产生,加工工艺不断改变,现采用银镍、银镁及带银层的复合材料等,用银基合金材料制成的触头,它具有接触电阻小,在接触过程中产生的气化物也有很好的导电性,在使用过程中还会还原银,它不需很大的接触压力,就能保证触点间具有良好的导电性能。
3 继电器触头常见故障3 1 触头接触不紧密、不牢固继电器(接触器)因长时间使用,触头表面不洁净、氧化及电弧烧蚀造成缺陷,凹凸及毛刺等,使动、静触头接触不牢,不密贴,电阻增大,出现触头温度升高,接触面变成点接触,发展到严重时不导通。
接触器的继电器在吸合或分断时火花太大的原因及处理方法
接触器的继电器在吸合或分断时火花太大的原因及处理方法火花太大,不仅会导致触头磨损过快,缩短电器使用寿命,还会造成触头粘连故障,对附近的无线电设备和控制系统也会产生干扰,因此必须采取措施加以抑制。
最常见的消火花方法有:1、采用RC回路在线圈两端并接RC串联回路,将线圈中的磁能转换为电容C的电能,并通过电阻及、电容C和线圈本身的阻抗消耗掉。
电阻R的阻值可取50~200Ω、1~2W,线圈功率越大,取阻值越小,瓦数越大;电容C的容量可取0.047~2μF,耐压大于线圈额定电压,线圈功率越大,取电容量越大。
电阻R和电容C元件的参数值通常可由试验来确定。
2、采用二极管在线圈两端并联一只二极管VD,二极管的方向应当是接触器接通时电流不通过它。
这样,当触头断开时,由于放电电流方向而将磁消耗在二极管内阻和线圈的阻抗中。
二极管VD可选择耐压大于线圈的额定电压Z、正向电流大于E /R(R为线圈的直流电阻)的任何二极管,如1N4004(1A/400V)或1N4004(1A/700V)3、采用压敏电阻在线圈两端并接压敏电阻RV。
氧化锌压敏电阻的阻值对外加电压很敏感,外加电压增大时,其阻值减小,外加电压越大,阻值下降越显著。
当线圈工作时,加在RV两端的电压为线圈的工作电压,RV 阻值极大。
当线圈断开时,RV两端的电压剧增,其阻值剧减,于是就抑制了浪涌电压的产生,避免了触头火花。
接触器的触头接触不牢靠的原因及处理方法触头接触不牢靠会使动静触头间接触电阻增大,导致接触面温度过高,使面接触变成点接触,甚至出现不导通现象。
造成此故障的原因有:(1)触头上有油污、花毛、异物。
(2)长期使用,触头表面氧化。
(3)电弧烧蚀造成缺陷、毛刺或形成金属屑颗粒等。
(4)运动部分有卡阻现象。
处理方法有:(1)对于触头上的油污、花毛或异物,可以用棉布蘸酒精或汽油擦洗即可。
(2)如果是银或银基合金触头,其接触表面生成氧化层或在电弧作用下形成轻微烧伤及发黑时,一般不影响工作,.可用酒精和汽油或四氯化碳溶液擦洗。
接触器介绍
接触器介绍接触器是电力拖动和自动控制系统中使用量大、面广的一种低压控制电器,用来频繁地接通和断开交直流主回路和大容量控制电路。
主要控制对象是电动机,也可以控制其他负载,如电焊机、电照明、电容器、电阻炉等。
交流接触器具有操作频率高、使用寿命长、工作可靠、性能稳定、维护方便等优点,能实现远距离控制,同时还具有欠电压释放保护和零电压保护功能。
按控制电流性质的不同,接触器分交流接触器和直流接触器两大类。
一、接触器的结构和工作原理接触器主要由电磁机构、触头系统和灭弧装置组成,其结构如图所示。
当接触器线圈通电后,在铁心中产生磁通。
由此在衔铁气隙处产生吸力,使衔铁产生闭合动作,主触头在衔铁的带动下也闭合,于是接通了主电路。
同时,衔铁还带动辅助触头动作,使原来打开的辅助触头闭合,而使原来闭合的辅助触头打开。
当线圈断电或电压显著降低时,吸力消失或减弱,衔铁在缓冲弹簧作用下,主、辅触头又恢复到原来状态。
这就是接触器的工作原理。
接触器的图形、文字符号如图所示。
二、交流接触器交流接触器线圈通以交流电,主触头接通,断开交流主电路。
当交流磁通穿过铁心时,将产生涡流和磁滞损耗,使铁心发热。
为减少铁损,铁心用硅钢片冲压而成。
为便于散热,线圈做成短而粗的圆筒状绕在骨架上,CJ20 系列交流接触器实物如图所示,交流接触器工作原理如图所示。
常用的交流接触器有CJ10、CJ12、CJ10X、CJ20、CJX2、CJX1、3TB、3TD、LC1-D、LC2-D等系列。
三、直流接触器直流接触器线圈通以直流电流,主触头接通,断开直流主电路,CZ0系列直流接触器外形如图所示。
因为线圈通入的是直流电,铁心中不会产生涡流和磁滞损耗,所以不会发热。
直流接触器灭弧较困难,一般采用灭弧能力较强的磁吹灭弧装置。
对于 250A 以上的直流接触器,往往采用串联双绕组线圈,直流接触器双绕组线圈接线如图所示。
线圈1为启动线圈,线圈2为保持线圈,接触器的一个常闭辅助触头与保持线圈并联连接。
电路中经常使用的4大继电器,老电工详细讲解继电器的动作原理
电路中经常使用的4大继电器,老电工详细讲解继电器的动作原理为了改变继电器的某些特性、保护电接点、或为了保护其他电子元件,常常用到一些简单的继电器附加电路。
在本文对加速吸合电路、延缓动作电路、消火花电路和保护晶体管电路这四种继电器附加电路做详细介绍。
加速吸合电路(一)对于直流电路里的继电器,设线圈本身的电阻为R0,在线圈上串联电阻R,电阻旁并联电容C如图1所示。
当开关K合上时,由于电容的充电电流也要流过线圈,所以短时间内通过线圈的电流比稳态电流I=U/(R0+R)要大,动作也就加快了。
如果串联电阻R仍按照线圈的额定电流计算,短时间内的实际电流要超过额定值,不过时间不长,发热并不明显。
▲图1 继电器加速吸合电路图1的电源电压应该比不用加速电路时高一些,电阻的散热功率应按稳态电流计算。
电容的容量视需要而定,其耐压只要高于电源电压即可。
电路切断时的感应电势是加不到电容上的。
倘若电源电压已经确定,线圈电阻也已很大,在串联电阻之后有可能使稳态电流略小于吸合电流,初看起来这种情况就不能采用上述方法了,但是开关刚刚合上时电容相当于短路,只要这段时间里的电流大于吸合电流,仍然可以使继电器吸合。
至于稳态电流虽小于吸合电流,只要它仍大于释放电流,就能保持吸合不放。
所以串联电阻的阻值不一定按照吸合电流来计算。
昌晖仪表提醒大家注意:加速吸合电路电路不能用在交流继电器上。
延缓动作电路(二)如果把电容C并联在线圈两端,就成为图2的电路,开关闭合时充电电流在R上形成压降,使线圈两端电压增长较慢,吸合时间就会延长。
同样,在开关断开时,电容C的放电和被感应电势反向充电,又会使释放时间延长。
▲图2 继电器延缓动作电路若只希望延长释放时间,可利用图3的电路。
电源接通时二极管D处于截止状态,不起作用。
但当开关K断开时,线圈里的感应电势将通过二极管形成电流,使铁芯里的磁通衰减缓慢,释放动作就推迟了。
▲图3 继电器延缓动作电路(二极管)图3电路比图2占用空间小,但只延缓释放时间,对吸合时间无影响。
电接触理论
第六章电接触理论§6-1 概述任何一个电系统,都必须将电流(作为电的信号或电的能量)从一个导体通过导体与导体的接触处传向另一个导体。
此导体与导体的接触处称为电接触,它常常是电信号或电能传送的主要障碍。
由电机、电器、自动元件、仪表、计算机等组成的现代化大型复杂电系统,例如通信系统、控制系统、拖动系统、电力系统等,它们所包含的电接触数目往往成千上万。
如果其中一个或几个工作不正常或失效,则将导致整个系统工作紊乱甚至停顿,其后果极其严重。
电系统和电器元件中电接触的具体结构类型是多种多样的,一般分为三类:1.固定接触两接触元件在工作时间内固定接触在一起,不做相对运动,也不相互分离。
例如母线的螺栓连接或铆接(称永久接触),仪表中的塞子、插头(又称半永久接触器)等。
2.滚动和滑动接触器两接触元件能作相对滚动和滑动,但不相互分离。
例如断路器的滚轮触头,电机的滑环与电刷及电气机车的馈电弓与电源线等。
3.可分、合接触两接触元件可随时分离或闭合。
这种可分、合接触元件常称为触头或触电。
一切利用触头实现电路的接通和断开的电器中都可见到这种接触类型。
上述三种接触型式中,它们共有的工作状态是接触元件闭合接通电流。
运行经验表明,当两导体相互接触流过电流时,接触处会出现局部高温,严重时可达接触导体材料的熔点。
在可分、合接触中它的通电状态除闭合通电以外,还有由闭合过渡到分离,最后切断电路,或由分离过渡到闭合,最后接通电路,以及处于开断状态等。
触头在切断或闭合电路的过程中,触头间往往会出现电弧。
电弧的温度很高,大大超过一般金属材料的熔点或沸点。
即使电弧存在的时间很短,也会使触头表面融化或气化,造成触头材料的损失,或者产生触头的熔焊。
因此,在以上三种电接触类型中,工作任务最重的是分、合接触器。
为了保证电接触长时间稳定而可靠的工作,必须做到:(1)电接触在长期通过额定电流时,温升不超过国家规定的数值,而且温升长期保持稳定。
(2)电接触在短时通过短路电流或脉冲电流时,接触处不发生熔焊成松弛。
经消弧线圈接地系统的故障分析与探讨
经消弧线圈接地系统的故障分析与探讨目前变电站10kV系统普遍采用中性点经消弧线圈接地的方式,在发生单相接地故障时能起到很好的补偿作用,但在实际运行中也会发生一些故障。
本文主要介绍一起10kV经消弧线圈接地系统并联中电阻烧毁的故障,通过故障全过程查找和分析探讨,为类似故障的分析提供借鉴。
标签:消弧线圈中电阻故障分析引言:随着地方经济发展,电网容量不断扩大,特别是变电站的10kV馈线增加较快,使得10kV系统对地电容电流越来越大,为解决这一问题普遍采用中性点经消弧线圈接地的方法进行补偿。
然而在实际运行中由于种种原因会发生这样或那样的故障,以下就10kV经消弧线圈接地系统发生单相接地时的一起故障举例说明,以探讨故障查找及分析方法,了解控制回路与一次系统安全运行之间的关系。
1、故障经过某日某110kV 变电站10kV 163韩桥线先后发生相间和单相接地故障,05时08分27秒,10kV 2号接地变消弧系统并联中电阻及其二次回路烧毁、脱落,2号接地变106开关跳闸。
2、故障查找因并联中电阻及其二次回路烧毁,涉及10kV 163韩桥线和106接地变开关跳闸,因此故障查找从以下几方面进行。
2.1、保护定值整定情况:10kV 163韩桥线保护:电流II段定值投入,800/6.67A0.6秒;电流III段定值投入,450/3.75A0.9秒。
10kV 106接地变保护:电流II段定值投入,120/2A0.5秒;电流III段定值投入,60/1A0.9秒。
现场检查保护装置内定值与定值单中各项一致。
2.2、装置动作信息:10kV 163韩桥线保护装置动作信息:05时01分37秒BC相过流III段保护动作。
10kV消弧线圈控制装置信息:接地时间05:00:41,消失时间2012年7月4日05:07:29,零序电压4310.6V,故障线路163韩桥线。
2.3、后台系统检查:从后台系统的历史遥测曲线可以看出,10kV系统电压有明显的波动,106、163间隔电流也有明显突变。
电容接触器原理
电容接触器原理
电容接触器是一种常用的电动联系器,其工作原理是通过利用电容的性质控制接点的开闭状态。
电容接触器由电容器和触点组成。
在电容接触器中,电容器的中间层由一层绝缘材料分隔,分别与两个触点连接。
当电容器两边的极板上施加电压时,电容器的电场就会存储电荷。
此时,由于两极板之间有绝缘材料隔离,电荷不会通过触点流动。
当需要打开接点时,通过控制一侧的极板上的电压,使其与另一侧的极板上的电压相等。
这样,电荷就可以通过绝缘层和触点之间的电场引力,流向另一侧的极板。
这使得触点闭合,电流可以通过接触器。
当需要关闭接点时,可以控制其中一侧极板上的电压为零,而另一侧极板上施加电压。
这样,存储在电容器中的电荷会被吸引到另一侧,触点打开,电流无法通过接触器。
通过控制电容器两侧极板上的电压,可以实现接点的开闭。
电容接触器具有快速响应、寿命长、不易受振动和震动影响等优点,广泛应用于各种电力系统和控制装置中。
低压配电并联电容器补偿回路所串电抗器的合理选择
低压配电并联电容器补偿回路所串电抗器的合理选择一、前言在笔者所接触的低压配电施工图中,发现施工图中有一个共性,那就是配电变压器低压侧母线上均接入无功补偿电容器柜。
但令人费解的是,所串电抗器无任何规格要求,无技术参数的注明,只是在图中画了一个电抗器的符号而已。
而所标电容器的容量,也只是电容器铭牌容量而已,实际运行时,最大能补偿多少无功功率,也不得而知。
应引起注意的是,电抗器与电容器不能随意组合,它要根据所处低压电网负荷情况,变压器容量,用电设备的性质,所产生谐波的种类及各次谐波含量,应要进行谐波测量后,才能对症下药,决定电抗器如何选择。
但往往是低压配电与电容补偿同期进行,根本无法先进行谐波测量,然后进行电抗器的选择。
退一步说,即使电网投入运行,进行谐波测量,但用电设备是变动的,电网结构也是变化的,造成谐波的次数及大小有其随意性,复杂性。
因此正确选用电容器所用的串联电抗器也成为疑难问题,这无疑是一个比较复杂的系统工程,不是随便一个电抗器的符号或口头说明要加电抗器那么简单了。
不得随意配合,否则适得其反,造成谐波放大,严重时会引发谐振,危及电容器及系统安全,而且浪费了投资。
有鉴于此,笔者对如何正确选用电容器串联电抗器的问题,将本人研究的一点心得,撰写成文,以候教于高明。
二、电力系统谐波分析及谐波危害电力系统产生谐波的原因主要是用电设备的非线性特点。
所谓非线性,即所施电压与其通过的电流非线性关系。
例如变压器的励磁回路,当变压器的铁芯过饱和时,励磁曲线是非正弦的。
当电压为正弦波时,励磁电流为非正弦波,即尖顶波,它含有各次谐波。
非线性负载的还有各种整流装置,电力机车的整流设备,电弧炼钢炉,EPS,UPS及各种逆变器等。
目前办公室里电子设备很多,这里存在开关电源及整流装置,其电流成分也包含有各次谐波,另外办公场所日光灯及车间内各种照明用的气体放电灯,它们也是谐波电流的制造者。
日光灯铁芯镇流器及过电压运行的电机也是谐波制造者。
接触器的继电器在吸合或分断时火花太大的原因及处理方法
接触器的继电器在吸合或分断时火花太大的原因及处理方法火花太大,不仅会导致触头磨损过快,缩短电器使用寿命,还会造成触头粘连故障,对附近的无线电设备和控制系统也会产生干扰,因此必须采取措施加以抑制。
最常见的消火花方法有:1、采用RC回路在线圈两端并接RC串联回路,将线圈中的磁能转换为电容C的电能,并通过电阻及、电容C和线圈本身的阻抗消耗掉。
电阻R的阻值可取50~200Ω、1~2W,线圈功率越大,取阻值越小,瓦数越大;电容C的容量可取0.047~2μF,耐压大于线圈额定电压,线圈功率越大,取电容量越大。
电阻R和电容C元件的参数值通常可由试验来确定。
2、采用二极管在线圈两端并联一只二极管VD,二极管的方向应当是接触器接通时电流不通过它。
这样,当触头断开时,由于放电电流方向而将磁消耗在二极管内阻和线圈的阻抗中。
二极管VD可选择耐压大于线圈的额定电压Z、正向电流大于E/R(R为线圈的直流电阻)的任何二极管,如1N4004(1A/400V)或1N4004(1A/700V)3、采用压敏电阻在线圈两端并接压敏电阻RV。
氧化锌压敏电阻的阻值对外加电压很敏感,外加电压增大时,其阻值减小,外加电压越大,阻值下降越显著。
当线圈工作时,加在RV两端的电压为线圈的工作电压,RV阻值极大。
当线圈断开时,RV两端的电压剧增,其阻值剧减,于是就抑制了浪涌电压的产生,避免了触头火花。
接触器的触头接触不牢靠的原因及处理方法触头接触不牢靠会使动静触头间接触电阻增大,导致接触面温度过高,使面接触变成点接触,甚至出现不导通现象。
造成此故障的原因有:(1)触头上有油污、花毛、异物。
(2)长期使用,触头表面氧化。
(3)电弧烧蚀造成缺陷、毛刺或形成金属屑颗粒等。
(4)运动部分有卡阻现象。
处理方法有:(1)对于触头上的油污、花毛或异物,可以用棉布蘸酒精或汽油擦洗即可。
(2)如果是银或银基合金触头,其接触表面生成氧化层或在电弧作用下形成轻微烧伤及发黑时,一般不影响工作,.可用酒精和汽油或四氯化碳溶液擦洗。
交流接触器知识
例一:试选用一接触器来控制380V,15KW三相 Y形接法的电阻炉. 解:先算出各相额定工作电流Ie. Ith=1.2Ie=1.2×22.7=27.2A 因而可选用约定发热电流Ith≥27.2A的任何型 号接触器.如:CJ20-25,CJX2-18,CJX1- 22,CJX5-22等型号.
2,控制照明设备用接触器的选用
3,控制电焊变压器用接触器的选用
电焊变压器因二次侧的电极短路而出现陡削的 大电流,在一次侧出现较大的电流,所以,必需按变 压器的额定功率,额定工作电流,电极短路时一次侧 的短路电流及焊接频率来选用接触器.此类负载使用 类别属AC-6a类.表2为选用参考表.
表2 电焊变压器选用接触器参考表
选用接触器
30 53 66 105 130
4,笼型感应电动机AC-3使用类别用接触器的选 用
电动机有笼型和绕线型电动机,其使用类别分别为AC-2,AC- 3和AC-4,因此,对不同型式和使用类别的电动机用选用不同结构的 接触器. 笼型电动机的起动电流约为6倍电动机额定电流Ie,接触器分断电流 为电动机额定电流Ie.其使用类别分别为AC-3,如:水泵,风机,拉 丝机,镗床,印刷机以及钢厂中的热剪机等,这里可选用直动式交流接 触器. 选用的方法有查表法和查选用曲线法,在产品样本中直接列出在不 同额定工作电压下的额定工作电流和可控制电动机的功率,以免除用户 的换算,这时可以按电动机功率或额定工作电流,用查表法选用接触器
2.4 电容器负载
接通电容器时产生瞬态充电过程,充电电流可达很高的 数值,同时伴随着频率可从几百到几千赫的振荡,因此,它 对开关电器提出了严峻的要求.接通电容器对电流的振幅和 频率,由电路的电网电压,电容器的容量及电路中的电抗值 所决定,并与此馈电变压器和连接导线的截面,长度有关. 为了较经济地切换电容器,并防止在不利的工作条件下 使开关电器的触头发生接通熔焊,一般可在电容器及支路中 串入附加电感或电阻以限制电流,并减小接通电路时对电网 的影响.此类使用类别划分在AC-6b中.
切换电容器所用接触器的选型
切换电容器所用接触器的选型低压电力负载一般为异步电动机等感性负载,且经常处于轻载运行,电网的功率因数较低。
通常需在电网中接入电容器组进行无功功率补偿,提高其功率因数,以减少线路损耗和电压降。
切换电容器接触器主要是装在无功功率补偿装置中,供作接通和分断并联电容器组之用。
选用切换电容器接触器时,通常是按所需控制电容器容量不超过接触器可控制最大电容器为原则。
但这种简单的方法并不全面,应当是计算出电容器电路中稳态过电流和实际电力系统中接通电容器时可能产生的最大涌流峰值来合理选用接触器,这样才能保证正确的安全操作,达到最佳经济效果,应当指出,在某些场合下,经计算后,完全可以用经济有通用型交流接触器来投切电容器组。
一、通用型交流接触器的选用切换电容器的接触器可以选用通用型交流接触器或切换电容器专用接触器。
通常,为了抑制电容器组接通时的涌流峰值,可在接触器与电源之间串入专用系列限流电抗器产品,但此方法存在以下缺点:(1)抑制涌流不理想,在接通多台电容器组时,涌流倍数仍会超过20倍,有时竟超过50倍,对接触器和电容器存大隐患。
(2)电抗器体积大、耗铜多,长期串在电路中运行耗电量电量大。
二、切换电容器专用接触器的选择各系列切换电容器专用接触器的产品样本中都载有对应不同额定电压下可控制最大的电容器容量(kvar)等技术数据(参见本期电工参考资料专栏中的《切换电容器专用接触器》一文中的附表)。
通常用户是根据样本提供的数据选用所需的切换电容器专用接触器系列。
切换电容器专用接触器选用时,应满足无功功率补偿装置标准中规定的以下要求。
1、电容器组的放电电容器组切换后,电容器组上的剩余电压降至50V时的时间应不大于3min。
如装置中采用的电容器本身或装置中已设有放电部件能满面足以上要求时,可选用不带放电电路的切换电容器专用接触器,否则就应选用具有强制泄放电阻电路的B25C~B75C系列切换电容器专用接触器。
2、最大稳态电流下运行电容器组运行时的谐波电压与高达1.1倍额定工作电压的工频过电压,会产生较大的电流。
交流控制回路中感应电压的产生及消除方法
由于电动机控制电缆越来越长,很容易造成控制线路中出现感应电压。
一旦出现感应电压,电动机就会出现误动和拒动,甚至导致安全事故,造成经济损失和人身伤害。
本文选取了某电厂电气调试过程中出现的电路隔离开关无法正常控制为例,对交流控制回路中感应电流产生的原因和严重影响进行了简要的分析,并提出了如何消除交流控制回路中感应电压的具体方法。
1交流控制回路中产生感应电压的原因以及影响某电厂对2×1000MW机组进行电气调试,在对6号机组线路隔离开关5061和5号机组线路隔离开关5051进行远方控制时发现,控制回路交流继电器无法进行复归,这样一来就无法对隔离开关的合闸和分闸进行有效地控制。
该电厂对2次回路进行了检查,通过检查发现控制回路中有一根铜芯电缆属于共用状态,其总长度达到了600m,规格为4×2.5mm。
该电厂同时对交流继电器线圈两端的感应电压进行了测量,测量结果为96伏。
由于两条平行电缆之间相互靠近,就会出现电容。
如果线路的长度较短,那么电容值也相对较小。
一般来说,两条较短的平行电缆相互靠近而产生的电容值是可以忽略不计的。
但是如果电缆的长度很长,或者作为交流控制回路,那么其产生的电容值就相对较大[1]。
由于新型的接触器和继电器具有较小的自身功率消耗、较高的线圈阻抗,在使用新型接触器和继电器时,交流控制很容易受到电缆芯线电容产生的感应电压的影响。
在控制远方的交流继电器或者中间继电器时,要通过继电器接点或者控制开关,例如按钮、转换开关等等,从而控制电气设备的运行。
然而交流继电器和控制开关之间的距离越远,就需要越长的连接电缆进行连接。
当线缆达到一定的程度时,电缆芯线之间就会产生一定的电容,进而产生感应电压,从而造成交流继电器和接触器不能复归,或者自行吸合[2]。
1.1交流控制回路产生感应电压的原理隔离开关的交流中控分和中控合是集控室的分闸控制触点和合闸控制触点,能够进行自动复归。
具体情况见图1。
直流接触器的设计
直流接触器的设计直流接触器的设计摘要直流接触器主要由触头系统、灭弧系统和电磁系统组成。
当接触器的电磁线圈通电后,会产生很强的磁场,使静铁心产生电磁吸力吸引衔铁,并带动触头动作,常闭触头断开,常开触头闭合,两者是联动的;当线圈断电时,电磁吸力消失,衔铁在释放弹簧的作用下释放,使触头复原,常闭触头闭合,常开触头断开。
触头是整个接触器的关键部件之一,它的性能直接影响整个电器设备的分断能力、使用寿命和运行的可靠性。
由于触头磨损的主要形式是电磨损,它的主要失效模式是触头的接触电阻超过允许范围、触头熔焊和触头烧毁;这些失效模式都与触头在接通或分断过程中产生电弧有关,减少电弧带来的负面影响是提高触头寿命的的关键。
通过在触头两端加装电力电子器件,使触头开合的瞬间的电流分流,可以极大地减小了电弧的产生,从而减小了触头的烧蚀,显著提高触头寿命和器件的可靠性。
关键字直流接触器触头系统电力电子器件AbstractDC contactor, mainly composed of contact system,arc extinguishing system and electromagnetic system. After exposure to the electromagnetic coil is energized, it will produce a strong magnetic field, the static core electromagnetic force to attract the armature, and promote the contact action, normally closed contact is open, normally open contact closes, the two are linked;When the coil power, the electromagnetic force disappears, the armature in the release action of the spring release, contact recovery, normally closed contact is closed, normally open contact is open.Contact is one of the key components of the contactor, its performance directly affects the entire electrical equipment breaking capacity, service life and reliability.Since the main form of contact wear is electrical wear, it is the main failure mode is to contact the contact resistance exceeds the allowable range, contact welding and contact burned.These failure modes are associated with the contact is switched on, or the breaking process of generating arc, arc to minimize negative impact is the key to improve the contact life.The contacts mounted on two ends of power electronic devices, in the contact opening and closing moments that make the current shunt, greatly reduce the occurrence of electric arc, thereby reducing contact ablation, significantly improve thecontact life and reliability.引言接触器是低压电器中重要的控制电器之一,由于生产自动化程度的不断提高,对接触器产品数量有日益增长的要求,对产品的性能、质量、品种等要求也越来越高。
接触器并电容
接触器两端并联电容
在二次回路中存在有许多电感线圈(如断路器、继电器、接触器等设备均有不同作用的线圈),这些设备的线圈都具有一定电感量,当事故跳闸或停电操作时,突然切断电感电路的电流时,往往会产生较大的反电势,由于它的幅值大,频率高,产生操作干扰过电压。
. i3 z- k; ]& {1 T$ n: {: \ 从电工学分析,这种电感负载等效为RLC电路,会产生振荡。
通过把阻容支路并联在线圈两端。
在增加的并联支路所组成的回路中,电阻被调整到临界值,因而当开关切断载流线圈电流时不产生振荡。
另一方面,由于两支路的时间常数相等,因而不管总电流随时间如何变化,两支路中的自由电流分量总是大小相等,方向相反。
电源支路中自由电流分量等于零,也就是说,当开关切断线圈电流时,线圈两端的电压为零。
所以这种结线方式,不仅可消除操作过电压,同时也消除了在切断感性负载时,开关触点间产生的电弧及火花。
常规在接触器线圈上并联一个阻容回路,主要功能是加快接触器的失电动作。
当接触器电源被切断后,线圈内的能量能够通过并联的阻容回路来释放,加快线圈的失电过程,使得触点能够更快的动作。
而当接触器正常得电时,电容的存在可以避免阻容回路上一直通过较大电流,从而造成不必要的能量损失或者烧坏电阻。
所以在阻容回路里电阻一般较小,而电容阻抗一般较大。
触电火花产生在于主电路接通的接触器触点上,和布置在控制回路上的阻容回路没有直接关系。
但是接触器动作时间加快也有利于减小接触器开断时的电弧。
电力电容器的原理及实际应用
电力电容器的原理及实际应用————————————————————————————————作者:————————————————————————————————日期:电容器与无功补偿一、电容器的原理1.概念顾名思义,电容器是“装电的容器”,是一种容纳电荷的器件,英文名称:capacitor。
电容器通常简称为电容,用字母C标示。
2.单位电容器所带的电荷量Q与电容器两极板间的电势差U的比值,叫做电容器的电容,用C表示。
式中,电荷量Q是用于度量电荷多少的物理量,简称电量,单位为库仑,简称库,符号为C。
库仑的定义是,若导线中载有1安培的稳恒电流,则在1秒内通过导线横截面积的电量为1库仑。
电压U的单位为伏特,简称伏,符号为V。
电容器的单位在数值上等于两极板间的电势差为1V时电容器需带的电荷量。
电容的物理意义是,表征电容器容纳(储存)电荷本领的物理量。
在国际单位制中电容的单位是法拉(F),这是一个非常大的物理量,我们在电力系统中常用的低压并联电容器,电容一般不到一法拉的千分之一。
所以,常用单位还有微法(μF)和皮法(pF)。
1F=106μF=1012pF。
对于一个确定的电容器而言,电容是不变的,C与Q、U无关。
3.构造任何两个彼此绝缘又相互靠近的导体都可以构成电容器。
在两个相距很近的平行金属板中间夹上一层绝缘介质,就组成一个最简单的电容器,叫做平行板电容器。
(见图1)4.电容器的大小平行板电容器的电容C跟介电常数ε成正比,跟正对面积S正比,跟极板间的距离d成反比:图1 平行板电容式中,k为静电力常量,其值为9.0×109Nm2/C2。
静电力常量表示真空中两个电荷量均为1C的点电荷,它们相距1m时,它们之间作用力的大小为9.0×109N。
εr为两平行板之间的绝缘介质的相对介电常数,其值为绝缘介质的介电常数和真空介电常数的比值。
S为两平行板相对部分的面积,单位为m2,d为两平行板之间的距离,单位为m。
交流接触器的压敏电阻作用和选用
交流接触器的压敏电阻作用和选用
今天有客户问小编,压敏电阻应该怎幺选用,交流接触器的线圈两端用什幺压敏电阻,秉承着为广大客户服务的原则,我就来给大家科普下压敏电阻究竟怎幺选用。
首先我们来了解下什幺是压敏电阻:它是一种具有非线性伏安特性的电阻器件,主要用于在电路承受过压时进行电压钳位,吸收多余的电流以保护敏感器件,具有非线性特性好、通流容量大、常态泄露电流小,残压水平低、动作响应快和无续流等特点,广泛应用于电源系统,浪涌抑制器,安防系统,电动机保护,汽车电子系统,家用电器等。
为什幺交流接触器的线圈两端并联压敏电阻呢?要使接触器的触点吸合,其线圈中必须有足够的电流。
在接触器断电时,就会产生自感电动势,由于线圈是瞬间断电的,电流变化率很大,所以自感电动势也很大。
瞬间高压会击穿超过耐压的电子器件,甚至超过接触器线圈本身的耐压使线圈损坏。
所以为了保护线路中电子元件的,吸收线圈失电瞬间的电流冲击,提高功率因。
晶闸管(可控硅)两端为什么并联电阻和电容及阻容元件的选择
晶闸管(可控硅)两端为什么并联电阻和电容及阻容元件的选择一、晶闸管(可控硅)两端为什么并联电阻和电容在实际晶闸管(可控硅)电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。
我们知道,晶闸管(可控硅)有一个重要特性参数-断态电压临界上升率dlv/dlt。
它表明晶闸管(可控硅)在额定结温和门极断路条件下,使晶闸管(可控硅)从断态转入通态的最低电压上升率。
若电压上升率过大,超过了晶闸管(可控硅)的电压上升率的值,则会在无门极信号的情况下开通。
即使此时加于晶闸管(可控硅)的正向电压低于其阳极峰值电压,也可能发生这种情况。
因为晶闸管(可控硅)可以看作是由三个PN 结组成。
在晶闸管(可控硅)处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。
当晶闸管(可控硅)阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。
如果晶闸管(可控硅)在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管(可控硅)误导通现象,即常说的硬开通,这是不允许的。
因此,对加到晶闸管(可控硅)上的阳极电压上升率应有一定的限制。
为了限制电路电压上升率过大,确保晶闸管(可控硅)安全运行,常在晶闸管(可控硅)两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。
因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管(可控硅)。
同时,避免电容器通过晶闸管(可控硅)放电电流过大,造成过电流而损坏晶闸管(可控硅)。
由于晶闸管(可控硅)过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。
RC阻容吸收网络就是常用的保护方法之一。
二、整流晶闸管(可控硅)阻容吸收元件的选择电容的选择:C=(2.5-5)×10的负8次方×IfIf=0.367IdId-直流电流值如果整流侧采用500A的晶闸管(可控硅)可以计算C=(2.5-5)×10的负8次方×500=1.25-2.5mF选用2.5mF,1kv 的电容器电阻的选择:R=((2-4) ×535)/If=2.14-8.56选择10欧PR=(1.5×(pfv×2πfc)的平方×10的负12次方×R)/2Pfv=2u(1.5-2.0)u=三相电压的有效值阻容吸收回路在实际应用中,RC的时间常数一般情况下取1~10毫秒。
接触器触点并联电阻作用
接触器触点并联电阻作用接触器是一种常用的电器元件,广泛应用于电力系统、自动化控制系统等领域。
接触器的主要功能是控制电路的开关,通过控制电磁铁的通断来实现电路的闭合和断开。
而接触器的触点是实现开关功能的关键部件,触点的质量直接影响到接触器的性能和可靠性。
在接触器的使用过程中,触点的稳定性和可靠性是非常重要的。
由于触点在闭合和断开时会产生电火花,导致触点磨损和氧化,进而影响接触器的工作性能。
为了保持触点的良好接触状态,减少电火花的产生,常常需要在接触器的触点上并联一定的电阻。
接触器触点并联电阻的作用主要体现在以下几个方面:1. 抑制电火花:当电路中开关断开时,触点之间会产生电火花。
电火花的产生会导致触点磨损和氧化,进而影响接触器的寿命和可靠性。
通过在触点上并联电阻,可以有效地抑制电火花的产生,减少触点的磨损和氧化,延长接触器的使用寿命。
2. 平衡电流分布:在接触器的闭合状态下,电流会从一触点流过另一触点,形成电流分布。
由于触点的接触面积有限,电流分布会导致触点部分区域的电流密度过大,引起局部热量集中,加速触点的磨损和氧化。
通过在触点上并联电阻,可以均匀分布电流,减少局部热量集中,降低触点的磨损和氧化,提高接触器的可靠性。
3. 压降补偿:触点闭合时,由于接触电阻的存在,会产生一定的接触电压降。
如果触点的闭合电压要求比较高,那么触点上的接触电阻就需要足够小,以保证闭合电压的稳定性。
然而,接触电阻太小会增加电流分布不均匀、电火花产生等问题。
在这种情况下,通过在触点上并联一定的电阻,可以在一定程度上补偿接触电压降,保持闭合电压的稳定性。
4. 抑制电弧形成:当接触器的触点断开时,由于电流无法突然中断,会形成电弧。
电弧的产生会导致触点的磨损和氧化,影响接触器的寿命和可靠性。
通过在触点上并联电阻,可以抑制电弧的形成,减少触点的磨损和氧化,提高接触器的可靠性。
接触器触点并联电阻在接触器中起到了抑制电火花、平衡电流分布、压降补偿和抑制电弧形成等作用。