铸造结构设计1
第五章 铸件的结构设计
三,铸件结构的剖分与组合
1.铸件的剖分设计 铸件的剖分设计 (1)将大铸件或 形状复杂的铸件设计 成几个较小的铸件, 经机械加工后,现利 用焊接或螺钉连接等 方法将其组合成整体.
图5-19 -
机械连接的组合床身铸件
(2)因成形工艺的局限性无法整铸的结构需采用剖 分结构.
2.铸件的组合设计 铸件的组合设计 利用熔模及气化模铸造工艺具有无需起模,能制造复 杂铸件的特点,可将原需加工装配的组合件,改为整铸件.
6.避免尺寸较大的水平面 避免尺寸较大的水平面
第二节 铸件结构设计应考虑的其它方面
一,铸件结构应考虑铸造合金的某些使用性能
二,铸件结构应考虑不同铸造工艺的特殊性
1.熔模铸件的设计 熔模铸件的设计
(a)
工艺孔
(b)
工艺肋
图5-16 -
熔模铸件平面上的工艺孔和工艺肋
2.压铸件的设计 压铸件的设计 压铸件的设计 应尽量避免凹坑和深腔,在无法避免 时,至少应便于抽芯,以便压铸件能从模中顺利取出.
A- A
B- B
图 5- 3 悬臂托架的两种结构
如图所示为圆盖铸件的两种内腔设计.对于一般盖类 铸件而言,其内腔设计的目的是为了减轻重量或使铸件的 壁厚均匀.图5-4a)的内腔设计因出口处直径小,需采用 型芯;而图b)因内腔直径D大于其高度H,故可利用模样 上挖孔,在起模后直接形成自带型芯.
5- 4 圆盖铸件的两种内腔设计
H
2,铸件的内腔设计应有利于型芯的固定,排气和简化 ,铸件的内腔设计应有利于型芯的固定, 铸件清理 图5-5所示的为 高炉风口铸件,材 质为青铜.图5-5(a) 所示的为最初的设 计,其中心孔为热 风通道,热风通道 周围是循环水的水 套夹层空间,其顶 部有两个直径较小 的孔,作为循环水 的进水与出水孔.
铸件的结构设计
(a)直角连接 (b)圆角连接 图6-35 转角处的热节
(a)直角连接 (b)圆角连接 图6-36 金属结晶的方向性
2.避免锐角连接
如图6-37(a)所示,锐角连接会由于 内角散热条件差而增大热节,容易产生缩 孔、缩松等铸造缺陷。若两壁间的夹角小 于90°,则应采取过渡形式,如图6-37(b) 所示。
(b)改进后
图6-31 内腔的两种结构
2.便于砂芯固定、排气和铸件清理
如图6-32(a)所示,轴承架铸件的内腔需要采用两个砂芯,其中较 大的砂芯呈悬臂状,需用型芯撑支撑固定;如图6-32(b)所示,将轴承 架铸件的内腔改为整体砂芯,则砂芯的稳定性大大提高,并有利于排气。
(a)改进前
(b)改进后
图6-32 轴承架铸件
铸件中垂直于分型面的不 加工表面最好有结构斜度,以 便于起模或者便于用砂垛代替 砂芯。如图6-34(a)所示的铸 件结构设计不合理,对铸件的 结构斜度进行改进后的合理设 计如图6-34(b)所示。
(a)改进前
(b)改进后
图6-34 结构斜度的设计
二、合金铸造性能对铸件结构的要求
(一)铸件壁厚设计合理
工程材料及成形工艺
铸件的结构设计
一、铸造工艺对铸件结构的要求
铸件的结构设计不应只考虑对其结构性能的影响,还应有利于提高 铸件的工艺水平。所以铸件结构应尽可能使制模、造型、造芯、合箱和 清理过程简单化,防止产生废品,并为实现机械化生产创造条件。铸件 外形力求简单,铸件内腔设计合理是铸造工艺对铸件结构的主要要求。
为保证金属液充满铸型,避免浇不足、冷隔等缺陷的产生,铸件应当有合理 的壁厚。每种铸造合金都有其适宜的壁厚,选择得当,既能保证铸件力学性能, 又能防止铸造缺陷的产生。几种常用铸件在砂型铸造时的最小壁厚如表6-7所示。
1.4 铸件结构设计
机械制造工艺基础----铸造工艺
机械制造工艺基础----铸造工艺
机械制造工艺基础----铸造工艺
3、铸件的结构斜度: 在垂直于分型面的非加工面上设 计结构斜度以便于起模。 结构斜度与起模斜度的区别。
机械制造工艺基础----铸造工艺
二、铸件的内腔设计:
1、减少型芯数量,避免不必要的型芯。 采用自带型芯。尽量采用堆砂。
机械制造工艺基础----铸造工艺
1.4 铸件结构设计
铸件的结构工艺性: 铸件结构主要指铸件的外形、内 腔、壁厚及壁间的连接形式等。
结构工艺性指铸件结构须满足铸
造工艺及合金铸造性能的要求。
机械制造工艺基础----铸造工艺
1.4.1 铸造工艺对铸件结构的要求
一、铸件的外形设计: 1、铸件的形状应尽可能由规则的几何 形体所组成。 2、铸件的外形应方便起模。 铸件外形上的凸台、耳、筋、外圆角等 结构设计常直接影响铸件起模的难易程度。 改进阻碍起模的凸台、凸缘和筋板的结构。 铸件外表尽可能不要有侧凹,减少砂芯数 量。
机械制造工艺基础----铸造工艺
2、铸件的内腔形状设计应有利于型芯的固 定、排气及铸件清理。
机械制造工艺基础----铸造工艺
3、铸件要有结构斜度
机械制造工艺基础----铸造工艺
1.4.2 合金铸造性能对铸件结构的要求
1、铸件的壁厚应均匀,不应过厚或过薄。 壁厚过厚,易产生缩孔、缩松和晶粒粗大; 壁厚过薄,易产生白口、浇不足和冷隔。 铸件尺寸愈大、壁厚可愈厚。但在满足浇注的情 况下,尽可能用筋来减少壁厚。 (1)采用挖空、设筋等减薄铸件壁厚。
机械制造工艺基础----铸造工艺
(2)合理设计铸件 壁厚: • 确定最小允许壁 厚。 • 推荐铸件最大壁 厚约等于三倍的 最小壁厚。 • 铸件的外壁、内 壁与筋的厚度比 约为1:0.8:0.6。
铸件的结构设计
避免大水平壁的结构
6、铸件结构应避免冷却收缩受阻和有利于减小变形
铸件在结构设计时,应尽量使其能自由收缩,以减小应力, 避免裂纹。如图所示的弯曲轮辐和奇数轮辐的设计,可使铸件 能较好地自由收缩。
拔模斜度在铸造工艺图上或 模型图上标出。它是对零件图 上没有结构斜度的立壁(垂直 于分型面的非加工面上),给 予的一个较小角度。
(二)铸件内腔的设计 1、 有利于砂芯的固定和排气
型芯的固定主要依靠芯头来保证,若采用图a的结构,则需要 两个型芯,而且其中大的型芯呈悬臂状态,装配时必须采用芯撑 作辅助支撑,若改成图b所示的形状,采用一个整体型芯来形成 铸件的空腔,则既可增加型芯的稳固性,又改善了型芯排气和清 理条件,显然后者的设计是合理的。
1、铸件应有合理的壁厚(铸件壁厚介于临界壁厚和最小壁
厚之间)
最小壁厚:在各种工艺条下,铸造合金能充满型腔的最小厚度。 主要取决于合金的种类、铸件的大小及形状等因素。 临界壁厚:各种铸造合金都存在一个临界壁厚,在砂型铸造条 件下,各种铸造合金临界壁厚约等于其最小壁厚的3倍。
缺陷:如果所设计铸件的壁厚小于允许的 “最小壁厚”,铸件就 易产生浇不足、冷隔等缺陷。在铸造厚壁铸件时,容易产生缩孔、 缩松、结晶组织粗大等缺陷,从而使铸件的力学性能下降。
铸件壁联结应尽量避免金属积聚
3)铸件壁与壁的连接 • 设计结构圆角(减小热节、内应力)
转角处形 成分界面,集 中许多杂质, 为铸件的薄弱 环节。
4、防止产生变形
某些壁厚均匀的细长铸件,较大面积的平板铸件,以及壁 厚不均匀的长形箱体都会由于应力而产生翘曲变形,应采用合 理的结构设计予以解决。
铸件结构设计
三、铸件内腔的设计 原则:减少型芯数量,利于型芯 的固定、排气和清理。 作用:防止偏芯、气孔等缺陷的 产生;简化造型工艺,降低成本。 1. 尽量节省型芯,避免不必要的 型芯
壁厚不均匀 →冷却速度不同→收缩不一致→产生热应力→厚薄连接处产生裂纹。
第二节 不同成型工艺对铸件结构的要求
原 为则防1止:热合裂理增,设可计加在铸铸件工件壁易厚艺裂处孔增设,防裂可筋。型芯定位稳固,有利于排气和清理。加工后
堵住。 > 500
15 ~ 20 10 ~ 15
12 ~ 20 ----
2)如采用丁字形、工字形、槽形或箱形结构,脆弱处安加强筋。
◆外圆角还可美化铸件外形;
原则:外形设计应便于起模,简化造型工艺。
设计铸件壁的连接或转角时,也应尽力避免金属的积聚和内应力的产生。
◆注意与拔模斜度的区别:
第二节 铸件结构与合金铸造性能的关系
拔模斜度:是在制定铸造工艺时,为了拔模方便而加上去的,一般要切削掉。
表2-13 砂型铸造铸件的最小壁厚 (mm)
原则2:铸件壁后应均匀,避免厚大截面 所谓铸件壁厚的均匀性是使铸件各壁的冷却速度相近,并非 要求所有的壁厚完全相同。 ◆缺陷分析: 壁厚差别过大 → 厚壁处易于产生缩孔、缩松缺陷。 壁厚不均匀 →冷却速度不同→收缩不一致→产生热应力→ 厚薄连接处产生裂纹。
2、铸件壁的连接 设计铸件壁的连接或转角时,也应尽力避免金属的积聚和内 应力的产生。 原则1: (1)铸件的结构圆角 ——铸件结构的基本特征 结构圆角可使铸件壁间的转角处避免热节、减轻应力集中、 改善结晶方向,从而提高转角处的机械性能。 ◆外圆角还可美化铸件外形;内圆角还可防止金属液冲坏型 腔尖角。铸造内圆角的大小应与铸件的壁厚相适应。表2-15。
铸件结构设计 铸件圆角
铸件结构设计铸件圆角
铸件结构设计中的圆角设计是非常重要的,它不仅可以提高零件的美观性,还能够减少应力集中,延长零件的使用寿命。
在进行铸件结构设计时,圆角的设置需要考虑以下几个方面:
1. 强度和耐久性,圆角的设置可以降低零件的应力集中,减少裂纹和疲劳破坏的可能性,从而提高零件的强度和耐久性。
2. 成型性,在铸造过程中,尖角部分容易产生气孔和裂纹,而圆角可以减少这种可能性,提高铸件的成型质量。
3. 清理和润滑,具有圆角设计的铸件表面更容易清理和润滑,有利于零件的装配和维护。
4. 美观性,圆角设计可以使铸件外观更加圆润、美观,提升产品的整体形象。
在进行铸件圆角设计时,需要根据具体的零件形状、材料和工艺要求来确定圆角的尺寸和位置。
一般来说,圆角的半径大小应该根据零件的具体尺寸和使用要求进行合理的选择,既要考虑强度和
耐久性,又要考虑成型性和美观性。
此外,还需要注意圆角的过渡是否平滑,避免出现过渡不良的情况。
总的来说,铸件结构设计中的圆角设计是一个综合考虑强度、成型性、美观性等因素的重要环节,合理的圆角设计能够提高铸件的质量和性能,降低零件的失效风险,因此在实际设计中需要引起足够重视。
压铸件结构设计
压铸件结构设计压铸件结构创新设计(经验)压铸件零件设计的注意事项⼀、压铸件的设计涉及四个⽅⾯的内容:a、即压⼒铸造对零件形状结构的要求;b、压铸件的⼯艺性能;c、压铸件的尺⼨精度及表⾯要求;d、压铸件分型⾯的确定;压铸件的零件设计是压铸⽣产技术中的重要部分,设计时必须考虑以下问题:模具分型⾯的选择、浇⼝的开设、顶杆位置的选择、铸件的收缩、铸件的尺⼨精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加⼯余量的⼤⼩等⽅⾯;⼆、压铸件的设计原则是:a、正确选择压铸件的材料,b、合理确定压铸件的尺⼨精度;c、尽量使壁厚分布均匀;d、各转⾓处增加⼯艺园⾓,避免尖⾓。
三、压铸件按使⽤要求可分为两⼤类,⼀类承受较⼤载荷的零件或有较⾼相对运动速度的零件,检查的项⽬有尺⼨、表⾯质量、化学成分、⼒学性能(抗拉强度、伸长率、硬度);另⼀类为其它零件,检查的项⽬有尺⼨、表⾯质量及化学成分。
在设计压铸件时,还应该注意零件应满⾜压铸的⼯艺要求。
压铸的⼯艺性从分型⾯的位置、顶⾯推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加⼯余量的⼤⼩等⽅⾯考虑。
合理确定压铸⾯的分型⾯,不但能简化压铸型的结构,还能保证铸件的质量。
压铸件零件设计的要求⼀、压铸件的形状结构要求:a、消除内部侧凹;b、避免或减少抽芯部位;c、避免型芯交叉;合理的压铸件结构不仅能简化压铸型的结构,降低制造成本,同时也改善铸件质量,⼆、铸件设计的壁厚要求:压铸件壁厚度(通常称壁厚)是压铸⼯艺中⼀个具有特殊意义的因素,壁厚与整个⼯艺规范有着密切关系,如填充时间的计算、内浇⼝速度的选择、凝固时间的计算、模具温度梯度的分析、压⼒(最终⽐压)的作⽤、留模时间的长短、铸件顶出温度的⾼低及操作效率;a、零件壁厚偏厚会使压铸件的⼒学性能明显下降,薄壁铸件致密性好,相对提⾼了铸件强度及耐压性;b、铸件壁厚不能太薄,太薄会造成铝液填充不良,成型困难,使铝合⾦熔接不好,铸件表⾯易产⽣冷隔等缺陷,并给压铸⼯艺带来困难;压铸件随壁厚的增加,其内部⽓孔、缩孔等缺陷增加,故在保证铸件有⾜够强度和刚度的前提下,应尽量减⼩铸件壁厚并保持截⾯的厚薄均匀⼀致,为了避免缩松等缺陷,对铸件的厚壁处应减厚(减料),增加筋;对于⼤⾯积的平板类厚壁铸件,设置筋以减少铸件壁厚;根据压铸件的表⾯积,铝合⾦压铸件的合理壁厚如下:压铸件表⾯积/mm2 壁厚S/mm≤25 1.0~3.0>25~100 1.5~4.5>100~400 2.5~5.0>400 3.5~6.0三、铸件设计筋的要求:筋的作⽤是壁厚改薄后,⽤以提⾼零件的强度和刚性,防⽌减少铸件收缩变形,以及避免⼯件从模具内顶出时发⽣变形,填充时⽤以作⽤辅助回路(⾦属流动的通路),压铸件筋的厚度应⼩于所在壁的厚度,⼀般取该处的厚度的2/3~3/4;四、铸件设计的圆⾓要求:压铸件上凡是壁与壁的连接,不论直⾓、锐⾓或钝⾓、盲孔和凹槽的根部,都应设计成圆⾓,只有当预计确定为分型⾯的部位上,才不采⽤圆⾓连接,其余部位⼀般必须为圆⾓,圆⾓不宜过⼤或过⼩,过⼩压铸件易产⽣裂纹,过⼤易产⽣疏松缩孔,压铸件圆⾓⼀般取:1/2壁厚≤R≤壁厚;圆⾓的作⽤是有助于⾦属的流动,减少涡流或湍流;避免零件上因有圆⾓的存在⽽产⽣应⼒集中⽽导致开裂;当零件要进⾏电镀或涂覆时,圆⾓可获得均匀镀层,防⽌尖⾓处沉积;可以延长压铸模的使⽤寿命,不致因模具型腔尖⾓的存在⽽导致崩⾓或开裂;五、压铸件设计的铸造斜度要求:斜度作⽤是减少铸件与模具型腔的摩擦,容易取出铸件;保证铸件表⾯不拉伤;延长压铸模使⽤寿命,铝合⾦压铸件⼀般最⼩铸造斜度如下:铝合⾦压铸件最⼩的铸造斜度外表⾯内表⾯型芯孔(单边)1°1°30′2°铸件的结构⼯艺性铸件中的基础件都是箱体形结构,并增设了很多加强筋,致使铸件结构形状较为复杂。
第四章 铸件结构与工艺设计
铸件结构设计 砂型铸造工艺设计 铸造工艺设计实例
第一节 铸件结构设计
铸件结构不仅会直接影响到铸件的力学性 能、尺寸精度、重量要求和其它使用性能, 同时,对铸造生产过程也有很大影响。 所谓铸造工艺性良好的铸件结构,应该是 铸件的使用性能容易保证,生产过程及所 使用的工艺装备简单,生产成本低。 铸件结构要素与铸造合金的种类、铸件的 大小、铸造方法及生产条件密切相关。
(压铸)便于取出铸件的设计
熔模铸件平面上的工艺孔和工艺肋
2.铸件的组合设计 2.铸件的组合设计
因工艺的局限而无法整铸的结构,应采用组合设计。
铸钢底座的铸焊
组合床身铸件
a)砂型铸件改为b)组合压铸件 a)砂型铸件改为b)组合压铸件
第二节 砂型铸造工艺设计
1) 2) 3) 4)
砂型铸造工艺具体设计内容包括: 选择铸件的浇注位置和分型面; 确定工艺参数(机械加工余量、起模斜度、铸造圆 角、收缩量等); 确定型芯的数量、芯头形状及尺寸; 确定浇冒口、冷铁等的形状、尺寸及在铸型中的 布置等。 然后将工艺设计的内容(工艺方案)用工艺符号或文 字在零件图上表示出来,即构成了铸造工艺图。
冒口 上 中 上 下
中 下 放收缩率1% 放收缩率1% 余量:上面>侧面> 余量:上面>侧面>下面 单件小批 手工三箱造型 大批量
外 型 芯 块
两箱机器造型
第三节 铸造工艺设计实例
例1:支架零件铸造工艺设计
材料为HT200,单件、小批量生产工作时承受中等 静载荷,试进行铸造工艺设计。
1.零件结构分析: 零件结构分析: 零件结构分析 筒壁过厚,转角处未采用圆角。修改后的结 构如图b)所示。 选择铸造方法及造型方法: 2.选择铸造方法及造型方法: 3.选择浇注位置和分型面
第5章铸件结构设计
③一些合金的结晶过程中,将形成垂直于铸件表面的柱状晶。若采用直 角联接,则因结晶的方向性,在转角的分角线上形成整齐的分界面(图 2-54a),在此分界面上集中了许多杂质,使转角处成为铸件的薄弱环节。
铸 造 铸件尺寸 方 (mm) 法
砂 <200×200 型 200×20~ 铸 500×500 造 >500×500
合金种类
铸钢 灰口铸铁 球墨铸铁 可锻铸铁 铝合金
8
5~6
6
5
3
10~12 6~10128 Nhomakorabea4
15~20
15第 ~52章0铸件结构15设~计20 10~12
6
铜合金 3~5 6~8 10~12
b>2a
R≥(1/6~1/3)(a+b)/2;R1≥R+(a+b)/2 C≈3(b-a)1/2,h≥(4~5)C
第5章铸件结构设计
22
4.减缓筋、辐收缩的阻碍
缺陷分析:铸件各部分冷却速度不同而收缩不一致,形成较大的 内应力。当此应力超过合金的强度极限时,铸件会产生裂纹。
• 实例分析:轮缘、轮辐、轮毂间若比例不当,
第5章铸件结构设计
3
第一节 铸件设计 的内容
一、铸件外形的设计
1 .避免外部侧凹、凸起; 2 .分型面应尽量为平直面; 3 .凸台、筋条的设计应便于起模。
下
中
中
下
上
上
第5章铸件结构设计
4
避免铸件的外形有侧凹。
第5章铸件结构设计
5
第5章铸件结构设计
6
结构斜度
铸件结构设计
铸件结构设计
铸件壁厚 力求均匀, 避免局部 过厚形成
避免铸造缺陷的合理结构
回到主页
热节的结
构 不合理 合理
成形工艺基础-铸件结构 设计
23
回到主页
铸件结构设计
铸件壁厚 力求均匀, 避免局部 过厚形成
避免铸造缺陷的合理结构
热节的结
构
不合理
合理
成形工艺基础-铸件结构 设计
24
铸件结构设计
避免铸造缺陷的合理结构
避免铸件产生 翘曲变形和大
的水平平面结
构
不合理
成形工艺基础-铸件结构 设计
合理
29
回到主页
铸件结构设计
避免铸造缺陷的合理结构
避免铸件产 生翘曲变形
和大的水平
平面结构 不合理 合理
成形工艺基础-铸件结构 设计
30
回到主页
铸件结构设计
避免铸造缺陷的合理结构
避免铸件产生 翘曲变形和大
的水平平面结
构 不合理
成形工艺基础-铸件结构 设计
40
回到主页
铸件结构设计
简化工艺过程的合理结构
不 合 理
铸件结构应有 利于型芯的固 定、排气和清 理
合 理
成形工艺基础-铸件结构 设计
41
铸件结构设计
结合铸造方法的合理结构 熔模铸造成形件的结构
回到主页
设计熔模铸造时应考虑 的问题:
•便于从压型中取出蜡模 和型芯 •孔、槽不宜过小或过深 •壁厚均匀、同时凝固、 避免分散的热节
合 理
成形工艺基础-铸件结构 设计
33
铸件结构设计
简化工艺过程的合理结构
不 合 理碍拔模的 局部凹陷结构
砂型铸件的结构设计
• • • •
1.蜡模的制造 制造压型要经过以下程序。 (1)压型制造 压型一般用钢、铜和铝经切削加工制成,这种压 型的使用寿命长,制出的蜡模精度高,但压型成 本高,生产准备时间长,主要用于大批量生产。 对于小批量生产,则可采用易熔合金(Sn、Pb、 Bi等组成的合金)、塑料或石膏直接向模样(母模) 上浇注而成。 • (2)蜡模的压制 • 料冷却凝固便可从压型中取出,然后修去分型面 上的毛刺,即得单个蜡模(图8—3(c))。 • (3)蜡模组装
• 2.合理设计铸件内腔 • (1)尽量不用或少用型芯 图9-5。 • 铸件的内腔也可以利用型腔内的砂垛(上箱 砂垛称吊砂)来形成。图9-6。
• (2)便于型芯固定、排气和铸件清理 图9-7所示轴承架。 • 对于因型芯头不足难以固定的铸件,在不影响使用的前 提下,可增加芯头数量,为此可设计出适当大小和数量的 工艺孔。如图9-8所示铸件,因底面没有型芯头,只好用 型芯撑固定;改为图9-8(b)后。铸件底面上增设两个工艺 孔,型芯为一整体,稳定性提高,下芯简便,易于排气和 清理。如果铸件上不允许有些工艺孔,可以用螺钉或柱塞 堵住.
• 3.脱蜡和造型 • (1)为了从型壳中取出蜡模以形成铸型空腔,还必 须进行脱蜡。 • (2)造型 为了提高型壳的强度,防止浇注时变形 或破裂,将脱蜡后的型壳置于铁箱中,周围用干砂 填紧,有时也叫填砂。 • 4.焙烧和浇注 • (1)焙烧 将型壳送入加热炉内,加热到800~ 1000℃进行焙烧,使其所含的残余挥发物得到进 一步排除。 • (2)浇注 为了提高液态合金的填充能力,防止浇 不足、冷隔等缺陷,要在焙烧后起热(600--700℃) 进行浇注。
• 图9-2所示为机床上一铸件。图9-2(a)在A-B截面两侧设计 成凹坑,造型时必须采用两个较大的外型芯才能取出模 样.若改为图9-2(b)所示结构,将凹坑扩展成通到底部的 凹槽则可省去外部型芯。显然,后一方案是比较合理的。
压铸件结构设计规范
压铸件结构设计规范压铸件是一种常见的金属制品,它具有成本低、生产效率高以及复杂形状和良好的表面质量等优点。
在压铸件的结构设计中,需要遵循一定的规范和要求,以确保产品的质量和性能。
以下是压铸件结构设计的一些常见规范:1.材料选择:在压铸件结构设计中,需要选择适合的材料,以确保产品的强度和耐用性。
常用的铸造材料包括铝合金、镁合金和锌合金等。
在选择材料时,需要考虑产品的功能要求、工作环境和制造工艺等因素。
2.壁厚设计:在压铸件的结构设计中,需要合理确定壁厚。
过薄的壁厚容易导致产品变形和脆性,而过厚的壁厚会增加产品的重量和生产成本。
一般来说,压铸件的壁厚应根据材料的强度、铸造工艺和表面质量要求等因素进行合理计算和选择。
3.强化设计:在压铸件结构设计中,需要考虑强化结构,以增加产品的刚性和耐用性。
常用的强化结构包括加强肋、加强筋和加强板等。
强化结构可以提高产品的抗拉强度和抗扭强度,减少变形和裂纹的产生。
4.浇注系统设计:在压铸件的结构设计中,需要合理设计浇注系统,以确保熔融金属能够均匀地充满模腔,并排除气体和杂质。
浇注系统设计包括喷嘴和浇口的位置、大小和形状等因素。
合理的浇注系统设计可以提高产品的充型性能和表面质量。
5.模具设计:在压铸件结构设计中,需要合理设计模具,以确保产品的精度和一致性。
模具设计包括型腔结构、型芯结构和冷却系统等。
合理的模具设计可以减少缺陷和变形的产生,提高产品的尺寸精度和表面质量。
综上所述,压铸件的结构设计需要遵循一定的规范和要求,以确保产品的质量和性能。
这些规范包括材料选择、壁厚设计、强化设计、浇注系统设计和模具设计等。
通过合理设计和优化,可以提高产品的制造效率、降低成本,并满足不同应用领域的需求。
压铸件结构设计和压铸工艺
〔一从简化模具结构、延长模具使用寿命考虑
• 避免内侧凹 • 针对要求采取的措施有: • 1>外形不加大,内部形状凸出至底部〔见下图a>. •
2>局部加厚,内形加至底部,外形加至分型面处,从而消除侧 凹〔见下图b> .
3>原凸台形状不改变,在零件底部开出通孔,模型成型镶件 可以从通孔处插入形成台阶〔见下图c>.
8.压铸嵌件 镶铸件的作用有如下几个方面:
1、加强压铸件某些部位的强度、耐磨性、导电性、成绝缘 性等.如:铝中铸人钢件提高强度,铸入蓝宝石提高耐磨 性,铸入绝缘材料降低成本及提高绝缘性,铸入铁心赋予 导磁性等;
2、清除压铸件过于复杂的型腔以及内侧凹形无法压铸的型 腔;
3、消除热节,避免疏松;
4、利用低熔点金属压铸代替贵金属,如用高硅铝代替青铜;
〔四加工余量
压铸件能达到较高的精度,故多数的表面和部件都 不必进行机械加工,便可直接装配使用.同时还有 以下两个原因也不希望对压铸件进行机械加工:
1>压铸件表层坚实耐磨,加工会失去这层好的表皮;
2>压铸件有时有内部气孔存在,分散而细小的气孔 通常是不影响使用的,但机械加工后却成为外露 气孔,反而可能影响使用.
• 压铸件壁厚的极限范围: • 压铸件壁厚的极限范围很难加以限制.通常可按铸件
各个壁厚表面积的总和来选择适宜的壁厚.在零件的工艺 性能好以及压铸生产中又具备良好的工艺条件时,还可以 压铸出更薄的壁. • 这时,锌合金铸件最小壁厚度为0.5mm,铝合金铸件最小 厚度为0.7mm,镁合金铸件最小厚度为0.8mm,铜合金铸件 最小厚度为1mm.
〔±,但其偏差值为CT6级公差的1/2.
3、非配合尺寸,根据铸件结构而定.
铝浇铸结构设计
铝浇铸结构设计铝浇铸结构设计是指利用铝合金材料进行铸造制造的结构设计。
铝合金具有重量轻、强度高、耐腐蚀等优良特性,因此广泛应用于汽车、航空航天、建筑等领域。
本文将从铝浇铸结构设计的原理、材料选择、工艺流程和应用案例等方面进行介绍。
一、铝浇铸结构设计的原理铝浇铸结构设计的原理是根据所需的结构形状和性能要求,通过铝合金的熔化、注入、冷却和固化等过程,将熔融的铝合金倒入模具中,经过凝固后得到所需的结构件。
在设计过程中,需要考虑结构的形状、尺寸、壁厚等因素,以及材料的性能和工艺的可行性。
二、材料选择在铝浇铸结构设计中,常用的铝合金材料包括铝硅合金、铝镁合金、铝锌合金等。
不同的合金具有不同的性能,应根据具体的应用需求选择合适的材料。
例如,铝硅合金具有良好的流动性和耐磨性,适用于制造复杂形状的结构件;铝镁合金具有较高的强度和硬度,适用于要求较高强度的结构件。
三、工艺流程铝浇铸结构设计的工艺流程包括模具设计、铝合金熔炼、注入模具、冷却固化和后处理等步骤。
模具设计需要考虑结构的形状和尺寸,以及冷却方式和浇注口的设置等因素。
铝合金熔炼需要控制合金的成分和温度,以确保铝合金的质量。
注入模具后,需要进行冷却固化,使铝合金在模具中凝固成型。
最后,还需要进行后处理,如去除毛刺、修整尺寸等。
四、应用案例铝浇铸结构设计在各个领域都有广泛的应用。
在汽车领域,铝合金结构件可以减轻车身重量,提高燃油经济性和行驶稳定性。
在航空航天领域,铝合金结构件可以减少飞机的自重,增加载荷能力和飞行速度。
在建筑领域,铝合金结构件可以提高建筑物的抗风能力和耐腐蚀性,延长使用寿命。
铝浇铸结构设计是利用铝合金材料进行铸造制造的结构设计。
通过合理选择材料、设计模具和控制工艺流程,可以制造出满足各种需求的铝合金结构件。
铝浇铸结构设计在汽车、航空航天、建筑等领域有着广泛的应用前景。
随着科技的不断进步,铝浇铸结构设计将进一步发展壮大,为各行各业提供更优质的产品和解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案3
方案4 木模 方案4 轴承座的不同设计
第 16 页
第 17 页
第 18 页
的阻碍,热应力很大,容易产生裂纹。
示例
左图:当轮辐冷却慢于轮毂和轮缘时,轮辐的收缩受到很大
右图:轮辐为弯曲的,可借助轮辐的微量变形自行减少内应
力。
轮辐
轮毂
轮缘
第 9 页
返 回
筋的作用 不合理结构 合理结构
返 回
不合理结构
合理结构
返 回
不合理结构
合理结构
返 回
不合理结构
合理ห้องสมุดไป่ตู้构
方案1
方案2
承 载 能 力
铸件壁厚
(3)为了充分发挥合金的效能,使之既能避免厚 大截面,又能保证铸件的强度和刚度,应当选择合 理的截面形状。
图例1
示例
第 5 页
2、铸件壁厚尽可能均匀
防止厚壁处产生缩孔、缩松; 防止内应力、变形和裂纹。 示例
图例
图例
3、铸件壁的连接
(1)转角处一般应具有结构圆角 目的:防止缩孔、缩松;防止应力集中; 防止产生性能低劣的分界面;
美化、安全;便于浇注成形;
第 6 页
(2)避免锐角联接,以减少热节和内应力
热节大
第 7 页
(3)铸件厚壁与薄壁间的连接要逐渐过渡 当设计铸件的壁厚不能完全均匀时,厚壁与薄 壁的联接应采用逐步过渡的连接方法,避免由于
壁厚的突变而产生应力集中。 b
R R a b
L
a
第 8 页
4、减缓筋、辐收缩的阻碍
铸件结构设计中,如果未能充分考虑合
金的铸造性能,往往会使铸件产生一些严重 的缺陷,如浇不足、冷隔、缩孔、变形、裂
纹等。
因此,设计铸件时,必须考虑如下几个 方面:
第 3 页
1、合理设计铸件壁厚
(1)为了防止铸件产生浇不足、冷隔等缺陷,铸
件的壁厚应大于该合金所能浇注出的最小壁厚。
第 4 页
(2)为了防止铸件产生缩孔、缩松、晶粒粗大等 缺陷,铸件的壁厚不应过大。
《材料成型工艺基础》CAI课件
金属的液态成型(4)
§4
铸件结构设计
铸件结构工艺性是进行铸件结构 设计时必须考虑的重要问题之一。在 评定结构设计优劣时,不但要考虑满 足铸件使用性能的要求,而且还要考
虑满足铸造工艺及金属性能对铸件的
要求,以便经济合理地生产铸件。
第 2 页
一、铸造性能对铸件结构的要求