量子点LED

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子点LED专题报告

一、什么是量子点LED?

量子点LED是把有机材料或者LED芯片和高效发光无机纳米晶体结合在一起而产生的具有新型结构的量子点有机发光器件。相对于传统的有机荧光粉,量子点具有发光波长可调(可覆盖可见和近红外波段)、荧光量子效率高(可大于90%)、颗粒尺寸小、色彩饱和度高、可

低价溶液加工、稳定性高等优点,尤其值得注意的是高色纯度的发光使得其色域已经可以超过HDTV标准色三角。因此基于量子点的发

光二极管,有望应用于下一代平板显示和照明。

表征量子点的光电参数:

1、光致发光谱(PL谱):光致发光谱反映的是发射光波长与发光强度的关系。从PL谱上可以得到发光颜色的单色性、复合发光的机制、量子点的颗粒尺寸大小及分布均匀性、本征发射峰波长等基本光学信息。量子点光致发光谱的半高宽越窄,说明量子点的发光单色性越好,器件的缺陷和杂质复合发光越少。

2、紫外可见吸收谱:量子点的紫外可见吸收谱反映的是量子点对不同波长光的吸收程度,从谱中吸收峰的位置可计算出量子点的禁带宽

度。量子点吸收谱的第一吸收峰与光致发光谱的发射峰的偏移是斯托克斯位移,斯托克斯位移越大,量子点的自吸收越弱,量子点的荧光强度越高。

3、光致发光量子产率:量子点溶液的光致发光量子产率是通过与标准荧光物质(一般用罗丹明6G)的荧光强度对比而测出。量子点高的量子产率能有效提升器件的发光效率,但纯核量子点沉积成薄膜后量子产率将比在溶液中的量子产率下降1到2个数量级。量子点也存在荧光自淬灭现象,这是由存在于不均匀尺寸分布的量子点中的激子通过福斯特能量转移到非发光点进行非辐射复合所引起。

二、量子点LED在照明显示中的应用方案

量子点的发射峰窄、发光波长可调、荧光效率高、色彩饱和度好,非常适合用于显示器件的发光材料。量子点LED在照明显示领域中的应用方案主要包括两个方面:a、基于量子点光致发光特性的量子点背光源技术(QD-BLU,即光致量子点白光LED);b、基于量子点电致发光特性的量子点发光二极管技术(QLED)。

(一)量子点背光源技术

量子点背光源技术即光致量子点白光LED,是基于量子点光致发光特性的背光源技术。

(1)量子点背光源技术的基本原理

量子点光致发光(PL)原理:量子点层在外界光源下获得能量,电子吸收激发光光子的能量从价带跃迁至导带。导带底的电子和价带顶的空穴可以产生带边复合发光,一部分电子与空穴则被比较浅的杂质能级所捕获,被杂质能级俘获的电子和空穴可以直接复合产生发光或者向更深的缺陷跃迁。带边发射才是器件发光的主要机制,缺陷和杂质复合发光会影响量子点发光的纯色性光致量子点白光LED有大致两种实现方案:

1、颜色转换

颜色转换机制是将蓝光LED芯片与绿光、红光量子点相结合制备量子点白光LED。相较颜色混合产生白光-适当混合各色量子点的电致发光,颜色转换产生白光是LED芯片发出的蓝光部分被量子点吸收转变成绿光和红光,利用RGB原理与剩余蓝光复合形成白光。

2、直接白光

直接白光机制是指发光层中只有一种发光量子点,经紫外LED芯片发出的紫外光激发发出不止一种颜色的光,然后直接复合产生白光。颜色混合和颜色转换产生白光的机制都涉及几种颜色光之间混合平

衡的问题,各色光不匹配会严重影响白光LED的出光质量。因此,人们对直接发射白光的荧光体用于固态照明产生了极大的兴趣。由于直接白光量子点的发光多数有表面缺陷参与,因此效率较低,要实现直接白光量子点的最终应用,提高发光效率是研究的关键。

(2)量子点背光源技术的实际应用

量子点背光源技术在实际中的应用是将蓝光LED芯片与量子点材料结合起来来取代传统液晶面板的背景光源-白光LED,由此制成的液晶面板也称为量子点LCD。

在液晶显示屏中封装量子点的方法有三种,第一种是直接将量子点材料放在蓝色LED芯片上的“On-Chip”方式,第二种是将量子点密封在细玻璃管中并安装在背照灯导光板的LED光入射口的“On-Edge”方式,第三种是将薄膜之间夹有量子点的片状材料贴在导光板与液晶面板之间的“On-Surface”方式。

资料来源:NANOCO,中国银河证券研究部1、美国3M公司和德国Nanosys公司的设计方案

2012年3M公司和Nanosys共同开发出采用量子点材料制作出的可大幅扩大显示器色域的量子点加厚薄膜(QDEF),通过组合使用蓝光LED和QDEF可以轻松实现NTSC(美国国家电视标准委员会)比为100%的广色域,获得与有机EL同等的色彩表现力,而原产品的标准色域为NTSC比70%。

QDEF是将直径分别为3nm和7nm的量子点分散到薄膜中,然后通过保护膜(两层氧气阻隔膜)将量子点夹住。QDEF贴在背照灯的导光板和液晶面板之间(“On-Surface”方式),背照灯光源采用蓝光LED 取代原来的白光LED。3nm量子点在蓝光LED的照射下将蓝色光转换成绿色光,而7nm量子点在蓝光LED的照射下将蓝色光转换成红色光,并同部分透过薄膜的蓝色光一起混合得到白光。与原来拥有平稳波长特性的白光LED相比,蓝光LED和QDEF的组合能够产生拥有尖锐峰值的红绿蓝光源,可以有效提升LCD的色彩饱和度。与传统的高色域技术相比,量子点技术可以在不增加CF膜厚的情况下,将LCD的色域提高30%,另一方面还可以增加背光亮度,节省能耗。

资料来源:Nanosys,中国银河证券研究部

2、美国QD Vision公司的设计方案

QDVision公司认为量子点原材料可用于市场规模巨大的液晶显示器,推广“色彩更为鲜艳”的量子点液晶电视。以42英寸电视为例计算每

年需要约100吨量子点材料,为了应对市场迅速崛起的有效方法是

将量子点材料设置在导光板入口(“On-Edge”方式)而非导光板与液晶面扳之间(“On-Surface”方式),采用该方法的量子点材料的使用量只有采用On-Surface方式时的1/50,并且可以使用便宜且稳定的

相关文档
最新文档