【高考调研】高中数学(人教A版)选修2-3:第一章-计数原理+单元测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章综合测试题
一、选择题
1.设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应() A.从东边上山B.从西边上山
C.从南边上山D.从北边上山
2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有()
A.7个B.8个C.9个D.10个
3.5名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为() A.C25B.25C.52D.A25
4.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()
A.40 B.50 C.60 D.70
5.在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()
A.24种B.48种
C.96种D.144种
6.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法有() A.2 520 B.2 025 C.1 260 D.5 040
7.有5列火车停在某车站并行的5条轨道上,若快车A 不能停在第3道上,货车B 不能停在第1道上,则5列火车的停车方法共有
( )
A .78种
B .72种
C .120种
D .96种
8.已知(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 0+a 1+a 2+…+a n =16,则自然数n 等于( )
A .6
B .5
C .4
D .3
9.6个人排队,其中甲、乙、丙3人两两不相邻的排法有( )
A .30种
B .144种
C .5种
D .4种
10.已知⎝ ⎛⎭
⎪⎫x -a x 8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( )
A .28
B .38
C .1或38
D .1或28
11.有A 、B 、C 、D 、E 、F 共6个集装箱,准备用甲、乙、丙三辆卡车运送,每台卡车一次运两个,若卡车甲不能运A 箱,卡车乙不能运B 箱,此外无其他任何限制;要把这6个集装箱分配给这3台卡车运送,则不同的分配方案的种数为( )
A .168
B .84
C .56
D .42
12.从2名女教师和5名男教师中选出三位教师参加2014年高考某考场的监考工作.要求一女教师在室内流动监考,另外两位教师固定在室内监考,问不同的安排方案种数为( )
A .30
B .180
C .630
D .1 080
13.已知(x +2)n 的展开式中共有5项,则n =________,展开式中的常数项为________.(用数字作答)
14.5个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有____种.
15.已知(x +1)6(ax -1)2的展开式中含x 3项的系数是20,则a 的值等于________.
16.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)
17.某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),求不同的买法有多少种(用数字作答).
18.4个相同的红球和6个相同的白球放入袋中,现从袋中取出4个球;若取出的红球个数不少于白球个数,则有多少种不同的取法? 9(12分)从1到6的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?
(2)四位数中,两个偶数排在一起的有几个?
(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示) 20已知(1+2x )n 的展开式中,某一项的系数恰好是它的前一项系数
的2倍,而且是它的后一项系数的56,试求展开式中二项式系数最大的
项.
21某单位有三个科室,为实现减负增效,每科室抽调2人,去参加再就业培训,培训后这6人中有2人返回原单位,但不回到原科室工作,且每科室至多安排1人,问共有多少种不同的安排方法.
22.10件不同厂生产的同类产品:
(1)在商品评选会上,有2件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?
(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?
1,D2,由题意,问题的关键在于确定函数定义域的个数:第一步,先确定函数值1的原象:因为y=x2,当y=1时,x=1或x=-1,为此有三种情况:即{1},{-1},{1,-1};第二步,确定函数值4的原象,因为y=4时,x=2或x=-2,为此也有三种情况:{2},{-2},{2,-2}.由分步计数原理,得到:3×3=9个.选C.3,B,4B
5C当A出现在第一步时,再排A,B,C以外的三个程序,有A33种,A与A,B,C以外的三个程序生成4个可以排列程序B、C的空档,此时共有A33A14A22种排法;当A出现在最后一步时的排法与此相同,故共有2A33A14A22=96种编排方法.6A先从10人中选出2人承担甲任务有C210种选法,再从剩下的8人中选出2人分别承担乙、丙任务,有A28种选法,由分步乘法计数原理共有C210A28=2 520种不同的选法.故选A.7不考虑不能停靠的车道,5辆车共有5!=120种停法.A停在3道上的停法:4!=24(种);B种停在1道上的停法:4!=24(种);A、B分别停在3道、1道上的停法:3!=6(种).
故符合题意的停法:120-24-24+6=78(种).故选A.
令x=1,得2n=16,则n=4.故选C.
分两步完成:第一步,其余3人排列有A33种排法;第二步,从4个可插空档中任选3个给甲、乙、丙3人站有A34种插法.由分步乘法计数原理可知,一共有A33A34=144种.B
10,C T r+1=(-a)r C r8x8-2r,令8-2r=0⇒r=4.∴T5=C48(-a)4=1 120,∴a=±2.当a=2时,和为1;当a=-2时,和为38.
11,D分两类:①甲运B箱,有C14·C24·C22种;②甲不运B箱,有C24·C23·C22.
∴不同的分配方案共有C14·C24·C22+C24·C23·C22=42种.故选D.
,A分两类进行:第一类,在两名女教师中选出一名,从5名男教师中选出两名,且该女教师只能在室内流动监考,有C12·C25种选法;第二类,选两名女教师和一名男教师有C22·C15种选法,且再从选中的两名女教师中选一名作为室内流动监考人员,即有C22·C15·C12共10种选法,∴共有C12·C25+C22·C15·C12=30种,故选A
13.416∵展开式共有5项,∴n=4,常数项为C4424=16.
14.甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有A33·A24=72(种).15.0或5 16,14因为四位数的每个数位上都有两种可能性,其中四个数字全是2或3的情况不合题意,所以适合题意的四位数有24-2=14个.
17.解析分两类:第一类,买5本2元的有C58种;第二类,买4本2元的和2本1元的有C48×C23种.故共有C58+C48×C23=266种不同的买法种数.
18.解析依题意知,取出有4个球中至少有2个红球,可分三类:①取出的全是红球有C44种方法;②