《函数的单调性》教学设计与反思

合集下载

《函数的单调性》教学设计

《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。

2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。

3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。

二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。

2. 学会利用导数、图像以及定义法判断函数的单调性。

3. 能够运用单调性解决实际问题,提高解决问题的能力。

三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。

2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:笔记本、彩笔、函数图像绘制工具。

五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。

例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。

(2)利用图像:引导学生观察函数图像,判断函数的单调性。

(3)利用定义法:讲解如何利用定义法判断函数的单调性。

4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。

5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。

六、板书设计1. 函数单调性的定义。

2. 单调性的判断方法:导数法、图像法、定义法。

3. 单调性在实际问题中的应用。

七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。

求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思《函数的单调性》教学设计与反思一、主题本篇文章的主题为《函数的单调性》的教学设计与反思。

我们将探讨如何通过合理的教学设计,使学生更好地理解和掌握函数的单调性,以及在教学过程中遇到的问题和解决方法。

二、引入函数的单调性是中学数学中一个重要的概念。

它不仅是解决许多数学问题的关键,也在其他学科和实际生活中有着广泛的应用。

因此,设计一个有效的教学方案,使学生深入理解和掌握这一概念,具有重要意义。

三、教学设计1、引入阶段:通过展示一些具有代表性的函数图像,引导学生观察并理解什么是函数的单调性。

2、呈现阶段:通过具体的函数例子,讲解单调性的概念和应用,并引出单调性的证明方法。

3、讲解阶段:针对学生在理解过程中可能遇到的困难,进行详细的讲解和演示,帮助学生掌握单调性的概念和证明方法。

4、练习阶段:设计一系列的练习题,让学生在课堂上进行练习,以巩固所学的知识。

5、总结阶段:对本节课的内容进行总结,并引导学生回顾所学的主要知识点。

四、反思在教学过程中,我发现以下问题:部分学生在练习阶段遇到困难,需要对单个学生进行针对性的辅导;部分学生对单调性的概念理解不深,需要改进教学方法,使学生更好地理解这一概念。

针对以上问题,我提出以下改进建议:在练习阶段,增加对学生的辅导时间,帮助学生解决遇到的问题;在概念讲解阶段,引入更多的实例和图示,帮助学生更好地理解单调性的概念。

五、总结本篇文章对《函数的单调性》的教学设计进行了详细的描述,并对教学过程中遇到的问题进行了反思和提出改进建议。

通过合理的教学设计,可以使学生更好地理解和掌握函数的单调性,为后续的学习打下坚实的基础。

在教学过程中不断进行反思和改进,可以提高教学质量,更好地满足学生的学习需求。

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

高中《数学》函数的单调性教学设计学情分析教材分析课后反思

《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。

高一数学北师大版必修1教学教案第二章3函数的单调性

高一数学北师大版必修1教学教案第二章3函数的单调性

函数的单调性教学设计与反思一.教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标【教学目标】1.知识与技能理解函数单调性概念;掌握用定义判断和证明一些简单函数单调性的方法;了解函数单调区间。

2.过程与方法培养从概念出发,进一步研究其性质的意识及能力;体会感悟数形结合、分类讨论的思想.3.情感态度价值观由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣.【教学重难点】重点:函数单调性的概念,判断和证明一些简单函数单调性的方法.难点:关于函数单调性概念的符号语言的认知,应用定义证明单调性的代数推理论证【教学过程】一.导课要研究函数的单调性,我们先从熟知的函数入手,下面请同学们作出函数y=x+1 和y=x+1 的图像.1.思考: 从左到右看,图像的变化趋势如何?随着自变量的变化,函数值如何变化?2.观察动画回答:(1)由函数y=x2图像,观察图像的变化趋势。

(2)函数y=x2中y随x如何变化?那么,我们怎样用符号语言表达函数值的增减变化呢?〖设计意图〗从图像直观感知函数单调性在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.二.新知探究1.请同学们阅读课本37页(3分钟)2.老师强调相关概念:函数递增时,图像是_________函数递减时, 图像是________在函数y=f(x)的定义域内的一个区间内A上,如果对于任意两个数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么就称函数在区间A上是增加的,有时也称函数在区间A上是递增的。

函数单调性的教学设计与反思

函数单调性的教学设计与反思

函数单调性的教学设计与反思教学目标:知识与技能:(1)理解增函数和减函数的定义,会用定义判断和证明函数的单调性。

(2)体会数形结合,分类讨论的数学思想情感目标:通过对简单函数单调性的探究,培养学生运用概念解题的能力,激发学生浓厚的学习兴趣。

教学重点和难点:教学重点:函数单调性的概念教学难点:用单调性定义证明函数单调性的变形方向教材分析:新课程把函数思想作为主轴,在前面对函数的有关概念表示方法学习之后,学生对函数的学习方法仍有困难,因此教师要从简单函数作为切入点,引领学生掌握探讨函数性质。

从数、形方面寻找规律十分重要,也为学生们后续学习用函数思想思考解决数学问题打下一个良好的基础。

学情分析:本堂课是学生在初中学了线性函数及高中学习函数的基本概念、函数的表示方法之后,由函数图像的上升(或下降)抽象到用数学语言表达自变量的变化和函数值的变化规律,首次用代数推理论证学习函数的性质,学习难度大。

为培养学生良好的学习习惯,要从学生已有的函数知识,实际生活中的函数模型入手。

教学过程设计:创设情景:1.对于初中学过的一次函数:(1) y=x+1,(2) y=-x+1,同学们知道这两个函数随x的增大,函数值y有什么变化?2.作出上述两个函数和y=x2的图像,从左向右看,图像的升降情况如何?设计意图:通过上述引例的分析使学生了解有些函数在整个定义域内随自变量的增大,函数值也增大;有的函数在整个定义域内随自变量的增大,函数值却在减少;而有些函数只在定义域的某些子区间上增大,却在其他的子区间上减少,过渡到本课内容。

新课(由形到数)对区间A内的任意x1, x2,当x1<x2时,有f(x1)<f(x2)从而概况出单调递增函数的定义:教学反思:1.由形到数:借助学生对已有的一次函数,二次函数的直观图形,获得增(减)函数的图像特征和规律,使学生产生了函数单调性的感性认识。

2.对单调性的直观感受到数学语言的定性描述刻画,循序渐进,不断深入,由特殊函数的性质推广到一般函数的性质,由特殊到一般培养了学生的合情推理的思想,符合学生的认知过程。

函数的单调性教学设计-经典教学教辅文档

函数的单调性教学设计-经典教学教辅文档

教学设计方案模板:吐鲁番某天的气温变化曲线图成绩1:随着工夫的变化,气温的变化趋势如何?成绩2:作出一次函数f(x)=x和二次函数f(x)=x2的图象,从左向右看,图象的升降趋势如何?(从左向右看,f(x)=x的图象在(-∞,+∞)上呈逐渐上升趋势,f(x)=x2的图象在(-∞,0)降落,在(0,+∞)上升。

)从熟习的一次函数、二次函数动手,以具体函数的图象为例,让先生直观感知函数图象的升降变化特点,完成对函数单调性的第一次认识。

成绩3:如何用x,f(x)的变化描述函数图象的降落、上升?以f(x)=x2为例,教师几何画板演示,引导先生观察图象,在(-∞,0)上,图象下降,当x逐渐增大时,f(x)是逐渐减小的。

在图象下降f(x)随着x的增大而减小,图象上升f(x)随着x的增大而增大。

用几何画板直观展现,引导先生从直观的图象特点过渡到含有数学符号的自然言语,完成对函数单调性的第二次认知。

经过二次函数成绩7:对于普通函数y=f(x),如何定义增函数的?普通地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数,D称为y=f(x)的单调增区间。

增函数的普通图象:成绩8:请同学们类比增函数定义给出减函数定义。

设函数y=f(x)的定义域为I,区间D∈I.如果对于区间D内的任意两个值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说y=f(x)在区间D上是减函数,D称为y=f(x)的减区间。

减函数的普通图象:例1 根据图象指单调区间有(0,4),。

“函数的单调性”教案

“函数的单调性”教案

“函数的单调性”教案一、教学目标1. 理解函数单调性的概念,掌握判断函数单调性的方法。

2. 能够运用函数单调性解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力,提高学生对函数知识的兴趣。

二、教学内容1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用三、教学重点与难点1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用四、教学方法1. 采用启发式教学,引导学生主动探究函数单调性的定义与性质。

2. 通过例题讲解,让学生掌握判断函数单调性的方法。

3. 结合实际问题,培养学生运用函数单调性解决问题的能力。

五、教学过程1. 导入新课:回顾上一节课的内容,引导学生思考函数的单调性。

2. 讲解函数单调性的定义与性质:详细讲解函数单调性的概念,引导学生理解并掌握函数单调性的性质。

3. 判断函数单调性的方法:讲解如何判断函数的单调性,引导学生通过实例分析来掌握判断方法。

4. 运用函数单调性解决实际问题:给出实际问题,引导学生运用函数单调性进行解决,培养学生的应用能力。

5. 课堂小结:对本节课的内容进行总结,强调函数单调性的重要性。

6. 布置作业:设计具有针对性的作业,巩固学生对函数单调性的理解和掌握。

六、教学评估1. 课堂提问:通过提问了解学生对函数单调性的理解程度,及时发现并解决学生在学习过程中遇到的困惑。

2. 作业批改:重点关注学生对函数单调性概念的掌握和判断方法的运用,及时给予反馈和指导。

3. 课堂练习:设计一些具有代表性的练习题,让学生在课堂上独立完成,检验学生对函数单调性的掌握情况。

七、教学拓展1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。

2. 介绍函数单调性在实际应用中的重要作用,如经济学、物理学等领域。

3. 鼓励学生进行课外阅读,了解函数单调性的更多相关知识,提高学生的知识面。

八、教学反思1. 反思教学过程中的优点和不足,总结经验教训,为今后的教学提供参考。

高中数学_《函数单调性》教学设计学情分析教材分析课后反思

高中数学_《函数单调性》教学设计学情分析教材分析课后反思

函数的单调性教学设计学情分析:学生刚接触单调性,面对函数的单调性的定义描述会感到困惑:什么是增、减函数?因此正确理解函数的单调性是学习中一个难点.本节课从生活中的问题入手,丰富的问题情境会使学生产生浓厚的兴趣,以此来突破本堂课的难点.效果分析:函数的单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观感知到自然语言描述,再到数学符号语言描述的进化过程。

本节课首先给出生活中的实例和动画,调动学生的参与意识,通过直观图形得出结论,渗透数形结合的数学思想。

再抽象出数学语言的概念,学生自然而然的就接受了。

接下来采取提出问题引导学生进一步思考。

问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。

通过问题,引发学生的进一步学习的好奇心。

当堂检测反馈效果学生学习效果良好。

教材分析:《函数单调性》人教版高中数学必修一第一章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

评测练习:1.如图1­3­3是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数y=f (x )的说法错误的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性图1-3-32.函数f (x )在R 上是减函数,则有( ) A. f (3)<f (5) B .f (3)≤f (5) C. f (3)>f (5) D .f (3)≥f (5)3.已知函数f (x )=kx (k ≠0)在区间(0,+∞)上是增函数,则实数k 的取值范围是________.4.证明:函数y =xx +1在(-1,+∞)上是增函数.《函数的单调性》教学反思1.本节课给出函数单调性的数学语言。

《函数的单调性》的教学设计

《函数的单调性》的教学设计

《§3 函数的单调性》教学设计一、教学背景分析1、学习任务分析内容:函数的单调性。

地位与作用:《函数的单调性》是《高中数学北师大版》(必修1)第二章第3节的内容。

它既是在学生学过函数概念等知识后的延续和拓展,又是后面研究指数函数、对数函数、三角函数等各类函数的单调性的基础,在整个高中数学中起着承上启下的作用。

研究函数单调性的过程体现了数学的数形结合和归纳转化的思想方法,反映了从特殊到一般的数学归纳思维形式,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。

函数的单调性是函数的四个基本性质之一,在比较几个数的大小、对函数作定性分析(求函数的值域、最值,求函数解析式的参数范围、绘函数图象)以及与不等式等其它知识的综合应用上都有广泛的应用;同时在这一节中利用函数图象来研究函数性质的数形结合的思想将贯穿于我们整个高中数学教学。

2、学生情况分析从知识储备方面,首先,学生已经学习了函数的基本概念,及初中所学的一次函数与二次函数为本节课的进一步学习准备好了必要的知识基础;另外,由于学生初学,因此在课堂上需要多给学生思考及动手操作的时间,适当的时候也需要老师加以引导。

二、教学目标的确定1、教学目标:知识与技能:理解函数单调性的概念,掌握证明函数单调性的方法和步骤。

过程与方法:通过观察图像,归纳,概括出函数的单调性等概念,能用数学单调性解决简单问题,使学生领会数形结合的思想,培养学生观察、分析、归纳等思维能力。

渗透数形结合、特殊到一般等数学思想方法。

培养学生提出问题,分析问题以及数学表达的能力情感态度与价值观:通过对现实世界中蕴涵的一些数学模式进行思考,逐步认识数学的科学价值和应用价值,提高数学学习兴趣,树立学好数学的信心。

2、教学重、难点教学重点:(1)领会函数单调性概念,体验函数单调性的形式化过程,深刻理解函数单调性的本质,并明确单调性是一个局部概念;(2)函数单调性的概念的理解教学难点::判断和证明函数单调性三、 教学方法与手段教学方法:采用“三主教学法”教师主导,学生主体,思维主线;充分调动学生学习的积极性和主动性渗透数学思索方程;启发探究相结合四、授课类型: 新授课 五、教学课时: 一课时六、教学用具:计算机、投影仪、彩色粉笔 七、 教学过程的设计(一)、创设情境,引入新课【活动】:多媒体展示图片,让学生观看图片,引入新课,(二)、归纳探索,形成概念1、借助图象,直观感知回顾一次函数与二次函数图像特征,为本节课研究函数单调性做好准备。

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思一、教学内容本节课的教学内容选自人教A版高中数学必修1第三章函数的单调性。

具体包括:函数单调性的定义,单调增函数和单调减函数的性质,以及利用单调性解决实际问题。

二、教学目标1. 理解函数单调性的概念,掌握单调增函数和单调减函数的性质。

2. 能够运用函数单调性解决简单的实际问题。

3. 培养学生的逻辑思维能力和数学建模能力。

三、教学难点与重点1. 教学难点:函数单调性的证明和应用。

2. 教学重点:函数单调性的定义和性质。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、笔、计算器。

五、教学过程1. 实践情景引入:通过生活中常见的物价变化现象,引导学生思考函数的单调性。

2. 概念讲解:介绍函数单调性的定义,并通过示例进行讲解。

3. 性质探讨:引导学生探究单调增函数和单调减函数的性质,并通过示例进行验证。

4. 例题讲解:讲解利用函数单调性解决实际问题的例题,引导学生学会运用单调性分析问题。

5. 随堂练习:布置随堂练习题,让学生巩固所学知识。

六、板书设计1. 函数单调性的定义。

2. 单调增函数和单调减函数的性质。

3. 利用函数单调性解决实际问题的方法。

七、作业设计1. 题目:判断下列函数的单调性,并给出证明。

函数1:y = x^2函数2:y = x^2答案:函数1单调增,函数2单调减。

2. 题目:利用函数单调性解决实际问题。

问题:某商品原价为100元,商家进行两次折扣促销,第一次折扣为8折,第二次折扣为7折,求最终成交价。

答案:最终成交价为84元。

八、课后反思及拓展延伸1. 课后反思:本节课通过生活实例引入函数单调性,让学生能够更好地理解概念。

在讲解性质时,通过示例进行验证,增强了学生的理解。

在例题讲解环节,培养了学生的实际应用能力。

2. 拓展延伸:引导学生思考函数单调性在其他数学领域的应用,如微积分中的极值问题。

重点和难点解析一、函数单调性的定义函数单调性是函数性质的重要组成部分,它反映了函数值随着自变量变化的大致趋势。

《3.2.1函数的单调性》教学设计

《3.2.1函数的单调性》教学设计

《 3.2.1 函数的单调性》教学设计一、内容和内容解析内容:函数的单调性.内容解析:在客观世界的变化过程中,增减性是很重要的变化规律之一,而函数的单调性可以刻画这一变化规律.我们可以利用函数的单调性求解方程、不等式、函数的最值等问题。

所以,学习函数的单调性非常有必要.在前一课,学生刚学习了函数的概念,体会到高中阶段函数的概念与初中函数的概念的联系与区别,本节课在此基础上进一步研究函数的性质之一——函数的单调性,让学生经历从图象直观到自然语言再到符号语言的刻画过程,感受数学的符号语言的作用和数学的严谨性,体验概念形成过程,也为后面进一步学习函数的其他性质打下铺垫.学习函数的单调性,不仅可以让学生加深对函数基本性质的认识,而且可以让学生体会研究函数性质的过程与方法,培养学生的直观想象,数学抽象等数学素养,提升学生的思维水平.基于以上分析,确定本节课的教学重点:函数单调性的定义,单调性的判断以及证明.二、目标和目标解析教学目标:(1)借助函数图象,会用符号语言表达函数的单调性,理解单调性的作用和实际意义;(2)会用定义证明函数的单调性;(3)通过单调性概念教学,培养学生的抽象概括能力和逻辑思维能力.目标解析:达成目标(1)的标志是:能从函数图象观察求得函数的单调区间,能理解函数单调性定义中的“任意”“都有”等关键词的含义,明白函数的单调性能反映客观世界中事物的变化规律.达成目标(2)的标志是:能利用函数单调性的定义证明函数的单调性,掌握证明的步骤.达成目标(3)的标志是:让学生经历从具体到抽象、从特殊到一般的过程,学生能对函数单调性进行精确符号语言刻画,并能应用到实际的问题中去.三、教学问题诊断分析学生在初中已经学习了一些基本初等函数,并且对函数图象的上升与下降的变化趋势能用自然语言“y随着x的增大而增大(减小)”进行描述.现在在高中阶段,要学会用符号语言“x1,x2∈D, 当x12时,都有f(x1)< f (x2)(f(x1)> f(x2))”来刻画.形成函数单调性概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表述,这对学生而言,是一个大的挑战。

《函数的单调性》教学设计

《函数的单调性》教学设计

《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要特性之一,它把自变量的变化方向和函数值的变化方向定性地联系在一起.在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.这节内容的重点是理解函数单调性的概念以及利用函数的单调性的概念证明函数的单调性,难点是理解函数单调性的概念.二、学法分析在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。

然后通过对函数单调性的概念的学习理解,最终把问题解决。

整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

三、教学目标知识与技能:1、理解增函数、减函数的概念及其几何意义。

2、学会应用函数的图象理解和研究函数的单调性及其几何意义。

过程与方法:1、通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。

2、通过探究与活动,使学生明白考虑问题要细致,说理要明确。

情感与态度:1、通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。

2、通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。

四、教学重点函数单调性的概念、判断及证明.五、教学难点根据定义证明函数的单调性,求简单函数的单调区间.六、教学方法教师启发讲授,学生探究学习.七、教学过程(一)课题引入函数是描述事物运动变化规律的数学模型。

如果了解了函数的变化规律,那么也就基本把握了相应事物的变化规律。

《函数的单调性》的教学反思(精选5篇)

《函数的单调性》的教学反思(精选5篇)

《函数的单调性》的教学反思〔精选5篇〕《函数的单调性》的教学反思1本节课采用导学案引导自学法。

首先,复习函数单调性的定义,单调性又名增减性,判断函数的单调性有两种方法:图像法和定义法。

然后,要求学生自行阅读课本P57—P58,完成表格,表格将课本实例分析^p 中的8个函数全部罗列出来,完成后观察表格的第3列和第6列,说明导数的正负与函数的单调性有何关系?学生易得出结论。

从而说明判断函数的单调性还可以用导数法。

接下来,讲解例1,实际操作,说明如何利用导数判断函数单调性,根据讲解过程,让学生总结求解的一般步骤,并做了2个练习。

很不巧,此时下课铃声响了,本节教学任务没有完成。

本节课,我设计了三个题型,仅完成了一个。

课堂时间之所以把控的不好,原因很多,我反思之后,主要原因有以下两点:(1)学生根底差,对单调性的知识点掌握不扎实,且自主学习习惯尚未养成,导致阅读课本填表格的时间过长。

我在想,是否可以让学生提早复习单调性的概念,并预习课本完成表格,以进步课堂效率。

其实,本来也是这样打算的,但由于对学生的学习态度不自信,所以放弃了,想着课堂上也能完成,结果估计缺乏。

应该对学生多一点信心和耐心,行为习惯的养成不是一朝一夕能做到的。

(2)例1中,求导后的计算涉及到不等式的求解,学生对此知识点的把握也不是很到位,老师只能先带着学生回忆不等式的解法,再进展例1的求解。

如此,时间又被耽误了。

对于这一点,我也预估缺乏,说明我在备课时,对学情的分析^p 缺乏。

《函数的单调性》的教学反思21、本节课的亮点:教学过程中老师指导启发学生以的熟悉的二次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从而到更多的,更复杂的函数,从中发现规律,并推广到一般这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知.同时也浸透了归纳推理的数学思想方法,培养了学生的探究精神,积累了探究经历。

函数的单调性教学设计

函数的单调性教学设计

1函数的单调性教学设计(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--函数的单调性教学设计一、教学内容分析:函数的单调性是学生在掌握了函数的概念,函数的表示方法等基础知识后,学习的函数的第一个性质,主要刻画了函数在其定义域内某区间上图像(上升或下降)的变化趋势,为进一步学习函数其它性质提供了方法依据,如在研究函数的值域、最大值、最小值等性质中有着重要应用,而且在解决比较数的大小、解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。

同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。

所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。

二、学生学情分析:从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。

从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括和语言转换能力。

本班学生的数学基础和学习能力存在差异,学生在认知过程中主要存在两个方面的困难:第一,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言进行描述,比如把定义域内某区间上“随着x 的增大,相应的函数值)(x f 也随着增大”(单调递增)这一特征用该区间上“任意的21x x <,都有)()(21x f x f <”进行刻画,其中最难理解的是为什么要在区间上“任意”取两个大小不等的1x ,2x ;第二,利用定义证明函数的单调性过程中,对学生在代数方面严格推理能力的要求较高,教师应该给以适时的点拨和纠正.三、教学目标设置:(一)知识与技能:1.用准确的数学语言归纳、抽象概括增函数和减函数的定义,并能正确理解单调性的定义;2.利用图像和定义判断函数的单调性,能正确书写单调区间,并能用单调性定义证明函数在给定区间上的单调性;3.培养学生抽象概括能力、类比化归能力及数形结合思想方法的运用能力。

高中数学_函数的单调性教学设计学情分析教材分析课后反思

高中数学_函数的单调性教学设计学情分析教材分析课后反思

1.3.1函数的单调性一、教材分析1、本节内容的地位与作用本节课是人教A版必修一第一章函数第三节——函数的单调性,函数的单调性高中数学中函数最重要的性质,具有承上启下的作用。

(1)函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

(2)函数的单调性有着广泛的实际应用。

在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。

2、教学目标知识目标:(1)、理解函数单调性的概念,(2)、掌握判段函数单调性的方法,会证明简单函数的单调性。

能力目标:培养学生自主探索能力、分析归纳能力及逻辑推理能力.情感目标:通过层层设问,激发学生的好奇心和求知欲,培养学生的自信心,提高学生学习数学的兴趣.3、教学重难点重点:函数单调性的概念.难点:(1)函数单调性概念的生成中,如何从图象的直观认识过渡到用符号语言表述;(2)运用定义证明函数的单调性.二、学情分析学生初中已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,并直观感知函数的增减性,而且高中学生具备了一定的观察、辨析、抽象概括和归纳类比等学习能力。

本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象,从有限到无限是个很大的跨度,而高一学生的思维正处在从经验型向理论性跨越的阶段,逻辑思维水平不高,抽象概括能力不强。

这些都容易产生思维的障碍。

三、教法、学法分析本着新课改下以学生为主体,教师为主导的教学理念,结合本节课的知识特点及学情分析,决定采用问题式、启发式、分组探究式相结合的教学法.主要体现在新课引入时的层层设问,概念生成时的启发引导,总结证明步骤时的探究发现等.新课标要求学生不仅仅要“学会”,还应当让学生“会学”、“乐学”.在这种理念的指引下,我在教学设计上强调了让学生主动参与,积极探究,同时让学生相互交流与合作.让学生在与老师、同学之间的交流、讨论中完成知识的构建及难点的突破. 四、 教学过程1.创设情景——引入新知首先借助课件向学生展示一张一上班族沿阶梯向上奔跑的图片。

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档