最新 一元一次方程同步单元检测(Word版 含答案)
一元一次方程单元测试题及答案
一元一次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列方程中,不是一元一次方程的是:A. 3x - 5 = 0B. 2x + 3y = 6C. 4x = 12D. 5x - 7 = 8答案:B2. 解方程2x - 3 = 7,x的值是:A. 5B. 10C. -5D. -10答案:A3. 方程3x + 2 = 11的解是:A. x = 1B. x = 3C. x = 2D. x = 4答案:B4. 方程5x - 15 = 0的解是:A. x = 3C. x = 5D. x = -5答案:A5. 方程2x + 4 = 10的解是:A. x = 3B. x = 2C. x = 1D. x = 4答案:B6. 方程6x - 9 = 15的解是:A. x = 4B. x = 3C. x = 2D. x = 1答案:A7. 方程4x + 8 = 20的解是:A. x = 2B. x = 3C. x = 4D. x = 5答案:B8. 方程3x - 7 = 2x + 8的解是:B. x = 8C. x = 7D. x = 5答案:A9. 方程2x = 6的解是:A. x = 3B. x = 2C. x = 1D. x = 0答案:B10. 方程5x + 10 = 25的解是:A. x = 3B. x = 2C. x = 1D. x = 4答案:A二、填空题(每题2分,共20分)11. 方程ax + b = 0的解是 x = _______。
答案:-b/a12. 方程2x - 5 = 3,解得 x = _______。
答案:413. 方程3x + 6 = 0,解得 x = _______。
答案:-214. 方程4x = 16,解得 x = _______。
答案:415. 方程5x - 2 = 18,解得 x = _______。
答案:416. 方程6x + 12 = 30,解得 x = _______。
2022-2023学年人教版七年级数学上册第三章 一元一次方程 单元检测【word版含简单答案】
第三章一元一次方程单元检测一、单选题1.下列方程中,是一元一次方程的是( )A .x +y =1B .x 2﹣x =1C .x π+1=3xD .54y x+1=3 2.若关于x 的一元一次方程(2022)2022k x -=无解,则k 的值是( )A .2022B .2023C .2021D .03.已知ac bc =,下列变形不一定成立的是( )A .33ac bc -=-B .22ac bc =C .33ac bc =D .a b =4.已知x =-1是方程-2x +m =1的解,则m 的绝对值是( )A .1B .-1C .3D .-35.方程24x =-的解是( )A .6x =-B .2x =-C .2x =D .6x = 6.将方程1132x x --=去分母,结果正确的是( ) A .()2316x x --= B .()2316x x --=C .()2316x x -+= D .()2316x x --= 7.小琪在解关于x 的方程4234x x k ++-=“去分母”步骤时,等号右边的“2”忘记乘以12,她求得的解为1x =-,则k 的值为( )A .133B .2C .1-D .3-8.若关于x 的方程3-x=2a 与方程x+3x=28的解相同,则a 的值为( )9.我国明代珠算家程大位名著《直指算法统宗》里有一道著名的算题;一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.译成白话文为:有100个和尚和100个馒头,正好分完,大和尚一人3个,小和尚三个人分1个,大和尚和小和尚各有几个.设小和尚有x 个,则可列方程为( )A .31003100x x +=-B .13100100x x +=- C .()131003100x x +=- D .()31001003x x +-= 10.小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min 后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min 的时间修好了自行车,并立刻以原速到位于家正西方500m 的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y (m )与小豪的出发时间x (min )之间的函数图象,请根据图象判断下列哪一个选项是正确的( ).A .小豪爸爸出发后10min 追上小豪B .小豪爸爸的速度为200m/minC .小豪骑自行车的速度为150m/minD .爸爸到达公司时,小豪距离书店500m 3二、填空题 11.若||1(2)160m m x --+=是关于x 的一元一次方程,则m =___.12.已知方程20x y +-=,改写成用含x 的式子表示y 的形式,则y =_______.13.定义一种新运算:2()2()a b a b a b a b a b +≤⎧=⎨->☆,例如:()122210=-+⨯-=☆,()()153132-=-⨯-=☆.若()216b-=☆,则b的值是______.14.小明在做家庭作业时发现练习册上的一道解方程的题目中有一个数字被墨水污染了:151232x x+--=-,其中“□”是被污染的内容,翻开书后面的答案,这道题的解是2x=,那么“□”处的数字为_____.15.小明今年4月份两次同时购进了A、B两种不同单价的水果,第一次购买A种水果的数量比B水果的数量多50%,第二次购买A水果的数量比第一次购买A水果的数量少60%,结果第二次购买水果的总数比第一次购买水果的总数量多20%,第二次购买A、B水果的总费用比第一次购买A、B水果的总费用少10%(A、B两种水果的单价不变),则B水果的单价与A水果的单价的比值是_____.三、解答题16.根据下列问题,设未知数并列出方程:(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?17.解方程(1)4x﹣1.5x=﹣0.5x﹣9(2)758142x x -+-=18.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:()()252251231615⊕=⨯-+=⨯-+=-+=-. (1)求()23-⊕的值;(2)若3x ⊕的值是最小的正整数,求x 的值.19.某中学举办的中学生安全知识竞赛中共有20道题,每一道题答对得5分,答错或不答都扣3分.小强考了68分,求小强答对了多少道题?20.某校开展校园艺术节系列活动,派张老师到文体商店购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与张老师的对话内容,解答下列问题.商店老板:如果你再多买一个,就可以全部打八五折,花费比现在还省17元! 张老师:那就多买一个吧,谢谢!(1)求张老师原计划购买多少个文具袋?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次该商店老板全部给予八折优惠,合计272元.求张老师购买的钢笔和签字笔各有多少支21.如图,数轴上点O 为原点,点A 所表示的数为a ,点B 所表示的数为b ,且a 、b 满足()2420a b ++-=.(1)请直接写出点A所表示的数:______,点B所表示的数:______.(2)如图1,点P从A出发以2个单位/秒的速度沿数轴向右运动,点P运动的同时,点Q 从B出发以1个单位/秒的速度沿数轴向右运动,在运动过程中,数轴上动点M到点P、原点O的距离始终相等,设点Q到点M之间的距离为d,求d的值.(3)如图2,在(2)的条件下,当点P、Q之间的距离等于14d时,N从点C出发(点C所表示的数为14),以2个单位/秒的速度沿数轴向左运动,此时P、Q仍按原速度、原方向运动,当N与P、Q都未相遇之前,是否存在点M,使点N到点P、Q距离之和等于点M到原点O距离,若存在,求点M所表示的数,若不存在,请说明理由.答案1.C2.A3.D4.A5.B6.A7.A8.B9.D10.D11.-212.2x -13.9或9-14.415.1216.(1)设正方形的边长为cm x ,424x =;(2)设x 月后这台计算机的使用时间达到2450h ,17001502450x +=;(3)设这个学校的学生数为x ,()0.5210.5280x x --=17.(1)3x =-(2)3x =-18.(1)11;(2)x的值为319.16道20.(1)17个(2)张老师购买的钢笔有20支,签字笔有30支21.(1)点A表示的数是4 ,点B表示的数是2 (2)4(3)存在,92或112。
一元一次方程章节测试卷(含答案)
第三章一元一次方程单元达标检测卷一、单选题:1.下列方程是一元一次方程的是()A.2x+3y=7B.3x 2=3C.6=2x-1 D.2x-1=202.下列解方程步骤正确的是()A.由0.2x +4=0.3x +1,得0.2x -0.3x =1+4B.由4x +1=0.310.1x ++1.2,得4x +1=3101x ++12C.由0.2x -0.3=2-1.3x ,得2x -3=2-13x D.由13x --26x +=2,得2x -2-x -2=123.解方程3112424x x-+-=-时,去分母后得到的方程正确的是()A.()231124x x --+=- B.()()231121x x --+=-C.()()231124x x --+=- D.()()2311216x x --+=-4.如果式子5x-4的值与-16互为倒数,则x 的值为()A.56B.-56C.-25D.255.下列变形中,不正确的是()A.若a ﹣3=b ﹣3,则a=bB.若a b c c=,则a=b C.若a=b ,则2211a bc c =++ D.若ac=bc ,则a=b6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是13.(-12x -+x)=1-5x -,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是()A.2 B.3 C.4 D.57.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x ,则可列方程为()A.()10186x x -=- B.()10186x x -=+ C.()10186x x +=- D.()10186x x +=+8.下图是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元 B.23元 C.24元D.26元9.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x-2)=44 C.9(x+2)=44 D.9(x+2)-4×2=4410.已知关于x 的一元一次方程2133axx +=+的解为正整数,则所有满足条件的整数a 有()个A.3B.4C.6D.8二、填空题:11.若关于x 的方程(k ﹣3)x |k ﹣2|+5k+1=0是一元一次方程,则k=.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为.13.若方程3(2x ﹣1)=2+x 的解与关于x 的方程623k-=2(x+3)的解互为相反数,则k 的值是14.在全国足球甲级A 组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.15.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.16.整理一批资料,由一个人做要20h 完成,现计划由一部分人先做3h ,然后调走其中5人,剩下的人再做2h 正好完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?若设应先安排x 人工作3h ,则根据题意可列方程为.17.为了抓住国庆长假的商机,某商家推出了“每满300元减30元”的活动,该商家将某品牌微波炉按进价提高50%后标价,再按标价的八折销售,一顾客在国庆长假期间购买了一个该商家这个品牌的微波炉,最终付款780元.(1)将表格补充完整:(2)该商家卖一个这个品牌的微波炉的利润为元.18.按照下面的程序计算,如果输入的值是正整数,输出结果是94,则满足条件的y 值有个.19.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是%(注:利润率=-销售价进价进价×100%).20.线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为.三、计算题:21.解下列方程(1)()4315235x x --=(2)10.10.051220.2x x+--=+四、解答题:22.小李在解关于x 的方程2133x x a-+=-1去分母时,方程右边的-1漏乘了3,因而求得方程的解为x=-2,请你帮小李同学求出a 的值,并且求出原方程的解.23.学习了一元一次方程的解法后,老师布置了这样一道计算题317124x x +--=,甲、乙两位同学的解答过程分别如下:甲同学:解方程317124x x +--=.解:317441424x x +-⨯-⨯=⨯…第①步()23174x x +--=……第②步6274x x +--=……第③步6427x x -=-+……第④步59x =…………第⑤步95x =.………第⑥步乙同学:解方程317124x x +--=.解:31744124x x +-⨯-⨯=…第①步()23171x x +-+=……第②步6271x x +-+=……第③步6127x x -=--……第④步58x =-…………第⑤步85x =-.………第⑥步老师发现这两位同学的解答过程都有不符合题意.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择同学的解答过程进行分析(填“甲”或“乙”);(2)该同学的解答过程从第步开始出现不符合题意(填序号);错误的原因是;(3)请写出正确的解答过程.24.某地区发生强烈地震,维和部队在两个地方进行救援工作,甲处有91名维和部队队员,乙处有49名维和部队队员,现又调来100名维和部队队员支援,要使甲处的人数比乙处人数的3倍少12人,应往甲、乙两处各调来多少名维和部队队员?25.用方程解答问题:某车间有22名工人,用铝片生产听装饮料瓶,每人每天可以生产1200个瓶身或2000个瓶底,一个瓶身和两个瓶底可配成一套,为使每天生产的瓶身和瓶底刚好配套,应安排生产瓶身和瓶底的工人各多少名?26.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18吨的部分超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.27.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?28.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?答案一、单选题:1-10DDDCD DBCAB 二、填空题:11.112.713.-314.715.1016.320x +()2520x -=117.(1)60(2)8018.319.1720.307或6三、计算题:21.(1)解:去括号,得:445635x x -+=移项,合并同类项,得:1080x =系数化为1,得:8x =(2)解:原方程化为:110512220x x+--=+去分母,得:()1012040105x x+-=+-去括号得:101020505x x +-=-移项,合并同类项,得:1560x =系数化为1,得:4x =四、解答题:22.解:按小李的解法解方程,去分母得:2x -1=x +a -1,整理,解得x =a ,又∵小李解得x =-2,∴a =-2,把a =-2代入原方程,得2x 1x 2133--=-,去分母得:2x-1=x-2-3,整理,解得x =-4,将x=-4代入方程中,左式=右式,即x =-4为原方程正确的解.23.(1)甲(2)②;去分母时7x -这一项没有加括号(3)解:317124x x +--=.317441424x x +-⨯-⨯=⨯()231(7)4x x +--=62+74x x +-=6427x x -=--55x =-1x =-.24.解:设应往甲处调x 名维和部队队员,则往乙处调100-x 名,可列方程:91+x=3[49+(100-x )]-12解得x=86,则100-x=14答:应往甲处调86名维和部队队员,往乙处调14名维和部队队员。
一元一次方程单元测试题(附参考答案)
一元一次方程单元测试(附参考答案)一、填空题1、1y =是方程()232m y y --=的解,则m = 。
2、若()23340x y -++=,则xy = 。
3、如果21m x-+8=0是一元一次方程,则m= 。
4、若3x -的倒数等于12,则x -1= 。
5、今年母女二人年龄之和53,10年前母女二人年龄之和是 ,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x ,则可列方程 。
6、如果方程340x +=与方程3418x k +=是同解方程,则k= 。
7、单项式1414x a b +与9a 2x -1b 4是同类项,则x= 。
8、若52x +与29x -+是相反数,则x -2的值为 。
二、选择题9、下列各式中是一元一次方程的是( )。
A 、1232x y -=- B 、2341x x x -=- C 、1123y y -=+ D 、1226x x-=+ 10、根据“x 的3倍与5的和比x 的13多2”可列方程( )。
A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523xx +=+) 11、解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。
A 、200025101032x x -+= B 、20025100.132x x-+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 12、三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )。
A 、56 B 、48 C 、36 D 、1213、方程2152x kx x -+=-的解为-1时,k 的值为( )。
A 、10 B 、-4 C 、-6 D 、-814、已知:()2135m --有最大值,则方程5432m x -=+的解是( )7979B C D 9797A --、、、、 15、若关于x 的方程230m mxm --+=是一元一次方程,则这个方程的解是( )A 、0x =B 、3x =C 、3x =-D 、2x =16、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )。
最新七年级数学上册一元一次方程单元综合测试(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)解:|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)解:∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【解析】【分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.3.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?【答案】(1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.4.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款________元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?【答案】(1)1200(2)0.7x+200(3)解:第一张机票的原价为1440÷0.8=1800(元).设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第二张机票的原价为2500元,实际付款1950元【解析】【解答】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.5.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,根据题意得:[20x+25(15﹣x)]×0.95=323,解得:x=7,∴15﹣x=8.答:甲购书7本,乙购书8本(2)解:(20×7+25×8)×0.85+20=309(元),323﹣309=14(元).答:办会员卡比不办会员卡购书共节省14元钱【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.6.某校七年级10个班师生举行文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个.(1)七年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从开始到结束共用2小时35分钟,问参与的小品类节目有多少个?【答案】(1)解:设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有(2x﹣4)个,根据题意,得:x+2x﹣4=10×2,解得:x=8,所以2x﹣4=12.答:七年级师生表演的歌唱类节目有12个,舞蹈类节目有8个(2)解:设参与的小品类节目有a个,根据题意,得:12×5+8×6+8a+15=2×60+35,解得:a=4,答:参与的小品类节目有4个【解析】【分析】(1)设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有(2x-4)个.根据“七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个”列方程求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时=2小时35分钟”列等式求解可得.7.如图,在数轴上点A表示数a,点C表示数c,且 .我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.(1)求AC的值;(2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C的速度分别为每秒 3个单位长度,每秒4个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值.②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,请求出m的值.【答案】(1)解:∵|a+10|+(c-20)2=0,∴a+10=0,c-20=0,∴a=-10,c=20(2)解:当点D在点A的左侧,∵CD+AD=36,∴AD+AC+AD=36,∴AD=3,∴点D点表示的数为-10-3=-13;当点D在点A,C之间时,∵CD+AD=AC=30≠36,∴不存在点D,使CD+AD=36;当点D在点C的右侧时,∵CD+AD=36,∴AC+CD+CD=36,∴CD=3,∴点D点表示的数为20+3=23;综上所述,D点表示的数为-13或23(3)解:①∵AB=BC,∴|(1+t)-(-10+3t)|=|(1+t)-(20-4t)|∴t= 或;②∵2AB-m×BC=2×(11+4t)-m(19+3t)=(8-3m)t+22-19m,且2AB-m×BC的值不随时间t的变化而改变,∴8-3m=0,∴m= .【解析】【分析】(1)根据非负性可求出答案;(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时;进行讨论可求D点表示的数;(3)①用t的代数式表示AB,BC,列出等式可求解;②用t的代数式表示AB,BC,代入代数式可求解;8.阅读理解:一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是: 同学1心里先想好一个数, 将这个数乘以2再加1后传给同学2,同学2把同学1告诉他的数除以2再减后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.(1)若只有同学1,同学2,同学3做“传数”游戏.①同学1心里想好的数是2, 则同学3的“传数”是________;②这三个同学的“传数”之和为17,则同学1心里先想好的数是________.(2)若有个同学(n为大于1的偶数)做“传数”游戏,这个同学的“传数”之和为,求同学1心里先想好的数是多少.【答案】(1)5;3(2)解:设同学1心里先想好的数为x,由题意得:同学1的“传数”是2x+1同学2的“传数”是同学3的“传数”是2x+1同学4的“传数”是x……同学n(n为大于1的偶数)的“传数”是x于是∵n为大于1的偶数∴n≠0∴解得:故同学1心里先想好的数是13.【解析】【解答】解:(1)①由题意得:故同学3的“传数”是5;②设同学1想好的数是a,则解得:故答案为:3【分析】(1)根据题意分别计算出同学1和同学2、同学3的传数即可;(2)设同学1想好的数是a,由题意列出方程,再解方程求得a的值即可;(3)设同学1心里先想好的数为x,根据题意分别表示同学2、同学3、同学4的传数,找出规律,即可知同学n(n为大于1的偶数)的“传数”是x,得,化简得,根据n为大于1的偶数,即可得出答案.9.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.【答案】(1)解:∵经过t秒点P和点O相遇,∴有,解得,∴,∴点P和点Q相遇时的位置所对应的数为(2)解:∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,①若点P和点Q在相遇前相距1个单位长度,则,解得:,②若点P和点Q在相遇后相距1个单位长度,则2t+1×(t+1) =4+1,解得:,综合上述,当P出发秒或秒时,P和点Q相距1个单位长度(3)解:若点P和点Q在相遇前相距1个单位长度,此时满足条件的点C即为P点,所表示的数为;若点P和点Q在相遇前相距1个单位长度,此时满足条件的点C即为Q点,所表示的数为 .【解析】【分析】(1)根据题意得出运动t秒时,P点和Q点所代表的的数字,如果两个数字相遇,则两个数P点和Q点表示的数相等,得到关于t的方程,解出值即可。
(完整word版)一元一次方程单元测试题及答案
一元一次方程 测试卷一、填空题(每题3分,共30分)1.关于x 的方程(k-1)x-3k=0是一元一次方程,则k_______. 2.方程6x+5=3x 的解是________.3.若x=3是方程2x-10=4a 的解,则a=______. 4.(1)-3x+2x=_______. (2)5m-m-8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为_______. 6.一个长方形周长为108cm ,长比宽2倍多6cm ,则长比宽大_______cm . 7.某服装成本为100元,定价比成本高20%,则利润为________元. 8.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t ,设需要这种稻谷xt ,则列出的方程为______. 9.当m 值为______时,453m 的值为0. 10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军.二、选择题(每题3分,共30分)11.下列说法中正确的是( )A .含有一个未知数的等式是一元一次方程B .未知数的次数都是1次的方程是一元一次方程C .含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D .2y-3=1是一元一次方程12.下列四组变形中,变形正确的是( )A .由5x+7=0得5x=-7B .由2x-3=0得2x-3+3=0C .由6x =2得x=13 D .由5x=7得x=3513.下列各方程中,是一元一次方程的是( )A .3x+2y=5B .y 2-6y+5=0C .13x-3=1xD .3x-2=4x-714.下列各组方程中,解相同的方程是( )A .x=3与4x+12=0B .x+1=2与(x+1)x=2xC .7x-6=25与715x -=6 D .x=9与x+9=0 15.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x 小时完成,下列方程正确的是( )44.1.120201220201244.1.1202012202012x x x x A B x x x x C D =--=+-=++=-+16.(2006,江苏泰州)若关于x 的一元一次方程2332x k x k---=1的解为x=-1,则k 的值为( ) A .27 B .1 C .-1311D .0 17.一条公路甲队独修需24天,乙队需40天,若甲、•乙两队同时分别从两端开始修,( )天后可将全部修完.A .24B .40C .15D .16 18.解方程1432x x---=1去分母正确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1 C .2(x-1)-3(4-x )=6 D .2x-2-12-3x=619.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( )A .280千米,240千米B .240千米,280千米C .200千米,240千米D .160千米,200千米20.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,•于是每人可少摊3元,设原来这组学生人数为x 人,则有方程为( ) A . 120x=(x+2)x B .1202x x =+ 120120120120.3.322C D x x x x-==+++三、解方程(共28分)21.(1)53-6x=-72x+1; (5分) (2)y-12(y-1)=23(y-1); (5分)(3)34 [43(12x-14)-8]= 32x+1;(5分) (4)0.20.110.30.2x x -+-=.(5分)22.(8分)若关于x 的方程2x-3=1和2x k-=k-3x 有相同的解,求k 的值.四、应用题(每题8分,共32分)23.(8分)某校八年级近期实行小班教学,若每间教室安排20名学生,则缺少3•间教室;若每间教室安排24名学生,则空出一间教室.问这所学校共有教室多少间?24.(8分)如图,有9个方格,要求每个方格填入不同的数,使得每行、每列、•每条对角线上三个数的和相等,问图中的m是多少?m191325.(8分)已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数、乙数和丙数的和是130.求这三个数。
人教版数学七年级上册 一元一次方程同步单元检测(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
一元一次方程同步单元检测(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。
若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。
【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。
2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
(完整word版)人教版初一数学上册一元一次方程单元测试卷含答案,推荐文档
3一元一次方程单元测试分,满分30分)3. 下列等式的变形错误的是(C.如果x y ,那么-丫z z4. 下列两个方程的解相同的是 A. 方程5x + 3 = 6和方程2x = 4 B .方程3x = x + 1和方程2x = 4x — 1C.方程x +丄=0和方程 乞丄=0 D .方程6x — 3(5x — 2) = 5和方程6x — 15x 2 2=35. 若 I 与一1-互为倒数,那么x 的值等于() 6 3A. -B.— -C . 7 8 * * 11D . — X7735356. 方程〔x - 5 1,去分母得()23A. 3x 2x 10 1B. 3x 2x 10 1 、选择题(本大题共10个小题, 每小题只有一个符合条件的选项,每小题 1.下列方程是一儿次方程方程的是A. x y 5B.x 2 C.D. 2.下列方1的是A. x 1 0B.C.D. A.如果x y ,那么x 2B.如果x y ,那么2x 2y D.如果xy ,那么2 x 2 yC. 3x 2x 10 6D. 3x 2x 10 62(3)2 26D.方程U _L 1化成3x 6.0.20.59. 若代数式x —— 的值是2,则x 的值是(3A. 0.75B. 1.75C. 1.510. 朵朵幼儿园的阿姨给小朋友分苹果,如果每人 个又多2个,请问共有多少个小朋友?(A. 4 个 B . 5 个 C . 10 个 二、填空题(本大题共10个小题,每小题3分,满分30 分)111.方程2x -的解为 。
212. __________________________________________________ 请你写出一个解是 1的一元一次方程为: __________________________________ 。
13. _____________________________________________________ 若 3x m3y 2n 与 2x 2m2y n 1 为同类项,贝U n m ___________________________________ 。
最新七年级数学一元一次方程单元综合测试(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。
若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。
【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。
2.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
常德数学一元一次方程同步单元检测(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程. 【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.2.如图,数轴上有、、、四个点,分别对应,,,四个数,其中,,与互为相反数,(1)求,的值;(2)若线段以每秒3个单位的速度,向右匀速运动,当 ________时,点与点重合,当 ________时,点与点重合;(3)若线段以每秒3个单位的速度向右匀速运动的同时,线段以每秒2个单位的速度向左匀速运动,则线段从开始运动到完全通过所需时间多少秒?(4)在(3)的条件下,当点运动到点的右侧时,是否存在时间,使点与点的距离是点与点的距离的4倍?若存在,请求出值,若不存在,请说明理由.【答案】(1)解:由题意得:∵∴,∴,(2)8;(3)解:秒后,点表示的数为,点表示的数为∵重合∴解得 .∴线段从开始运动到完全通过所需要的时间是6秒(4)解:①当点在的左侧时∵∴解得②当点在的右侧时∵∴解得:所以当或时,【解析】【解答】(2)若线段以每秒3个单位的速度,则A点表示为-10+3t, B点表示为-8+3t,点与点重合时,-10+3t=14解得t=8点与点重合时,-8+3t=20解得t=故填:8;;【分析】(1)由与|d−20|互为相反数,求出c与d的值;(2)用含t的式子表示A,B两点,根据题意即可列出方程求解;(2)用含t的式子表示A,D两点,根据题意即可列出方程求解;(3)分两种情况,①当点在的左侧时②当点在的右侧时,然后分别表示出BC、AD的长度,建立方程,求解即可.3.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。
【精选】人教版七年级上册数学 一元一次方程同步单元检测(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
【精选】七年级上册一元一次方程同步单元检测(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
【精选】 一元一次方程同步单元检测(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.数轴上,两点对应的数分别为,,且满足;(1)求,的值;(2)若点以每秒个单位,点以每秒个单位的速度同时出发向右运动,多长时间后,两点相距个单位长度?(3)已知从向右出发,速度为每秒一个单位长度,同时从向右出发,速度为每秒个单位长度,设的中点为,的值是否变化?若不变求其值;否则说明理由.【答案】(1)解:∵|a+6|+(b﹣12)2=0,∴a+6=0,b﹣12=0,∴a=﹣6,b=12(2)解:设x秒后A,B两点相距2个单位长度,根据题意得:|(2x+12)﹣(3x﹣6)|=2,解得:x1=16,x2=20.答:16秒或20秒后A,B两点相距2个单位长度(3)解:当运动时间为t秒时,点M对应的数为t﹣6,点N对应的数为2t+12.∵NO的中点为P,∴PO= NO=t+6,AM=t﹣6﹣(﹣6)=t,∴PO﹣AM=t+6﹣t=6,∴PO﹣AM为定值6.【解析】【分析】(1)根据绝对值和平方的非负性,求出a、b的值即可;(2)根据题意列出方程,求出含绝对值方程的解;(3)根据题意得到点M对应的数为t﹣6,点N对应的数为2t+12,再由NO的中点为P,得到PO、AM的代数式,得到PO﹣AM的值.2.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.3.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.4.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.(1)A、B的中点C对应的数是________;(2)若点D数轴上A、B之间的点,D到B的距离是D到A的距离的3倍,求D对应的数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离);(3)若P点和Q点是数轴上的两个动点,当P点从B点出发,以6个单位长度/秒的速度向左运动时,Q点也从A点出发,以4个单位长度/秒的速度向右运动,设两点在数轴上的E点处相遇,那么E点对应的数是多少?【答案】(1)35(2)解:设点D对应的数是x,则由题意,得100﹣x=3[x﹣(﹣30)]解得,x=2.5所以点D对应的数是2.5.(3)解:设t秒后相遇,由题意,4t+6t=130,解得,t=13,BE=100﹣6t=78,100﹣78=22答:E点对应的数是22.【解析】【解答】解:(1)点A表示的数是﹣30,点B表示的数是100,所以AB=100﹣(﹣30)=130因为点C是AB的中点,∴AC=BC==65A、B的中点C对应的数是100﹣65=35.故答案为:35.【分析】(1)根据点A和点B的坐标,求出AB之间的距离,取其中点,找出C点对应的数字即可。
一元一次方程同步单元检测(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.综合题(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______A.点处B.线段之间C.线段的中点D.线段之间(2)当整数 ________时,关于的方程的解是正整数.【答案】(1)A(2)或【解析】【解答】(1)故答案为:A;(2)或【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.2.如图1,已知,在内,在内,.(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,________ ;(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与重合时,旋转了多少度?(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.【答案】(1)100(2)解:∵平分,∴,设,则,,由,得:,解得:,∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;(3)解:不改变①当时,如图,,,∵,,∴;② 时,如图,此时,与重合,此时,;③当时,如图,,,;综上,在旋转过程中,的度数不改变,始终等于【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;3.已知数轴上A.B两点对应的数分别为−4和2,点P为数轴上一动点,其对应的数为x.(1)若点P到点A.点B的距离相等,写出点P对应的数;(2)数轴上是否存在点P,使点P到点A.点B的距离之和为10?若存在,求出x的值;若不存在,请说明理由;(3)若点A点B和点P(点P在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P点到点A点B的距离相等?(直接写出结果)【答案】(1)解:∵A、B两点对应的数分别为−4和2,∴AB=6,∵点P到点A. 点B的距离相等,∴P到点A. 点B的距离为3,∴点P对应的数是−1(2)解:存在;设P表示的数为x,①当P在AB左侧,PA+PB=10,−4−x+2−x=10,解得x=−6,②当P在AB右侧时,x−2+x−(−4)=10,解得:x=4(3)解:∵点B和点P的速度分别为1、1个长度单位/分,∴无论运动多少秒,PB始终距离为2,设运动t分钟后P点到点A. 点B的距离相等,|−4+2t|+t=2,解得:t=2【解析】【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)根据题意可得无论运动多少秒,PB始终距离为2,且P在B的左侧,因此A也必须在A的左侧,才有P点到点A、点B的距离相等,设运动t分钟后P点到点A、点B 的距离相等,表示出AP的长,然后列出方程即可.4.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。
最新一元一次方程单元综合测试(Word版 含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
(word版)七年级数学上册《一元一次方程单元测试卷》及答案
七年级数学上册? 一元一次方程单元测试卷?一、单项选择题:〔本大题共10个小题,每题3分,共30分,每题给出的四个选项中,只有一项为哪一项符合题目要求的,将此选项的字母填在答题卡上〕1.〔3分〕以下方程中,是一元一次方程的是〔〕A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=52.〔3分〕以下方程中,以x=﹣1为解的方程是〔〕A.B.7〔x﹣1〕=0C.4x﹣7=5x+7D.x=﹣33〔.3分〕假设关于x的一元一次方程的解是x=﹣1,那么k的值是〔〕A.B.1C.D.04.〔3分〕假设关于x的方程2x+a﹣4=0的解是x=﹣2,那么a的值等于〔〕A.﹣8B.0C.2D.8 5.〔3分〕一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,那么可列方程〔〕A.x﹣1=〔26﹣x〕+2 B.x﹣1=〔13﹣x〕+2C.x+1=〔26﹣x〕﹣2 D.x+1=〔13﹣x〕﹣26.〔3分〕某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店〔〕A.盈利50元B.亏损10元C.盈利10元D.不盈不亏7.〔3分〕一件商品按本钱价提高30%后标价,再打8折〔标价的80%〕销售,售价为312元,设这件商品的本钱价为x元,根据题意,下面所列的方程正确的是〔〕A.x?30%×80%=312B.x?30%=312×80%C.312×30%×80%=x D.x〔1+30%〕×80%=3128.〔3分〕一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为〔〕A.17 B.18 C.19 D.209.〔3分〕假设2x+1=4,那么4x+1等于〔〕第1页〔共17页〕A.6B.7C.8D.910.〔3分〕甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是〔〕A.30岁B.20岁C.15岁D.10岁二、填空题:〔本大题共10小题,每题3分,共30分.把答案写在答题卡中的横线上11.〔3分〕方程x﹣2=4的解是.12.〔3分〕如果关x的方程与的解相同,那么m的值是.13.〔3分〕轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,假设静水时船速为26km/h,水速为2km/h,那么A港和B港相距km .1 4.〔分〕假设2x﹣3=0且|3y﹣2|=0,那么xy=.15.〔分〕关于x的方程=4的解是x=4,那么a=.1 6.〔分〕当x=时,3x+4与4x+6的值相等..〔分〕如果单项式4x+1与可以合并为一项,那么x与y的值1 73ab应分别为.1 8.〔分〕关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,那么a=.1 9.〔3分〕假设a,b互为相反数,c,d互为倒数,p的绝对值等于2,那么关于x的方程〔a+b〕x2+3cd?x﹣p2=0的解为x=.2 0.〔分〕三个连续奇数的和是75,这三个数分别是.三、解答题〔共9题,每题10分,总分值90分〕21.〔10分〕解方程1〕2x+5=3〔x﹣1〕2〕=﹣.22.〔10分〕用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,第2页〔共17页〕可以正好制成成套的饮料瓶?23.〔10分〕整理一批图书,如果由一个人单独做要用30h,现先安排一局部人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?24.〔10分〕为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为 14%,假设此种照相机的进价为 1200元,问该照相机的原售价是多少元?25.〔10分〕x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.26.〔10分〕初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距 160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.27.〔10分〕某地区居民生活用电根本价格为每千瓦时元,假设每月用电量超过a千瓦时,那么超过局部按根本电价的 70%收费.〔1〕某户八月份用电84千瓦时,共交电费元,求a= .〔2〕假设该用户九月份的平均电费为元,那么九月份共用电千瓦时,应交电费是元.28.〔10分〕国家规定个人发表文章、出幅员书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那局部稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:〔1〕假设王老师获得的稿费为2400元,那么应纳税元,假设王老师获得的稿费为4000元,那么应纳税元;〔2〕假设王老师获稿费后纳税420元,求这笔稿费是多少元?29.〔10分〕〔应用题〕某商场方案拨款9万元从厂家购进50台电视机,该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.第3页〔共17页〕(1〕假设商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2〕假设商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?第4页〔共17页〕七年级数学上册?一元一次方程?单元测试卷参考答案与试题解析一、单项选择题:〔本大题共10个小题,每题3分,共30分,每题给出的四个选项中,只有一项为哪一项符合题目要求的,将此选项的字母填在答题卡上〕1.〔3分〕以下方程中,是一元一次方程的是〔〕A.x2﹣4x=3 B. C.x+2y=1 D.xy﹣3=5【分析】根据一元一次方程的定义:只含有一个未知数〔元〕,且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;应选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是0.2.〔3分〕以下方程中,以x=﹣1为解的方程是〔〕A. B.7〔x﹣1〕=0 C.4x﹣7=5x+7 D. x=﹣3【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=﹣1分别代入四个选项进行检验即可.【解答】解:A、把x=﹣1代入方程的左边=右边=﹣2 ,是方程的解;B、把x=﹣1代入方程的左边=﹣14≠右边,所以不是方程的解;C、把x=﹣1代入方程的左边=﹣11≠右边,不是方程的解;D、把x=﹣1代入方程的左边=﹣≠右边,不是方程的解;应选:A.【点评】此题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.第5页〔共17页〕3.〔3分〕假设关于x的一元一次方程的解是x=﹣1,那么k的值是〔〕A. B.1 C. D.0【分析】方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.【解答】解:把x=﹣1代入方程得:﹣=1,解得:k=1应选:B.【点评】此题主要考查了方程解的定义,是一个根底的题目,注意细心运算即可.4.〔3分〕假设关于x的方程2x+a﹣4=0的解是x=﹣2,那么a的值等于〔〕A.﹣8 B.0 C.2 D.8【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=﹣2代入方程得:﹣4+a﹣4=0,解得:a=8.应选:D.【点评】此题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.5.〔3分〕一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,那么可列方程〔〕A.x﹣1=〔26﹣x〕+2 B.x﹣1=〔13﹣x〕+2C.x+1=〔26﹣x〕﹣2 D.x+1=〔13﹣x〕﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,那么宽是〔13﹣x〕cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=〔13﹣x〕+2,应选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量第6页〔共17页〕关系比拟隐藏,要注意仔细审题,耐心寻找.6.〔3分〕某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店〔〕A.盈利50元B.亏损10元C.盈利10元D.不盈不亏【分析】设盈利60%的进价为x元,亏损20%的进价为y元,根据销售问题的数量关系建立方程求出其解即可.【解答】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x〔1+60%〕=80,y〔1﹣20%〕=80,解得:x=50,y=100,∴本钱为:50+100=150元.∵售价为:80×2=160元,利润为:160﹣150=10元应选:C.【点评】此题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时由销售问题的数量关系建立方程是关键.7.〔3分〕一件商品按本钱价提高30%后标价,再打8折〔标价的80%〕销售,售价为312元,设这件商品的本钱价为x元,根据题意,下面所列的方程正确的是〔〕A.x?30%×80%=312B.x?30%=312×80%C.312×30%×80%=x D.x〔1+30%〕×80%=312【分析】先算出标价,再算售价,列出方程即可.【解答】解:由题意得:x〔1+30%〕×80%=312,应选:D.【点评】此题考查了由实际问题抽象出一元一次方程,掌握找出等量关系是解题的关键.8.〔3分〕一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为〔〕A.17 B.18 C.19 D.20第7页〔共17页〕【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣〔25﹣x〕×1,据此可列出方程.【解答】解:设该同学做对了x题,根据题意列方程得:4x﹣〔25﹣x〕×1=70,解得x=19.应选:C.【点评】此题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程组,再求解.9.〔3分〕假设2x+1=4,那么4x+1等于〔〕A.6 B.7 C.8 D.9【分析】由等式变形求出2x的值,代入原式计算即可得到结果.【解答】解:由2x+1=4,得到2x=3,那么原式=6+1=7.应选:B.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法那么是解此题的关键.10.〔3分〕甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是〔〕A.30岁B.20岁C.15岁D.10岁【分析】此题等量关系为:5年前甲的年龄=2×5年前乙的年龄.可设乙现在的年龄为x岁,那么甲为〔x+15〕岁,根据等量关系列方程求解.【解答】解:设乙现在x岁,那么5年前甲为〔x+15﹣5〕岁,乙为〔x﹣5〕岁,由题意得:x+15﹣5=2〔x﹣5〕解得x=20应选:B.【点评】解题关键是读懂题意,找到适宜的等量关系,列出方程.二、填空题:〔本大题共10小题,每题3分,共30分.把答案写在答题卡中的横线上11.〔3分〕方程x﹣2=4的解是x=9 .第8页〔共17页〕【分析】方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣6=12,移项合并得:2x=18,解得:x=9,故答案为:x=9【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.〔3分〕如果关x的方程与的解相同,那么m的值是±2.【分析】此题中有两个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程=整理得:15x﹣3=42,解得:x=3,把x=3代入=x+4 +2|m|得=3+ +2|m|解得:|m|=2,那么m=±2.故答案为±2.【点评】此题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.13.〔3分〕轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,假设静水时船速为26km/h,水速为2km/h,那么A港和B港相距504 km.【分析】根据逆流速度=静水速度﹣水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设A港与B港相距xkm,第9页〔共17页〕根据题意得:+3= ,解得:x=504,那么A港与B港相距504km.故答案为:504.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解此题的关键.14.〔3分〕假设2x﹣3=0且|3y﹣2|=0,那么xy= 1 .【分析】根据0的绝对值为0,得3y﹣2=0,解方程得x,y的值,再求积即可.【解答】解:解方程2x﹣3=0,得x=.由|3y﹣2|=0,得3y﹣2=0,解得y=.∴xy==1.【点评】此题的关键是正确解一元一次方程以及绝对值的定义.15.〔3分〕关于x的方程=4的解是x=4,那么a= 0 .【分析】把x=4代入方程=4得关于a的方程,再求解即得a的值.【解答】解:把x=4代入方程=4,得:=4,解方程得:a=0.故填0.【点评】此题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.〔3分〕当x= ﹣2 时,3x+4与4x+6的值相等.【分析】根据题意,可列关于x的方程3x+4=4x+6,再解方程,即可得x的值.【解答】解:根据题意得:3x+4=4x+6,解方程得:x=﹣2.故填﹣2.【点评】解决此类问题的关键是列方程并求解,属于根底题.17.〔3分〕如果单项式3a4x+1b2与可以合并为一项,那么x与y的值应分别为1和2.【分析】两个式子可以合并,即两个式子是同类项,依据同类项的概念,相同字第10页〔共17页〕母的指数相同,即可求得x,y的值.【解答】解:根据题意得:4x+1=5且2=3y﹣4解得:x=1,y=2.【点评】此题主要考查了同类项的定义,同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.18.〔3分〕关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,那么a= 4 .【分析】先求方程5x﹣3=4x的解,再代入ax﹣12=0,求得a的值.【解答】解:解方程5x﹣3=4x,得x=3,把x=3代入ax﹣12=0,得3a﹣12=0,解得a=4.故填:4.【点评】此题主要考查了一元一次方程解的定义.解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.19.〔3分〕假设a,b互为相反数,c,d互为倒数,p的绝对值等于2,那么关于x的方程〔a+b〕x2+3cd?x﹣p2=0的解为x= .【分析】由相反数得出a+b=0,由倒数得出cd=1,由绝对值得出p=±2,然后将其代入关于x的方程〔a+b〕x2+3cd?x﹣p2=0中,从而得出x的值.【解答】解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,a+b=0,cd=1,p=±2,将其代入关于x的方程〔a+b〕x2+3cd?x﹣p2=0中,可得:3x﹣4=0,解得:x= .【点评】主要考查了相反数,倒数,绝对值的概念及其意义,并利用这些概念得到的数量关系代入含有字母系数的方程中,利用一元一次方程求出未知数的值.20.〔3分〕三个连续奇数的和是75,这三个数分别是23,25,27 .【分析】利用“三个连续奇数的和是75〞作为等量关系列方程求解.就要先设出一第11页〔共17页〕个未知数,然后根据题中的等量关系列方程求解.【解答】解:设最小的奇数为x,那么其他的为x+2,x+4x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的数量关系,列出方程,再求解.此题中要熟悉连续奇数的表示方法.相邻的两个连续奇数相差2.三、解答题〔共9题,每题10分,总分值90分〕21.〔10分〕解方程1〕2x+5=3〔x﹣1〕〔2〕= ﹣.【分析】〔1〕方程去括号,移项合并,把x系数化为1,即可求出解;〔2〕方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:〔1〕去括号得:2x+5=3x﹣3,解得:x=8;2〕去分母得:15x﹣3=18x+6﹣8+4x,移项合并得:7x=﹣1,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.〔10分〕用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?【分析】设用x张铝片做瓶身,那么用〔150﹣x〕张铝片做瓶底,通过理解题意可知此题的等量关系,即做瓶底所用的铝片=制瓶身所用的铝片的两倍.根据这个等量关系,可列出方程,再求解.第12页〔共17页〕【解答】解:设用x张铝片做瓶身,那么用〔150﹣x〕张铝片做瓶底,根据题意得:2×16x=43×〔150﹣x〕,解得:x=86,那么用150﹣86=64张铝片做瓶底.答:用86张铝片做瓶身,那么用64张铝片做瓶底.【点评】解题关键是要读懂题目的意思,正确理解:一个瓶身配两个瓶底是解题的关键.23.〔10分〕整理一批图书,如果由一个人单独做要用30h,现先安排一局部人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?【分析】安排整理的人员有x人,那么随后又〔x+6〕人,根据题意可得等量关系:开始x人1小时的工作量+后来〔x+6〕人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设首先安排整理的人员有x人,由题意得:x+ 〔x+6〕×2=1,解得:x=6.答:先安排整理的人员有6人.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题用到的公式是:工作效率×工作时间=工作量.24.〔10分〕为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,假设此种照相机的进价为1200元,问该照相机的原售价是多少元?【分析】设该照相机的原售价是x元,从而得出售价为,等量关系:实际售价=进价〔1+利润率〕,列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:0.8x=1200×〔1+14%〕,解得:x=1710.答:该照相机的原售价是1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,第13页〔共17页〕首先读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解25.〔10分〕x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】把x=﹣2代入方程,推出|k﹣1|=2,得到方程k﹣1=2,k﹣1=﹣2,求出方程的解即可.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,|k﹣1|=2,k﹣1=2,k﹣1=﹣2,解得:k=3,k=﹣1,答:k的值是3或﹣1.【点评】此题主要考查对绝对值,含绝对值的一元一次方程,解一元一次方程等知识点的理解和掌握,能得到方程k﹣1=2和k﹣1=﹣2是解此题的关键.26.〔10分〕初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【分析】此题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,那么:45x+35x=160解得:x=2答:两车2小时后相遇.【点评】此题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.27.〔10分〕某地区居民生活用电根本价格为每千瓦时元,假设每月用电量超过a千瓦时,那么超过局部按根本电价的70%收费.〔1〕某户八月份用电 84千瓦时,共交电费元,求a= 60 .〔2〕假设该用户九月份的平均电费为元,那么九月份共用电90 千瓦时,应第14页〔共17页〕交电费是元.【分析】〔1〕根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;2〕先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x.【解答】解:〔1〕由题意,得0.4a+〔84﹣a〕××,解得a=60;〔2〕设九月份共用电x千瓦时,那么×60+〔x﹣60〕××,解得x=90,所以×〔元〕.答:九月份共用电 90千瓦时,应交电费元.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系列出方程,再求解.28.〔10分〕国家规定个人发表文章、出幅员书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那局部稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:〔1〕假设王老师获得的稿费为2400元,那么应纳税224 元,假设王老师获得的稿费为4000元,那么应纳税440 元;2〕假设王老师获稿费后纳税420元,求这笔稿费是多少元?【分析】此题列出了不同的判断条件,要将此题中的稿费金额按照三种不同的条件进行分类讨论,然后再根据等量关系列方程求解.【解答】解:〔1〕假设王老师获得的稿费为2400元,那么应纳税224元,假设王老师获得的稿费为4000元,那么应纳税440元;第15页〔共17页〕2〕因为王老师纳税420元,所以由〔1〕可知王老师的这笔稿费高于800元,而低于4000元,设王老师的这笔稿费为x元,根据题意得:14%〔x﹣800〕=420x=3800元.答:王老师的这笔稿费为3800元.【点评】解题关键是要读懂题目的意思,依据题目给出的不同条件进行判断,然后分类讨论,再根据题目给出的条件,找出适宜的等量关系,列出方程,求解.29.〔10分〕〔应用题〕某商场方案拨款9万元从厂家购进50台电视机,该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.1〕假设商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;2〕假设商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】〔1〕因为要购进两种不同型号电视机,可供选择的有 3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;2〕算出各方案的利润加以比拟.【解答】解:〔1〕解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.那么,解得:.第16页〔共17页〕③设购乙种电视机y台,丙种电视机z台.那么解得:〔不合题意,舍去〕;2〕方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机 25台,乙种电视机25台;或购甲种电视机 35台,丙种电视机15台.购置甲种电视机35台,丙种电视机15台获利最多.【点评】此题主要考查学生的分类讨论思想和对于实际问题中方程组解的取舍情况.弄清题意,适宜的等量关系,列出方程组仍是解决问题的关键.此题还需注意可供选择的将有三种情况:甲乙组合,甲丙组合,乙丙组合.第17页〔共17页〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.数轴上,两点对应的数分别为,,且满足;(1)求,的值;(2)若点以每秒个单位,点以每秒个单位的速度同时出发向右运动,多长时间后,两点相距个单位长度?(3)已知从向右出发,速度为每秒一个单位长度,同时从向右出发,速度为每秒个单位长度,设的中点为,的值是否变化?若不变求其值;否则说明理由.【答案】(1)解:∵|a+6|+(b﹣12)2=0,∴a+6=0,b﹣12=0,∴a=﹣6,b=12(2)解:设x秒后A,B两点相距2个单位长度,根据题意得:|(2x+12)﹣(3x﹣6)|=2,解得:x1=16,x2=20.答:16秒或20秒后A,B两点相距2个单位长度(3)解:当运动时间为t秒时,点M对应的数为t﹣6,点N对应的数为2t+12.∵NO的中点为P,∴PO= NO=t+6,AM=t﹣6﹣(﹣6)=t,∴PO﹣AM=t+6﹣t=6,∴PO﹣AM为定值6.【解析】【分析】(1)根据绝对值和平方的非负性,求出a、b的值即可;(2)根据题意列出方程,求出含绝对值方程的解;(3)根据题意得到点M对应的数为t﹣6,点N对应的数为2t+12,再由NO的中点为P,得到PO、AM的代数式,得到PO﹣AM的值.3.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.4.如图,数轴上有、、、四个点,分别对应,,,四个数,其中,,与互为相反数,(1)求,的值;(2)若线段以每秒3个单位的速度,向右匀速运动,当 ________时,点与点重合,当 ________时,点与点重合;(3)若线段以每秒3个单位的速度向右匀速运动的同时,线段以每秒2个单位的速度向左匀速运动,则线段从开始运动到完全通过所需时间多少秒?(4)在(3)的条件下,当点运动到点的右侧时,是否存在时间,使点与点的距离是点与点的距离的4倍?若存在,请求出值,若不存在,请说明理由.【答案】(1)解:由题意得:∵∴,∴,(2)8;(3)解:秒后,点表示的数为,点表示的数为∵重合∴解得 .∴线段从开始运动到完全通过所需要的时间是6秒(4)解:①当点在的左侧时∵∴解得②当点在的右侧时∵∴解得:所以当或时,【解析】【解答】(2)若线段以每秒3个单位的速度,则A点表示为-10+3t, B点表示为-8+3t,点与点重合时,-10+3t=14解得t=8点与点重合时,-8+3t=20解得t=故填:8;;【分析】(1)由与|d−20|互为相反数,求出c与d的值;(2)用含t的式子表示A,B两点,根据题意即可列出方程求解;(2)用含t的式子表示A,D两点,根据题意即可列出方程求解;(3)分两种情况,①当点在的左侧时②当点在的右侧时,然后分别表示出BC、AD的长度,建立方程,求解即可.5.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元甲班分两次共购买苹果30千克(第二次多于第一次),共付出256元;而乙班则一次购买苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.6.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.7.某县外出的农民工准备集体包车回家过春节,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求准备包车回家过春节的农民工人数;(2)已知租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,问租用哪种客车更合算?请说明理由.【答案】(1)解:设需单独租45座客车x辆,依题意得45x=60(x-1)-15解这个方程,得 x=5则45x=45×5=225答:准备回家过春节的农民工有225人(2)解:由(1)知,需租5辆45座客车或4辆60座客车;而租5辆45座客车的费用为 5×5000=25000(元),租4辆60座客车的费用为4×6000=24000(元).故,租4辆60座客车更合算【解析】【分析】(1)设需单独租45座客车x辆,根据单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位列出方程解出答案即可;(2)根据(1)知,需租5辆45座客车或4辆60座客车和租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,求出答案即可。
8.已知线段AB=60cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,问经过几秒后P、Q相遇?(2)在(1)的条件下,几秒钟后,P、Q相距12cm?(3)如图2,AO=PO=10厘米,∠POB=40°,点P绕着点O以10度/秒的速度顺时针旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.【答案】(1)解:设经过t秒后P、Q相遇,由题意得:2t+4t=60,解得t=10,答:经过10秒钟后P、Q相遇(2)解:设经过x秒P、Q相距12cm,当相遇前相距12cm时,由题意得:2x+4x+12=60,解得:x=8,当相遇后相距12cm时,由题意得:2x+4x-12=60,解得:x=12,答:经过8秒钟或12秒钟后,P、Q相距12cm(3)解:设点Q运动的速度为ycm/s,∵点P,Q只能在直线AB上相遇,∴点P第一次旋转到直线AB上的时间为:40÷10=4s,若此时相遇,则4y=60-20,解得:y=10,点P第二次旋转到直线AB上的时间为:(40+180)÷10=22s,若此时相遇,则22y=60,解得:y=,答:点Q运动的速度为10cm/s或 cm/s.【解析】【分析】(1)根据相遇问题中的等量关系列方程求解即可;(2)分相遇前相距12cm和相遇后相距12cm,分别列方程求解即可;(3)由于点P,Q只能在直线AB上相遇,所以可先求出点P两次旋转到直线AB上的时间,然后分别列出方程求解即可.9.定义:若一个关于x的方程的解为,则称此方程为“中点方程”.如:的解为,而;的解为,而 .(1)若,有符合要求的“中点方程”吗?若有,请求出该方程的解;若没有请说明理由;(2)若关于x的方程是“中点方程”,求代数式的值.【答案】(1)解:没有符合要求的“奇异方程”,理由如下:把代入原方程解得:x= ,若为“中点方程”,则x= ,∵≠ ,∴不符合“中点方程”定义,故不存在(2)解:∵,∴(2a-b)x+b=0.∵关于x的方程是“中点方程”,∴x= =a.把x=a代入原方程得:,∴ =【解析】【分析】(1)把代入原方程解得:x= ,若为“中点方程”,则x= ,由于b≠b-2,根据“中点方程”定义即可求解;(2)根据“中点方程”定义得到, = ,整体代入即可.10.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b ﹣2)2=0.(1)求A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2。