一元一次方程单元测试卷(含答案解析)
一元一次方程单元测试卷附答案
一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
一元一次方程单元测试题(含答案)
一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列是一元一次方程的是( ) A .x 2﹣2x ﹣3=0B .x +1=0C .x 2+1x=1D .2x +y =52.(3分)已知方程(a ﹣2)x |a |﹣1+7=0是关于x 的一元一次方程,则a 的值为( )A .2B .﹣2C .±2D .无法确定3.(3分)下列变形正确的是( ) A .由ac =bc ,得a =b B .由x 5=x 5−1,得a =b ﹣1C .由2a ﹣3=a ,得a =3D .由2a ﹣1=3a +1,得a =24.(3分)若关于x 的一元一次方程ax +3x =2的解是x =1,则a 的值为( ) A .1B .﹣1C .5D .﹣55.(3分)若x 3+1与2x −73互为相反数,则m 的值为( )A .34B .43C .−34D .−436.(3分)下列各题中不正确的是( ) A .由5x =3x +1移项得5x ﹣3x =1B .由2(x +1)=x +7去括号、移项、合并同类项得x =5C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3)D .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得 4x ﹣2﹣3x ﹣9=17.(3分)一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( ) A .x ﹣1=(26﹣x )+2 B .x ﹣1=(13﹣x )+2 C .x +1=(26﹣x )﹣2D .x +1=(13﹣x )﹣28.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x 天,则下列方程正确的是( ) A .x +312+x8=1B .x 12+x +38=1 C .x −312+x8=1D .x 12+x −38=1 9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120B .720+120=6(x +32x )C .6x +6×32x +120=720D .6(x +32x )+120=72010.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x ﹣1与x +2的值相等,则x = . 12.(3分)若2a3x +1与−15x 2x +4的和是单项式,则x 的值为 .13.(3分)若P =2y ﹣2,Q =2y +3,2P ﹣Q =3,则y 的值等于 .14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 . 三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x ); (2)x −13=2x −32+117.(8分)已知方程2﹣3(x +1)=0的解与关于x 的方程x +x2−3k =1﹣2x 的解互为倒数,求(5k +12)3的值.18.(8分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米(3)若两人同时出发,相向而行,则几小时后两人相距10千米22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱(2)当标价总额是多少时甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元一元一次方程单元测试题(含答案)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列是一元一次方程的是( ) A .x 2﹣2x ﹣3=0B .x +1=0C .x 2+1x=1D .2x +y =5【分析】利用一元一次方程的定义判断即可. 【解答】解:x +1=0是一元一次方程, 故选:B .【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.(3分)已知方程(a ﹣2)x |a |﹣1+7=0是关于x 的一元一次方程,则a 的值为( )A .2B .﹣2C .±2D .无法确定【分析】根据一元一次方程的定义,得出|a |﹣1=1,注意a ﹣2≠0,进而得出答案. 【解答】解:由题意得:|a |﹣1=1,a ﹣2≠0, 解得:a =﹣2. 故选:B .【点评】此题主要考查了一元一次方程的定义,正确把握定义得出是解题关键. 3.(3分)下列变形正确的是( ) A .由ac =bc ,得a =b B .由x 5=x 5−1,得a =b ﹣1C .由2a ﹣3=a ,得a =3D .由2a ﹣1=3a +1,得a =2【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A 、由ac =bc ,当c =0时,a 不一定等于b ,错误;B 、由x 5=x5−1,得a =b ﹣5,错误; C 、由2a ﹣3=a ,得a =3,正确; D 、由2a ﹣1=3a +1,得a =﹣2,错误;故选:C .【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理. 4.(3分)若关于x 的一元一次方程ax +3x =2的解是x =1,则a 的值为( ) A .1B .﹣1C .5D .﹣5【分析】把x =1代入方程ax +3x =2得出a +3=2,求出方程的解即可. 【解答】解:把x =1代入方程ax +3x =2得:a +3=2, 解得:a =﹣1, 故选:B .【点评】本题考查了一元一次方程的解和解一元一次方程的应用,解此题的关键是得出关于a 的一元一次方程,难度适中.5.(3分)若x 3+1与2x −73互为相反数,则m 的值为( )A .34B .43C .−34D .−43【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到m 的值. 【解答】解:根据题意得:x 3+1+2x −73=0, 去分母得:m +3+2m ﹣7=0, 解得:m =43,故选:B .【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)下列各题中不正确的是( ) A .由5x =3x +1移项得5x ﹣3x =1B .由2(x +1)=x +7去括号、移项、合并同类项得x =5C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3)D .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得 4x ﹣2﹣3x ﹣9=1 【分析】根据解一元一次方程的步骤依次计算可得.【解答】解:A .由5x =3x +1移项得5x ﹣3x =1,此选项正确;B .由2(x +1)=x +7去括号、移项、合并同类项得x =5,此选项正确;C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3),此选项正确; D .由2(2x ﹣1)﹣3(x ﹣3=1)去括号得 4x ﹣2﹣3x +9=1,此选项错误;故选:D .【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.7.(3分)一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( ) A .x ﹣1=(26﹣x )+2 B .x ﹣1=(13﹣x )+2 C .x +1=(26﹣x )﹣2D .x +1=(13﹣x )﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm =长方形的宽+2cm ,根据此列方程即可.【解答】解:设长方形的长为xcm ,则宽是(13﹣x )cm ,根据等量关系:长方形的长﹣1cm =长方形的宽+2cm ,列出方程得:x ﹣1=(13﹣x )+2,故选:B .【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x 天,则下列方程正确的是( ) A .x +312+x 8=1B .x 12+x +38=1 C .x −312+x8=1D .x 12+x −38=1 【分析】设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天,根据甲完成的部分+乙完成的部分=整个工作量(单位1),即可得出关于x 的一元一次方程,此题得解.【解答】解:设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天, 根据题意得:x 12+x −38=1.故选:D .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120 B .720+120=6(x +32x ) C .6x +6×32x +120=720D .6(x +32x )+120=720【分析】设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,根据相遇问题的数量关系建立方程求出其解即可.【解答】解:设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,由题意,得:120+6(x +32x )=720,故列方程错误的是B . 故选:B .【点评】本题考查了由实际问题抽象一元一次方程的知识,解答本题的关键是仔细审题,根据等量关系建立方程.10.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上【分析】要想知道乙追到甲时在哪一边上,则必须知道它们追上时所行的路程,那么只要求出追到时的时间,就可求出路程.根据路程计算沿正方形所走的圈数,就可知道在哪一边上.【解答】解:设乙第一次追上甲时,所用的时间为x ,依题意得:100x =60x +3×80 解得:x =6∴乙第一次追上甲时所行走的路程为:6×100=600m ∵正方形边长为80m ,周长为320m ,∴当乙第一次追上甲时,将在正方形AB 边上.故选:B.【点评】解决此题的关键是要求出它们相遇时的路程,然后根据路程求沿正方形所行的圈数,即可知道在哪一边上.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x﹣1与x+2的值相等,则x= 3 .【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x﹣1=x+2,移项合并得:x=3,故答案为:3【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.(3分)若2a3x+1与−15x2x+4的和是单项式,则x的值为 3 .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求解.【解答】解:根据题意得:3x+1=2x+4,解得:x=3.故答案是:3.【点评】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.(3分)若P=2y﹣2,Q=2y+3,2P﹣Q=3,则y的值等于 5 .【分析】把P、Q的值代入2P﹣Q=3,得关于y的一次方程,求解方程即可.【解答】解:把P=2y﹣2,Q=2y+3,代入2P﹣Q=3,得2(2y﹣2)﹣(2y+3)=3整理,得2y=10,所以y=5.故答案为:5【点评】本题考查了一元一次方程的解法.把P、Q的值代入得关于y的方程是解决本题的关键.14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为x−1413=x+2614【分析】设春游的总人数是x人,根据大巴的载客量做为等量关系列方程求解.【解答】解:设春游的总人数是x 人.根据题意所列方程为x −1413=x +2614, 故答案为:x −1413=x +2614. 【点评】本题考查理解题意的能力,因为同样的大巴,所以以大巴的载客量做为等量关系列方程求解.15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 1710元 .【分析】设该照相机的原售价是x 元,从而得出售价为,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x 元,根据题意得:=1200×(1+14%),解得:x =1710.答:该照相机的原售价是1710元.故答案为:1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x );(2)x −13=2x −32+1 【分析】(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)去括号得,5+3x =10﹣2x ,移项得,3x +2x =10﹣5,合并同类项得,5x =5,系数化为1得,x =1;(2)去分母得,2(x ﹣1)=3(2x ﹣3)+6,去括号得,2x ﹣2=6x ﹣9+6,移项得,2x ﹣6x =﹣9+6+2,合并同类项得,﹣4x =﹣1,系数化为1得,x =14;【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.17.(8分)已知方程2﹣3(x +1)=0的解与关于x 的方程x +x 2−3k =1﹣2x 的解互为倒数,求(5k +12)3的值.【分析】先求出第一个方程的解得x =−13,再根据倒数的定义把x =﹣3代入第二个方程,求出5k =﹣17,然后代入(5k +12)3,计算即可.【解答】解:解方程2﹣3(x +1)=0得:x =−13,−13的倒数为﹣3,把x =﹣3代入方程x +x 2−3k =1﹣2x 得:x −32−3k =1+6, 解得:5k =﹣17,则(5k +12)3=(﹣17+12)3=﹣125.【点评】本题考查了倒数、解一元一次方程、代数式求值,能得出关于k 的方程是解此题的关键.18.(8分)已知x =﹣2是方程2x ﹣|k ﹣1|=﹣6的解,求k 的值.【分析】将x =﹣2代入原方程,即可得出关于k 的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:∵x =﹣2是方程2x ﹣|k ﹣1|=﹣6的解,∴代入得:﹣4﹣|k ﹣1|=﹣6,∴|k ﹣1|=2,∴k ﹣1=2或k ﹣1=﹣2,解得:k =3或k =﹣1.答:k 的值是3或﹣1.【点评】本题考查了一元一次方程的解,将x =﹣2代入原方程,找出关于k 的含绝对值符号的一元一次方程是解题的关键.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x =4和3x +6=0为“兄弟方程”.(1)若关于x 的方程5x +m =0与方程2x ﹣4=x +1是“兄弟方程”,求m 的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n ,求n 的值;(3)若关于x 的方程2x +3m ﹣2=0和3x ﹣5m +4=0是“兄弟方程”,求这两个方程的解.【分析】(1)根据新定义运算法则解答;(2)根据“兄弟方程”的定义和已知条件得到:n ﹣(﹣n )=8或﹣n ﹣n =8,解方程即可;(3)求得方程2x +3m ﹣2=0和3x ﹣5m +4=0解,然后由“兄弟方程”的定义解答.【解答】解:(1)方程2x ﹣4=x +1的解为x =5,将x =﹣5代入方程5x +m =0得m =25;(2)另一解为﹣n .则n ﹣(﹣n )=8或﹣n ﹣n =8,∴n =4或n =﹣4;(3)方程2x +3m ﹣2=0的解为x =−3x +22, 方程3x ﹣5m +4=0的解为x =5x −43, 则−3x +22+5x −43=0, 解得m =2.所以,两解分别为﹣2和2.【点评】考查了一元一次方程的解的定义,解题的关键是掌握“兄弟方程”的定义.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人【分析】(1)根据旅行社收费标准,分别求出两家旅行社所需的费用,再比较即可;(2)设带领的小孩有x人,根据这两家旅行社的总费用一样列出方程,求解即可.【解答】解:(1)由题意可得,甲旅行社所需费用为:3×200+×200×2=880(元),乙旅行社所需费用为:×(3+2)×200=800(元),故选择乙旅行社更优惠;(2)设带领的小孩有x人,根据题意得3×200+×200x=×(3+x)×200,解得x=6.答:如果这两家旅行社的总费用一样,那么带领的小孩有6人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米(3)若两人同时出发,相向而行,则几小时后两人相距10千米【分析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)根据题意可以列出相应的一元一次方程,从而可以解答本题;(3)根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:(1)设经过x小时两人相遇,15x+20x=70,解得,x=2,答:经过2小时两人相遇;(2)设经过a小时,乙超过甲10千米,20a=15a+70+10,解得,a=16,答:经过16小时,乙超过甲10千米;(3)设b小时后两人相距10千米,|15b +20b ﹣70|=10,解得,b 1=167,b 2=127, 答:127小时或167小时后两人相距10千米. 【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗说明理由(3)若把n 块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n 所满足的条件.【分析】(1)设用x 块金属原料加工螺栓,则用(20﹣x )块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求解即可;(2)设用y 块金属原料加工螺栓,则用(26﹣y )块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求出的方程的解如果是正整数,那么加工的螺栓和螺帽恰好配套;否则不能配套;(3)设用a 块金属原料加工螺栓,则用(n ﹣a )块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.根据2×螺栓的个数=螺帽的个数列出方程,得出n 与a 的关系,进而求解即可.【解答】解:(1)设用x 块金属原料加工螺栓,则用(20﹣x )块金属原料加工螺帽. 由题意,可得2×3x =4(20﹣x ),解得x =8,则3×8=24.答:最多能加工24个这样的零件;(2)若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y 块金属原料加工螺栓,则用(26﹣y )块金属原料加工螺帽.由题意,可得2×3y =4(26﹣y ),解得y=.由于不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3)设用a块金属原料加工螺栓,则用(n﹣a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n﹣a),解得a=25 n,则n﹣a=35 n,即n所满足的条件是:n是5的正整数倍的数.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系:2×螺栓的个数=螺帽的个数是解题的关键.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱(2)当标价总额是多少时甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元【分析】(1)根据两家超市的优惠方案,可知当一次性购物标价总额是300元时,甲超市实付款=购物标价×,乙超市实付款=300×,分别计算即可;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据甲超市实付款=乙超市实付款列出方程,求解即可;(3)首先计算出两次购物标价,然后根据优惠方案即可求解.【解答】解:(1)当一次性购物标价总额是300元时,甲超市实付款=300×=264(元),乙超市实付款=300×=270(元);(2)设当标价总额是x元时,甲、乙超市实付款一样.当一次性购物标价总额是500元时,甲超市实付款=500×=440(元),乙超市实付款=500×=450(元),∵440<450,∴x>500.根据题意得=500×+(x﹣500),解得x=625.答:当标价总额是625元时,甲、乙超市实付款一样;(3)小明两次到乙超市分别购物付款198元和466元,第一次购物付款198元,购物标价可能是198元,也可能是198÷=220元,第二次购物付款466元,购物标价是(466﹣450)÷+500=520元,两次购物标价之后是198+520=718元,或220+520=740元.若他只去一次该超市购买同样多的商品,实付款500×+(718﹣500)=元,或500×+(740﹣500)=642元,可以节省198+466﹣=元,或198+466﹣642=22元.答:若他只去一次该超市购买同样多的商品,可以节省或22元.【点评】本题考查了一元一次方程的应用,理解两家超市的优惠方案,进行分类讨论是解题的关键.¥。
人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)
人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。
人教版七年级数学第三章《一元一次方程》单元测试带答案解析
故选:A.
【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.
10.C
【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元,第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.
7.D
【分析】根据等式的基本性质可判断出选项正确与否;等式的基本性质:①等式两边同时加上(或减去)同一个整式,等式仍然成立;②等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
【详解】解:A.根据等式性质,a=b两边都加c,即可得到a+c=b+c,故选项错误,不符合题意;
B.如果 ,那么a+c−c=b−c-c,即a=b-2c,故选项错误,不符合题意;
C.如果 ,那么 成立的条件是c≠0,原变形错误,故选项错误,不符合题意;
D.如果 ,那么a=b,故选项正确,符合题意;
故选:D.
【点睛】此题考查了等式的基本性质,解题的关键是熟练运用等式的基本性质.
8.C
【分析】设十字框最中间的数为x,表示出其余数字,根据之和为选项中的数字求出x的值,x的值符合题意即可.
人教版七年级数学第三章《一元一次方程》单元测试
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若关于x的方程 的解是 ,则a的值为()
A. B.9C. D.1
2.如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()
一元一次方程章节测试卷(含答案)
第三章一元一次方程单元达标检测卷一、单选题:1.下列方程是一元一次方程的是()A.2x+3y=7B.3x 2=3C.6=2x-1 D.2x-1=202.下列解方程步骤正确的是()A.由0.2x +4=0.3x +1,得0.2x -0.3x =1+4B.由4x +1=0.310.1x ++1.2,得4x +1=3101x ++12C.由0.2x -0.3=2-1.3x ,得2x -3=2-13x D.由13x --26x +=2,得2x -2-x -2=123.解方程3112424x x-+-=-时,去分母后得到的方程正确的是()A.()231124x x --+=- B.()()231121x x --+=-C.()()231124x x --+=- D.()()2311216x x --+=-4.如果式子5x-4的值与-16互为倒数,则x 的值为()A.56B.-56C.-25D.255.下列变形中,不正确的是()A.若a ﹣3=b ﹣3,则a=bB.若a b c c=,则a=b C.若a=b ,则2211a bc c =++ D.若ac=bc ,则a=b6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是13.(-12x -+x)=1-5x -,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是()A.2 B.3 C.4 D.57.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x ,则可列方程为()A.()10186x x -=- B.()10186x x -=+ C.()10186x x +=- D.()10186x x +=+8.下图是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元 B.23元 C.24元D.26元9.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x-2)=44 C.9(x+2)=44 D.9(x+2)-4×2=4410.已知关于x 的一元一次方程2133axx +=+的解为正整数,则所有满足条件的整数a 有()个A.3B.4C.6D.8二、填空题:11.若关于x 的方程(k ﹣3)x |k ﹣2|+5k+1=0是一元一次方程,则k=.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为.13.若方程3(2x ﹣1)=2+x 的解与关于x 的方程623k-=2(x+3)的解互为相反数,则k 的值是14.在全国足球甲级A 组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.15.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.16.整理一批资料,由一个人做要20h 完成,现计划由一部分人先做3h ,然后调走其中5人,剩下的人再做2h 正好完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?若设应先安排x 人工作3h ,则根据题意可列方程为.17.为了抓住国庆长假的商机,某商家推出了“每满300元减30元”的活动,该商家将某品牌微波炉按进价提高50%后标价,再按标价的八折销售,一顾客在国庆长假期间购买了一个该商家这个品牌的微波炉,最终付款780元.(1)将表格补充完整:(2)该商家卖一个这个品牌的微波炉的利润为元.18.按照下面的程序计算,如果输入的值是正整数,输出结果是94,则满足条件的y 值有个.19.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是%(注:利润率=-销售价进价进价×100%).20.线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为.三、计算题:21.解下列方程(1)()4315235x x --=(2)10.10.051220.2x x+--=+四、解答题:22.小李在解关于x 的方程2133x x a-+=-1去分母时,方程右边的-1漏乘了3,因而求得方程的解为x=-2,请你帮小李同学求出a 的值,并且求出原方程的解.23.学习了一元一次方程的解法后,老师布置了这样一道计算题317124x x +--=,甲、乙两位同学的解答过程分别如下:甲同学:解方程317124x x +--=.解:317441424x x +-⨯-⨯=⨯…第①步()23174x x +--=……第②步6274x x +--=……第③步6427x x -=-+……第④步59x =…………第⑤步95x =.………第⑥步乙同学:解方程317124x x +--=.解:31744124x x +-⨯-⨯=…第①步()23171x x +-+=……第②步6271x x +-+=……第③步6127x x -=--……第④步58x =-…………第⑤步85x =-.………第⑥步老师发现这两位同学的解答过程都有不符合题意.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择同学的解答过程进行分析(填“甲”或“乙”);(2)该同学的解答过程从第步开始出现不符合题意(填序号);错误的原因是;(3)请写出正确的解答过程.24.某地区发生强烈地震,维和部队在两个地方进行救援工作,甲处有91名维和部队队员,乙处有49名维和部队队员,现又调来100名维和部队队员支援,要使甲处的人数比乙处人数的3倍少12人,应往甲、乙两处各调来多少名维和部队队员?25.用方程解答问题:某车间有22名工人,用铝片生产听装饮料瓶,每人每天可以生产1200个瓶身或2000个瓶底,一个瓶身和两个瓶底可配成一套,为使每天生产的瓶身和瓶底刚好配套,应安排生产瓶身和瓶底的工人各多少名?26.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18吨的部分超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.27.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?28.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?答案一、单选题:1-10DDDCD DBCAB 二、填空题:11.112.713.-314.715.1016.320x +()2520x -=117.(1)60(2)8018.319.1720.307或6三、计算题:21.(1)解:去括号,得:445635x x -+=移项,合并同类项,得:1080x =系数化为1,得:8x =(2)解:原方程化为:110512220x x+--=+去分母,得:()1012040105x x+-=+-去括号得:101020505x x +-=-移项,合并同类项,得:1560x =系数化为1,得:4x =四、解答题:22.解:按小李的解法解方程,去分母得:2x -1=x +a -1,整理,解得x =a ,又∵小李解得x =-2,∴a =-2,把a =-2代入原方程,得2x 1x 2133--=-,去分母得:2x-1=x-2-3,整理,解得x =-4,将x=-4代入方程中,左式=右式,即x =-4为原方程正确的解.23.(1)甲(2)②;去分母时7x -这一项没有加括号(3)解:317124x x +--=.317441424x x +-⨯-⨯=⨯()231(7)4x x +--=62+74x x +-=6427x x -=--55x =-1x =-.24.解:设应往甲处调x 名维和部队队员,则往乙处调100-x 名,可列方程:91+x=3[49+(100-x )]-12解得x=86,则100-x=14答:应往甲处调86名维和部队队员,往乙处调14名维和部队队员。
新人教版 七年级(上)数学 第3章 一元一次方程 单元测试卷 (解析版)
第3章一元一次方程单元测试卷一、选择题(共10小题).1.(3分)下列方程中,不是一元一次方程的为()A.3x+2=6 B.4x﹣2=x+1 C.x+1=0 D.5x+6y=12.(3分)解方程2(3x﹣1)﹣(x﹣4)=1时,去括号正确的是()A.6x﹣1﹣x﹣4=1 B.6x﹣1﹣x+4=1 C.6x﹣2﹣x﹣4=1 D.6x﹣2﹣x+4=1 3.(3分)要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2 D.等式两边同时乘以﹣24.(3分)小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3 B.4 C.5 D.65.(3分)某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元6.(3分)若x=3是关于x的方程2x﹣k+1=0的解,则k的值()A.﹣7 B.4 C.7 D.57.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则8.(3分)一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.9.(3分)解方程5x﹣3=2x+2,移项正确的是()A.5x﹣2x=3+2 B.5x+2x=3+2 C.5x﹣2x=2﹣3 D.5x+2x=2﹣3 10.(3分)定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3 B.x=3 C.x=2 D.x=4二.填空题11.(3分)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为.12.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为.13.(3分)A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A地,则A,B两地相距千米.14.(3分)一元一次方程﹣y=﹣1的解为.15.(3分)若x3n﹣5+5=0是关于x的一元一次方程,则n=.三.解答题16.解下列方程.(1)2y+3=11﹣6y(2)x﹣1=+317.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.18.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出正确的解答过程.参考答案一.选择题1.(3分)下列方程中,不是一元一次方程的为()A.3x+2=6 B.4x﹣2=x+1 C.x+1=0 D.5x+6y=1解:A.3x+2=6是一元一次方程;B.4x﹣2=x+1是一元一次方程;C.x+1=0是一元一次方程;D.5x+6y=1含有2个未知数,不是一元一次方程;故选:D.2.(3分)解方程2(3x﹣1)﹣(x﹣4)=1时,去括号正确的是()A.6x﹣1﹣x﹣4=1 B.6x﹣1﹣x+4=1 C.6x﹣2﹣x﹣4=1 D.6x﹣2﹣x+4=1 解:去括号得:6x﹣2﹣x+4=1,故选:D.3.(3分)要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2 D.等式两边同时乘以﹣2解:将等式﹣x=1进行一次变形,等式两边同时乘以﹣2,得到x=﹣2.故选:D.4.(3分)小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3 B.4 C.5 D.6解:设两人起跑后60s内,两人相遇的次数为x次,依题意得;每次相遇间隔时间t,A、B两地相距为S,V甲、V乙分别表示小明和小亮两人的速度,则有:(V甲+V乙)t=2S,则t==,则x=60,解得:x=5.4,∵x是正整数,且只能取整,∴x=5.故选:C.5.(3分)某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元解:设两件商品以x元出售,由题意可知:×100%=20%,解得:x=96,设乙商品的成本价为y元,∴96﹣y=﹣20%×y,解得:y=120,故选:C.6.(3分)若x=3是关于x的方程2x﹣k+1=0的解,则k的值()A.﹣7 B.4 C.7 D.5解:将x=3代入2x﹣k+1=0,∴6﹣k+1=0,∴k=7,故选:C.7.(3分)下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bxD.若a=b,则解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.8.(3分)一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:.故选:C.9.(3分)解方程5x﹣3=2x+2,移项正确的是()A.5x﹣2x=3+2 B.5x+2x=3+2 C.5x﹣2x=2﹣3 D.5x+2x=2﹣3 解:移项得:5x﹣2x=2+3,故选:A.10.(3分)定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3 B.x=3 C.x=2 D.x=4解:根据题中的新定义化简得:=4,去分母得:8+x=12,解得:x=4,故选:D.二.填空题11.(3分)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为12.解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.12.(3分)已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为﹣1.解:将x=3代入方程得:3a+2×3﹣3=0,解得:a=﹣1.故答案为:﹣1.13.(3分)A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A地,则A,B两地相距760千米.解:设乙车的平均速度是x千米/时,则4(+x)=560.解得x=60即乙车的平均速度是60千米/时.设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,则80(1+10%)t=60(7+t)解得t=15.所以60(7+t)﹣560=760(千米)故答案是:760.14.(3分)一元一次方程﹣y=﹣1的解为y=2.解:方程﹣y=﹣1,解得:y=2.故答案为:y=2.15.(3分)若x3n﹣5+5=0是关于x的一元一次方程,则n=2.解:∵x3n﹣5+5=0是关于x的一元一次方程,∴3n﹣5=1,解得:n=2,故答案为:2.三.解答题16.解下列方程.(1)2y+3=11﹣6y(2)x﹣1=+3解:(1)移项合并得:8x=8,解得:y=1;(2)去分母得:4x﹣6=3x+18,移项合并得:x=24.17.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.解:(1)由题意得:6﹣x=2(2+7x).∴x=.(2)由题意得:2+7x﹣(6﹣x)=﹣3,∴x=.18.列方程解应用题:冬季来临,某电器商城试销A,B两种型号的电暖器,两周内共销售50台,销售收入14400元,A型号电暖器每台300元,B型号电暖器每台280元.试销期间A,B两种型号的电暖器各销售了多少台?解:设A型号的电暖器销售了x台,则B型号的电暖器销售了(50﹣x)台,依题意有300x+280(50﹣x)=14400,解得x=20,50﹣x=50﹣20=30.故A型号的电暖器销售了20台,B型号的电暖器销售了30台.19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.解:(1)根据题中的新定义得:原式=3×1+4×(﹣1)﹣5=3﹣4﹣5=﹣6;(2)显然m﹣2<m+3,利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2,去括号得:4m﹣8+3m+9﹣5=2,移项合并得:7m=6,解得:m=.20.下面是小明解方程7(x﹣1)﹣3x=2(x+3)﹣3的过程,请你仔细阅读,并解答所提出的问题:解:去括号,得7x﹣7﹣3x=2x+3﹣3.(第一步)移项,得7x﹣3x﹣2x=7+3﹣3.(第二步)合并同类项,得2x=7.(第三步)系数化为1,得x=.(第四步)(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2;(2)写出正确的解答过程.解:(1)该同学解答过程从第一步开始出错,错误原因是去括号时,3没乘以2,故答案为:一;去括号时,3没乘以2;(2)正确的解答过程为:去括号得:7x﹣7﹣3x=2x+6﹣3,移项得:7x﹣3x﹣2x=6﹣3+7,合并得:2x=10,系数化为1,得x=5.。
一元一次方程测试题(含答案)
一元一次方程测试题(含答案)一、选择题1.对等式x 2=y 3进行变形,则下列等式成立的是( ) A .2x =3y B .3x =2y C .x 3=y 2 D .x =32y 2.如果方程x 2n−5−2=0是关于x 的一元一次方程,则n 的值为( )A .2B .3C .4D .53.下列方程的变形正确的是( )A .x 5+1=x 2,去分母,得2x +1=5xB .5−2(x −1)=x +3,去括号,得5−2x −1=x +3C .5x +3=8,移项,得5x =8+3D .3x =−7,系数化为1,得x =−734.如图①,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即12+3=15.如图①,当y =505时,b 的值为( )A .205B .305C .255D .3155.学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x 人去甲处,则( )A .48=2(42﹣x )B .48+x =2×42C .48﹣x =2(42+x )D .48+x =2(42﹣x )6.方程|x|+|x −2022|=|x −1011|+|x −3033|的整数解共有( )A .1010B .1011C .1012D .20227.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;①一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;①一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.3208.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P,则P的值为()A.21B.24C.27D.36二、填空题9.写出一个以x=−2为解的一元一次方程:(任写一个即可).10.定义运算:a⊗b=a2−2ab,例如3⊗1=32−2×3×1=3,则关于x的方程(−3)⊗x=2的解是.11.已知非负实数a、b、c满足条件:3a+2b+c=4,2a+b+3c=5,设S=5a+4b+7c的最大值为m,最小值为n,则n−m等于.12.学校为“中国共产党建党100周年合唱比赛”印制宣传册,某复印店的收费标准如下:①印制册数不超过100册时,每册2元;①印制册数超过100册但不超过300册时,每册按原价打八折;①印制册数超过300册时,前300册每册按原价打八折,超过300册的部分每册按原价打六折;学校在复印店印制了两次宣传册,分别花费192元和576元,如果学校把两次复印的宣传册合并为一次复印,则可节省..元.三、计算题13.解方程:x+13−x−32=1.14.在数学实践课上,小明在解方程2x−15+1=x+a2时,因为粗心,去分母时方程左边的1没有乘10,从而求得方程的解为x=4,试求a的值及原方程正确的解.四、解答题15.五一前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.求甲、乙两种商品的每件进价分别是多少元?16.某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?17.若|x+3|=6,|y−4|=2,且|x|−|y|≥0,求|x−y|的值.五、综合题18.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3−1|可以理解为数轴上表示3 和 1 的两点之间的距离;|3+1|可以理解为数轴上表示3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为:4-(-3).根据以上阅读材料探索下列问题:(1)数轴上表示3 和9 的两点之间的距离是;数轴上表示 2 和﹣5 的两点之间的距离是;(直接写出最终结果)(2)①若数轴上表示的数x 和﹣2 的两点之间的距离是4,则x 的值为;①若x 为数轴上某动点表示的数,则式子|x+1|+|x−3|的最小值为.答案解析部分1.【答案】B2.【答案】B3.【答案】D4.【答案】A5.【答案】D6.【答案】C7.【答案】C8.【答案】C9.【答案】2x=−4(答案不唯一)10.【答案】−7611.【答案】-212.【答案】76.8或4813.【答案】解:2(x+1)−3(x−3)=62x+2−3x+9=62x−3x=6−2−9−x=−5x=5 14.【答案】解:把x=4代入2(2x−1)+1=5(x+a),可得2×(2×4−1)+1=5(4+a)20+5a=15a=−1把a=−1代入原方程,可得2x−15+1=x−1 22(2x−1)+10=5(x−1) 4x−2+10=5x−54x−5x=−5+2−10−x=−13x=13∴a=−1,x=1315.【答案】解:设乙种商品每件进价为x元.由题意可得,7(x−20)+2x=760解得x=100100−20=80元答:甲商品的每件进价是80元,乙商品的每件进价100元.16.【答案】解:设初一(1)班有x人,则初一(2)班有(x-5)人,初一(3)班有[101-x-(x-5])人.①初一(1)班有20多人,不足30人,①(1)班最多29人,(2)班最多24人,则(3)班最少48人;(1)班最少21人,(2)班最少16人,则(3)班最多64人.根据题意,①当初一(3)班的人数不超过60人时,有15x+15(x −5)+12[101 −x −(x −5)]=1365;解得:x=28.①x −5=23,101 −x −x+5= 50;①当初一(3)班的人数超过60人时,有15x+15(x −5)+10[101 −x −(x −5)]=1365解得:x= −38.①人数不能为负,①这种情况不存在;答:初一(1)班有28人.初一(2)班有23人.初一(3)班有50人.17.【答案】解:由|x+3|=6可知若x+3>0,则有x+3=6,解得x=3,|x|=3若x+3<0,则有-3-x=6,解得x=-9,|x|=9由|y−4|=2可知若y-4>0,则有y-4=2,解得y=6,|y|=6若y-4<0,则有4-y=2,解得y=2,|y|=2①|x|−|y|≥0①当|x|=3时,|y|=2满足条件则|x−y|=|3−2|=1当|x|=9时,|y|=6满足条件则|x−y|=|−9−6|=|−15|=15当|x|=9时,|y|=2满足条件则|x−y|=|−9−2|=|−11|=11综上所述|x−y|的值为1,11,15 18.【答案】(1)6;7(2)-6或2;4。
一元一次方程测试(含经典解析)
一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:.11.计算:(1)计算:(2)解方程:13.解方程:(1)(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3 18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k 为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).30.解方程:.参考答案与试题解析一.解答题(共30小题)1.解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.析:解答:解:原方程可化为:2x=7﹣1 合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.解一元一次方程.考点:专计算题.题:分此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)点:专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x ﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1 去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x ﹣﹣3 考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] ====.(3)解方程:4x﹣3(5﹣x)=2 去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15 合并同类项,得7x=17 系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7 (2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k 为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同。
北师大版数学七年级上 第5章 一元一次方程 单元测试卷 (含解析)
七年级(上)数学第5章一元一次方程单元测试卷一.选择题(共10小题)1.下列方程中是一元一次方程的是A.B.C.D.2.方程的解是A.B.C.D.3.要将等式进行一次变形,得到,下列做法正确的是A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以D.等式两边同时乘以4.下列解方程去分母正确的是A.由,得B.由,得C.由,得2D.由,得5.若单项式与的和仍是单项式,则方程的解为A.B.23C.D.296.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利,另一件亏损,在这次买卖中,该商贩A.不赔不赚B.赚9元C.赔18元D.赚18元7.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是□,小明想了想后翻看了书后的答案,此方程的解是,然后小明很快补好了这个常数,这个常数应是A.B.C.D.28.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.9.如图所示,两人沿着边长为的正方形,按的方向行走,甲从点以的速度、乙从点以的速度行走,当乙第一次追上甲时,将在正方形的边上.A.B.C.D.10.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设,则,解得,即.仿此方法,将化成分数是A.B.C.D.二.填空题(共8小题)11.若是关于的一元一次方程,则的值为.12.已知关于的方程的解是,则的值为.13.如果关于的方程和的解相同,那么.14.某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了天.15.一家服装店将某种服装按成本提高后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为.16.一个两位数的十位数字与个位数字的和是9.如果把这个两位数加上63,那么恰好成为原两位数的个位数字与十位数字对调后组成的两位数,则原两位数是.17.有一列数,按一定规律排列成1、、16、、,其中某相邻三个数的和是,那么这三个数中最大的数是.18.如图,在数轴上,点,表示的数分别是,10.点以每秒2个单位长度从出发沿数轴向右运动,同时点以每秒3个单位长度从点出发沿数轴在,之间往返运动,设运动时间为秒.当点,之间的距离为6个单位长度时,的值为.三.解答题(共7小题)19.解方程:(1)(2)20.小明在解方程去分母时,方程右边的漏乘了12,因而求得方程的解为,请你帮助小明求出的值,并正确解出原方程的解.21.对于有理数,定义种新运算,规定☆.(1)求3☆的值;(2)若☆☆,求的值.22.一辆客车和辆卡车同时从地出发沿同一公路同方向行驶,客车的行驶速度是60千米小时,卡车的行驶速度是40千米小时,客车比卡车早2小时经过地,、两地间的路程是多少千米?23.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?24.学校要购入两种记录本,其中种记录本每本3元,种记录本每本2元,且购买种记录本的数量比种记录本的2倍还多20本,总花费为460元.(1)求购买种记录本的数量;(2)某商店搞促销活动,种记录本按8折销售,种记录本按9折销售,则学校此次可以节省多少钱?25.若有,两个数,满足关系式,则称.为“共生数对“,记作.例如:当2,3满足时,则是“共生数对“.若是“共生数对“,求的值:(2)若是“共生数对“,判断是否也是“共生数对“,请通过计算说明:(3)请再写出两个不同的“共生数对”.参考答案一.选择题(共10小题)1.下列方程中是一元一次方程的是A.B.C.D.解:、该方程属于一元二次方程,故本选项不符合题意.、该方程属于分式方程,故本选项不符合题意.、该方程属于一元一次方程,故本选项符合题意.、该方程属于二元一次次方程,故本选项不符合题意.故选:.2.方程的解是A.B.C.D.解:移项得,,合并同类项得,,系数化为1,得.故选:.3.要将等式进行一次变形,得到,下列做法正确的是A.等式两边同时加B.等式两边同时乘以2 C.等式两边同时除以D.等式两边同时乘以解:将等式进行一次变形,等式两边同时乘以,得到.故选:.4.下列解方程去分母正确的是A.由,得B.由,得C.由,得2D.由,得解:、由,得,此选项错误;、由,得,此选项错误;、由,得,此选项错误;、由,得,此选项正确;故选:.5.若单项式与的和仍是单项式,则方程的解为A.B.23C.D.29解:单项式与的和仍是单项式,单项式与为同类项,即,,代入方程得:,去分母得:,去括号得:,移项合并得:,解得:,故选:.6.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利,另一件亏损,在这次买卖中,该商贩A.不赔不赚B.赚9元C.赔18元D.赚18元解:设盈利的衣服的进价为元,亏损的衣服的进价为元,依题意,得:,,解得:,.,该商贩赔18元.故选:.7.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是□,小明想了想后翻看了书后的答案,此方程的解是,然后小明很快补好了这个常数,这个常数应是A.B.C.D.2解:设□表示的数是,把代入方程得:,解得:,即这个常数是,故选:.8.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.解:依题意,得:,即.故选:.9.如图所示,两人沿着边长为的正方形,按的方向行走,甲从点以的速度、乙从点以的速度行走,当乙第一次追上甲时,将在正方形的边上.A.B.C.D.解:设乙行走后第一次追上甲,根据题意,可得:甲的行走路程为,乙的行走路程,当乙第一次追上甲时,,,此时乙所在位置为:,,乙在距离点处,即在上,故选:.10.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设,则,解得,即.仿此方法,将化成分数是A.B.C.D.解:设①,则②,②①得,解得,即,故选:.二.填空题(共8小题)11.若是关于的一元一次方程,则的值为1.解:根据题意可知:解得故答案为1.12.已知关于的方程的解是,则的值为.解:把代入方程得:,解得:,故答案为:.13.如果关于的方程和的解相同,那么.解:方程的解为,方程和的解相同,方程的解为,当时,,解得.故答案为:.14.某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了6天.解:设甲一共做了天,则乙做了天,根据题意得:,解得.则甲一共做了6天.故答案为:6.15.一家服装店将某种服装按成本提高后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为300元.解:设这种服装每件的成本价是元,由题意得:,解得:,故答案为:300元.16.一个两位数的十位数字与个位数字的和是9.如果把这个两位数加上63,那么恰好成为原两位数的个位数字与十位数字对调后组成的两位数,则原两位数是18.解:设这个两位数的十位数字为,则个位数字为,由题意列方程得,,解得,,这个两位数为18.故答案为:18.17.有一列数,按一定规律排列成1、、16、、,其中某相邻三个数的和是,那么这三个数中最大的数是256.解:有一列数,按一定规律排列成1、、16、、,这列数中每个数都是前面相邻数的倍,设这三个相邻的数中的中间数为,则第一个数为,第三个数为,,解得:,,,这三个数,256,,这三个数中最大的数是256,故答案为:256.18.如图,在数轴上,点,表示的数分别是,10.点以每秒2个单位长度从出发沿数轴向右运动,同时点以每秒3个单位长度从点出发沿数轴在,之间往返运动,设运动时间为秒.当点,之间的距离为6个单位长度时,的值为秒或秒或12秒.解:点,表示的数分别是,10,,,,①当点、没有相遇时,由题意得:,解得:;②当点、相遇后,点没有到达时,由题意得:,解得:;③当点到达返回时,由题意得:,解得:;综上所述,当点,之间的距离为6个单位长度时,的值为秒或秒或12秒;故答案为:秒或秒或12秒.三.解答题(共7小题)19.解方程:(1)(2)解:(1);(2)去分母,得去括号,得移项,得合并同类项,得系数化为1,得.20.小明在解方程去分母时,方程右边的漏乘了12,因而求得方程的解为,请你帮助小明求出的值,并正确解出原方程的解.解:根据题意得:,把代入得:,解得:,方程为,去分母得:,移项合并得:,解得:.21.对于有理数,定义种新运算,规定☆.(1)求3☆的值;(2)若☆☆,求的值.解:(1)根据题中的新定义得:原式;(2)已知等式利用题中的新定义化简得:,整理得:,解得:.22.一辆客车和辆卡车同时从地出发沿同一公路同方向行驶,客车的行驶速度是60千米小时,卡车的行驶速度是40千米小时,客车比卡车早2小时经过地,、两地间的路程是多少千米?解:解:设、两地间的路程为千米,根据题意得解得答:、两地间的路程是240千米.23.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?解:设分配人生产甲种零部件,根据题意,得,解得:,,答:分配10人生产甲种零部件,12人乙种零部件.24.学校要购入两种记录本,其中种记录本每本3元,种记录本每本2元,且购买种记录本的数量比种记录本的2倍还多20本,总花费为460元.(1)求购买种记录本的数量;(2)某商店搞促销活动,种记录本按8折销售,种记录本按9折销售,则学校此次可以节省多少钱?解:(1)设购买种记录本本,则购买种记录表本,依题意,得:,解得:,.答:购买种记录本120本,种记录本50本.(2)(元.答:学校此次可以节省82元钱.25.若有,两个数,满足关系式,则称.为“共生数对“,记作.例如:当2,3满足时,则是“共生数对“.若是“共生数对“,求的值:(2)若是“共生数对“,判断是否也是“共生数对“,请通过计算说明:(3)请再写出两个不同的“共生数对”.解:(1)是“共生数对”,,解得:;(2)也是“共生数对”,理由:是“共生数对”,,,也是“共生数对”;(3)由,得,若时,;若时,,和是“共生数对”。
一元一次方程 单元测试卷 (含答案)
第3章一元一次方程单元测试卷一、选择题(共8小题)1.下列方程中是一元一次方程的是()A.x+3=0B.x2﹣3x=2C.x+2y=7D.x﹣22.下列一元一次方程中,解为x=3的是()A.x+3=0B.5x+7=7﹣2x C.2x﹣4=4x﹣2D.3x﹣2=4+x 3.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1B.1C.﹣D.﹣4.下列变形一定正确的是()A.若x=y,则x﹣6=y+6B.若x=y,则3x﹣2=3y﹣2C.若2x=2y+1,则x=y+1D.若x2=y2,则x=y5.关于x的一元一次方程3x a﹣2+b=5的解为x=1,则a+b的值为()A.4B.5C.6D.86.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x7.制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作20个桌面,或者制作400条桌腿,现有12m3木材,要使生产出来的桌面和桌腿恰好都配成方桌,应安排()m3木材用来生产桌面.A.2B.6C.8D.108.某理财产品的年收益率为5.21%,若张老师购买x万元该种理财产品,定期2年,则2年后连同本金共有10万元,则根据题意列方程正确的是()A.(1+5.21)x=10B.(1+5.21)2x=10C.(1+5.21%)x=10D.(1+5.21%)2x=10二、填空题(共8小题)9.请写出一个解为4的一个一元一次方程.10.若3x2m﹣1+6=0是关于x的一元一次方程,则m的值为.11.若式子3x+4与2﹣5x的值相等,则x的值为.12.小张有三种邮票共18枚,它们的数量之比为1:2:3,则最多的一种邮票有枚.13.甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工,若乙单独整理需要20分钟完工.若甲先整理了10分钟,然后,甲、乙合作整理x分钟后完成此项工作.请列出方程:.14.一个两位数的十位数字与个位数字的和是9.如果把这个两位数加上63,那么恰好成为原两位数的个位数字与十位数字对调后组成的两位数,则原两位数是.15.无限循环小数如何化成分数呢?设x=0.333…①,则10x=3.333…②,则②﹣①,得9x=3,即x=,所以0.=0.33,根据上述提供的方法:把0.化成分数为.16.阅读理解:a,b,c,d是有理数,我们把符号称为2×2阶行列式,并且规定:=ad﹣bc,则满足等式=1的x的值是.三.解答题(共7小题,满分52分)17.(6分)解方程:(1)7x=12(x﹣5)(2)﹣=1.18.(6分)下面是马小虎同学做的一道题:解方程:解:①去分母,得4(2x﹣1)=12﹣3(x+2)②去括号,得8x﹣4=12﹣3x+6③移项,得8x+3x=12+6+4④合并同类项,得11x=22⑤系数化为1,得x=﹣2(1)上面的解题过程中最早出现错误的步骤(填序号)是.(2)请认真正确解方程:.19.(6分)列式计算.(1)一个数的25%是750的,这个数是多少?(2)甲、乙两数的和是35,其中甲数是乙数的,乙数是多少?20.(7分)根据线段图列出算式并计算(1)(2)21.(8分)某商场从厂家购进了A、B两种品牌足球共100个,已知购买A品牌足球比购买B品牌足球少花2800元,其中A品牌足球每个进价是50元,B品牌足球每个进价是80元.(1)求购进A、B两种品牌足球各多少个?(2)在销售过程中,A品牌足球每个售价是80元,很快全部售出;B品牌足球每个按进价加价25%销售,售出一部分后,出现滞销,商场决定打九折出售剩余的B品牌足球,两种品牌足球全部售出后共获利2200元,有多少个B品牌足球打九折出售?22.(9分)在“清洁乡村”活动中,某村长提出了两种购买垃圾桶方案.方案一:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案二:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设交费时间为x个月,方案一的购买费和垃圾处理费共为M元,方案二的购买费和垃圾处理费共为N元.(1)分别用x表示M,N;(2)若交费时间为12个月,哪种方案更合适,并说明理由.(3)交费时间为多少个月时,两种方案费用相同?23.(10分)如图,数轴上原点为O,A,B是数轴上的两点,点A对应的数是2,点B对应的数是﹣4,动点M,N同时从A、B出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为t(t>0).(1)AB两点间的距离是,动点M对应的数是,(用含t的代数式表示),动点N对应的数是.(用含t的代数式表示)(2)经过几秒钟,点M与点N到原点O的距离相等.(3)经过几秒钟,点M到原点O的距离OM与点N到原点O的距离ON恰好有OM:ON=2:3?参考答案一.选择题(共8小题)1.解:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式.故选:A.2.解:A.∵把x=3代入x+3=0得:左边=6,右边=0,左边≠右边,∴x=3不是方程x+3=0的解,故本选项不符合题意;B.∵把x=3代入5x+7=7﹣2x得:左边=22,右边=1,左边≠右边,∴x=3不是方程5x+7=7﹣2x的解,故本选项不符合题意;C.∵把x=3代入2x﹣4=4x﹣2得:左边=2,右边=10,左边≠右边,∴x=3不是方程2x﹣4=4x﹣2的解,故本选项不符合题意;D.∵把x=3代入3x﹣2=4+x得:左边=7,右边=7,左边=右边,∴x=3是方程3x﹣2=4+x的解,故本选项符合题意;故选:D.3.解:解方程2x+1=﹣1,得x=﹣1.把x=﹣1代入1﹣2(x﹣a)=2,得1﹣2(﹣1﹣a)=2.解得a=﹣,故选:D.4.解:A、若x=y,则x+6=y+6,原变形错误,故本选项不符合题意;B、若x=y,则3x﹣2=3y﹣2,原变形正确,故本选项符合题意;C、若2x=2y+1,则x=y+,原变形错误,故本选项不符合题意;D、若x2=y2,则x=y或x=﹣y,原变形错误,故本选项不符合题意;故选:B.5.解:∵方程3x a﹣2+b=5是关于x的一元一次方程,∴a﹣2=1,解得:a=3,即方程为3x+b=5,把x=1代入方程一元一次方程3x+b=5得:3+b=5,解得:b=2,∴a+b=3+2=5,故选:B.6.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.7.解:设用x m3木材制作桌面,则用(12﹣x)m3木材制作桌腿,根据题意得4×20x=400(12﹣x),解得x=10.答:应安排10m3木材用来生产桌面.故选:D.8.解:设张老师购买x万元该种理财产品,可得:(1+5.21%)2x=10,故选:D.二.填空题(共8小题)9.解:由题意可知:x﹣4=0,故答案为:x﹣4=0(答案不唯一)10.解:根据题意可知:2m﹣1=1解得m=1故答案为1.11.解:根据题意得:3x+4+2﹣5x=0,移项得:3x﹣5x=﹣4﹣2,合并得:﹣2x=﹣6,解得:x=3.故答案为:3.12.解:设数量最少的邮票有x枚,则另两种分别有2x枚和3x枚,依题意,得:x+2x+3x=18,解得:x=3,∴3x=9.故答案为:9.13.解:设甲、乙合作整理x分钟后完成此项工作.则.故答案是:.14.解:设这个两位数的十位数字为x,则个位数字为9﹣x,由题意列方程得,10x+9﹣x+63=10(9﹣x)+x,解得x=1,∴9﹣x=9﹣1=8,∴这个两位数为18.故答案为:18.15.解:设x=0.=0.777…①,则10x=7.777…②,则由①﹣②得,﹣9x=﹣7,即x=,0.=0.777…=,故答案为:.16.解:由题意可得:﹣=1,去分母得:3x﹣4(x+1)=6,去括号得:3x﹣4x﹣4=6,则﹣x=10,解得:x=﹣10.故答案为:﹣10.三.解答题(共7小题,满分52分)17.解:(1)去括号得:7x=12x﹣60,移项合并得:﹣5x=﹣60,解得:x=12;(2)去分母得:2(2x+1)﹣(10x+7)=6,去括号得:4x+2﹣10x﹣7=6,移项合并得:﹣6x=11,解得:x=﹣.18.解:(1)上面的解题过程中最早出现错误的步骤(填序号)是②;故答案为:②;(2)去分母,得4x﹣2(x﹣1)=8﹣(x+3),去括号,得4x﹣2x+2=8﹣x﹣3,移项,得4x﹣2x+x=8﹣2﹣3,合并同类项,得3x=3,系数化为1,得x=1.19.解:(1)首先假设这个数为x,根据题意,得25%x=750×.解得x=600答:这个是数是600;(2)设乙数是y.则甲数是(35﹣y),根据题意,得35﹣y=y解得y=.答:乙数是.20.解:(1)40×=25(千克).答:吃了25千克;(2)设计划产量x吨,依题意有(1+)x=2700,解得x=2400.答:计划产量2400吨.21.解:(1)设购进A品牌足球x个,则购进B品牌足球(100﹣x)个,根据题意,得80(100﹣x)﹣50x=2800,解得x=40.100﹣x=60.答:购进A品牌足球40个,则购进B品牌足球60个;(2)设有y个B品牌足球打九折出售,根据题意,得(80﹣50)×40+80×25%(60﹣y)+[80(1+25%)×90%﹣80]y=2200.解得y=20.答:有20个B品牌足球打九折出售.22.解:(1)依题意,得M=250x+3000;N=500x+1000.(2)当x=12时,M=250×12+3000=6000;当x=12时,N=500×12+1000=7000.∵6000<7000,∴若交费时间为12个月,选择方案一更合适.(3)依题意,得M=N,即250x+3000=500x+1000,解得x=8.答:交费时间为8个月时,两种方案费用相同.23.解:(1)AB两点间的距离是2﹣(﹣4)=6;动点M对应的数是2+t;(用含t的代数式表示)动点Q对应的数是﹣4+3t;(用含t的代数式表示)故答案为:6,2+t,﹣4+3t;(2)设经过t秒钟,点M与点N到原点O的距离相等,①点O恰好为线段MN中点,依题意有2+t+(﹣4+3t)=0,解得t=0.5;②M、N交于一点,依题意有2+t=﹣4+3t,解得t=3.故经过0.5或3秒钟,点M与点N到原点O的距离相等;(3)①M,N在原点的两边,(2+t):[﹣(﹣4+3t)]=2:3,解得t=;②M,N在原点的一边,(2+t):(﹣4+3t﹣4)=2:3,解得t=.故经过或秒钟,点M到原点O的距离OM与点N到原点O的距离ON恰好有OM:ON=2:3.。
一元一次方程单元测试题及答案
一元一次方程单元测试题及答案一、选择题1. 解一元一次方程 \( ax + b = 0 \)(\( a \neq 0 \))时,应将\( x \) 的系数化为1,即解得 \( x = \) 。
A. \( -\frac{b}{a} \)B. \( \frac{b}{a} \)C. \( \frac{a}{b} \)D. \( -\frac{a}{b} \)2. 方程 \( 3x - 5 = 14 \) 的解是:A. \( x = 3 \)B. \( x = 4 \)C. \( x = 5 \)D. \( x = 6 \)3. 如果 \( x \) 满足方程 \( 2x + 4 = 10 \),那么 \( x \) 的值是:A. \( 1 \)B. \( 2 \)C. \( 3 \)D. \( 4 \)二、填空题4. 解方程 \( 5x - 7 = 18 \) 时,首先需要将方程两边同时加上______,然后将两边同时除以______。
5. 方程 \( 3x + 2 = 7x - 1 \) 移项后,合并同类项得到 \( 4x = ______ \)。
三、解答题6. 解方程 \( \frac{2}{3}x - 1 = \frac{1}{2}x + 2 \)。
7. 解方程 \( 2(x - 3) = 3(4x + 1) - 5x \)。
四、应用题8. 某工厂生产一批零件,如果每天生产50个,需要20天完成。
如果每天生产60个,需要多少天完成?答案:1. A2. C3. B4. 7, 55. 36. 解:\( \frac{2}{3}x - \frac{1}{2}x = 2 + 1 \),得\( \frac{1}{6}x = 3 \),\( x = 18 \)。
7. 解:\( 2x - 6 = 12x + 3 - 5x \),得 \( -8x = 9 \),\( x =-\frac{9}{8} \)。
8. 解:设需要 \( x \) 天完成。
人教新版 七年级上册 数学 第3章 一元一次方程 单元测试卷 (含解析)
七年级(上)数学第3章一元一次方程单元测试卷一.选择题(共10小题)1.在方程,,,中一元一次方程的个数为A.1个B.2个C.3个D.4个2.对等式进行的变形,正确的是A.B.C.D.3.下列四组变形中,正确的是A.由,得B.由,得C.由,得D.由,得4.下列方程中,解是的方程是A.B.C.D.5.解一元一次方程时,去分母正确的是A.B.C.D.6.关于的方程的解为A.B.C.D.7.已知是关于的一元一次方程的解,则的值为A.B.C.1D.28.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.9.我国很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程A.B.C.D.10.如图,跑道由两个半圆部分,和两条直跑道,组成,两个半圆跑道的长都是,两条直跑道的长都是.小彬站在处,小强站在处,两人同时逆时针方向跑步,小彬每秒跑,小强每秒跑.当小强第一次追上小彬时,他们的位置在A.半圆跑道上B.直跑道上C.半圆跑道上D.直跑道上二.填空题(共6小题)11.关于的方程的解为.12.如果是关于的一元一次方程,则的值是.13.列方程:“的2倍与5的差等于的3倍”为:.14.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为,则商店应打折.15.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米.若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为千米小时.16.对、,定义新运算“”如下:,已知.则实数等于.三.解答题(共9小题)17.解方程:.18.解方程:19.解方程:20.某船从地顺流而下到达地,然后逆流返回到达地,一共用了8小时.已知此船在静水中的速度为8千米小时,水流的速度为2千米小时.求、两地之间的路程.21.某水果店一次批发买进苹果若干筐,每筐苹果的进价为30元,如果按照每筐40元的价钱卖出,那么当卖出比全部苹果的一半多5筐时,恰好收回全部苹果的成本,那么这个水果店这次一共批发买进苹果多少筐?22.某车间有60名工人,平均每人每天可以加工大齿轮3个或小齿轮4个,已知1个大齿轮和4个小齿轮配为一套,问如何安排工人使生产的产品刚好配套?23.已知,一张课桌包括1块桌面和4条桌腿,且的木料可制作25块桌面或120条桌腿,现有的木料,若使制作的桌面和桌腿刚好配套,则需要用多少木料制作桌面,多少木料制作桌腿.24.以下是圆圆解方程的解答过程.解:去分母,得.去括号,得.移项,合并同类项,得.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.25.清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?意思是:山林中有一座古寺,不知道寺内有多少僧人.已知一共有364只碗,刚好能够用完.每三个僧人一起吃一碗饭,每四个僧人一起吃一碗羹.请问寺内一共有多少僧人?请解答上述问题.参考答案一.选择题(共10小题)1.在方程,,,中一元一次方程的个数为A.1个B.2个C.3个D.4个解:一元一次方程有,,共2个,故选:.2.对等式进行的变形,正确的是A.B.C.D.解:对等式进行的变形后应该是,故选:.3.下列四组变形中,正确的是A.由,得B.由,得C.由,得D.由,得解:、根据等式性质1,两边都减7得,原变形正确,故此选项符合题意;、根据等式性质1,两边都加3得,原变形错误,故此选项不符合题意;、根据等式性质2,两边都乘6得,原变形错误,故此选项不符合题意;、根据等式性质2,两边都除以5得,原变形错误,故此选项不符合题意.故选:.4.下列方程中,解是的方程是A.B.C.D.解:、把代入方程得:左边,右边,左边右边,故本选项错误;、把代入方程得:左边,右边,左边右边,故本选项正确;、把代入方程得:左边,右边,左边右边,故本选项错误;、把代入方程得:左边,右边,左边右边,故本选项错误.故选:.5.解一元一次方程时,去分母正确的是A.B.C.D.解:方程两边都乘以6,得:,故选:.6.关于的方程的解为A.B.C.D.解:方程,移项合并得:,解得:.故选:.7.已知是关于的一元一次方程的解,则的值为A.B.C.1D.2解:把代入方程得:,解得:,故选:.8.为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费元,超过5方,每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于的方程,正确的是A.B.C.D.解:依题意,得:,即.故选:.9.我国很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程A.B.C.D.解:设有辆车,依题意,得:.故选:.10.如图,跑道由两个半圆部分,和两条直跑道,组成,两个半圆跑道的长都是,两条直跑道的长都是.小彬站在处,小强站在处,两人同时逆时针方向跑步,小彬每秒跑,小强每秒跑.当小强第一次追上小彬时,他们的位置在A.半圆跑道上B.直跑道上C.半圆跑道上D.直跑道上解:设小强第一次追上小彬的时间为秒,根据题意,得:,解得,则,,他们的位置在直跑道上,故选:.二.填空题(共6小题)11.关于的方程的解为4.解:方程,移项,得,合并同类项,得.解得.故答案为:4.12.如果是关于的一元一次方程,则的值是1.解:是关于的一元一次方程,,解得:,故答案为:1.13.列方程:“的2倍与5的差等于的3倍”为:.解:由题意可得:.故答案为:.14.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为,则商店应打8折.解:设商店打折,依题意,得:,解得:.故答案为:8.15.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米.若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为18千米小时.解:设轮船在静水中的速度为千米小时,则水流速度为千米小时,由题意可得:,解得:,轮船在静水中的速度为18千米小时,故答案为:18.16.对、,定义新运算“”如下:,已知.则实数等于 1 .解:当时,根据题意得:,解得:,不合题意;当时,根据题意得:,解得:,则实数等于1 .故答案为:1三.解答题(共9小题)17.解方程:.解:去分母,得:,去括号,得:,移项,得:,合并同类项,得:,系数化为1,得:.18.解方程:解:去分母得:,去括号得:,移项合并得:,解得:.19.解方程:解:去分母得:,移项合并得:,解得:.20.某船从地顺流而下到达地,然后逆流返回到达地,一共用了8小时.已知此船在静水中的速度为8千米小时,水流的速度为2千米小时.求、两地之间的路程.解:设、两地之间的路程为千米,依题意,得:,解得:.答:、两地之间的路程为30千米.21.某水果店一次批发买进苹果若干筐,每筐苹果的进价为30元,如果按照每筐40元的价钱卖出,那么当卖出比全部苹果的一半多5筐时,恰好收回全部苹果的成本,那么这个水果店这次一共批发买进苹果多少筐?解:设这个水果店一共买进水果筐,根据题意,得:,解得,答:这个水果店这次一共批发买进苹果20筐.22.某车间有60名工人,平均每人每天可以加工大齿轮3个或小齿轮4个,已知1个大齿轮和4个小齿轮配为一套,问如何安排工人使生产的产品刚好配套?解:设需安排名工人加工大齿轮,安排名工人加工小齿轮,依题意得:解得,则.答:安排15名工人加工大齿轮,安排45名工人加工小齿轮,才能使每天加工的大小齿轮刚好配套.23.已知,一张课桌包括1块桌面和4条桌腿,且的木料可制作25块桌面或120条桌腿,现有的木料,若使制作的桌面和桌腿刚好配套,则需要用多少木料制作桌面,多少木料制作桌腿.解:设用木料制作桌面,由题意得,解得,,答:用木料制作桌面,木料制作桌腿,能使制作得的桌面和桌腿刚好配套.24.以下是圆圆解方程的解答过程.解:去分母,得.去括号,得.移项,合并同类项,得.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.解:圆圆的解答过程有错误,正确的解答过程如下:去分母,得:.去括号,得.移项,合并同类项,得.25.清代诗人徐子云曾写过一首诗:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧?意思是:山林中有一座古寺,不知道寺内有多少僧人.已知一共有364只碗,刚好能够用完.每三个僧人一起吃一碗饭,每四个僧人一起吃一碗羹.请问寺内一共有多少僧人?请解答上述问题.解:设寺内有名僧人,由题意得,解得:.答:寺内一共有624名僧人.。
一元一次方程单元测试(含答案)
第三章【1 】一元一次方程单元测试班别___________姓名____________成绩_______________一. 选择题(第小题3分,共30分)1.(3分)下列各式中,是一元一次方程的是()A.﹣=1B.=3C.x2+1=5D.x﹣52.(3分)已知关于x的方程3﹣(a﹣2x)=x+2的解是x=4,则a的值是()A.4B.5C.3D.23.(3分)方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=()A.2B.﹣2C.±1D.±24.(3分)解方程﹣3x+4=x﹣8,下列移项准确的是()A.﹣3x﹣x=﹣8﹣4B.﹣3x﹣x=﹣8+4C.﹣3x+x=﹣8﹣4D.﹣3x+x=﹣8+45.(3分)方程﹣4x=的解是()A.x=﹣2B.x=﹣C.x=﹣8D.x=26.(3分)下列等式变形中不准确的是()A.若x=y,则x+5=y+5B.若=,则x=yC.若﹣3x=﹣3y,则x=yD.若mx=my,则x=y7.(3分)在解方程﹣=1时,去分母准确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)+2(2x+3)=1C.3(x﹣1)+2(2+3x)=6D.3(x﹣1)﹣2(2x+3)=68.(3分)已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.29.(3分)一个长方形的周长为30cm,若这个长方形的长削减1cm,宽增长2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(15﹣x)﹣2B.x+1=(30﹣x)﹣2C.x﹣1=(15﹣x)+2D.x﹣1=(30﹣x)+210.(3分)汽船在静水中速度为每小时20km,水流速度为每小时4km,从甲船埠顺流航行到乙船埠,再返回甲船埠,共用5小时(不计逗留时光),求甲.乙两船埠的距离.设两船埠间的距离为x km,则列出方程准确的是()A.(20+4)x+(20﹣4)x=5B.20x+4x=5C.+D.+二. 填空题(第小题4分,共24分)11.(4分)请写出一个一元一次方程,使得这个方程的解为“x=1”:12.(4分)已知2x﹣6=0,则4x=.13.(4分)若x与9的积等于x与﹣16的和,则x=.14.(4分)界说新运算:对于随意率性有理数a.b都有a⊗b=a(a﹣b)+1,等式右边是平日的加法.减法及乘法运算.比方:2⊗5=2×(2﹣5)+1=2×(-3)+1=-6+1=-5.若4⊗x=13,则x=.15.(4分)当k=时,方程kx+4=3﹣2x无解.16.(4分)一件工作,甲队独做10天可以完成,乙队独做可以15天完成.若两队合作2天,然后由乙队单独完成,还须要若干天可以完成剩下的工作?设乙队还须要x天可以完成剩下的工作,列方程为_______________.三. 解答题(共5小题,共46分)17.(12分)解方程:(1)12x+8=8x﹣4(2)x+3=x﹣2(3)4x﹣10=6(x﹣2)(4)﹣=118.(8分)方程x﹣3=的解与关于x的方程2x﹣m=x﹣2的解互为相反数,求m 的值.19.(8分)先浏览例1,再模仿例1解方程:|3x﹣4|=5.这就是“整体代换”数学思惟办法例1 解方程:|x﹣2|=3解:把x﹣2看作一个整体a,令a=x﹣2,方程可变形为|a|=3,这是“分类评论辩论”数学思惟办法∴a=3 或 a=﹣3即x﹣2=3 或 x﹣2=﹣3当x﹣2=3时,x=5当x﹣2=﹣3时,x=﹣1综上所述,方程的解为x=5或x=﹣1.20.(8分)某商场把一个双肩背的书包按进价进步60%标价,然后再按8折(标价的80%)出售,如许商场每卖出一个书包就可赚钱14元.这种书包的进价是若干元?21.(10分)某蔬菜公司的一种绿色蔬菜,若在市场上直接发卖,每吨利润为1000元,经粗加工后发卖,每吨利润可达4500元,经精加工后发卖,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工临盆才能是:假如对蔬菜进行粗加工,天天可加工16吨,假如进行精加工,天天可加工6吨,但两种加工方法不克不及同时进行,受季候等前提限制,公司必须在15天将这批蔬菜全体发卖或加工完毕,为此公司研制了三种可行计划:计划一:将蔬菜全体进行粗加工.计划二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接发卖.计划三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并正好15天完成.你以为哪种计划获利最多?为什么?一元一次方程单元测试参考答案与试题解析一.选择题(共10小题)ABBAB DDCCD二. 填空题(共6小题)11.x﹣1=012.12.13.﹣2.14.1.15.﹣216.(+)×2+=1.三. 解答题(共5小题)17.【解答】解:(1)移项归并得:4x=﹣12,解得:x=﹣3;(2)去分母得:8x+36=9x﹣24,移项归并得:﹣x=﹣60,解得:x=60;(3)去括号得:4x﹣10=6x﹣12,移项归并得:﹣2x=﹣2,解得:x=1;(4)去分母得:5x﹣15﹣8x﹣2=10,移项归并得:﹣3x=27,解得:x=﹣9.18.【解答】解:解方程x﹣3=x﹣得:x=3,把x=﹣3代入方程2x﹣m=x﹣2得:﹣6﹣m=﹣5,解得:m=﹣1.19.【解答】解:把3x﹣4看作一个整体b,令b=3x﹣4,方程可变形为|b|=5,这是“分类评论辩论”数学思惟办法∴b=5或b=﹣5,即3x﹣4=5或3x﹣4=﹣5.当3x﹣4=5时,x=3;当3x﹣4=﹣5时,x=﹣.综上所述,方程的解为x=3或x=﹣.20.【解答】解:设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.21.【解答】解:计划一:∵4500×140=630000(元),∴将食物全体进行粗加工后发卖,则可获利润630000元计划二:15×6×7500+(140﹣15×6)×1000=725000(元),∴将食物尽可能多的进行精加工,没来得及加工的在市场上直接发卖,则可获利润725000元;计划三:设精加工x天,则粗加工(15﹣x)天.依据题意得:6x+16(15﹣x)=140,解得:x=10,所以精加工的吨数=6×10=60,16×5=80吨.这时利润为:80×4500+60×7500=810000(元)答:该公司可以粗加工这种食物80吨,精加工这种食物60吨,可获得最高利润为810000元.。
七年级数学上册《第三章一元一次方程》单元测试卷-带答案(人教版)
七年级数学上册《第三章一元一次方程》单元测试卷-带答案(人教版)一、选择题1.若()125m m x--= 是关于x 的一元一次方程,则m 的值为( )A .-2B .-1C .1D .22.方程261x x -=-的解是( ).A .5B .52-C .5±D .533.把方程1263x x +-=去分母,下列变形正确的是( ) A .212x x -+= B .2(1)12x x -+= C .2112x x -+=D .2(1)2x x -+=4.某种商品的进价为120元,若按标价九折降价出售,仍可获利24元,该商品的标价为( )A .140元B .150元C .160元D .170元5.已知关于x 的一元一次方程20232023xa x +=的解是2022x =,关于y 的一元一次方程20232023bc a +=-的解是2021y =-(其中b 和c 是含有y 的代数式),则下列结论符合条件的是( )A .11b y c y =--=+, B .11b y c y =-=-,C .11b y c y =+=--, D .11b y c y =-=-, 6.若关于x 的方程240x a +-=的解是2x =-,则a 的值等于( )A .8B .0C .2D .8-7.下列方程变形正确的是( )A .由21x -=得2x =-B .由13x -=得31x =-C .由312x -=得23x =- D .由27x +=得72x =+8.已知关于x 的方程2x+a=1-x 与方程2x-3=1的解相同,则a 的值为( )A .2B .-2C .5D .-59. 下列方程变形中,正确的是( )A .方程1125x x--=,去分母得()51210x x --= B .方程()3251x x -=--,去括号得3251x x -=--C .方程2332t =,系数化为1得1t = D .方程3221x x -=+,移项得3212x x -=-+10.甲单位到药店购买了一箱消毒水和60元的口罩,乙单位在同一药店购买了一箱消毒水和25元的口罩,乙单位购买总价只相当于甲单位购买总价的712,一箱消毒水多少元?设一箱消毒水为x 元,则下列方程正确的是( )A .712(25+x)=60+x B .60+712x=25+x C .60-712x=25+xD .712(60+x)=25+x 二、填空题11.若关于x 的方程(1)20kk x ++=是一元一次方程,则k = . 12. 若3x m+5y 3与23x 2y n的差仍为单项式,则m+n = . 13.若()52x +与()29x -+互为相反数,则2x -的值为 .14.重百十周年店庆,小明妈妈以平时八折的优惠购买了一件衣服,节省24元,那么小明妈妈购买这件衣服实际花费了 元.三、计算题15.解方程:(1)()243x x --=(2)31142x x--= 四、解答题16.已知关于x 的方程 2312a x -= ,在解这个方程时,粗心的小琴同学误将 3x - 看成了3x + ,从而解得 3x = ,请你帮他求出正确的解.17.当x 取什么数时, 31x + 与 3x - 互为相反数。 18.已知关于x 的方程1322x x +=-与23x m mx -=+的解互为倒数,求m 的值. 19.在即将到来的“6.18年中大促”活动中,某商场计划对所有商品打折出售.已知某商品的进价是1500元,按照商品标价的八折出售时,利润率是12%,那么该商品的标价是多少元?五、综合题20.已知方程(1﹣m 2)x 2﹣(m+1)x+8=0是关于x 的一元一次方程.(1)求m 的值及方程的解.(2)求代数式 22152(2)3(2)3x xm x xm -+-+ 的值.21.如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程-20x =是方程10x -=的后移方程.(1)判断方程210x +=是否为方程230x +=的后移方程 (填“是”或“否”); (2)若关于x 的方程30x m +=是关于x 的方程()()2243x x -=-+的后移方程,求m 的值.22.卡塔尔世界杯的举办掀起了青少年校园足球热,某体育用品商店对甲、乙两种品牌足球开展促销活动,已知甲、乙两种品牌足球的标价分别是:160元/个,60元/个,现有如下两种优惠方案: 方案一:不办理会员卡,购买甲种品牌足球享受8.5折优惠;购买乙种品牌足球,5个(含5个)以上享受8.5折优惠,5个以下按标价购买.方案二:办理一张会员卡100元,购买甲、乙两种品牌足球均享受7.5折优惠.(1)若购买甲种品牌足球3个,乙种品牌足球4个,哪一种方案更优惠?多优惠多少元? (2)若购买甲种品牌足球若干个,乙种品牌足球6个,方案一与方案二所付金额相同,求购买甲种品牌的足球个数.参考答案与解析1.【答案】A【解析】【解答】解:∵()125m m x--= 是关于x 的一元一次方程∴|m|-1=1且m-2≠0 解之:m=±2且m≠2 ∴m=-2. 故答案为:A【分析】利用一元一次方程的定义:含一个未知数,含未知数项的最高次数为1,一次项的系数不等于0,可得到关于m 的方程和不等式,分别求解,可得到m 的值.2.【答案】A【解析】【解答】解:261x x -=-移项得261x x -=- 合并同类项得5x = 故答案为:A.【分析】根据解一元一次方程的解题步骤“移项、合并同类项”求出方程的解,即可得出答案.3.【答案】B【解析】【解答】解:1263x x +-=去分母,得2(1)12x x -+= 故答案为:B.【分析】由等式的性质,在方程的两边同时乘以6,右边的2也要乘以6,不能漏乘,据此即可得出答案.4.【答案】C【解析】【解答】解:设该商品的标价为x 元0.9x=120×(1+20%) 解得:x=160答:该商品的标价为160元 故答案为:C .【分析】设该商品的标价为x 元,根据题意列出方程0.9x=120×(1+20%),再求出x 的值即可。
第3章《一元一次方程》单元测试卷(附答案)
《一元一次方程》单元测试卷第Ⅰ卷(选择题)一.选择题(共12小题)1.已知(m﹣n)x=m﹣n,若根据等式的性质可得x=1,那么m、n必须满足的条件是()A.m=n B.m=﹣n C.m≠n D.m、n为任意数2.下列方程中,是一元一次方程的是()A.x2+x+1=x2+2 B.x+y=9 C.x+=2 D.3x=3(x﹣1)3.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.24.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm5.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=26.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.57.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人8.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数9.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)×aC.b=(1+22.1%)×2a D.b=22.1%×2a10.苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元11.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人12.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶.这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶第Ⅱ卷(非选择题)二.填空题(共4小题)13.甲、乙二人在圆形跑道上从同一点A同时出发.并按相反方向跑步.甲的速度为每秒5m,乙的速度为每秒8m.到他们第一次在A点处再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇了次.14.有五个正整数排成一列,从第二个数起,每一个数都不小于前一个的两倍,若已知这五个数之和是2018,则最后一个数的最小可能值是.15.如图,某超市一楼和二楼之间架设了两台长度相同的上下自动扶梯,向上每秒移动的距离和向下每秒移动的距离相等,小可踏入上楼的扶梯并且以每秒0.3米的速度向上行走,同时,小逸踏入下楼的扶梯并且以每秒0.2米的速度向下行走.过了27秒,小可刚好位于扶梯的中点,再过了3秒,她和小逸相遇,自动扶梯的长度是.16.《数》是中国数学史上的重要著作,比我们熟知的汉代《九章算术》还要古老,保存了许多古代算法的最早例证(比如“勾股”概念),改变了我们对周秦数学发展水平的认识.文中记载“有妇三人,长者一日织五十尺,中者二日织五十尺,少者三日织五十尺,今威有功五十尺,问各受几何?”译文:“三位女人善织布,姥姥1天织布50尺,妈妈2天织布50尺,妞妞3天织布50尺.如今三人齐上阵,共同完成50尺织布任务,请问每人织布几尺?”设三人一共用了x天完成织布任务,则可列方程为.三.解答题(共6小题)17.解方程:﹣=1.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?20.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:9(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?21.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?22.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成.森林体验馆包括“八达岭森林变迁“、“八达岭森林大家族“、“森林让生活更美好“等展厅,户外游憩体验系统根据森林生态旅游最新理念,采取少设施、设施集中的点线布局模式,突破传统的“看风景“旅游模式,强调全面体验森林之美.在室内展厅内,有这样一个可以动手操作体验的仪器,如图,小明在社会大课堂活动中,记录了这样一组数字:A,B两地相距300公里,小轿车以90公里/小时的速度从A地开往B地;公共汽车以60公里/小时的速度从B开往A地,两车同时出发相对而行,两车在C地相遇,相遇后继续前行到达各自的目的地.(1)多少小时后两车相遇?(2)小轿车和公共汽车分别到达目的地,计算小轿车的碳足迹为多少?公共汽车的碳中和树木棵数为多少?(3)根据观察或计算说明,为了减少环境污染,我们应该选择哪种交通工具出行更有利于环保呢?人教版数学七年级(上)第3章《一元一次方程》单元测试卷参考答案与试题解析一.选择题(共12小题)1.已知(m﹣n)x=m﹣n,若根据等式的性质可得x=1,那么m、n必须满足的条件是()A.m=n B.m=﹣n C.m≠n D.m、n为任意数【解答】解:已知(m﹣n)x=m﹣n,根据等式的性质可得x=1,则m﹣n≠0,那么m、n必须满足的条件是:m≠n.故选:C.2.下列方程中,是一元一次方程的是()A.x2+x+1=x2+2 B.x+y=9 C.x+=2 D.3x=3(x﹣1)【解答】解:A、整理后,符合一元一次方程的定义,故此选项正确;B、含有两个未知数,故不是一元一次方程,故此选项错误;C、分母中含有未知数,是分式方程,故此选项错误;D、整理后,不含有未知数,故不是一元一次方程,故此选项错误.故选:A.3.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.2【解答】解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.4.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.5.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.6.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.5【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.7.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.8.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.9.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)×aC.b=(1+22.1%)×2a D.b=22.1%×2a【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.10.苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.11.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人【解答】解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.12.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶.这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶【解答】解:设妈妈买的饮料一共有x瓶,则第一天喝了(x+0.5)瓶,那么剩下(x﹣x﹣0.5)瓶,则第二天喝了(x﹣x﹣0.5)+0.5(瓶),那么剩下(x﹣x﹣0.5)﹣(瓶),所以第三天喝了{(x﹣x﹣0.5)﹣}+0.5(瓶),(x+0.5)++ {(x﹣x﹣0.5)﹣}+0.5=x,解得x=7.故选:C.二.填空题(共4小题)13.甲、乙二人在圆形跑道上从同一点A同时出发.并按相反方向跑步.甲的速度为每秒5m,乙的速度为每秒8m.到他们第一次在A点处再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇了4次.【解答】解:设路程为x,相向而行相遇时间=,相背而行相遇时间=;最后相遇在A点时相遇次数:≈4(次).答:从出发到结束他们共相遇了4次.故答案为:4.14.有五个正整数排成一列,从第二个数起,每一个数都不小于前一个的两倍,若已知这五个数之和是2018,则最后一个数的最小可能值是1043.【解答】解:设第一个数是x,则第2个数是2x,第3个数是4x,第4个数是8x,第5个数是16x,依题意有x+2x+4x+8x+16x=2018,解得x=65,∵x为整数,x最大取65,31x=31×65=2015,8x+1=8×65+1=521,521×2+1=1043.答:最后一个数的最小可能值是1043.故答案为:1043.15.如图,某超市一楼和二楼之间架设了两台长度相同的上下自动扶梯,向上每秒移动的距离和向下每秒移动的距离相等,小可踏入上楼的扶梯并且以每秒0.3米的速度向上行走,同时,小逸踏入下楼的扶梯并且以每秒0.2米的速度向下行走.过了27秒,小可刚好位于扶梯的中点,再过了3秒,她和小逸相遇,自动扶梯的长度是30米.【解答】解: +×=,1﹣=,设自动扶梯的长度是x米,依题意有(﹣)x=(0.3﹣0.2)×(27+3),解得x=27.答:自动扶梯的长度是30米.故答案为:30米.16.《数》是中国数学史上的重要著作,比我们熟知的汉代《九章算术》还要古老,保存了许多古代算法的最早例证(比如“勾股”概念),改变了我们对周秦数学发展水平的认识.文中记载“有妇三人,长者一日织五十尺,中者二日织五十尺,少者三日织五十尺,今威有功五十尺,问各受几何?”译文:“三位女人善织布,姥姥1天织布50尺,妈妈2天织布50尺,妞妞3天织布50尺.如今三人齐上阵,共同完成50尺织布任务,请问每人织布几尺?”设三人一共用了x天完成织布任务,则可列方程为(50++)x=50.【解答】解:设三人一共用了x天完成织布任务,则可列方程为:(50++)x=50.故答案是:(50++)x=50.三.解答题(共6小题)17.解方程:﹣=1.【解答】解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.19.M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?【解答】解:设购买了桂花树苗x棵,根据题意,得:5(x+11﹣1)=6(x﹣1),解得:x=56.答:购买了桂花树苗56棵.20.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(2)若该水果店按售价销售完这批水果,获得的利润是多少元?【解答】解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元)答:利润为495元.21.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?【解答】解:(1)设每月主叫时间为x分钟.①当0≤x≤200时,方式一收费58元,方式二收费88元,故不存在两种方式收费相同;②当200<x≤400时,计费方式一收费58+0.2(x﹣200)=0.2x+18,计费方式二收费88元,∴0.2x+18=88,解得:x=350,∴当主叫时间为350min时,两种方式收费相同.(2)当x>400时,计费方式二收费88+0.25(x﹣400)=0.25x﹣12.根据题意得:0.2x+18=0.25x﹣12,解得:x=600,又∵0.25>0.2,∴当400<x<600时,选择计费方式二省钱;当x=600时,两种计费方式收费相同;当x>600时,选择计费方式一省钱.22.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成.森林体验馆包括“八达岭森林变迁“、“八达岭森林大家族“、“森林让生活更美好“等展厅,户外游憩体验系统根据森林生态旅游最新理念,采取少设施、设施集中的点线布局模式,突破传统的“看风景“旅游模式,强调全面体验森林之美.在室内展厅内,有这样一个可以动手操作体验的仪器,如图,小明在社会大课堂活动中,记录了这样一组数字:根据以上材料回答问题:A,B两地相距300公里,小轿车以90公里/小时的速度从A地开往B地;公共汽车以60公里/小时的速度从B开往A地,两车同时出发相对而行,两车在C地相遇,相遇后继续前行到达各自的目的地.(1)多少小时后两车相遇?(2)小轿车和公共汽车分别到达目的地,计算小轿车的碳足迹为多少?公共汽车的碳中和树木棵数为多少?(3)根据观察或计算说明,为了减少环境污染,我们应该选择哪种交通工具出行更有利于环保呢?【解答】解:(1)设经过x小时两车相遇根据题意列方程得90x+60x=300解得:x=2答:两车2小时相遇.(2)小轿车到达目的地,碳足迹为22.5×3=67.5(Kg)公共汽车分别到达目的地碳中和树木棵数为:0.005×3=0.015(棵)(3)通过观察得出,我们应尽量选择公共交通出行,有利于环保.。
一元一次方程单元测试卷(三套含答案)
一元一次方程单元测试卷(1)一.选择题(每题3分,共18分) 1.下列等式变形正确的是( ) A.如果s=12ab ,那么b=2saB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my ,那么x=y 2.下列方程中,是一元一次方程的是( )A. 243x x -=B.0x =C.21x y +=D. 11x x-= 3.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x C. 611024=+-+x x4.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是( ) A. 1,4B. 2,3C. 3,2D. 4,15.某区中学生足球赛共赛8轮(即每队均参赛8 场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了( )场.A.3B.4C.5D.66.某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店( )A.不赚不亏B.赚5元C.亏5元D. 赚10元 二.填空题(每题4分,共24分)7.当=x ________时,代数式24+x 与93-x 的值互为相反数.8.已知 ()0332=-+--m x m m 是关于x 的一元一次方程, 则m=________. 9.在梯形面积公式 S =12(a + b ) h 中, 用 S 、a 、h 表示b ,b = ________, 当16,3,4S a h ===时, b 的值为________.10.若关于x 的方程mx+2=2(m-x )的解是12x =,则m=________.11.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计).12.如图,一个长方形恰被分成六个正方形,其中最小的正方形面积是1平方厘米,则这个长方形的面积为________平方厘米. 三.解方程(每题5分,共30分)13). 5x +3=-7x+9 14). 14)13(2)1(5-=---x x x15).312x +=76x+ 16). 511241263x x x +--=+17).75.001.003.02.02.02.03=+-+xx 18).解关于x 的方程9(2)4(3m x m x m---=四.应用题(每题7分,共28分)19.甲仓库有粮120吨,乙仓库有粮90吨.从甲仓库调运多少吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.20.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?21.某城市按以下规定收取煤气费:每月使用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,超过部分按每立方米1.2元收费。
一元一次方程单元测试题及答案
一元一次方程单元测试题及答案测试题:1. 解方程:2x + 3 = 72. 解方程:4(x - 5) = 163. 解方程:3(2x - 1) + 2 = 5(x + 3) - 14. 解方程:5x + 3 = 2 - 4x5. 解方程:2(3x + 4) - 5(x - 2) = 146. 解方程:3(2x - 1) = 4(3x + 2) - 17. 解方程:6x - 7 = 5(x - 3)8. 解方程组:2x + 3y = 74x - 2y = 89. 解方程组:3x + y = 4x - 2y = -110. 解方程组:2x + y = 13x - 2y = 4答案及解析:1. 解方程:2x + 3 = 7解:首先,将方程中的常数项移动到等号的右边,得到2x = 7 - 3。
接着,将式子进行计算,得到2x = 4。
最后,将方程两边同时除以2,得到x = 2。
答案:x = 22. 解方程:4(x - 5) = 16解:首先,将括号内的式子进行计算,得到4x - 20 = 16。
接着,将常数项移动到等号的右边,得到4x = 16 + 20。
最后,将方程两边同时除以4,得到x = 9。
答案:x = 93. 解方程:3(2x - 1) + 2 = 5(x + 3) - 1解:首先,将括号内的式子进行计算,得到6x - 3 + 2 = 5x + 15 - 1。
接着,将常数项移动到等号的右边,得到6x - 1 = 5x + 14。
接着,将方程两边同时减去5x,得到x - 1 = 14。
最后,将方程右边的常数项移动到等号左边,得到x = 15。
答案:x = 154. 解方程:5x + 3 = 2 - 4x解:首先,将方程中的常数项移动到等号的右边,得到5x = 2 - 3 + 4x。
接着,将方程两边同时减去4x,得到x = 2 - 3。
最后,将右边的常数项进行计算,并化简方程,得到x = -1。
答案:x = -15. 解方程:2(3x + 4) - 5(x - 2) = 14解:首先,将括号内的式子进行计算,得到6x + 8 - 5x + 10 = 14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】【解答】解:(1)①∵ 800<2400<4000, ∴ 当王老师获得稿费为 2000 元时,应纳税:(2000-800)×14%=168(元); ②当王老师获得稿费为 5000 元时,应纳税:5000×11%=550(元); 【分析】(1)根据条件②计算即可;根据条件③计算即可; (2)设王老师所获得的这笔稿费为 元,根据纳税金额,可判断稿费 800<x<4000,属于 第二种,利用稿费 420 元,列出方程,求出 x 值即可.
2.已知有理数 ,定义一种新运算: ⊙ =(a+1)
.如: ⊙ =(2+1)
(1)计算(-3)⊙ 的值; (2)若 ⊙(-4)=6,求 的值.
【答案】 (1)解:∵ ⊙ =(a+1)
,
∴ (-3)⊙ =
,
=
,
=
,
=;
(2)解:∵ ⊙(-4)=6,
∴
,
即
,
解得
.
【解析】【分析】(1)根据 ⊙ =(a+1)
(2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的
过程中能否相遇。 若能,求出发多长时间才能相遇;若不能,说明理由.
【答案】 (1)解:设男生有 x 人,女生有(x+70)人,
由题意得:x+x+70=490,
解得:x=210,则女生 x+7源自=210+70=280(人).
5.试根据图中信息,解答下列问题.
(1)一次性购买 6 根跳绳需________元,一次性购买 12 根跳绳需________元; (2)小红比小明多买 2 根,付款时小红反而比小明少 5 元,你认为有这种可能吗?若有, 请求出小红购买跳绳的根数;若没有,请说明理由. 【答案】 (1)150;240 (2)解:设小红购买 x 跳绳根,那么小明购买(x-2)根跳绳, 25x×0.8=25(x-2)-5,
∴ AC=BC= =65 A、B 的中点 C 对应的数是 100﹣65=35. 故答案为:35. 【分析】(1)根据点 A 和点 B 的坐标,求出 AB 之间的距离,取其中点,找出 C 点对应的 数字即可。 (2)根据题意,可以设点 D 对应的数为 x,根据其与 AB 两点之间的距离关系,列出方程 解出 x 的值,即可得到 D 点对应的坐标。 (3)根据题意设二者相遇的时间为 t,根据二者运动的距离之和为线段 AB 的长度列出方 程,解出 t 的值,即可得到 E 点对应的数。
定义可得方程,解方程即可.
,直接代入计算即可;(2)根据新
3.已知:如图所示,O 为数轴的原点,A,B 分别为数轴上的两点,A 点对应的数为﹣ 30,B 点对应的数为 100.
(1)A、B 的中点 C 对应的数是________; (2)若点 D 数轴上 A、B 之间的点,D 到 B 的距离是 D 到 A 的距离的 3 倍,求 D 对应的 数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离); (3)若 P 点和 Q 点是数轴上的两个动点,当 P 点从 B 点出发,以 6 个单位长度/秒的速度 向左运动时,Q 点也从 A 点出发,以 4 个单位长度/秒的速度向右运动,设两点在数轴上的 E 点处相遇,那么 E 点对应的数是多少? 【答案】 (1)35 (2)解:设点 D 对应的数是 x,则由题意, 得 100﹣x=3[x﹣(﹣30)] 解得,x=2.5 所以点 D 对应的数是 2.5.
一、初一数学一元一次方程解答题压轴题精选(难)
1.下列图表是 2017 年某校从参加中考体育测试的九年级学生中随机调查的 10 名男生跑
1000 米和 10 名女生跑 800 米的成绩.
(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,
男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分?
解得: x=11; 小明购买了:11-2=9 根. 答:小红购买 11 根跳绳. 【解析】【解答】解:(1)一次性购买 6 根跳绳需 25×6=150(元); 一次性购买 12 根跳绳需 25×12×0.8=240(元); 故答案为:150;240. 【分析】(1)根据单价×数量=总价,求出 6 根跳绳需多少元;购买 12 根跳绳,超过 10 根,打八折是指现价是原价的 80%,用单价×数量×0.8 即可求出购买 12 根跳绳需多少元; (2)有这种可能,可以设小红购买 x 跳绳根,那么小明购买 x-2 根跳绳,列出方程 25x×0.8=25(x-2)-5,解答即可.
(3)解:设 t 秒后相遇, 由题意,4t+6t=130, 解得,t=13, BE=100﹣6t=78, 100﹣78=22 答:E 点对应的数是 22. 【解析】【解答】解:(1)点 A 表示的数是﹣30,点 B 表示的数是 100,
所以 AB=100﹣(﹣30)=130 因为点 C 是 AB 的中点,
4.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是: 稿费不高于 800 元
的不纳税; 稿费高于 800 元,而低于 4000 元的应缴纳超过 800 元的那部分稿费的
的税; 稿费为 4000 元或高于 4000 元的应缴纳全部稿费的 的税. 试根据上述纳税的计算方法作答: (1)若王老师获得的稿费为 2000 元,则应纳税________元,若王老师获得的稿费为 5000 元,则应纳税________元 (2)若王老师获稿费后纳税 280 元,求这笔稿费是多少元? 【答案】 (1)168 ;550
故女生得满分人数:
(人)
(2)解:不能; 假设经过 x 分钟后,1 号与 10 号在 1000 米跑中能首次相遇,根据题意得:
解得
又∵ ∴ 考生 1 号与 10 号不能相遇。 【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根 据题意表达出 1 号跟 10 号的速度,两位若相遇,相减的路程为 400 米,得出的时间为 4.8, 但是 4.8 分钟大于 3 分钟,所以两位在测试过程中不会相遇。