第课时 认识勾股定理

合集下载

《勾股定理第一节》课件

《勾股定理第一节》课件
《勾股定理第一节》PPT 课件
欢迎来到《勾股定理第一节》的PPT课件!在这里,我们将深入了解勾股定理 的定义、历史、应用以及如何利用它解决几何问题。准备好迎接数学的奇妙 之旅了吗?
勾股定理的定义
1 直角三角形
在直角三角形中,勾股定理描述了三条边之间的关系,即c²= a²+ b²,其中c为斜边,a和b 为两条直角边。
2 广泛应用
勾股定理在现实世界中有广泛的应用,为我们解决实际问题提供了有力工具。
3 数学乐趣
通过深入研究勾股定理,我们不仅能够提升数学技巧,还可以享受数学的乐趣。
2 数学公式
勾股定理可以用数学公式表示为a²+ b²= c²,其中a、b、c分别代表直角三角形的三条边。
3 几何推理
通过勾股定理,我们能够得到直角三角形内角的相互关系,进而应用于解决各种几何问 题。
勾股定理的历史
古代秦国
勾股定理最早可以追溯到古代秦国,文献 中有记载了解决直角三角形的方法。
中国古代
中国古代数学家对勾股定理进行了独特的 研究,发现了更多的特性和应用。
古希腊
勾股定理的现代形式由古希腊数学家一并 提出,并以毕达哥拉斯之名命名。
欧洲文艺复兴
欧洲文艺复兴时期,勾股定理开始在欧洲 广为传播,并成为现代数学的基础。
勾股定理的应用
1
导航与测量
2Байду номын сангаас
勾股定理可以帮助我们在导航和
测量中确定距离和方向。
3
建筑设计
勾股定理在建筑设计中广泛应用, 例如测量直角墙角、设计稳固的 支撑结构等。
物理学
勾股定理在物理学中有广泛应用, 尤其是在力学、光学和电磁学等 领域。
利用勾股定理求解几何问题

1.1探索勾股定理第1课时认识勾股定理(教案)2022秋八年级上册初二数学北师大版(安徽)

1.1探索勾股定理第1课时认识勾股定理(教案)2022秋八年级上册初二数学北师大版(安徽)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和证明方法这两个重点。对于难点部分,我会通过构造图形和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际测量合作意识和表达交流素养,通过小组讨论和课堂分享,促进学生之间的交流与合作。
三、教学难点与重点
1.教学重点
-理解勾股定理的概念及其表达形式:即直角三角形中,两条直角边的平方和等于斜边的平方。这是本节课的核心内容,教师需通过直观的图形演示和实际操作,使学生深刻理解这一数学规律。
-掌握勾股定理的证明方法:通过不同的证明方法(如构造法、割补法、代数法等),让学生体会数学的严谨性和多样性,加强对定理的理解。
-灵活运用勾股定理解决问题:学生在解决问题时可能会出现对定理运用不灵活的情况,例如,无法将实际问题转化为直角三角形的边长计算问题。
-掌握勾股定理的适用范围:学生需要明确勾股定理只适用于直角三角形,对于非直角三角形不适用。
举例:针对证明过程的难点,可以设计以下教学活动:
a.通过割补法证明勾股定理时,教师可以引导学生通过剪纸、拼接等实际操作,直观地感受证明过程,降低理解难度。
-应用勾股定理解决实际问题:将勾股定理应用于解决直角三角形边长计算等问题,使学生掌握定理在实际生活中的运用。

《勾股定理》课件

《勾股定理》课件
《勾股定理》PPT课件
欢迎来到《勾股定理》PPT课件!跟随我一起探索这一古老而神奇的数学定理, 了解它的定义、历史、应用和证明方法。
什么是勾股定理
勾股定理是解决直角三角形边长关系的数学定理。它关联了三角形的三边, 为许多现实生活和科学领域提供了重要的应用基础。
勾股定理的历史发展
1
中国古代
古代中国数学家首次发现了勾股定理的特殊情形,应用于土地测量和农业。
于理解。
归纳法证明
利用归纳法和数学归纳原理,证明勾股定理 对于任意正整数的直角三角形都成立。
代数法证明
运用代数运算和平方差公式,将直角三角形 的边长代入公式,推导出勾股定理的等式。
勾股定理与形的关系
勾股定理与圆形密切相关,可推导出圆的周长、半径、直径等与直角三角形 边长之间的关系。
勾股定理的推广
勾股定理在直角三角形的应用
勾股定理可用于求解直角三角形的任一边长,或计算三角形的周长、面积和 角度,帮助解决实际问题,如建筑、航海和测绘。
勾股定理的证明方法
1
几何法证明
2
通过构图和几何推理,演示直角三角形中各 条边与角度之间的关系,从而证明勾股定理。
3
巧妙证明
4
介绍一些有趣的巧妙证明方法,如使用数学 图形和变换,让勾股定理变得更加直观和易
2
古希腊
古希腊数学家毕达哥拉斯将已知的勾股定理完善为通用公式,为后世的发展奠定 了基础。
3
现代
勾股定理在现代数学和科学领域扮演着重要角色,为三角学、几何学和物理学等 提供了关键工具。
勾股定理的定义
勾股定理表明在一个直角三角形中,三条边的长度满足a²+ b²= c²,其中c是斜边,a和b是两个直角边。

《勾股定理》PPT优质课件(第1课时)

《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,

勾股定理课件

勾股定理课件

勾股定理课件
以下是一个关于勾股定理的课件内容例子:
标题:勾股定理
导言:勾股定理是数学中的重要定理,常用于解决直角三角形的问题。

本课件将介绍勾股定理的原理和应用。

一、勾股定理的定义
勾股定理又称毕达哥拉斯定理,指出:在一个直角三角形中,直角边的平方等于其他两条边的平方和。

二、勾股定理的表达式
设直角三角形的两条直角边分别为a和b,斜边为c,根据勾
股定理,我们可以得到以下表达式:
a² + b² = c²
三、勾股定理的证明
勾股定理的证明有多种方法,这里我们介绍一种常见的证明方法——几何法证明。

四、勾股定理的应用
勾股定理在实际问题中有广泛的应用,主要包括以下几个方面:
1. 求解直角三角形的边长和角度;
2. 判断三条边长是否能构成直角三角形;
3. 解决与直角三角形相关的实际问题,如测量高度、投影距离等。

五、例题解析
通过几个实例题目的解析,让学生更好地理解勾股定理的应用。

六、小结
本课件通过介绍勾股定理的定义、表达式、证明和应用等内容,帮助学生掌握勾股定理的基本知识和应用方法。

参考资料:勾股定理教材、数学课本等。

注意:此课件仅为提供基本框架和内容示例,具体内容和形式可根据教学需要进行调整和补充。

1勾股定理(第1课时)(教学PPT课件(华师大版))28张

1勾股定理(第1课时)(教学PPT课件(华师大版))28张
正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标

北师大版八年级数学上册第一章全部课件

北师大版八年级数学上册第一章全部课件
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程

17.1勾股定理(第1课时)课件(共23张PPT)

17.1勾股定理(第1课时)课件(共23张PPT)

让我们一起再探究:等腰直角三角形三边关系
C A B 9 C A B 图2-2 4 9 4 18 8
图2-1
(图中每个小方格代表一个单位面积)
C A B 图2-1 A B
S正方形c
C
1 4 3318 2
图2-2
(图中每个小方格代表一个单位面积)
(单位面积)
分“割”成若干个直 角边为整数的三角形
弦 勾

图1-1
漂亮的勾股树
活动 2
相传2500年前,毕达哥拉斯有一次 在朋友家里做客时,发现朋友家用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
我们也来观察右 图中的地面,看看有 什么发现?
数学家毕达哥拉斯的发现:
A
B
C
A、B、C的面积有什么关系? SA+SB=SC 直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系? A a B b
Sa+Sb=Sc
c
C
2 2 2 a +b =c
b
a
c b (a+b )2
证 明 二
a
c
c
1 = c 4 ab 2
2
a2 + b2 + 2ab = c2+2ab
b a
c
b
a
可得: a2 + b2 = c2
C A B 图2-1 A B
S正方形c
C
1 6 2
2
1 8(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半

八上-第一章勾股定理

八上-第一章勾股定理

第一章勾股定理第1课时认识勾股定理1 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称弦·直角三角形三边之间的关系称为勾股定理。

2 勾股定理是指直角三角形两直角边的平方和等于边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 。

预学感知在Rt△ABC中,∠B=90°,AC=10,AB=6,则则BC的长为。

知识点一勾股定理的认识【例1】在△ABC中,∠ACB=90°,∠A,∠B,∠C的对边分别为a,b,C.当a=9,c=41时,则b= 。

【名师点拔】由于∠ACB=90°,则有a2=c2,因而只需把已知数据代入相应字母,即可求出第三条线段的长。

知识点二勾股定理的简单运用【例2】如图,△ABC中,∠ACB=90°,AC=7,BC=24,CD⊥AB于点D。

求:(1)AB的长;(2)CD的长。

【名师点拔】由于△.ABC为直角三角形,就可先由匀股定理理求出AB,再根据面积求出CD的长。

1.已知直角三角形中两条边长,要弄清哪条是斜边,哪条是直角边,不能确定时,要分类讨论;2.在直角三角形中求斜边上的高,一般是借助面积这个中间量,21ab=21ch 。

1.在Rt △ABC 中,两直角边长分别为10和24,则斜边长等于 ( )A.25B.26C.27D.282.在Rt △ABC 中,斜边长BC =3,则AB 2+AC 2= 。

3. 如图,分别以直角三角形的三边为边向外作正方形,则正方形A 的面积是 ,B 的面积是 。

4. 要登上某建筑物,靠墙有一架梯子,底端离建筑物5m ,顶端离地面12m ,则梯子的长度为 。

5. 如图,有两棵树,一棵高12m ,另一棵高6m ,两树相距8m ,一只鸟从一棵树的树梢飞到另一棵树梢,则小鸟至少飞行 m 。

6. 某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航行,海监船乙同时以20海里/时的速度离开港口向东航行,则它们离开港口2h 后相距 海里。

北师大版初中八年级数学上册 1.1.1 认识勾股定理 课件(共20张PPT)

北师大版初中八年级数学上册 1.1.1 认识勾股定理 课件(共20张PPT)

( 55 ) 25
30
( 34)
95 61
( 42 ) 18
60
200 ( 350)
150
总结归纳
C A
B
SA+SB=SC
ac b
ac b
a2+b2=c2
a2+b2=c2
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.如果a,b和c分别表示直角三角形的 两直角边和斜边,那么a2+b2=c2.
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
导入新课
情境引入
如图,这是一幅美丽的图案,仔细观察,你能发 现这幅图中的奥秘吗?带着疑问我们来一起探索吧.
数学家毕达哥拉斯的故事
相传2005年前,毕达哥拉斯有一次在朋友家做客时,发现 朋友家的用砖铺成的地面…
毕达哥拉斯就从地面上这十分常见的图形中,发现了令世人震惊的定理:
方法一:割
方法二:补
方法三:拼
分割为四个直角三 角形和一个小正方 形.
补成大正方形,用大正 方形的面积减去四个直 角三角形的面积.
将几个小块拼成若干个小 正方形,图中两块红色 (或绿色)可拼成一个小 正方形.
填一填:观察右边两 幅图:完成下表(每 个小
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
怎样计 算正方 形C的面 积呢?
分析表中数据,你发现了什么?
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
C A
B
SA+SB=SC
结论:以直角三角形两 直角边为边长的小正方 形的面积的和,等于以 斜边为边长的正方形的 面积.

人教版勾股定理第一课时

人教版勾股定理第一课时
12
பைடு நூலகம்
拼图证明
1、拿出准备好的四个全等的直角三角形 (设直角三角形的两条直角边分别为a,b, 斜边c);
2、你能用这四个直角三角形拼成一个正方

吗?拼一拼试试看
3、你拼的正方形中是否含有以斜边c为边长的正 方形?
4、你能否就你拼出的图说明a2+b2=c2?
c a
b
13
拼图证明
如何利用下图证明a2+b2=c2?
赵爽弦图
图1-1
图1-2
古往今来,下至平民百姓,上至帝王总统都愿意探讨、
研究它的证明,新证法不断出现。目前世界上共有500
多种证明“勾股定理”的方法。其中包括大画家达·芬奇
18
和美国总统加菲尔德的证法。
勾股定理运用1
已知S1=1,S2=3,S3=2,S4=4,求S5、S6、S7的值
S2 S1 S5
青 出
青 入
朱朱
朱 出出 方
朱朱入入 青入
以刘徽的“青朱 出入图”为代表, 证明不需用任何 数学符号和文字, 更不需进行运算, 隐含在图中的勾 股定理便清晰地 呈现,整个证明 单靠移动几块图 形而得出,被称 为“无字证明”.
青出
29
证法欣赏3


b
c

a
①②
以刘徽的“青朱 出入图”为代表, 证明不需用任何 数学符号和文字, 更不需进行运算, 隐含在图中的勾 股定理便清晰地 呈现,整个证明 单靠移动几块图 形而得出,被称 为“无字证明”.
长分别为a、b,斜边长为c,那么 a2 + b2 = c2
数学方法:1.观察—探索—猜想—验证—归纳—应用
2.“割补、拼接”法

17.1第1课时勾股定理及验证

17.1第1课时勾股定理及验证

图 17-1-13
第1课时 勾股定理及验证
解:证明:连接 DB,过点 B 作 DE 边上的高 BF,则 BF=b-a. 1 1 ∵S 五边形 ACBED=S 梯形 ACBE+S△AED= (a+b)b+ ab, 2 2 1 1 2 1 又∵S 五边形 ACBED=S△ACB+S△ADB+S△BED= ab+ c + a(b-a), 2 2 2 1 1 1 1 2 1 ∴ (a+b)b+ ab= ab+ c + a(b-a), 2 2 2 2 2 ∴a2+b2=c2.
第1课时 勾股定理及验证
C拓广探究创新练
15.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其 中的“面积法”给了小聪灵感.他惊喜地发现:当两个全等的直角 三角形如图 17-1-12 或图 17-1-13 摆放时, 都可以用“面积法” 来证明.下面是小聪利用图 17-1-12 证明勾股定理的过程: 将两个全等的直角三角形按图 17-1-12 所示的方式摆放,其中 ∠DAB=90° ,求证:a +b =c .
第1课时 勾股定理及验证
14.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的 一种新的证明方法. 如图 17-1-11 所示, 火柴盒的一个侧面 ABCD 倒下到四边形 AB′C′D′的位置,连接 CC′,AC′,AC,设 AB=a, BC=b,AC=c,请利用四边形 BCC′D′的面积验证勾股定理: a2 +b =c .
图17-1-7
第1课时 勾股定理及验证
10.[2018· 凉山州] 如图 17-1-8,数轴上点 A 对应的数为 2, AB⊥OA 于点 A,且 AB=1,以 O 为圆心,OB 长为半径作弧, 交数轴于点 C,则 OC 的长为( D ) A.3 B. 2 C. 3 D. 5

17-1第1课时 勾股定理(共42张ppt)2022-2023学年八年级下学期数学人教版

17-1第1课时 勾股定理(共42张ppt)2022-2023学年八年级下学期数学人教版
C C. 49 D. 148
5.求斜边长17 cm、一条直角边长15 cm的直角三 角形的面积.
解:设另一条直角边长是x cm. 由勾股定理得152+ x2 =172, 即x2=172-152=289–225=64, ∴ x=±8(负值舍去), ∴另一直角边长为8 cm,
直角三角形的面积是
(cm2).
a
∴a2+b2+2ab=c2+2ab,
∴a2 +b2 =c2.
证法3 美国第二十任总统伽菲尔德的“总统证法”. 如图,图中的三个三角形都是直角三角形,求证: a2 + b2 = c2.
a
b
c
证明:
S梯形
1 (a 2
b)(a
b),
S梯形
1 2
ab
1 2
ab
1 2
c2,
c a
∴a2 + b2 = c2.
AC2+ 1
4
BC2.
∴阴影部分的面积为
1 2
AB2= 9 .
2
8.(创新题)如图17-10-12,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求 AD的长.
解:∵∠D=90°,
∴AD2=AB2-BD2=AC2-CD2.
∴172-(9+CD)2=102-CD2.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3

C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜

初中八年级数学课件 1.1 第1课时 认识勾股定理

初中八年级数学课件 1.1  第1课时 认识勾股定理
度(口答):
100
225 x
17
? 15
已知直角三角形两边, 求第三边.
二 利用勾股定理进行计算
例 求斜边长为17 cm、一条直角边长为15 cm的直角三角形的面积.
解:设另一条直角边长是x cm.由勾股定
理得:
152+ x2 =172,x2=172-152=289–225=64,
解得 x=±8(负值舍去),
想一 想
(1)你能用直角三角形的两直角边的长a,b
和斜边长c来表示图中正方形的面积吗?根据
前面的结论,它们之间又有什么样的关系呢?
C
A ac b
B
C
A ac b
B
a2+b2=c2
(2)以5 cm、12 cm为直角边作出一个直角三 角形,并测量斜边的长度. (1)中的规律对这
个三角形仍然成立吗?
要点归 纳
故直角三所).
积是:
2
当堂练习
1.图中阴影部分是一个正方形,则此正方
形的面36积
为 cm²
.
8
cm
10 cm
2.判断题.
①△RtABC的两直角边AB=5,AC=12,则斜边√
BC=13 ( )
△ABC的两边a=6,b=8,则c=10 (
② )
分割为四 个直角三 角形和一 个小正方 形.
补成大正方 形,用大正 方形的面积 减去四个直 角三角形的 面积.
将几个小块拼成 若干个小正方形, 图中两块红色 (或绿色)可拼 成一个小正方形.
分析表中数据,你发现了什么?
A的面积 B的面积 C的面积
左图 4
9
13
右图 16
9
25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章勾股定理
1.1 探索勾股定理
第1课时认识勾股定理
1.若△ABC中,∠C=90°,
(1)若a=5,b=12,则c= ;
(2)若a=6,c=10,则b= ;
(3)若a∶b=3∶4,c=10,则a= ,b= .
2.某农舍的大门是一个木制的矩形栅栏,它的高为2 m,宽为1.5 m,现需要在相对的顶点间用一块木棒加固,木板的长为.
3.直角三角形两直角边长分别为5 cm,12 cm,则斜边上的高为.
4.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().
A.30 cm2
B.130 cm2
C.120 cm2
D.60 cm2
5.轮船从海中岛A出发,先向北航行9km,又往西航行9 km,
由于遇到冰山,只好又向南航行4 km,再向西航行6 km,再折向北航行2 km,最后又向西航行9 km,到达目的地B,求AB两地间的距离.
6.一棵9 m高的树被风折断,树顶落在离树根3 m之处,若要查看断痕,要从树底开始爬多高?
7.折叠长方形ABCD的一边AD,使点D落在BC边的F点处,
若AB=8 cm,BC=10 cm,求EC的长.
F
C。

相关文档
最新文档