初一数学-不等式和不等式组提高练习-难度比较大

合集下载

七年级下册不等式与不等式组分类提高题(有难度,适合成绩较好同学做)

七年级下册不等式与不等式组分类提高题(有难度,适合成绩较好同学做)

不等式与不等式组(提高)题型一:1. 若不等式x a <只有4个正整数解,则a 的取值范围是______________.2. 已知关于x 的不等式x -2a <3的最大整数解-5,则a 的取值范围是______________.3.关于x 的不等式组121,232,x x x a -+⎧-≤⎪⎨⎪->⎩只有3个整数解,则a 的取值范围是______________.4.关于x 的不等式组21,2,x b x a +≤-⎧⎨->⎩的整数解只有-1,-2,-3,则a 的取值范围是______________.b 的取值范围是______________.题型二:5. 若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为4x <,则a 的取值范围是__________.若该不等式组的解集为0<x ,则a __________.6.如果不等式组3285x m x m <+⎧⎨≤-⎩的解集是3x m <+,那么m 的取值范围是__________.7. 已知2212m x x m ⎧>--⎪⎨>--⎪⎩的解集为3x >-,则m __________.题型三:8.若关于x 的不等式组3(2)224x x a x x--<⎧⎪⎨+>⎪⎩有解,则实数a 的取值范围是__________.9.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是__________.10. 如果不等式组312x a x a -≤≤+⎧⎨>⎩有解,那么a 的取值范围是__________.11. 关于x 的不等式组12,x x m -<≤⎧⎨>⎩有解,则m 的取值范围是__________.若该不等式组无解,则m 的取值范围是__________.12.若不等式组12,5x k x <≤⎧⎨<<⎩无解,则k 的取值范围是__________.若该不等式有解,则k 的取值范围是__________.题型四:13.已知方程组⎩⎨⎧-=-+=+172652y x k y x 的解为负数,求k 的取值范围.14. a 为何值时,方程组2312x y a x y a -=+⎧⎨+=⎩ 的解满足x y ,均为正数?题型五:(注意区别“解集相同”和“一个不等式的解都是另外一个不等式的解”的问题)15.若不等式132x ax a--->的解集与6x <的解集相同,求a 的值.16. 已知不等式13a x->的每一个解都是21122x -<的解,求a 的取值范围;17. 如果关于x 的不等式组22,4,x a x a >-⎧⎨<-⎩有解,并且所有解都是不等式组-6<x ≤5的解,求a 的取值范围.18.若不等式24x <的解都能使关于x 的一次不等式(1)5a x a -<+成立,求a 的取值范围.。

《常考题》初中七年级数学下册第九单元《不等式与不等式组》提高练习(含答案解析)

《常考题》初中七年级数学下册第九单元《不等式与不等式组》提高练习(含答案解析)

一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下C解析:C【解析】 分析:本题可设玻璃球的体积为x ,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x ,则有33001804300180x x -⎧⎨-⎩<> 解得30<x <40.故一颗玻璃球的体积在30cm 3以上,40cm 3以下.故选C .点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.3.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<- D解析:D【分析】首先解每个不等式,然后根据不等式组的整数解的个数,确定整数解,从而确定a 的范围.【详解】 解:1021x x x a -⎧<⎪⎨⎪+>⎩①② 解①得1x <且0x ≠,解②得12a x ->. 若不等式组只有1个整数解,则整数解是1-.1212a -∴-≤<- 所以31a -≤<-,故选:D .【点睛】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 4.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种C解析:C【分析】 设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤, 因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.5.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( ) A .5B .0C .-1D .-2C解析:C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,写出这个不等式组的最小整数解即可.【详解】 解:3114x x +>⎧⎨-≤⎩①② 解不等式①得 x >-2,解不等式②得 x≤5,所以不等式组的解集为-2<x≤4,所以,这个不等式组的最小整数解是-1,故选C .【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.6.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( )A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <2D解析:D由题意得2021x x -<⎧⎨-≥-⎩解之得12x ≤<故选D .7.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A . B .C .D . D解析:D【分析】 根据不等式组的解集在数轴上的表示方法进行分析解答即可.【详解】A 选项中,数轴上表达的解集是:4x >;B 选项中,数轴上表达的解集是:34x -≤<;C 选项中,数轴上表达的解集是:3x ≤;D 选项中,数轴上表达的解集是:34x ≤<;∵不等式组43x x ⎧⎨≥⎩<的解集是34x ≤<, ∴选D.【点睛】本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的关键.8.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2C 解析:C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.9.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->- D解析:D根据不等式的基本性质逐项判断即可得.【详解】A 、0a b ->,成立;B 、不等式的两边同减去3,不改变不等号的方向,即33a b ->-,成立;C 、不等式的两边同乘以正数13,不改变不等号的方向,即1133a b >,成立;D 、不等式的两边同乘以负数3-,改变不等号的方向,即33a b -<-,不成立; 故选:D .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.10.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D . B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】 解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题11.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.或【分析】根据新定义法则分x 或x+4或x ﹣4最小2或x+1或2x 最大几种情况分别列出一元一次不等式组和一元一次方程进行解答即可【详解】(1)当最小时则即无解此情况不成立(2)当最小时则即解得此时:即 解析:43或2- 【分析】 根据新定义法则,分x 或x+4或x ﹣4最小、2或x+1或2x 最大几种情况,分别列出一元一次不等式组和一元一次方程进行解答即可.【详解】(1)当4最小时,则4444x x +>⎧⎨->⎩,即00x x >⎧⎨<⎩, x 无解,此情况不成立.(2)当4x +最小时,则4444x x x ≥+⎧⎨-≥+⎩,即00x x ≤⎧⎨≤⎩, ∴解得0x ≤,此时:12x +<,22x <,{}max 2,1,22x x ∴+=,42x ∴+=,即2x =-.(3)当4x -最小时,则4444x x x >-⎧⎨+>-⎩,即00x x >⎧⎨>⎩, ∴解得0x >,此时无法判断,{}max 2,1,2x x +的值,则分情况讨论如下:①当2最大时:2122x x ≥+⎧⎨≥⎩,即11x x ≤⎧⎨≤⎩, 01x ∴<≤,此时:42x -=,2x =(舍去).②当2x 最大时:2221x x x >⎧⎨>+⎩,即11x x >⎧⎨>⎩,1x ∴>,此时有:42x x -=,43x =. ③当1x +最大时,1212x x x +>⎧⎨+>⎩,即11x x >⎧⎨<⎩,无解,此情况不成立. 综上所述:43x =或2x =-. 【点睛】本题考查新定义下解一元一次不等式组和一元一次方程的能力,由已知等式找到x 的分界点以及准确分类讨论是解答的关键.12.若不等式组52355x x x a +≤-⎧⎨-+<⎩无解,则a 的取值范围是______.【分析】先解一元一次不等式组再根据不等式组无解即可得出a 的取值范围【详解】解:解一元一次不等式组得:∵不等式组无解∴解得:故答案为:【点睛】本题考查了一元一次不等式组的解法一元一次不等式的解法会根据 解析:172a ≤【分析】先解一元一次不等式组,再根据不等式组无解即可得出a 的取值范围.【详解】解:解一元一次不等式组52355x x x a+≤-⎧⎨-+<⎩, 得:725x x a⎧≤-⎪⎨⎪>-⎩,∵不等式组无解, ∴752a -≥-, 解得:172a ≤, 故答案为:172a ≤. 【点睛】本题考查了一元一次不等式组的解法、一元一次不等式的解法,会根据不等式组无解求解参数a 的取值范围是解答的关键.13.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可【详解】解:∵∴解得m=-2故答案为-2【点睛】本题主要考查了一元一次方程的定义和不等式组的解法根据一元一次方程的定义列出关于m 的方程组成解析:-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可.【详解】解:∵||1(2)3m m x --= ∴2011m m -≠⎧⎨-=⎩,解得m=-2. 故答案为-2.【点睛】本题主要考查了一元一次方程的定义和不等式组的解法,根据一元一次方程的定义列出关于m 的方程组成为解答本题的关键.14.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______.-<<4【分析】先解方程组用含a 的式子表示方程组的解根据方程组的解是正数列出关于a 的不等式组再求解【详解】解:①+②得:①-②得:所以原方程组的解为:∵方程组的解为正∴>0且>0解得:-<<4故填:解析:-54<a <4 【分析】先解方程组用含a 的式子表示方程组的解,根据方程组的解是正数,列出关于a 的不等式组,再求解.【详解】解:3951x y a x y a +=+⎧⎨-=+⎩①②, ①+②得:2810x a =+,45x a =+,①-②得:228y a =-+,4y a =-+,所以,原方程组的解为:454x a y a =+⎧⎨=-+⎩, ∵ 方程组的解为正,∴45a +>0且4a -+>0,解得:-54<a <4, 故填:-54<a <4. 【点睛】 本题考查了方程组的解法,以及一元一次不等式组的解法,解此类问题要先用字母a 表示方程组的解,再根据题意,列不等式组,最后求解.15.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.【分析】先解不等式组得到解集为:<此时的整数解有且只有4个结合数轴分析可得到的取值范围【详解】解:由①得:<由②得:所以不等式组的解集为:<不等式组的整数解有且只有4个如图不等式组的整数解为<故答案解析:56m <≤【分析】先解不等式组,得到解集为:2x ≤<m ,此时的整数解有且只有4个,结合数轴分析可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩①② 由①得:x <m ,由②得:24,x -≤-2,x ∴≥所以不等式组的解集为:2x ≤<m ,不等式组的整数解有且只有4个,如图,不等式组的整数解为2,3,4,5,5∴< 6.m ≤故答案为:56m <≤.【点睛】本题考查的是不等式组的整数解问题,掌握利用数轴分析得出不等式组中字母的取值范围是解题的关键.16.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等 解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.17.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 18.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.【分析】解析:1.5【分析】19.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .-2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>, ∴13m x ->, 根据图示知,已知不等式的解集是1x >, ∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法.20.不等式组12153114x x -⎧≥-⎪⎨⎪-<⎩的所有正整数解为_____.23【分析】分别求出每一个不等式的解集根据口诀:同大取大同小取小大小小大中间找大大小小无解了确定不等式组的解集进而可得所有正整数解【详解】解不等式①得:x≤3解不等式②得:x <5则不等式组的解集为x解析:2、3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.进而可得所有正整数解.【详解】12153114x x -⎧≥-⎪⎨⎪-<⎩①②, 解不等式①,得:x≤3,解不等式②,得:x <5,则不等式组的解集为x≤3,∴不等式组的正整数解为:1、2、3.故答案为1、2、3.【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,关键是能根据不等式的解集找出不等式组的解集.三、解答题21.解不等式组103124x x +≥⎧⎪⎨-<⎪⎩,并把它的解集表示在数轴上.解析:13x -≤<,在数轴上表示见解析.【分析】先对不等式组进行化简,然后在数轴上分别画出x 的取值,它们的公共部分就是不等式组的解集.【详解】解:103124x x +≥⎧⎪⎨-<⎪⎩①② 由①得:1x ≥-由②得:318x -<,∴3x <,∴不等式组的解集为13x -≤<在数轴上表示如下:【点睛】本题考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.22.某县举办运动会需购买A ,B 两种奖品,若购买A 种奖品5件和B 种奖品2件,共需80元;若购买A 种奖品3件和B 种奖品3件,共需75元.(1)求A 、B 两种奖品的单价各是多少元?(2)大会组委会计划购买A .B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,并求出自变量m 的取值范围,以及确定最少费用W 的值.解析:(1)A 、B 两种奖品的单价分别是10元、15元;(2)1015(100)W m m =+-,7075m ≤≤,当75m =时,W 有最小值为1125.【分析】(1)设A 种奖品的单价是x 元,B 种奖品的单价是y 元,根据“钱数=A 种奖品单价×数量+B 种奖品单价×数量”可列出关于x 、y 的二元一次方程组,解方程组即可得出结论; (2)设购买A 种奖品m 件,则购买B 种奖品(100m -)件,根据购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,可列出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再结合数量关系即可得出W 与m 之间的函数关系,根据一次函数的性质既可以解决最值问题.【详解】解:(1)设A 、B 两种奖品的单价分别为x 、y 元则52803375x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩∴A 、B 两种奖品的单价分别是10元、15元.(2)设购买A 种奖品m 件,则B 为(100m -)件由题意得:3(100)1015(100)1150m m m m ≤-⎧⎨+-≤⎩, 解得:7075m ≤≤1015(100)W m m =+-15005m =-∵50-<,∴W 随m 的增加而减少,当75m =时,W 有最小值为1125.【点睛】本题考查了解二元一次方程组、一元一次不等式组以及一次函数的性质,解题的关键是:(1)列出关于x 、y 的二元一次方程组;(2)根据数量关系列出W 关于m 的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、函数关系或不等式组)是关键.23.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和()10a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花费用;(3)在(2)的条件下,计算a 为何值时,两家商场所花费用相同;(4)在(3)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?(直接写出方案)解析:(1)150元;100元;(2)甲商场()10014000a + ,乙商场()8015000a +元;(3)50a =;(4)当50a =时,两家花费一样;当1050a <<时,到甲处购买更合算;当50a 时,到乙处购买更合算【分析】(1)设每个足球的定价是x 元,则每套队服是()50x +元,根据“两套队服与三个足球的费用相等”得出等量关系,列出一元一次方程,求解即可;(2)根据甲商场和乙商场的方案列出式子即可;(3)令100140008015000,a a ++=解方程即可;(4)列出不等式分别求解即可.【详解】解:(1)设每个足球的定价是x 元,则每套队服是()50x +元.根据题意得()2503x x +=解得100,50150x x +==. 答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:()1001001501001001400010a a ⎛⎫⨯+-=+ ⎪⎝⎭元; 到乙商场购买所花的费用为:()100150+100808015000a a ⨯⨯%=+元;(3)由100140008015000,a a ++=得:50a =,所以:当50a =时,两家花费一样。

初一数学不等式组提高练习

初一数学不等式组提高练习

一元一次不等式组提高练习1、解不等式252133x -+-≤+≤-2、 求下列不等式组的整数解2(2)83373(2)82x x x x x x +<+⎧⎪-≥-⎨⎪-+>⎩3、解不等式:(1) 0)2)(1(<+-x x (2)0121>+-x x4、对于1x ≥的一切有理数,不等式()12x a a -≥都成立,求a 的取值范围。

5、已知1x =是不等式组()()352,23425x x a x a x -⎧≤-⎪⎨⎪-<+-⎩的解,求a 的取值范围.6、如果35x a =-是不等式()11233x x -<-的解,求a 的取值范围。

7、若不等式组841,x x x m +<-⎧⎨>⎩的解集为3x >,求m 的取值范围。

8、如果不等式组237,635x a b b x a-<⎧⎨-<⎩的解集为522x <<,求a 和b 的值。

9、不等式组⎪⎩⎪⎨⎧<-<-622131m x m x 的解集是36+<m x ,求m 的取值范围。

10、已知关于x 的不等式()12a x ->的解在2x <-的范围内,求a 的取值范围。

11、已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,求a 的取值范围。

12、已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,求a 的取值范围。

13、若关于x 的不等式组2145,x x x a ->+⎧⎨>⎩无解,求a 的取值范围。

14、设关于x 的不等式组22321x m x m ->⎧⎨-<-⎩无解,求m 的取值范围15、若不等式组⎩⎨⎧<->a x a x 无解,那么不等式⎩⎨⎧<+>-11a x a x 有没有解若有解,请求出不等式组的解集;若没有请说明理由16、若不等式组372,x x a a -≤⎧⎨-≥⎩有解,求a 的取值范围。

初一不等式难题-经典题训练(附答案)

初一不等式难题-经典题训练(附答案)

初一不等式难题-经典题训练(附答案)1.已知不等式 $3x-a\leq 0$ 的正整数解正好是 1,2,3,则$a$ 的取值范围是多少?2.已知关于 $x$ 的不等式组 $\begin{cases} x-a>\dfrac{1}{5-2x}-1 \\ 5-2x\geq -1 \end{cases}$ 无解,则 $a$ 的取值范围是多少?3.若关于 $x$ 的不等式 $(a-1)x-a+2>0$ 的解集为 $x<2$,则 $a$ 的值为多少?4.若不等式组 $\begin{cases} x-a>2 \\ b-2x>\dfrac{x+4}{x+1} \end{cases}$ 的解集为 $-1<x<1$,则$\dfrac{a+b}{b-2}$ 的值为多少?5.已知关于 $x$ 的不等式组的解集为 $\begin{cases}3x+2a<0 \\ x+a<2 \end{cases}$,若 $x<2$,则 $a$ 的取值范围是多少?6.若方程组 $\begin{cases} 4x+y=k+1 \\ x+4y=3\end{cases}$ 的解满足 $x+y<1$,则 $k$ 的取值范围是多少?7.不等式组 $\begin{cases} x+9m+1 \end{cases}$ 的解集是$x>2$,则 $m$ 的取值范围是多少?8.不等式 $(x+x)(2-x)<0$ 的解集是什么?9.当 $a>3$ 时,不等式 $ax+2<3x+b$ 的解集是 $x<2$,则$b$ 等于多少?10.已知 $a,b$ 为常数,若 $ax+b>0$ 的解集是$x<\dfrac{1}{3}$,则不等式 $bx-a<0$ 的解集是什么?11.不等式组 $\begin{cases} 7x-m\geq 0 \\ 6x-n\leq 0\end{cases}$ 的正整数解仅为 1,2,3,则合适的整数对$(m,n)$ 有多少个?12.已知非负数 $x,y,z$ 满足$\dfrac{x}{2}+\dfrac{3y}{4}+\dfrac{5z}{6}=\dfrac{1}{2}$,设$\omega=3x+4y+5z$,求 $\omega$ 的最大值和最小值。

七年级数学 不等式提高练习试题

七年级数学 不等式提高练习试题

乏公仓州月氏勿市运河学校不等式第一课时例1:〔1〕 a 、b 是有理数,以下各式中成立的是( ).(A)假设a >b ,那么a 2>b 2(B)假设a 2>b 2,那么a >b (C)假设a ≠b ,那么|a |≠|b | (D)假设|a |≠|b |,那么a ≠b〔2〕假设不等式(a +1)x >a +1的解集是x <1,那么a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <1例2:.关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围 例3:如果不等式组{9080x a x b -≥-<的整数解仅为1,2,3,那么适合这个不等式组的整数a,b 的有序数对〔a,b 〕共有〔 〕对 A.17 B.64 C.72 D.81例4:a,b,c,d 是正整数,且a+b=20,a+c=24,a+d=22,设a+b+c+d 的最大值为M ,最小值为N ,那么M-N= . 练习:1.不等式4〔2x+m 〕>1的解集是x>3,那么m 的值为 〔 〕 A.-2 B.12- C.2 D.122.a 为有理数且a ≠0,那么以下各式一定成立的是 〔 〕A.a ²+1>1B.1-a ²<0C.1+1a >1D.1-1a>1 3.假设a<b ,那么关于x 的不等式〔2009a-2021b 〕x>2021b-2009a 的解集为 〔 〕A.x>-1B.x>1C.x<-1D.x<14.以下不等式中,对任何有理数都成立的是〔 〕A.x-3>0B.|x+1|>0C.(x+5)²>0D.-(x-5)² ≤05.关于x 的方程5x-2m=-4-x 的解在2与10之间,那么m 得取值范围是〔 〕A.m>8B.m<32C.8<m<32D.m<8或 m>326.|2x-24|+(3x-y-m)²=0中,0<y<1,那么m 的取值范围是7.用不等号填空:假设3_____3;4______4;5______5,b a b a b a b a ---->则 8.假设1-=a a ,那么a 只能是 〔 〕A .1-≤aB .0<aC .1-≥aD .0≤a 9.方程组3133x y k x y +=+⎧⎨+=⎩的解x 、y,且2<k<4,那么x-y 的取值范围是( ) A.0<x-y<12B.0<x-y<1C.-3<x-y<-1D.-1<x-y<1 10.假设m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .11.方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围. 第二课时例5:试比较2222a b -+与22213a b -+的大小 例6:5(1)32(23)4x x x +->++,化简2112x x --+例7:()226350m m n -+--=,且()3215n m x -<-,化简25253x x +--+例8:如果关于x 的不等式60kx --+>的正整数解为1,2,3,那么正整数k 应取什么值? 练习: 12、当0<<a x 时,2x 与ax 的大小关系是_______________.13、如果a 、b 表示两个负数,且a <b ,那么( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1 14、|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零15、假设由x <y 可得到ax >ay ,应满足的条件是( ).(A)a ≥0(B)a ≤0 (C)a >0 (D)a <0 16、(x -2)2+|2x -3y -a |=0,y 是正数,那么a 的取值范围是______.17、假设m >5,试用m 表示出不等式(5-m )x >1-m 的解集_ _____.18、k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.19、适中选择a 的取值范围,使<x <a 的整数解:(1) x 只有一个整数解;〔2〕x 一个整数解也没有.20、当310)3(2k k-<-时,求关于x 的不等式k x x k ->-4)5(的解集 .21、A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小. .。

2021年初中数学不等式与不等式组专项提升训练

2021年初中数学不等式与不等式组专项提升训练
18.若不等式 的解集为 ,则a的值为________.
19.三个数3, 在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则 的取范围为______
20.不等式组 的解集是_____.
21.关于y的方程 的解为正数,关于x的不等式组 有且只有三个整数解,则符合条件的所有整数a的和为______.
(2)该超市A种型号电风扇每台售价260元,B种型号电风扇每件售价190元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A种型号的电风扇至少是多少台?
28.自2020年12月以来,我国全面有序地推进全民免费接种新冠疫苗,现某国药集团在甲、乙仓库共存放新冠疫苗450万剂,如果调出甲仓库所存新冠疫苗的60%和乙仓库所存新冠疫苗的40%后,剩余的新冠疫苗乙仓库比甲仓库多30万剂.
26.先化简,再求值: ,其中x是不等式组 的整数解.
27.一个电器超市购进A,B两种型号的电风扇后进行销售,若一台A种型号的电风扇进价比一台B种型号的电风扇进价多30元,用2000元购进A种型号电风扇的数量是用3400元购进B种型号电风扇的数量的一半.
(1)求每台A种型号电风扇和B种型号的电风扇进价分别是多少?
2021年初中数学不等式与不等式组专项提升训练
一、单选题
1.已知非负数 , , 满足 且 ,设 的最大值为 ,最小值为 ,则 的值是()
A.16B.15C.9D.7
2.若整数a使关于x的不等式组 有解且至多有四个整数解,且使关于y的分式方程 = 的解为非负数,则满足条件的所有a的值之和为()
A.63B.67C.68D.72
A.9B.11C.15D.18
12.若关于 的不等式组 无解,且关于 的分式方程 的解为非负数,那么所有满足条件的整数 的值之和为()

初一数学-不等式和不等式组提高练习-难度比较大

初一数学-不等式和不等式组提高练习-难度比较大

初一数学-不等式和不等式组提高练习-难度比较大、一、选择题1. 如果a 、b 表示两个负数,且a <b ,则( ).(A)1>b a(B)b a<1(C)ba 11< (D)ab <12. a 、b 是有理数,下列各式中成立的是( ). (A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b3. |a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4. 若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0(C)a >0(D)a <05. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0(B)a >-1 (C)a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人(B)3人(C)4人(D)5人7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).8. ⎪⎩⎪⎨⎧+>-<-.3342,121x x x x -5<6-2x <3.9. ⎪⎩⎪⎨⎧⋅>-<-322,352xx x x⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx10. ⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x.234512x x x -≤-≤-11.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x12. 解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、变式练习 13. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n . 14..已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围. 15.已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.16. 适当选择a 的取值范围,使1.7<x <a 的整数解: (1) x 只有一个整数解; (2) x 一个整数解也没有.17. 当310)3(2kk -<-时,求关于x 的不等式k x x k ->-4)5(的解集. 18. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A与B 的大小.19.(类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.20. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.21.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值. 22.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围. 23. (类型相同)k 取哪些整数时,关于x 的方程5x+4=16k -x 的根大于2且小于10?24.(类型相同)已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.25.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围. 、 26.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车? 27.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上? 28.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?29.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?30.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?31.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?32.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?33.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?34.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?35.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51..48元,小于元.请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?36.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.37.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B 两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:问:这400间板房最多能安置多少灾民?。

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典题(提高培优)

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典题(提高培优)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3B .a ≥3C .a >3D .a ≤3B 解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①②解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a ⩽2,故选C. 3.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D . C解析:C【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”取解集,即可得到答案.【详解】 解:321323251223x x x x ++⎧≤+⎪⎨⎪->-⎩①②,解不等式①得:2x ≥-;解不等式②得:3x >;将解集在数轴上表示为:,故选:C .【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.4.如果a 、b 表示两个负数,且a b >,则( )A .1a b >B .1b a >C .11a b >D .1ab < B 解析:B【分析】根据不等式的性质,两边都除以b 判断出A 、B ,两边都除以ab ,判断出C 即可得解.【详解】∵a 、b 表示两个负数, ∴a b >两边都除以b 得,1a b<,故选项A 错误,不符合题意; a b >两边都除以a 得,1b a >,故选项B 正确,符合题意; ∵a 、b 表示两个负数,∴0ab >,∴a b >都除以ab 得,11b a>,故选项C 错误,不符合题意; 只能判断出0ab >,但无法说明1ab <,故选项D 错误,不符合题意.故选:B .【点睛】本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( )A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤- D解析:D【分析】 先解不等式得出23a x -≤,然后根据不等式只有2个正整数解可知正整数解为1和2,据此列出不等式组求解即可.【详解】解:32x a +, 32x a ∴-,则23a x -, ∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2233a -≤<, 解得:74a -<-,故答案为D .【点睛】本题主要考查一元一次不等式的整数解,正确求解不等式并根据不等式的整数解的情况列出关于某一字母的不等式组是解答本题的关键.6.不等式()2x 13x -≥的解集是( )A .x 2≥B .x 2≤C .x 2≥-D .x 2≤- D 解析:D【分析】去括号、移项、合并同类项,然后系数化成1即可求解.【详解】解:()2x 13x -≥,去括号,得2x 23x -≥,移项,得23x 2x -≥-,解得x 2≤-.故选:D .【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.7.若m n <,则下列各式中正确的是( )A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > C 解析:C【分析】 根据不等式的基本性质依次分析各项即可得到结果.【详解】∵m <n∴m+3<n+3,故A 选项错误;m-3<n-3,故B 选项错误;-3m >-3n ,故C 选项正确;33m n <,故D 选项错误; 故选C.【点睛】本题考查了不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ). A .3a B .3a > C .3a D .3a < C 解析:C【分析】分别求出每一个不等式的解集,根据口诀:同小取小并结合不等式组的解集可得a 的范围.【详解】解:327x x a -<⎧⎨<⎩①②, ①式化简得:39,3x x << 又∵该不等式的解集为x a <,∴3a .故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-,15,327-,π-,()22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7C 解析:C【分析】根据平行线的判定、无理数、平面直角坐标系和不等式组的解判断即可.【详解】解:A 、两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行,是真命题;B 、在实数7.5-,15,327-,π-,()22中,有3个有理数,2个无理数,是真命题;C 、在平面直角坐标系中,点P (2a-1,a+7)在x 轴上,a+7=0,a=-7,则点P 的坐标为(-15,0),原命题是假命题;D 、不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7,是真命题; 故选:C .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D . B 解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>,∴3122x x >+, ∴3322x <, ∴1x <,将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题11.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个).50(答案不唯一)【分析】由于规定表示不大于x 的最大整数则表示不大于的最大整数接下来根据可列出不等式组求解即可【详解】解:表示不大于x 的最大整数表示不大于的最大整数又可列不等式组x 的取值可以是范围内 解析:50(答案不唯一)【分析】由于规定[]x 表示不大于x 的最大整数,则410x +⎡⎤⎢⎥⎣⎦表示不大于410x +的最大整数,接下来根据4510x +⎡⎤=⎢⎥⎣⎦,可列出不等式组,求解即可. 【详解】解:[]x 表示不大于x 的最大整数,∴410x +⎡⎤⎢⎥⎣⎦表示不大于410x +的最大整数, 又4510x +⎡⎤=⎢⎥⎣⎦, ∴可列不等式组45104610x x +⎧≥⎪⎪⎨+⎪<⎪⎩ ,450460x x +≥⎧⎨+<⎩, ∴4656x x ≥⎧⎨<⎩,∴4656≤<x ,∴x 的取值可以是范围内的任何实数.故答案为:50(答案不唯一).【点睛】本题主要考查了一元一次不等式组的应用,解题的关键是根据[x]表示不大于x 的最大整数列出不等式组.12.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.或【分析】根据新定义法则分x 或x+4或x ﹣4最小2或x+1或2x 最大几种情况分别列出一元一次不等式组和一元一次方程进行解答即可【详解】(1)当最小时则即无解此情况不成立(2)当最小时则即解得此时:即 解析:43或2- 【分析】 根据新定义法则,分x 或x+4或x ﹣4最小、2或x+1或2x 最大几种情况,分别列出一元一次不等式组和一元一次方程进行解答即可.【详解】(1)当4最小时,则4444x x +>⎧⎨->⎩,即00x x >⎧⎨<⎩, x 无解,此情况不成立.(2)当4x +最小时,则4444x x x ≥+⎧⎨-≥+⎩,即00x x ≤⎧⎨≤⎩, ∴解得0x ≤,此时:12x +<,22x <,{}max 2,1,22x x ∴+=,42x ∴+=,即2x =-.(3)当4x -最小时,则4444x x x >-⎧⎨+>-⎩,即00x x >⎧⎨>⎩, ∴解得0x >,此时无法判断,{}max 2,1,2x x +的值,则分情况讨论如下:①当2最大时:2122x x ≥+⎧⎨≥⎩,即11x x ≤⎧⎨≤⎩, 01x ∴<≤,此时:42x -=,2x =(舍去).②当2x 最大时:2221x x x >⎧⎨>+⎩,即11x x >⎧⎨>⎩, 1x ∴>,此时有:42x x -=,43x =. ③当1x +最大时,1212x x x +>⎧⎨+>⎩,即11x x >⎧⎨<⎩,无解,此情况不成立. 综上所述:43x =或2x =-. 【点睛】本题考查新定义下解一元一次不等式组和一元一次方程的能力,由已知等式找到x 的分界点以及准确分类讨论是解答的关键.13.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__.【分析】求出不等式组中每个不等式的解集根据已知即可得出关于a 的不等式即可得出答案【详解】解:不等式组无解解得:故答案为:【点睛】本题考查了一元一次不等式组的应用解此题的关键是能得出关于a 的不等式题目解析:2a【分析】求出不等式组中每个不等式的解集,根据已知即可得出关于a 的不等式,即可得出答案.【详解】 解:不等式组11x x a >⎧⎨<-⎩无解, 11a ∴-,解得:2a ,故答案为:2a .【点睛】本题考查了一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式,题目比较好,难度适中.14.“x 的4倍与1的差不大于3”用不等式表示为 ________________ .4x-13【分析】的4倍与1的差即4x-1不大于就是据此列不等式【详解】由题意得4x-13故答案为:4x-13【点睛】此题考查列不等式正确理解语句是解题的关键解析:4x-1≤3,【分析】x 的4倍与1的差即4x-1,不大于就是≤,据此列不等式.【详解】由题意得4x-1≤3,故答案为:4x-1≤3.【点睛】此题考查列不等式,正确理解语句是解题的关键.15.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.3456【分析】首先解不等式组利用m 表示出不等式组的解集然后根据不等式组有4个整数解即可求得m 的范围【详解】由①得:由②得:∵不等式组的整数解共有4个∴整数解为3456∴m 取值范围为故答案为:345 解析:3,4,5,6 67m <≤【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有4个整数解即可求得m 的范围.【详解】0721x m x -<⎧⎨-≤⎩①②, 由①得:x m <,由②得:26x ≥,3x ≥,∵不等式组的整数解共有4个,∴整数解为3,4,5,6,∴m 取值范围为67m <≤.故答案为:3,4,5,6;67m <≤.【点睛】本题考查了不等式组的解法及整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______.-<<4【分析】先解方程组用含a 的式子表示方程组的解根据方程组的解是正数列出关于a 的不等式组再求解【详解】解:①+②得:①-②得:所以原方程组的解为:∵方程组的解为正∴>0且>0解得:-<<4故填:解析:-54<a <4 【分析】 先解方程组用含a 的式子表示方程组的解,根据方程组的解是正数,列出关于a 的不等式组,再求解.【详解】解:3951x y a x y a +=+⎧⎨-=+⎩①②, ①+②得:2810x a =+,45x a =+,①-②得:228y a =-+,4y a =-+,所以,原方程组的解为:454x a y a =+⎧⎨=-+⎩, ∵ 方程组的解为正,∴45a +>0且4a -+>0, 解得:-54<a <4, 故填:-54<a <4. 【点睛】本题考查了方程组的解法,以及一元一次不等式组的解法,解此类问题要先用字母a 表示方程组的解,再根据题意,列不等式组,最后求解.17.不等式12x -<的正整数解是_______________.12【分析】先求出不等式的解集再从不等式的解集中找出适合条件的正整数即可【详解】解:∴∴正整数解为:12故答案为:12【点睛】本题考查了一元一次不等式的整数解属于基础题关键是根据解集求出符合条件的解解析:1,2.【分析】先求出不等式的解集,再从不等式的解集中找出适合条件的正整数即可.【详解】解:12x -<∴3x <∴正整数解为:1,2.故答案为:1,2.【点睛】本题考查了一元一次不等式的整数解,属于基础题,关键是根据解集求出符合条件的解. 18.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.20【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价再利用总费用不超过1820元得出不等式求出答案【详解】解:设键盘每个价格为x 元鼠标每个价格为y 元根据题意可得:解得:则设购买键盘a 个则鼠解析:20【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价,再利用总费用不超过1820元,得出不等式求出答案.【详解】解:设键盘每个价格为x 元,鼠标每个价格为y 元,根据题意可得:319023220x y x y +=⎧⎨+=⎩, 解得:5040x y =⎧⎨=⎩, 则设购买键盘a 个,则鼠标(50﹣a )个,根据题意可得:50×0.8a +40×0.85(50﹣a )≤1820,解得:a ≤20,故最多可购买键盘20个.故答案为:20.【点睛】本题咔嚓的是二元一次方程组与一元一次不等式,根据题意正确列式是解题的关键.19.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.a≥﹣3【分析】根据口诀同小取小可知不等式组的解集解这个不等式即可【详解】解这个不等式组为x <a ﹣4则3a+2≥a ﹣4解这个不等式得a≥﹣3故答案a≥﹣3【点睛】此题考查解一元一次不等式组掌握运算法解析:a ≥﹣3.【分析】根据口诀“同小取小”可知不等式组32{4x a x a +-<<的解集,解这个不等式即可. 【详解】解这个不等式组为x <a ﹣4,则3a +2≥a ﹣4,解这个不等式得a ≥﹣3故答案a ≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键20.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.【分析】①×2﹣②得:7x ﹣8y =6k ﹣3然后代入0<7x ﹣8y <3根据一元一次不等式的解法即可求出答案【详解】解:由题意可知:①×2﹣②得:7x ﹣8y =6k ﹣3∵0<7x ﹣8y <3∴0<6k ﹣3< 解析:112k <<【分析】①×2﹣②得:7x ﹣8y =6k ﹣3,然后代入0<7x ﹣8y <3,根据一元一次不等式的解法即可求出答案.【详解】 解:由题意可知:43165x y k x y -=+⎧⎨+=⎩①② ①×2﹣②得:7x ﹣8y =6k ﹣3,∵0<7x ﹣8y <3,∴0<6k ﹣3<3,解该不等式组得到:12<k <1, 故答案为12<k <1. 【点睛】本题考查了二元一次方程组的解法,一元一次不等式的解法等,属于基础题,熟练掌握不等式和方程组的解法是解决本题的关键. 三、解答题21.解不等式组103124x x +≥⎧⎪⎨-<⎪⎩,并把它的解集表示在数轴上.解析:13x -≤<,在数轴上表示见解析.【分析】先对不等式组进行化简,然后在数轴上分别画出x 的取值,它们的公共部分就是不等式组的解集.【详解】解:103124x x +≥⎧⎪⎨-<⎪⎩①② 由①得:1x ≥-由②得:318x -<,∴3x <,∴不等式组的解集为13x -≤<在数轴上表示如下:【点睛】本题考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.22.某县举办运动会需购买A ,B 两种奖品,若购买A 种奖品5件和B 种奖品2件,共需80元;若购买A 种奖品3件和B 种奖品3件,共需75元.(1)求A 、B 两种奖品的单价各是多少元?(2)大会组委会计划购买A .B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,并求出自变量m 的取值范围,以及确定最少费用W 的值.解析:(1)A 、B 两种奖品的单价分别是10元、15元;(2)1015(100)W m m =+-,7075m ≤≤,当75m =时,W 有最小值为1125.【分析】(1)设A 种奖品的单价是x 元,B 种奖品的单价是y 元,根据“钱数=A 种奖品单价×数量+B 种奖品单价×数量”可列出关于x 、y 的二元一次方程组,解方程组即可得出结论; (2)设购买A 种奖品m 件,则购买B 种奖品(100m -)件,根据购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,可列出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再结合数量关系即可得出W 与m 之间的函数关系,根据一次函数的性质既可以解决最值问题.【详解】解:(1)设A 、B 两种奖品的单价分别为x 、y 元则52803375x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩∴A 、B 两种奖品的单价分别是10元、15元.(2)设购买A 种奖品m 件,则B 为(100m -)件由题意得:3(100)1015(100)1150m m m m ≤-⎧⎨+-≤⎩,解得:7075m ≤≤1015(100)W m m =+-15005m =-∵50-<,∴W 随m 的增加而减少,当75m =时,W 有最小值为1125.【点睛】本题考查了解二元一次方程组、一元一次不等式组以及一次函数的性质,解题的关键是:(1)列出关于x 、y 的二元一次方程组;(2)根据数量关系列出W 关于m 的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、函数关系或不等式组)是关键.23.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.解析:不可能,理由见解析【分析】设出长方形的长和宽,根据长方形的面积列不等式组确定x 的取值范围,再确定长方形面积的取值范围即可得出答案.【详解】设长方形长和宽分别为3x cm 、2x cm ,∵正方形的面积为2400cm ,∴正方形边长为20cm ,3202200x x x ≤⎧⎪∴≤⎨⎪>⎩, 解得2003x <≤, 22202400236630039S x x x ⎛⎫∴=⋅=≤⨯=< ⎪⎝⎭长方形, ∴不可能.【点睛】本题考查矩形面积的计算方法,不等式组的应用,确定长方形边长及面积的取值范围是得出答案的关键.24.解不等式或不等式组,并将其解集在数轴上表示出来.(1)解不等式2151132x x-+-≥,并把它的解集在数轴上表示出来.(2)解不等式组233311362x xx x+>⎧⎪+-⎨-≥⎪⎩.解析:(1)x≤﹣1,数轴见解析;(2)﹣4≤x<3【分析】(1)求出不等式的解集,表示在数轴上即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解,来确定不等式组的解集.【详解】解:(1)去分母得:2(2x﹣1)﹣3(5x +1)≥6,去括号得:4x﹣2﹣15x﹣3≥6,移项合并得:﹣11x≥11,解得:x≤﹣1,(2)233311362x xx x+>⎧⎪⎨+--≥⎪⎩①②,由①得:x<3,由②得:x≥﹣4,∴不等式组的解集为﹣4≤x<3.【点睛】此题考查了解一元一次不等式组,在数轴上表示不等式的解集,正确求出每一个不等式解集是基础,熟练掌握运算法则是解本题的关键.25.某商店需要购进A型、B型两种节能台灯共160盏,其进价和售价如下表所示.类型价格A型B型进价/(元/盏)1535销售价/(元/盏)20451100元,问A型、B型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.解析:(1)A 型台灯购进100盏,B 型台灯购进60盏;(2)有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出一元一次方程组求解 .【详解】(1)设分别购进A 型、B 型台灯x 盏、y 盏,根据题意,得160,5101100.x y x y +=⎧⎨+=⎩解得:100,60.x y =⎧⎨=⎩答:A 型台灯购进100盏,B 型台灯购进60盏.(2)设购进a 盏A 型台灯,则购进(160)a -盏B 型台灯,根据题意,得1535(160)4300,510(160)1260.a a a a +-<⎧⎨+->⎩解之,得6568a <<. ∵a 为非负整数,∴a 取66,67.∴160a -相应取94,93.∵当a=66时,5×66+10×94=1270(元),当a=67时,5×67+10×93=1265(元),∴方案一获利最大,答:有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【点睛】本题考查二元一次方程组与一元一次不等式的综合运用,在正确理解题意的基础上列出适合的二元一次方程组与一元一次不等式求解是解题关键.26.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x 解析:(1)42n m =⎧⎨=⎩;(2)-43a ≤<-;(3)99a ;(4)2712x x ++; 【分析】(1)根据代入消元法解方程组即可;(2)解不等式组即可;(3)根据幂的运算性质计算即可;(4)根据多项式乘以多项式计算即可;【详解】(1)26m n m n =⎧⎨+=⎩,把2=m n 代入6+=m n 中,得到:26m m +=,解得:2m =,∴4n =,∴方程组的解为42n m =⎧⎨=⎩. (2)26015a a +<⎧⎨-≤⎩, 由260a +<得:3a <-,由15-≤a 得:4a ≥-,∴不等式组的解集为:-43a ≤<-.(3)原式99989a a a =+=. (4)原式224312712x x x x x =+++=++. 【点睛】本题主要考查了二元一次方程组求解,不等式组求解,整式乘法的应用,准确计算是解题的关键.27.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 解析:(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.28.某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B种台灯多少盏?解析:(1)购进A种新型节能台灯20盏,购进B种新型节能台灯30盏;(2)至少购进B种台灯27盏【分析】(1)设购进A种新型节能台灯x盏,购进B种新型节能台灯y盏,根据总价=单价×数量结合该商城用2750元购进A、B两种新型节能台灯共50盏,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进B种新型节能台灯m盏,则购进A种新型节能台灯(50-m)盏,根据总利润=单盏利润×数量结合总利润不少于1400元,即可得出关于m的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:(1)设购进A种新型节能台灯x盏,购进B种新型节能台灯y盏,依题意,得:50 40652750 x yx y+=⎧⎨+=⎩,解得:2030 xy=⎧⎨=⎩答:购进A种新型节能台灯20盏,购进B种新型节能台灯30盏.(2)设购进B种新型节能台灯m盏,则购进A种新型节能台灯(50-m)盏,依题意,得:(60-40)(50-m)+(100-65)m≥1400,解得:m≥803.∵m为正整数,∴m的最小值为27.答:至少购进B种台灯27盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.。

(2021年整理)初中数学--不等式与不等式组练习题

(2021年整理)初中数学--不等式与不等式组练习题

初中数学--不等式与不等式组练习题(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学--不等式与不等式组练习题(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学--不等式与不等式组练习题(推荐完整)的全部内容。

初中数学——不等式与不等式组练习题(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望初中数学--不等式与不等式组练习题(推荐完整)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <初中数学——不等式与不等式组练习题(推荐完整)> 这篇文档的全部内容.初中数学 不等式与不等式组练习一、填空题1。

不等式325x +≥的解集是。

2. 关于x的方程x kx 21=-的解为正实数,则k 的取值范围是3. 不等式23x x >-的解集为 .4. 把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 。

5.不等式组40320x x ->⎧⎨+>⎩的解集是 .6. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .7。

甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)8.不等式5(1)31x x -<+的解集是 .9. 不等式5(1)31x x -<+的解集是 . 10。

七年级数学不等式与不等式组练习题.doc

七年级数学不等式与不等式组练习题.doc

第九章 不等式与不等式组全章复习配套练习一、选择题。

1. 若m >n ,则下列不等式中成立的是( )A .m + a <n + bB .ma <nbC .ma 2>na 2D .a -m <a -n2.不等式4(x -2)>2(3x + 5)的非负整数解的个数为( )A .0个B .1个C .2个D .3个3.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( )A .B .C .D .4.若方程()()31135m x m x x ++=--的解是负数,则m 的取值范围是() A .54m >- B .54m <-C .54m > D .54m <5.不等式()123x m m ->-的解集为2x >,则m 的值为( )A .4B .2C .32 D .126.不等式组123x x -≤⎧⎨-<⎩的解集是()A .x ≥-1B .x <5C .-1≤x <5D .x ≤-1或x <57、17.若1-=a a,则a 只能是( )A .a ≤-1B . a <0C .a ≥-1D .a ≤08、关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是( )A .a >3B .a ≤3C .a <3D .a ≥3二、填空题1、已知x 的12与5的差不小于3,用不等式表示这一关系式为 。

2、某饮料瓶上有这样的字样:Eatable Date 18 months. 如果用x (单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为 。

3、当x 时,式子3x -5的值大于5x + 3的值。

4、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为 。

5、编出解集为x 》2的一元一次不等式为______________________。

初一数学不等式与不等式组专题练习

初一数学不等式与不等式组专题练习

以下是为⼤家整理的关于初⼀数学不等式与不等式组专题练习的⽂章,供⼤家学习参考。

⼀、填空题(共10⼩题,每题3分,共30分)1.“ 的⼀半与2的差不⼤于 ”所对应的不等式是 .2.不等号填空:若a3.若 <1,则 0⽤“>”“=”或“4.直接写出下列不等式(组)的解集:①②③ .5.当时,代数式的值不⼤于零.6.某种品牌的⼋宝粥,外包装标明:净含量为330g 10g,表明了这罐⼋宝粥的净含量的范围是 .7.不等式 >1,的正整数解是 .8.不等式的整数解是 .9.不等式 > 的解集为 <3则 .10.不等式组的解为 .⼆、选择题(共4⼩题,每题4分,共16分)11.不等式的解集在数轴上表⽰正确的是 ( )12.不等式 > 的解集为( ) A. > B . <0 C. >0 D. <13.不等式 <6的正整数解有( )A .1个 B .2个 C.3 个 D. 4个14..已知关于的不等式组⽆解,则的取值范围是( )A. B. C. D.三、解答题(共54分)15.解不等式(组)(4×6=24分)16.(7分)代数式的值不⼤于的值,求的范围17.(7分)⽅程组的解为负数,求的范围.18.(8分)某次数学测验,共16个选择题,评分标准为:;对⼀题给6分,错⼀题扣2分,不答不给分.某个学⽣有1题未答,他想⾃⼰的分数不低于70分,他⾄少要对多少题?19.(8分)国庆节期间,电器市场⽕爆.某商店需要购进⼀批电视机和洗⾐机,根据市场调查,决定电视机进货量不少于洗⾐机的进货量的⼀半.电视机与洗⾐机的进价和售价如下表:类 别电视机洗⾐机进价(元/台) 1800 1500售价(元/台) 2000 1600计划购进电视机和洗⾐机共100台,商店最多可筹集资⾦161 800元.(1)请你帮助商店算⼀算有多少种进货⽅案?(不考虑除进价之外的其它费⽤)(2)哪种进货⽅案待商店销售购进的电视机与洗⾐机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)。

初中数学不等式与不等式组提高题与常考题和培优题

初中数学不等式与不等式组提高题与常考题和培优题

初中数学不等式与不等式组提高题与常考题和培优题(总28页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除初中数学不等式与不等式组提高题与常考题和培优题(含解析)一.选择题(共13小题)1.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b2.不等式2x+3>3x+2的解集在数轴上表示正确的是()A.B.C.D.3.若关于x的不等式3﹣x>a的解集为x<4,则关于m的不等式2m+3a<1的解为()A.m<2 B.m>1 C.m>﹣2 D.m<﹣14.关于x的不等式x﹣b≥0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 5.不等式组的最小整数解是()A.0 B.﹣1 C.﹣2 D.36.已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<7.不等式组的整数解的个数是()A.4 B.5 C.6 D.无数个8.已知且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.<k<1 C.0<k<1 D.0<k<9.不等式组的解集,在数轴上表示正确的是()A.B.C.D.10.当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2 C.<x D.x<x2<11.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.3412.“一方有难,八方支援”,雅安芦山4?20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60 B.70 C.80 D.9013.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二.填空题(共12小题)14.不等式组的解集是.15.不等式5x﹣3<3x+5的所有正整数解的和是.16.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.17.若不等式x<2的解集都能使关于x的一次不等式(a﹣3)x<a+5成立,则a的取值范围是.18.若关于x的一元一次不等式组有解,则a的取值范围是.19.在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k ≥1的解集在数轴上如图表示,则k的取值范围是.20.已知满足不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解是方程:2x﹣ax=3的解,则a的值为.21.关于x的不等式组的解集为x<3,那么m的取值范围是.22.已知x=2是不等式ax﹣3a+2≥0的解,且x=1不是这个不等式的解,则实数a的取值范围是.23.四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如下图所示,则他们的体重从小到大是(用“<”号连接).24.下列判断中,正确的序号为.①若﹣a>b>0,则ab<0;②若ab>0,则a>0,b>0;③若a>b,c≠0,则ac>bc;④若a>b,c≠0,则ac2>bc2;⑤若a>b,c≠0,则﹣a﹣c<﹣b﹣c.25.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入小球时有水溢出.三.解答题(共15小题)26.解不等式﹣1≤,并把解集在数轴上表示出来.27.解不等式组:.28.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?29.已知关于x的不等式组有四个整数解,求实数a的取值范围.30.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.31.已知x=3是关于x的不等式的解,求a的取值范围.32.已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.33.关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.34.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.35.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B 种商品最低售价为每件多少元?36.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.37.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?38.某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号挖掘机,所生产的此两种型号挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号 A B成本(万元/台)200 240售价(万元/台)250 300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润(注:利润=售价﹣成本)39.暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?40.冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克,乙饮料每瓶需糖6克,柠檬酸10克,现有糖500克,柠檬酸400克.(1)请计算有几种配制方案能满足冷饮店的要求;(2)冷饮店对两种饮料上月的销售情况作了统计,结果如下表,请你根据这些统计数据确定一种比较合理的配制方案,并说明理由.两种饮料的日销量甲 10 12 14 16 21 25 30 38 40 50乙 40 38 36 34 29 25 20 12 10 0 天数 3 4 4 4 8 1 1 1 2 2初中数学一元一次不等式提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题(共13小题)1.(2017?青浦区一模)已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b【分析】根据不等式的性质分别进行判断,即可求出答案.【解答】解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确;故选:D.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.(2017?朝阳区校级一模)不等式2x+3>3x+2的解集在数轴上表示正确的是()A.B.C.D.【分析】先根据不等式的性质求出此不等式的解集,再根据不等式的解集在数轴上的表示方法即可求解.【解答】解:2x+3>3x+2,解得x<1,故选D.【点评】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.也考查了解不等式.3.(2017?邢台县一模)若关于x的不等式3﹣x>a的解集为x<4,则关于m 的不等式2m+3a<1的解为()A.m<2 B.m>1 C.m>﹣2 D.m<﹣1【分析】首先求出不等式的解集,与x<4比较,就可以得出a的值,然后解不等式即可.【解答】解:解不等式3﹣x>a,得x<3﹣a,又∵此不等式的解集是x<4,∴3﹣a=4,∴a=﹣1,∴关于m的不等式为2m﹣3<1,解得m<2.故选A.【点评】此题主要考查了一元一次不等式的解法.解一元一次不等式的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.4.(2017?兴化市校级一模)关于x的不等式x﹣b≥0恰有两个负整数解,则b 的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 【分析】解不等式可得x≥b,根据不等式的两个负整数解为﹣1、﹣2即可得b 的范围.【解答】解:解不等式x﹣b≥0得x≥b,∵不等式x﹣b≥0恰有两个负整数解,∴不等式的两个负整数解为﹣1、﹣2,∴﹣3<b≤﹣2,故选:B.【点评】本题考查了不等式的正整数解,解题的关键是注意能根据整数解的具体数值,找出不等式解集的具体取值范围.5.(2017?茂县一模)不等式组的最小整数解是()A.0 B.﹣1 C.﹣2 D.3【分析】首先解不等式组确定不等式组的解集,即可确定不等式组的最小整数解.【解答】解:解不等式(1)得:x>﹣,则不等式组的解集是:﹣<x≤3,故最小的整数解是:﹣1.故选B.【点评】本题主要考查了不等式组的整数解的确定,关键是正确解得不等式组的解集.6.(2017?南雄市校级模拟)已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点P(1﹣2a,a+3)在第二象限,得.解得a>,故选B.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(2017?邢台县一模)不等式组的整数解的个数是()A.4 B.5 C.6 D.无数个【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,由①得:x>﹣2,由②得:x≤4.则不等式组的解集是:﹣2<x≤4.则整数解是:﹣1,0,1,2,3,4共6个.故选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(2017春?萧山区校级月考)已知且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.<k<1 C.0<k<1 D.0<k<【分析】先根据方程组将两式相减,得到x﹣y=1﹣2k,再代入﹣1<x﹣y<0,得到关于k的不等式组,进而得出k的取值范围.【解答】解:∵∴(2x+y)﹣(x+2y)=(2k+1)﹣4k,∴x﹣y=1﹣2k,又∵﹣1<x﹣y<0,∴﹣1<1﹣2k<0,解得<k<1.故选:B.【点评】本题主要考查了解一元一次不等式组以及解二元一次方程组,解决问题的关键是根据方程组求得x﹣y=1﹣2k,运用整体思想进行代入计算.9.(2016?临沂)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【分析】解出不等式组的解集,即可得到哪个选项是正确的,本题得以解决.【解答】解:由①,得x<4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式组的方法.10.(2016?大庆)当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2 C.<x D.x<x2<【分析】先在不等式0<x<1的两边都乘上x,再在不等式0<x<1的两边都除以x,根据所得结果进行判断即可.【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<,又∵x<1,∴x2、x、的大小顺序是:x2<x<.故选A【点评】本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或>.11.(2016?遵义)三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.34【分析】设三个连续正整数分别为x﹣1,x,x+1,列出不等式即可解决问题.【解答】解:设三个连续正整数分别为x﹣1,x,x+1.由题意(x﹣1)+x+(x+1)<39,∵x为整数,∴x=12时,三个连续整数的和最大,三个连续整数的和为:11+12+13=36.故选B.【点评】本题考查一元一次不等式的应用,解题的关键是构建不等式解决问题,属于中考常考题型.12.(2016雅安)“一方有难,八方支援”,雅安芦山420地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60 B.70 C.80 D.90【分析】设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据总人数列不等式求解可得.【解答】解:设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得:2x+≤200,解得:x≤80,∴最多可搬桌椅80套,故选:C.【点评】本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.13.(2016?潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.【点评】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.二.填空题(共12小题)14.(2016?广东)不等式组的解集是﹣3<x≤1.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(2016?新县校级模拟)不等式5x﹣3<3x+5的所有正整数解的和是6.【分析】先根据不等式的性质求出不等式的解集,再根据不等式的解集找出所有正整数解即可.【解答】解:移项,得:5x﹣3x<5+3,合并同类项,得:2x<8,系数化为1,得:x<4,∴不等式所有正整数解得和为:1+2+3=6,故答案为:6.【点评】本题考查了不等式的性质,解一元一次不等式,一元一次不等式的整数解的应用,解此题的关键是求出不等式的解集.16.(2017春?萧山区月考)若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【解答】解:解3m﹣2x<5,得x>.由不等式的解集,得=3.解得m=.故答案为:.【点评】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.17.(2016?郑州校级模拟)若不等式x<2的解集都能使关于x的一次不等式(a﹣3)x<a+5成立,则a的取值范围是3<a≤.【分析】先求出x的取值范围,再由不等式的基本性质即可得出a的取值范围.【解答】解:解不等式x<2得,x<4.∵不等式x<2的解集都能使关于x的一次不等式(a﹣3)x<a+5成立,∴,解得3<a≤.故答案为:3<a≤.【点评】本题考查的是不等式的解集,根据题意得出关于a的不等式组是解答此题的关键.18.(2016?如皋市校级二模)若关于x的一元一次不等式组有解,则a的取值范围是a<1.【分析】不等式组中两不等式分别求出解集,由不等式组有解确定出a的范围即可.【解答】解:不等式整理得:,由不等式有解,得到a<1,则a的范围是a<1,故答案为:a<1【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.19.(2016?杭州模拟)在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上如图表示,则k的取值范围是k=﹣3.【分析】根据新运算法则得到不等式2x﹣k≥1,通过解不等式即可求k的取值范围,结合图象可以求得k的值.【解答】解:根据图示知,已知不等式的解集是x≥﹣1.则2x﹣1≥﹣3∵x△k=2x﹣k≥1,∴2x﹣1≥k且2x﹣1≥﹣3,∴k=﹣3.故答案是:k=﹣3.【点评】本题考查了在数轴上表示不等式的解集、解一元一次不等式.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.(2016?乌审旗模拟)已知满足不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解是方程:2x﹣ax=3的解,则a的值为.【分析】首先解不等式求得不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可.【解答】解:解不等式3(x﹣2)+5<4(x﹣1)+6,去括号,得:3x﹣6+5<4x﹣4+6,移项,得3x﹣4x<﹣4+6+6﹣5,合并同类项,得﹣x<3,系数化成1得:x>﹣3.则最小的整数解是﹣2.把x=﹣2代入2x﹣ax=3得:﹣4+2a=3,解得:a=.故答案是:.【点评】本题考查了一元一次不等式的解法以及方程的解的定义,正确解不等式求得x的值是关键.21.(2016?包头二模)关于x的不等式组的解集为x<3,那么m的取值范围是m≥3.【分析】首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.【点评】本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.22.(2016春?扬州校级期末)已知x=2是不等式ax﹣3a+2≥0的解,且x=1不是这个不等式的解,则实数a的取值范围是1<a≤2.【分析】根据x=2是不等式ax﹣3a+2≥0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=2是不等式ax﹣3a+2≥0的解,∴2a﹣3a+2≥0,解得:a≤2,∵x=1不是这个不等式的解,∴a﹣3a+2<0,解得:a>1,∴1<a≤2,故答案为:1<a≤2.【点评】本题考查了不等式的解集,解决本题的关键是求不等式的解集.23.(2016春?召陵区期末)四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如下图所示,则他们的体重从小到大是(用“<”号连接)S>P>R>Q.【分析】由图一、二得,S>P>R,则S﹣P>0,由图三得,P+R>Q+S,则S ﹣P<R﹣Q,所以,R﹣Q>0,即R>Q;即可解答.【解答】解:由图一、二得,S>P>R,∴S﹣P>0,由图三得,P+R>Q+S,∴S﹣P<R﹣Q,∴R﹣Q>0,∴R>Q;综上,S>P>R>Q.故答案为:S>P>R>Q.【点评】本题主要考查了不等式的性质,①不等式两边加(或减)同一个数(或式子),不等号的方向不变;②不等式两边乘(或除以)同一个正数,不等号的方向不变;③不等式两边乘(或除以)同一个负数,不等号的方向改变.24.(2016春?济南校级期末)下列判断中,正确的序号为①④⑤.①若﹣a>b>0,则ab<0;②若ab>0,则a>0,b>0;③若a>b,c≠0,则ac>bc;④若a>b,c≠0,则ac2>bc2;⑤若a>b,c≠0,则﹣a﹣c<﹣b﹣c.【分析】①若﹣a>b>0,则a<0,b>0,所以ab<0,据此判断即可.②若ab>0,则a>0,b>0或a<0,b<0,据此判断即可.③若a>b,c≠0,则c>0时,ac>bc;c<0时,ac<bc;据此判断即可.④若a>b,c≠0,则c2>0,所以ac2>bc2,据此判断即可.⑤若a>b,c≠0,则﹣a<﹣b,所以﹣a﹣c<﹣b﹣c,据此解答即可.【解答】解:∵﹣a>b>0,∴a<0,b>0,∴ab<0,①正确;∵ab>0,∴a>0,b>0或a<0,b<0,②错误;∵a>b,c≠0,∴c>0时,ac>bc;c<0时,ac<bc;③错误;∵a>b,c≠0,∴c2>0,∴ac2>bc2,④正确;∵a>b,c≠0,∴﹣a<﹣b,∴﹣a﹣c<﹣b﹣c,⑤正确.综上,可得判断中,正确的序号为:①④⑤.故答案为:①④⑤.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.25.(2016春?扶沟县期末)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入10小球时有水溢出.【分析】设放入球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式为y=kx+b,由待定系数法就可求出结论;当y>49时,建立不等式求出其解即可.【解答】解:设放入球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式为y=kx+b,由题意,得:,解得:,即y=2x+30;由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.故答案为:10.【点评】本题考查了列一元一次方程解实际问题的运用,待定系数法求函数的解析式的运用,列不等式解实际问题的运用,解答时求出函数的解析式是关键.三.解答题(共15小题)26.(2016?宁德)解不等式﹣1≤,并把解集在数轴上表示出来.【分析】利用解一元一次不等式的方法解出不等式的解集,再将其表示在数轴上即可得出结论.【解答】解:不等式两边同时×6得:3x﹣6≤14﹣2x,移项得:5x≤20,解得:x≤4.将其在数轴上表示出来如图所示.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.27.(2016?深圳)解不等式组:.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<2,解②得x≥﹣1,则不等式组的解集是﹣1≤x<2.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.28.(2016?十堰)x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件的整数有﹣2、﹣1、0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.29.(2016?呼和浩特)已知关于x的不等式组有四个整数解,求实数a的取值范围.【分析】分别求出不等式组中两不等式的解集,根据不等式组有四个整数解,即可确定出a的范围.【解答】解:解不等式组,解不等式①得:x>﹣,解不等式②得:x≤a+4,∵不等式组有四个整数解,∴不等式组的解集再数轴上表示为:∴1≤a+4<2,解得:﹣3≤a<﹣2.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.30.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.【分析】首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.【解答】解:①×2得:2x﹣4y=2m③,②﹣③得:y=,把y=代入①得:x=m+,把x=m+,y=代入不等式组中得:,解不等式组得:﹣4<m≤﹣,则m=﹣3,﹣2.【点评】此题主要考查了一元一次不等式组的整数解,以及二元一次方程的解,关键是掌握消元的方法,用含m的式子表示x、y.31.(2013?凉山州)已知x=3是关于x的不等式的解,求a的取值范围.【分析】先根据不等式,解此不等式,再对a分类讨论,即可求出a的取值范围.【解答】解:解得(14﹣3a)x>6当a<,x>,又x=3是关于x的不等式的解,则<3,解得a>4;当a>,x<,又x=3是关于x的不等式的解,则>3,解得a<4(与所设条件不符,舍去);综上得4<a<.故a的取值范围是4<a<.【点评】本题考查了不等式的解的定义及一元一次不等式的解法,比较简单,注意分类讨论是解题的关键.32.(2011?乐山)已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.【分析】先解方程组,求得x、y的值,再根据x+y<3,解不等式即可.【解答】解:,①+②得,3x=6a+3,解得x=2a+1,将x=2a+1代入①得,y=2a﹣2,∵x+y<3,∴2a+1+2a﹣2<3,即4a<4,a<1.【点评】本题是一元一次不等式和二元一次方程组的综合题,是中档题,难度适中.33.(2016?大庆)关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.【分析】(1)求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可;(2)根据不等式①的解都是②的解,求出a的范围即可.【解答】解:(1)由①得:x<,由②得:x<,由两个不等式的解集相同,得到=,解得:a=1;(2)由不等式①的解都是②的解,得到≤,解得:a≥1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.34.(2013?毕节地区)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.【点评】此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.35.(2014?绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B 种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,。

初一数学不等式组提高练习2

初一数学不等式组提高练习2

一元一次不等式组提高练习1、解不等式252133x -+-≤+≤-2、 求以下不等式组的整数解2(2)83373(2)82x x x x x x +<+⎧⎪-≥-⎨⎪-+>⎩3、解不等式:〔1〕 0)2)(1(<+-x x 〔2〕0121>+-x x4、对于1x ≥的一切有理数,不等式()12x a a -≥都成立,求a 的取值范围。

5、1x =是不等式组()()352,23425x x a x a x -⎧≤-⎪⎨⎪-<+-⎩的解,求a 的取值范围.6、如果35x a =-是不等式()11233x x -<-的解,求a 的取值范围。

7、假设不等式组841,x x x m +<-⎧⎨>⎩的解集为3x >,求m 的取值范围。

8、如果不等式组237,635x a b b x a-<⎧⎨-<⎩的解集为522x <<,求a 和b 的值。

9、不等式组⎪⎩⎪⎨⎧<-<-622131m x m x 的解集是36+<m x ,求m 的取值范围。

10、关于x 的不等式()12a x ->的解在2x <-的范围内,求a 的取值范围。

11、关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,求a 的取值范围。

12、关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,求a 的取值范围。

13、假设关于x 的不等式组2145,x x x a ->+⎧⎨>⎩无解,求a 的取值范围。

14、设关于x 的不等式组22321x m x m ->⎧⎨-<-⎩无解,求m 的取值范围15、假设不等式组⎩⎨⎧<->ax a x 无解,那么不等式⎩⎨⎧<+>-11a x a x 有没有解?假设有解,请求出不等式组的解集;假设没有请说明理由?16、假设不等式组372,x x a a -≤⎧⎨-≥⎩有解,求a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生姓名 陈 年级 初三 授课时间 2012.5.19 教师姓名 刘 课时 2不等式和不等式组提高练习一、选择题1. 如果a 、b 表示两个负数,且a <b ,则( ).(A)1>b a(B)ba <1 (C)ba11<(D)ab <12. a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2(B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3. |a |+a 的值一定是( ).(A)大于零(B)小于零(C)不大于零(D)不小于零4. 若由x <y 可得到ax >ay ,应满足的条件是( ).(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人(B)3人(C)4人(D)5人7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).(A)11(B)8(C)7(D)58. 若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2(C)k <1 (D)1≤k <29. 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m ≤1(D)m ≥110. 对于整数a ,b ,c ,d ,定义bd ac cdb a -=,已知3411<<db ,则b +d 的值为_________.11. 如果a 2x >a 2y (a ≠0).那么x ______y . 12. 若x 是非负数,则5231x -≤-的解集是______.13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.14. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______. 17. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式18. 2(2x -3)<5(x -1). 10-3(x +6)≤1. 19. ⋅-->+22531x x⋅-≥--+612131y y y20. 3[x -2(x -7)]≤4x . .17)10(2383+-≤--y y y21..151)13(21+<--y y y.15)2(22537313-+≤--+x x x22. ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x xx三、解不等式组 23. ⎩⎨⎧≥-≥-.04,012x x⎩⎨⎧>+≤-.074,03x x24. ⎪⎩⎪⎨⎧+>-<-.3342,121x x x x-5<6-2x <3.25. ⎪⎩⎪⎨⎧⋅>-<-322,352x x x x⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx26. ⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x.234512x x x -≤-≤-27. ⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x28. 解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、变式练习29. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .30. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.31. 已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.32. 适当选择a 的取值范围,使1.7<x <a 的整数解:(1) x 只有一个整数解;(2) x 一个整数解也没有.33. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.34. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.35. (类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.36. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.37. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.38. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.39. (类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?40. (类型相同)已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.41. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.五、解答题42. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?43.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?44.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?45.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?46.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?47.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?48.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?49.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?50.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?51.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..51元...48元,小于请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?52.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.53.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:问:这400。

相关文档
最新文档