《函数的单调性与导数》说课稿
函数的单调性与导数 说课稿 教案 教学设计
导数在研究函数中的应用一、教学目标:知识与技能:1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.会求函数的单调区间(其中多项式函数一般不超过三次).过程与方法:能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.情感、态度与价值:让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神.二、教学重点、难点重点:掌握函数的单调性与导数的关系.难点:能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式三、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.四、教学过程(一)温故知新以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小.但在函数y =f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.如果利用导数来判断函数的单调性就比较简单.本节我们就来研究这个问题.解析:请同学思考并回顾以前所学知识并积极回答之.(二)新知探究探究点一函数的单调性与导函数正负的关系思考1观察高台跳水运动员的高度h随时间t变化的函数h(t)=-4.9t2+6.5t+10的图象,及运动员的速度v随时间t变化的函数v(t)=h′(t)=-9.8t+6.5的图象,思考运动员从起跳到最高点,从最高点到入水的运动状态有什么区别.思考2观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系?答(1)在区间(-∞,+∞)内,y′=1>0,y是增函数;(2)在区间(-∞,0)内,y′=2x<0,y是减函数;在区间(0,+∞)内,y′=2x>0,y是增函数;(3)在区间(-∞,+∞)内,y′=3x2≥0,y是增函数;(4)在区间(-∞,0),(0,+∞)内,y′=-1x2<0,y是减函数.小结一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.思考3若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗?答不一定.由思考2中(3)知f′(x)≥0恒成立.思考4(1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出思考2中(4)的单调区间.(2)函数的单调区间与其定义域满足什么关系?例1已知导函数f′(x)的下列信息:当1<x<4时,f′(x)>0;当x >4,或x <1时,f ′(x )<0;当x =4,或x =1时,f ′(x )=0.试画出函数f (x )图象的大致形状. 解 当1<x <4时,f ′(x )>0,可知f (x )在此区间内单调递增; 当x >4,或x <1时, f ′(x )<0,可知f (x )在这两个区间内单调递减;当x =4,或x =1时,f ′(x )=0,这两点比较特殊,我们称它们为“临界点”. 综上,函数f (x )图象的大致形状如图所示.反思与感悟 本题具有一定的开放性,图象不唯一,只要能抓住问题的本质,即在相应区间上的单调性符合题意就可以了.跟踪训练1 函数y =f (x )的图象如图所示,试画出导函数f ′(x )图象的大致形状.解 f ′(x )图象的大致形状如下图:注:图象形状不唯一. 例2 求下列函数的单调区间:(1)f (x )=2x 3+3x 2-36x +1;(2)f (x )=sin x -x (0<x <π); (3)f (x )=3x 2-2ln x ;(4)f (x )=3tx -x 3单调递减区间是(-3,2).(2)f ′(x )=cos x -1≤0恒成立,故函数f (x )的单调递减区间为(0,π) (3)函数的定义域为(0,+∞),f ′(x )=6x -2x =2·3x 2-1x .令f ′(x )>0,即2·3x 2-1x >0,解得-33<x <0或x >33.又∵x >0,∴x >33.令f ′(x )<0,即2·3x 2-1x<0,解得x <-33或0<x <33.又∵x >0,∴0<x <33. ∴f (x )的单调递增区间为(33,+∞),单调递减区间为(0,33). (4)f ′(x )=3t -3x 2.令f ′(x )≥0时,得3t -3x 2≥0,即t ≥x 2,∴当t ≤0时,无解;当t >0时,函数的单调递增区间是[-t ,t ]. 令f ′(x )≤0时,得3t -3x 2≤0,即t ≤x 2, 当t ≤0时,f ′(x )≤0恒成立,函数的单调递减区间是(-∞,+∞);当t >0时,函数的单调递减区间是(-∞,-t ],[t ,+∞).综上所述,当t ≤0时,函数的单调减区间是(-∞,+∞),无单调增区间;当t >0时,函数的单调增区间是[-t ,t ],单调减区间是(-∞,-t ],[t ,+∞). 反思与感悟 求函数的单调区间的具体步骤是(1)优先确定f (x )的定义域;(2)计算导数f ′(x );(3)解f ′(x )>0和f ′(x )<0;(4)定义域内满足f ′(x )>0的区间为增区间,定义域内满足f ′(x )<0的区间为减区间. 跟踪训练2 求下列函数的单调区间: (1)f (x )=x 2-ln x ;(2)f (x )=x 3-x 2-x .又∵x >0,∴x >22,∴函数f (x )的单调递增区间为⎝⎛⎭⎫22,+∞; 由f ′(x )<0得x <-22或0<x <22,又∵x >0,∴0<x <22, ∴函数f (x )的单调递减区间为⎝⎛⎭⎫0,22. (2)f ′(x )=3x 2-2x -1=(3x +1)(x -1).由f ′(x )>0得x <-13或x >1;由f ′(x )<0得-13<x <1,故函数f (x )的单调递增区间为(-∞,-13)和(1,+∞),单调递减区间为(-13,1).探究点二 函数的变化快慢与导数的关系思考 我们知道导数的符号反映函数y =f (x )的增减情况,怎样反映函数y =f (x )增减的快慢呢?能否从导数的角度解释变化的快慢呢?例3如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.解(1)→B,(2)→A,(3)→D,(4)→C.反思与感悟通过函数图象,不仅可以看出函数的增减,还可以看出函数增减的快慢.从导数的角度研究了函数的单调性及增减快慢后,我们就能根据函数图象大致画出导函数的图象,反之也可行.跟踪训练3已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是()【答案】 D(三)当堂达标1.函数f (x )=x +ln x 在(0,6)上是( )A .单调增函数B .单调减函数C .在⎝⎛⎭⎫0,1e 上是减函数,在⎝⎛⎭⎫1e ,6上是增函数 D .在⎝⎛⎭⎫0,1e 上是增函数,在⎝⎛⎭⎫1e ,6上是减函数 【答案】 A【解析】 ∵f ′(x )=1+1x>0,∴函数在(0,6)上单调递增.2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )【答案】 D【解析】 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确.3.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】 A【解析】 f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.4.函数y =12x 2-ln x 的单调递减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)【答案】 A5.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为 6x -y +7=0.(1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.【解析】 (1)由y =f (x )的图象经过点P (0,2),知d =2, ∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程为6x -y +7=0, 知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧ 3-2b +c =6-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3b -c =0.解得b =c =-3. 故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3.令f ′(x )>0,得x <1-2或x >1+2;令f ′(x )<0,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2). 6.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11). (1)求a 、b 的值;(2)讨论函数f (x )的单调性.(2)由a =1,b =-3得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3). 令f ′(x )>0,解得x <-1或x >3;又令f ′(x ) <0,解得-1<x <3. 所以当x ∈(-∞,-1)时,f (x )是增函数;当x ∈(3,+∞)时,f (x )也是增函数;当x ∈(-1,3)时,f (x )是减函数. 五、小结。
高二数学《函数单调性》说课稿(通用10篇)
高二数学《函数单调性》说课稿高二数学《函数单调性》说课稿(通用10篇)作为一位兢兢业业的人民教师,编写说课稿是必不可少的,借助说课稿可以有效提高教学效率。
说课稿应该怎么写才好呢?以下是小编为大家整理的高二数学《函数单调性》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
高二数学《函数单调性》说课稿篇1我是本科数学xx号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。
我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。
恳请在座的专家评委批评指正。
一、教材分析1、教材的地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。
(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。
新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。
本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。
函数的单调性与导数说课课件
结合实例,借助几何直观探索并了解函数的单 调性与导数的关系. 能力目标:
能够利用导数研究函数的单调性,并在探索过
程中培养学生的观察、分析、概括能力. 情感目标:
通过知识的探究过程培养学生细心观察、认真
分析、严谨论证的良好思维习惯,体会数学之美,
从而更加热爱数学,热爱生活.
3、重点与难点:
板书设计
3.3.1函数的单调性与导数
一、函数的单调性与导数 正负的关系 二、知识应用 例1
例3
课堂练习:
三、课堂小结:
例2
四、布置作业:
教学评价
在教学过程中,实现了学生积极参与的主
体地位和教师引导探索的主导作用.以问题为主
线,不断地探究,进而归纳,总结得出结论,
这是一个思维不断提升的过程.在这个过程中,
2.函数 y = f ( x)的图象如图所示, 试画出导函数 f ( x ) 图象
ห้องสมุดไป่ตู้的大致形状.
【设计意图】
通过练习,使学生更好地理解和掌握函数的 单调性与导数之间的关系,从而使所学知识得 到进一步的熟练和巩固.
第五环节
归纳小结 加深理解
课堂小结 【问题3】想一想本节课你有些什么收获呢?
【设计意图】
3
(2) f (x)= sin x-x (x (0,π ))
3
(3) f (x)=x- ln x (4) f (x)=2 x -6 x+7
【设计意图】
通过例2,让学生在具体的应用中深化对结 论的理解,帮助学生明确解题步骤及规范性.
趣味数学:如图,水以常速(即单位时间内注入水的体积
相同)注入下面四种底面积相同的容器中,请分别找出与 各容器对应的水的高度h与时间t的函数关系图象.
函数的单调性与导数 说课稿 教案 教学设计
函数的单调性与导数教学目标:1.了解可导函数的单调性与其导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次.教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;教学难点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 教学过程设计(一)、情景引入,激发兴趣。
【教师引入】黑暗中,你是怎样通过远处汽车自身的灯光判断该车是上坡还是下坡的?(二)、探究新知,揭示概念探究1.问题:图1.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.探究2.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图1.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.猜想:导数与函数的单调性有什么联系呢?在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减.(三)、分析归纳,抽象概括 函数的单调性与导数的关系曲线 切线斜率k >0 上升函数()y f x = ()0f x '> ? 递增()x I ∈在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增; 如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.(2)“某区间”指的是定义域的子集,研究函数单调性问题“定义域优先”. (四)、知识应用,深化理解例1.已知导函数'()f x 的下列信息: 当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增; 当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2.判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练课堂练习1.求下列函数的单调区间1.f (x )=2x 3-6x 2+7 2.f (x )=x1+2x3. f (x )=sin x , x ]2,0[π∈4. y=xlnx(五)、归纳小结、布置作业。
函数单调性与导数说课稿
(三)新课讲解
1、函数的单调性与导数正负的关系 、 (1)观察: )观察: (2)问题: )问题:
o y o h v o a y b
t
y
a y
b
t
(3)分组讨论四种函数图形: )分组讨论四种函数图形: x x
o
o
x
o
x
(4)再观察图 由教师对一般情况作出归纳总结 ) 观察图3由教师对一般情况作出归纳总结
二、教学目标
1、知识与技能: 知识与技能: (1)要求学生会用导数的正负判断函数的单调性; 要求学生会用导数的正负判断函数的单调性; (2)会求不超过三次的多项式函数的单调区间。 会求不超过三次的多项式函数的单调区间。 2、过程与方法: 、过程与方法: (1)利用图象为结论提供直观支持,把函数的解析表示 利用图象为结论提供直观支持, 与图象有机地结合 (2)学会由图形——性质 学会由图形 性质——一般性的数学思维,把它 一般性的数学思维, 性质 一般性的数学思维 应用到数学乃至其它学科,切身体会一叶知秋的深意! 应用到数学乃至其它学科,切身体会一叶知秋的深意! 3、情感与价值观: 、情感与价值观: (1)增强对数学的好奇心与求知欲 (2)培养学生勇于探索善于发现的创新思想。 返回 培养学生勇于探索善于发现的创新思想。
三、教学的重点与难点
1、 重点:函数的单调性与导数正负的关系; 、 重点:函数的单调性与导数正负的关系; 2、难点: 、难点: (1)利用导数在图形中探究函数的单调性,准确判断 )利用导数在图形中探究函数的单调性, 不同函数的单调区间。 不同函数的单调区间。 (2)根据已知导数信息画出函数的大致形状。 )根据已知导数信息画出函数的大致形状。
六、教学过程
(一)复习导入 问题: 问题: 导数 f (x ) 在 x = x 0 时与在 ( x0 , y0 ) 点的切线有什 么关系? 么关系?
函数的单调性与导数 说课稿 教案 教学设计
4.教学情境设计
问题
设计意图
师生活动
备注
(1)回顾函数的单调性与其导函数的正负的关系。
(1)让学生认识到判断函数的单调性,就是判断导函数的正负,
(2)让学生产生进一步学习的需求,即如何利用函数的单调性证明不等式。
组织学生复习回顾。
此问题的设计基于学生在学习了函数的单调性与其导函数的正负的关系后的复习。
迁移的基础是两个问题具有共同的特征。
(7)证明不等式
ex≥x+1
(1)使学生更进一步熟练构造函数,证明不等式的方法。
(2)体会指数函数与一次函数的交汇。
(3)体会曲线的切线。
教师引导,学生证明。引导学生认识不等式的代数特征与几何特征。
数形结合是数学中的重要方法。
(8)不等式ex≥x+1还有那些变形?它与不等式lnx≤x-1有什么内在的联系?
导数在研究函数中应用——构造函数,证明不等式
1.教学任务分析
本节课的中心任务是利用导数工具证明函数不等式,通过本节课的教学,使学生形成两方面的能力:
(1)借助函数图象,直观认识函数不等式。
(2)会构造恰当的函数,通过判断函数的单调性已及函数的极值,证明不等式。
2.教学重点、难点
构造具体的函数,利用导数工具,求函数的单调区间及极值,证明不等式。
注意对学生的个别指导
(10)归纳小结
教师引导学生从以下几个方面进行归纳小结:
(1)证明函数不等式问题,可转化为判断函数的单调性问题。
(2)构造函数,证明不等式时,一定要注意函数的定义域。
(3)研究问题的步骤--------提出问题、寻求想法、确定想法、实施操作、发现规律。
(4)数形结合的数学思想方法。
函数的单调性与导数说课稿
函数的单调性与导数说课稿一、说教材1、地位和作用本节的教学内容属导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值,最值及函数的其他相关性质打好基础。
另外,由于学生在高一已经掌握了函数单调性的定义,并能用定义判定在给定区间上函数的单调性。
通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多,充分展示了导数解决问题的优越性。
2.教学目标知识与技能:1.结合实例,借助几何直观探索并感受函数的单调性与导数的关系。
2.尝试利用导数判断简单函数的单调性。
3.能根据导数的正负性画出函数的大致图象过程与方法:1.通过具体函数单调性与其导数正负关系,归纳概括出一般函数单调性的判断方法。
2.体会函数单调性定义判断方法与导数判断方法的比较,进一步认识函数单调性与导函数正负性之间的关系。
3.通过实验操作,直观感知,结合函数图象,初步尝试从导数的角度解释函数在某一范围内增减的快慢。
情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯3、重点与难点重点:探索并应用函数单调性与导数的关系求单调区间。
难点:利用导数信息绘制函数的大致图象。
二、说教法1.教学方法的选择:本节课运用“问题解决”课堂教学模式,采用发现式、启发式的教学方法。
通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题,总结规律,培养积极探索的科学精神。
2.教学手段的利用:本节课采用多媒体课件等辅助手段以加大课堂容量,通过数形结合,图、表并用,使抽象的知识直观化,形象化,以促进学生的理解。
三、说学法为使学生积极参与课堂学习,主要采用自主探究法和实验教学法,让学生自己发现问题,自己归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
四、说教学过程(一)提问引入:1.判断函数的单调性有哪些方法?(意图:引导学生回顾单调性的定义及利用定义判断函数单调性的方法)(引导学生回答“定义法”,“图象法”。
函数的单调性与导数(说课)
05 课程总结
本节课的收获
01
理解了函数的单调性与导数的关系
通过本节课的学习,学生们能够理解函数的单调性与其导数之间的关系,
掌握利用导数判断函数单调性的方法。
02
掌握了求导的基本法则
学生们学会了使用求导的基本法则,如链式法则、乘积法则、商的求导
法则等,能够熟练地求出函数的导数。
03
增强了数学思维能力
04 导数与函数的单调性
导数与单调性的关系
01
02
03
导数大于零
函数在该区间内单调递增。
导数小于零
函数在该区间内单调递减。
导数等于零
函数可能存在拐点或极值 点。
单调性判定定理的应用
判断函数单调性
通过求导数并分析导数的 正负来判断函数的单调性。
确定极值点
通过导数为零的点来确定 可能的极值点,并结合单 调性判断是否为极值点。
通过本节课的学习,学生们不仅掌握了相关的数学知识,更重要的是培
养了他们的数学思维能力,如逻辑推理、抽象思维和归纳演绎等。
课程中的不足与改进
部分学生对于求导法则的运用还不够熟练
在练习过程中,发现部分学生对于求导法则的运用还不够熟练,需要在课后加强练习和巩固。
部分学生对单调性与导数的关系理解不够深入
在讨论单调性与导数的关系时,发现部分学生对其理解不够深入,需要在后续课程中加强这方面的讲解和练习。
详细描述
基本初等函数的导数公式包括指数函数、对数函数、幂函数、三角函数和反三 角函数的导数。复合函数的导数法则涉及到内外函数的导数计算,以及链式法 则的应用。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。
函数的单调性与导数说课稿
3.3.1函数的单调性与导数说课稿【三维目标】知识技能:(1)探索函数的单调性与导数的关系;(2)会利用导数判断函数的单调性并求函数的单调区间;过程方法:(1)在“分析、实验、讨论、总结”的探究过程中,发展学生自主学习能力;(2)强化数形结合思想.情感态度:(1)培养学生的探究精神;(2)体验动手操作带来的成功感.【教学重点难点】教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.教学难点:探索函数的单调性与导数的关系.【教学过程】(一)设问篇:有效设问,引入新课如何判断函数(x >0)的单调性,你有几种方法?(利用选号程序,挑选一名幸运的同学,可提升学生注意力)设计意图:利用问题吸引学生,达到激发学习兴趣的目的.若学生能说出单调区间,则追问端点“1”的由来;若学生不清楚单调性,则引导他们用定义法求解,但判断差值的正负会很麻烦.有便捷而通用的方法吗?从而引入新课.(二)观察篇:观察分析,初步探究首先由陈若琳跳水视频引入,高台跳水是教材一以贯之的例子,这样即引起学生注意,又体现新教材强调背景的特点.思考1:图(1)为高度h 随时间t 变化的函数图象.图(2)为速度v 随时间t 变化的函数图象,分析运动员从起跳到最高点,及从最高点到入水这两段时间的运动状态有什么区别?1()f x x x 2()4.9 6.510h t t t设计意图:“学会看图是21世纪青年人必须具备的能力”,让学生观察高度和速度图象,体会这二者的关系.(图1)(图2)思考2:在函数的单调区间上,其导数的解析式是什么?观察导数图象,通过(图2)回答导数在相应单调区间上的正负.思考3:导数与切线斜率有什么关系?曲线切线斜率变化与图像的升降有什么关系?设计意图:新课标强调“加强几何直观,重视图形在数学学习中的作用”.所以,我鼓励学生借助直观分析切线斜率的正负与图象升降的关系,并用几何画板动态演示,有效促进了学生探索问题的本质.在几何画板的动态演示中,让学生反复观察图形来感受导数在研究函数单调性中的作用,一方面加强学生对导数本质的认识,把他们从抽象的极限定义中解放出来;另一方面体现数学直观这一重要的思想方法对数学学习的意义和作用. (三)操作篇:动手操作,深入探究思考4:这种情况是否具有一般性呢?2() 4.96.510h t t t h t o m n vn to m 2(1)y x x设计意图:在学生得到初步结论之后,为了检验这一结论的普遍性,引领学生从具体的函数出发,体会从特殊到一般,从具体到抽象的过程,降低思维难度.为了让这一过程更加直观,组织学生动手操作:把牙签当切线,移动牙签观察导数正负与函数单调性的关系.让学生在老师的引导下自主探索,体会探究后的成功感,树立自信心.并将观察结果填入下表单调性导数的正负函数及图象切线斜率k的正负2(1)y x x。
《导数在研究函数中的应用—函数的单调性与导数》说课稿
《导数在研究函数中的应用—函数的单调性与导数》说课稿一、教材分析1教材的地位和作用“函数的单调性和导数”这节新知在教材是选修2—1,本节计划两个课时完成。
作为高三总复习课首先明确考纲的要求了解函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间(其中多项式函数一般不超过三次)。
在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。
其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。
激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。
2教学内容本节课的主要教学内容是导数在研究函数中的应用(1)—函数的单调性与导数。
在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。
例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。
培养学生数形结合思想、转化思想、分类讨论的数学思想。
3教学目标(一)知识与技能目标:1、能探索并应用函数的单调性与导数的关系求单调区间;2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。
(二)过程与方法目标:1、通过本节的学习,掌握用导数研究函数单调性的方法。
2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。
(三)情感、态度与价值观目标:1、通过在教学过程中让学生多动手、多观察、勤思考、善总结,2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。
4教学重点,难点教学重点:利用导数研究函数的单调性、求函数的单调区间。
探求含参数函数的单调性的问题。
二、教法分析1“ 以”, 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。
函数的单调性与导数说课稿
函数的单调性与导数说课稿函数的单调性与导数第一课时说课稿尊敬的评委及各位老师、大家上午好!今天我说课的题目是人教A版普通高中课程标准实验教科书理科数学选修2-2的《函数的单调性与导数》第一课时,下面我将从教材分析、学情分析、学科模式、教学设计、板书设计、课堂评价、资源开发七个方面进行阐述。
一、说教材高中数学课程内容包括五本必修和四个系列选修教材,《函数的单调性与导数》选自选修2-2第一章《导数及其应用》,是第三节《导数在研究函数中的应用》的第一节课。
考虑到学生的接受能力,本节课分两课时完成,本次说课内容为第一课时。
背景:函数是中学数学的主线之一,贯穿整个中学数学的始终。
中学生学习函数分为三个阶段:第一阶段是初中学习正比例函数、反比例函数、一次函数、二次函数,从图形直观上感知单调性;第二阶段是高一学习的函数的概念及幂、指、对函数,用单调性定义来研究函数单调性;本章导数是第三阶段,用导数性质研究函数单调性。
导数是微积分的核心概念之一,是高中数学新教材新增知识,利用导数研究函数性质有独到之处,体现了现代数学思想,是初等数学与高等数学的衔接点。
导数是解决数学问题和物理问题的重要工具,是高中数学的重要内容。
地位和作用:1、本节内容属于导数的应用,是本章的重点,学生在学习了导数的概念、几何意义、基本函数的导数、导数的四则运算的基础上学习本节内容。
学好它既可加深对导数的理解,又为研究函数的极值和最值打好基础,具有承前启后的重要作用。
2、本节内容既是函数内容的深化,帮助学生进一步理解函数,又是后继课研究极值最值的基础,具有非常高的实用价值。
研究过程蕴含了数形结合、分类讨论、归纳推理、演绎推理等数学思想方法,培养学生应用导数解决问题的意识。
基于上述分析,本课时的教学目标为:1、知识与技能:会利用导数判断函数的单调性并会求函数的单调区间;2、过程与方法:让学生通过合作交流探索出函数单调性与导数的关系,梳理出利用导数求函数单调区间的一般步骤;3、情感态度与价值观:通过情境和问题激发学生的兴趣,在合作交流中体验探索的乐趣与成功的喜悦,从而养成实事求是态度和合作精神,引导学生养成自主学习的学习习惯。
函数的单调性与导数(说课)正式
https://
REPORTING
• 引言 • 函数的单调性 • 导数的概念与性质 • 导数与函数的单调性 • 教学方法与手段 • 教学评价与反馈 • 结语
目录
PART 01
引言
REPORTING
WENKU DESIGN
主题简介
• 函数的单调性与导数是微积分中的重要概念,它们在数学、物 理、工程等领域有着广泛的应用。单调性描述了函数值随自变 量变化的趋势,而导数则是函数值变化率的量度。理解并掌握 这两个概念对于提高学生的数学素养和解决实际问题具有重要 意义。
单调性的判定定理
定理一
如果函数$f(x)$在区间$I$上可导,且 在$I$上$f'(x) > 0$,则$f(x)$在$I$上 单调增;如果$f'(x) < 0$,则$f(x)$在 $I$上单调减。
定理二
如果函数$f(x)$在区间$I$上连续,且 在$I$上存在导数,那么函数在区间 $I$上单调的充要条件是其一阶导数在 $I$上不改变符号。
单调性的应用实例
应用一
求函数的极值点。根据单调性定理,如果函数在某点的导数为零且该点两侧的导数符号相 反,则该点为函数的极值点。
应用二
研究函数的图像。通过判断函数的单调性,可以大致描绘出函数的图像变化趋势,从而更 好地理解函数的性质。
应用三
解决实际问题。例如,在经济学中,通过研究需求函数或供给函数的单调性,可以分析市 场价格的变动趋势;在物理学中,通过研究速度函数或加速度函数的单调性,可以分析物 体的运动状态。
教学目标
01
02
03
04
1. 理解函数单调性的定义和 判定方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数的单调性与导数》说课稿
平罗中学高三数学组高思杰
一、教材分析:
1.教材的地位和作用
本节的教学内容属于导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础。
由于学生在高一已经掌握了单调性的定义,并能用定义判定在给定区间上函数的单调性。
通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多(尤其对于三次和三次以上的多项式函数,或者图象难以画出的函数而言),充分展示了利用导数解决问题的优越性。
2.教学目标
知识目标:能探索并应用函数的单调性与导数的关系求单调区间。
能力目标:培养学生的观察能力、归纳能力,增强数形结合的思维意识。
情感目标:通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的习惯。
3.教学重点、难点
教学重点:利用导数判断函数单调性。
教学难点:求解函数单调区间的方法。
二、学生情况分析
“函数单调性”“导数”这两个概念学生并不陌生,因为学生已经系统的研究了一些基本初等函数的图象和性质。
之前又学习了导数的概念、计算、几何意义等内容,所以,在知识储备方面,学生已经具备足够的认知基础。
但要将二者联系到一起,学生对数学整体的认识以及进行抽象概括的能力还不够,教学中还需要引导学生通过观察图形逐步得出函数单调性与其导数的正负关系,使学生充分体验到用导数判断函数单调性时的有效性和优越性。
三、教学方法设计
1.教法分析:
本节课运用“问题解决”课堂教学模式,采用发现式、启发式的教学方法。
通过问题激发学生求知欲,使学生主动参与教学实践活动,在我的指导下发现、分析和解决问题,总结规律,培养积极探索的科学精神。
本节课采用多媒体课件等辅助手段以加大课堂容量,通过数形结合,图表并用,使抽象的知识直观化、形象化,以促进学生的理解。
2.学法指导:
为使学生积极参与课堂学习,我主要指导了以下的学习方法:
(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题;
(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动;
(3)探究学习:引导学生发挥主观能动性,主动探求新知。
四、教学过程
(一)提问引入:
1.判断函数的单调性有哪些方法?
(意图:引导学生回顾单调性的定义及利用定义判断函数单调性的方法)
(引导学生回答“定义法”,“图象法”。
)
2. 比如,要判断2x y =的单调性,如何进行?
(意图:从具体的函数出发,体验定义法在简单函数单调性的判断中的作用)
(引导学生回顾分别用定义法、图象法完成。
)
3. 如果遇到函数:1243223+-+=x x x y 判断单调性呢?
(意图:设计一个不易用定义法判断单调性的函数为今天的课题的引出设置铺垫)
(让学生短时间内尝试完成,结果发现用“定义法”作差后要判断差的正负麻烦,用“图像法”, 图像很难画出来。
)
4.有没有捷径?(学生疑惑,由此引出课题)
(二) 实验探究:
(《几何画板》制作抛物线上某点的切线,该点可以被拖动)
(1)拖动抛物线上一点,点在运动过程中观察切线的斜率,并思考斜率的正负变化与函 数单调性的关系。
试用导数来解释这一现象。
(2)将抛物线转化为x x y x
y x y -===33,1,让一学生来拖动动点,进一步观察某点处斜率与函数的内在联系。
(3)斜率正负性与函数单调性的关系是否在其他一般的函数中也存在呢?试着再换一个函数x x y -=ln
(意图:运用《几何画板》具有求导函数及可以直观显示某点处导数值的功能,学生能更易观察切线斜率与原函数图象升降之间的关系,通过创设新的情境让学生学会自主要分析、归纳、概括函数的导数与函数单调性的内在联系)
(三)分析问题:
观察函数的图像和求导数,从这些函数的单调性与导数符号的关系,组织学生归纳总结函数的单调性与导数的关系。
(设计意图:从具体的函数出发,让学生体会从特殊到一般,从具体到抽象的过程,降低思维难度,让学生在老师的引导下自主学习和探索,提高学习的成就感和自信心。
)
(四)归纳形成结论:
通过导数的几何意义来验证由具体函数所得到的结论,形成一般性结论。
函数的单调性与函数的关系:在),(b a x ∈
(1)若0
)(>'x f 单调递增(增区间)
(2)若0)(<'x f
单调递减(减区间)
(3)若0)(='x f 常数函数(与y 轴平行)
(设计意图:让学生经历观察、分析、归纳、发现规律过程,体会函数单调性与导数关系。
)
(五)解决问题:
理论的学习最终要回归于应用,帮我们解决问题。
通过例题的讲解和课堂练习,让学生在具体的应用中深化对结论理解,巩固所学的知识,体会用导数判断函数单调性的优越性。
引导学生总结以下两个问题:
1°什么情况下,用“导数法” 求函数单调性、单调区间较简便?
2°试总结用“导数法” 求单调区间的步骤?
(设计意图:让学生初步体会用导数的方法确定函数单调性的简便。
)
心得与体会:(引导学生按这一模式进行小结)
(1)通过这堂课的研究,我明确了什么?
(2)我的收获与感受之处有哪些?
(3)我还有什么疑惑之处呢?
(六)作业布置:1、课本P93 第4题 , P98 A 组 第1题
2、《名师一号》十 1--8
五. 教学评价
现代数学教学观念要求学生从“学会”向“会学”转变,本课从单调性与导数关系的发现到应用都有意识地营造一个较为自由的空间,让学生能主动地去观察、猜测、发现、验证,积极地动手、动口、动脑,使学生在学知识的同时形成方法。
整个教学过程突出了三个注重:
1. 注重学生参与知识的形成过程,体验应用数学知识解决简单问题的乐趣。
2. 注重师生间、同学间的互动协作、共同提高。
3. 注重知能统一,让学生在获取知识的同时,掌握方法,灵活应用。
通过本节课的学习,学生当堂能够掌握利用导数求函数的单调性,并了解其优越性。
导数与单调性的关系影响到后面函数与极值、最值的求法,对学生要强调对后续学习有着重要地位,是基础中的重点。
本节课注重例题的逐步深化,对学生的要求逐步提高。
应多引导学生多分析、培养学生学习——总结——学习——反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。