预测编码

合集下载

预测编码的基本原理

预测编码的基本原理

预测编码的基本原理
预测编码是一种数据压缩技术,通过利用数据中的统计规律和先验知识,来减少数据的冗余信息,从而实现数据的高效压缩和传输。

预测编码的基本原理是利用已知的数据来预测未知的数据,然后将预测误差进行编码传输,以实现数据的压缩和传输。

首先,预测编码需要建立一个预测模型,这个模型可以是简单的线性模型,也可以是复杂的非线性模型。

通过这个预测模型,我们可以根据已知的数据来预测未知的数据。

预测编码的关键在于如何选择和建立一个合适的预测模型,这个模型需要能够准确地预测未知数据,从而减少预测误差。

其次,预测编码需要对预测误差进行编码传输。

预测误差是指预测值与真实值之间的差异,通过编码传输预测误差,可以实现数据的高效压缩和传输。

常用的编码方法包括霍夫曼编码、算术编码等,这些编码方法可以根据预测误差的统计规律来实现数据的高效压缩。

预测编码的基本原理可以通过一个简单的例子来说明。

假设我们要传输一段音频数据,我们可以利用已知的音频数据来预测未知
的音频数据,然后将预测误差进行编码传输。

通过这种方式,可以实现音频数据的高效压缩和传输,从而节省传输带宽和存储空间。

总之,预测编码是一种利用数据的统计规律和先验知识来实现数据压缩和传输的技术。

通过建立预测模型和对预测误差进行编码传输,可以实现数据的高效压缩和传输。

预测编码在图像、音频、视频等领域有着广泛的应用,是一种非常重要的数据压缩技术。

部分预测编码

部分预测编码

部分预测编码1. 介绍随着信息时代的到来,网络的普及和电子设备的普及,我们生活中离不开编码。

预测编码作为一种常见的编码技术,已经被广泛应用于数字图像、音频、视频等领域。

本文将详细介绍预测编码的原理、应用和发展。

2. 预测编码原理预测编码是一种无损压缩技术,它的原理是利用目标信号中的相关性进行压缩。

它的基本思路是:在目标信号中,一个样本的值通常与前面的样本值有密切的关系。

我们可以利用这个关系建立一个预测模型,根据前面的样本值预测当前的样本值。

然后,我们用当前的样本值减去预测值,得到一个误差信号,将误差信号编码传输,接收方利用预测模型重建预测值,将预测值加上传输的误差信号,就可以恢复原始样本值。

3. 预测编码应用预测编码可以应用于各种数字信号的压缩,其中最广泛的应用是数字音频和数字视频。

例如,在音频编码中,可以将整个声音流分为块,用一些数学模型来预测下一个样本值,然后将误差信号进行编码传输。

在视频编码中,预测编码也是一种重要的技术。

它可以利用图像中的相关性和运动信息来预测像素值,减小帧与帧之间的冗余,从而达到高效的压缩。

4. 预测编码的进展预测编码技术从上世纪60年代开始研发,经过多年的努力,已经取得了显著的成果。

其中最为典型的代表是1988年ITU-T发布的G.711标准,它使用了一个线性预测器来实现声音的压缩,被广泛应用于传输和储存数字语音。

近年来,随着互联网的快速发展和人们对高质量音频和视频的需求不断增加,预测编码技术也得到了进一步的发展。

在音频方面,研究人员已经提出了多种先进的音频编码算法,如AAC、MP3、FLAC等。

在视频方面,H.264、H.265等先进的视频压缩标准已经在网络视频传输、高清电视和蓝光光盘等领域得到广泛应用。

5. 预测编码的挑战尽管预测编码技术已经取得了很大的进展,但是仍然存在很多挑战。

一个主要的问题是编码效率的提高。

在高清视频和音频流传输方面,编码效率是至关重要的。

随着网络、存储介质的速度和容量的不断提高,未来的编码器也需要有更高的压缩比和更快的解码速度。

预测编码

预测编码
信息论与编码——5.4.4预测编码
学生姓名:刘琨(31356013)
导师:王树彬
1
什么是预测编码?
预测编码是指从已收到的符号来提取关于 未收到的符号信息,从而预测其最可能的值作 为预测值,并对它与实际值之差进行编码。由 于差值很小,可以减少编码的码位,实现压缩。 它利用了信源的相关性来压缩码率,所以 对于独立信源,预测就没有可能。
7
Байду номын сангаас
此时的各系数as并不能对该信源发出
的所有序列都适用,随着序列的延长,各as根
据以后的r个符号值来计算,因而将随序列的
变化而变化,也就是说可以不断适应序列的
变化,适用于缓变的非平稳信源序列。
8
利用预测值的编码方法
一类是用实际值与预测值之差进行编码,也
叫差值编码。常用于相关性强的连续信源,也可
用于离散信源。在连续信源的情况下,就是对此
测。常用的差值预测就属于这类。
高阶线性预测已在话音编码,尤其在声
码器中广泛采用。
6
自适应预测
对于非平稳或非概率性的信源,无法获得确 切和恒定的相关函数,不能构成线性预测函数,可 采用自适应预测方法。 一种常用的自适应预测方法是设预测函数 是前几个符号值的线性组合,即令预测函数为 x’=∑asxt-r-1-s 再用已知信源序列来确定各系数as, 使对该序列所造成的均方误差D最小。
d (n)
s p (n)
量化 器
d q (n)
编码 器 +
sr (n)
I (n)
预测 器
S(n)是输入语音信号, (n) 是重建语音信号, 作为预测器确定下一个信号估值的输入信号。 (n)是预测语音信号,d(n)是差值信号。 DPCM实际就是对这个差值信号进行量化编码

预测编码的基本原理

预测编码的基本原理

预测编码的基本原理随着数字化的快速发展,我们已经进入了数字时代。

数字内容广泛应用于各种场景,包括图片、视频、音频等。

当我们需要在不同设备之间传输这些文件时,文件的大小和质量成为非常重要的问题。

这就促使了预测编码技术的出现。

本文将介绍预测编码的基本原理。

1. 数字信号模型:在数字信号模型中,信号在时间或空间维度上是一段离散数据的序列。

例如,当我们在拍摄一段视频时,视频中的每一帧都是由像素点组成的一个离散数据序列。

而这些像素值就组成一个数字信号模型。

2. 基于预测的压缩:基于预测的压缩是一种常见的压缩技术,可以有效地压缩数字信号。

在预测编码过程中,我们需要选取一个预测器来预估下一个值。

这个预测器可以是简单的线性预测器,也可以是更复杂的模型。

3. 线性预测:在应用线性预测的时候,我们首先需要找到一个理想的预测器,使得预测残差的值最小。

在具体实现中,预测器的系数需要通过最小二乘法进行估计。

4. 预测比特:预测编码是基于预测残差的差异进行编码的。

预测残差表示实际值和预测值之间的差异。

对于一个离散的数字信号模型,预测得到的残差一般是一个整数值。

在进行编码的时候,我们需要将残差转换成二进制码流进行传输。

5. 自适应编码:为了更有效地进行编码,我们还需要了解每种编码方式的效率。

这就是自适应编码,它是根据每个符号出现的概率来调整码长的编码方法。

6. 预测编码的应用:预测编码被广泛应用于数字媒体的压缩和传输中。

例如,在视频压缩领域,有很多基于预测编码的压缩标准,比如MPEG-2、H.264等。

本文简单介绍了预测编码的基本原理。

预测编码是数字媒体领域中非常重要的技术,它可以有效地实现数字媒体的压缩和传输。

随着数字媒体技术的不断发展,预测编码将会发挥更加重要的作用。

预测编码的基本原理及应用

预测编码的基本原理及应用

预测编码的基本原理及应用1. 什么是预测编码预测编码是一种数据压缩技术,通过对数据的统计分析和模型预测,减少数据的冗余信息,从而实现数据的高效存储和传输。

预测编码的基本原理是根据已有的数据序列,通过数学模型对下一个数据进行预测,然后记录预测结果和真实数据之间的差异,将差异进行编码存储。

在解码时,利用相同的模型对预测结果进行逆向计算,还原出原始数据序列。

2. 预测编码的基本原理预测编码的基本原理可以概括为以下几个步骤:2.1 数据建模在预测编码中,需要建立一个合适的数据模型来对数据进行预测。

常用的数据模型包括线性模型、非线性模型等。

模型的选择根据具体的应用场景和数据特点来确定。

2.2 数据预测根据建立的数据模型,对已知的数据序列进行预测,得到下一个数据的预测值。

预测过程可以使用各种预测算法,如线性回归、逻辑回归、支持向量机等。

预测算法的选择依赖于建立的数据模型和数据的特征。

2.3 误差计算将预测值与真实值进行比较,计算它们之间的误差。

误差可以使用各种度量方法来评估,如平均绝对误差、均方误差等。

误差的计算结果用于后续的编码过程。

2.4 差值编码将误差值进行编码,通常使用无损编码方法,如霍夫曼编码、算术编码等。

编码的目的是通过消除冗余信息,实现数据的压缩存储。

2.5 编码存储对编码后的数据进行存储,可以选择不同的存储格式,如二进制、文本等。

在存储时,需要注意数据的还原问题,以便在解码时能够正确还原原始数据。

3. 预测编码的应用预测编码技术在各个领域都有广泛的应用,以下是一些典型的应用场景:3.1 音频和视频压缩预测编码技术在音频和视频压缩中起到重要作用。

通过对音频和视频数据进行预测和编码,可以实现高效的压缩存储和传输,提高系统的性能和效率。

3.2 无线通信在无线通信系统中,预测编码技术可以减少数据传输量,提高数据传输速率。

预测编码技术可以应用于语音通信、图像传输等领域,以实现更稳定和高速的无线通信。

3.3 数据传输在数据传输过程中,通过使用预测编码技术,可以减少传输数据的大小,降低传输成本。

预测编码理论

预测编码理论

一、预测编码原理

预测编码是数据压缩三大经典技术(统计编 码、预测编码、变换编码)之一。预测编码 是建立在信号数据的相关性之上,较早用于 信源编码的一种技术。它根据某一模型,利 用以往的样本值对新样本值进行预测,以减 少数据在时间和空间上的相关性,达到压缩 数据的目的。
一、预测编码原理
对于有记忆信源,信源输出的各个分量之间是 有统计关联的,这种统计关联性可以加以充分利用, 预测编码就是基于这一思想。它不是直接对信源输 出的信号进行编码,而是将信源输出信号通过预测 变换后再对预测值与实际值的差值进行编码,其原 理图见下图。
前提:信源ui是平稳随机过程———最优线性预测
3.2自适应预测方法

对于非平稳或非概率性的信源,无法获得确 切和恒定的相关函数,不能构成线性预测函数, 可采用自适应预测方法。所谓自适应预测就 是预测器的预测系数不固定,随信源特性而 有所变化。如果充分利用信源的统计特性及 其变化,重新调整预测系数, 这样就使得预 测器随着输入数据的变化而变化,从而得到 较为理想的输出。
预测误差门限型:(非线性预测器) ei ui ui 1 仅与前一样值作预测 若

ei K 则不传送 u i ; ei
K
则传送
ui
K为最大误差的门限值,即信宿可接收的最大误差

信号相关性越强,则此时传送的数据越少。
谢谢大家!
3.3利用预测值的编码方法
一类是用实际值与预测值之差进行编码,也叫 差值编码。 另一类方法是根据差值的大小决定是否需要 传送该信源符号。例如规定某一可容许值N, 当差值小于N时可不传送。

四、预测编码的应用(了解)
4.1差分脉冲编码调制DPCM
4.2

实验七、预测编码

实验七、预测编码

实验七、预测编码一,目的掌握预测编码的基本原理与方法了解图像预测编码的基本原理与方法二,实验条件1)微型计算机:INTEL 奔腾及更高2)MATLAB3)典型的灰度、彩色图像文件三,原理利用图像的空间或时间的冗余度进行四,实验内容1.以一阶预测为例,编程实现给定的图像的预测编码值2.绘制相应预测编码值的直方图MATLAB具体的实现代码:clear;cd d:init=imread('test.jpg');two_=rgb2gray(init);two=double(two_); [m,n]=size(two);%保留下第二行数组,用以之后计算第一行的预测值second_lie=zeros(1,n);for p=1:1:mfor q=2second_lie(p,q)=two(p,q);endend%计算预测值,从第二列开始计算one=zeros(m,n);for x=1:1:mfor y=2:1:none(x,y)=two(x,y+1)-two(x,y);%用前一行的像素值减去后一行的像素值endend%添加上第一行的预测值for i=1:1:mfor j=2one(i,1)=second_lie(i,j)-two(i,j-1);endend% 统计概率分布zhifangtu=zeros(1,511);%定义-255—255范围的一维空间for i=1:1:mfor j=1:1:nzhifangtu(one(i,j)+256)=(zhifangtu(one(i,j)+256)+1);%将统计值多添加256,以此来避免负数灰度值的出现,最后统计灰度值,并计算概率endend%定义了重新描述直方图的横坐标lie=zeros(1,511);for qq=1:1:511lie(qq)=qq-256;end%绘制统计直方图plot(lie,zhifangtu);title('概率统计');-300-200-1000100200300024681012x 104概率统计%计算图像压缩比for aa=1:1:mfor bb=1:1:nsum_init=sum_init + two(aa,bb);sum_final=sum_final+abs(one(aa,bb));endendcc=sum_final/sum_init;yasuobi=double(cc)*100;%图像恢复部分recover=zeros(m,n);%恢复出第一行像素值for mm=1:1:mrecover(mm,1)=second_lie(mm,2)-one(mm,1);end%完全恢复图像for ii=1:1:mfor jj=2:1:n-1recover(ii,jj)=recover(ii,jj-1)+one(ii,jj-1);endend初始的二维图像矩阵恢复后的二维图像矩阵五,讨论与分析进行预测编码后统计直方图呈现形似高斯分布图,其中差值大部分集中于0左右,最后,图像的恢复只需根据保留的第二行原始数据与求得的预测值的第一行相减即可恢复出第一行,之后在用恢复出的像素值依次恢复接下来的像素值即可完整的恢复图像。

预测编码

预测编码

4.4预测编码1.预测编码的基本原理预测编码(Prediction Coding)是根据某一种模型,利用以前的(已收到)一个或几个样值,对当前的(正在接收的)样本值进行预测,将样本实际值和预测值之差进行编码。

如果模型足够好,图像样本时间上相关性很强,一定可以获得较高的压缩比。

具体来说,从相邻像素之间有很强的相关性特点考虑,比如当前像素的灰度或颜色信号,数值上与其相邻像素总是比较接近,除非处于边界状态。

那么,当前像素的灰度或颜色信号的数值,可用前面已出现的像素的值,进行预测(估计),得到一个预测值(估计值),将实际值与预测值求差,对这个差值信号进行编码、传送,这种编码方法称为预测编码方法。

预测编码的基本思想建立一个数学模型利用以往的样本数据对新样本值进行预测将预测值与实际值相减对其差值进行编码,这时差值很少,可以减少编码码位。

2.预测编码的分类最佳预测编码:在均方误差最小的准则下,使其误差最小的方法。

线性预测:利用线性方程计算预测值的编码方法。

非线性预测:利用非线性方程计算预测值的编码方法。

线性预测编码方法,也称差值脉冲编码调制法(Differention Pulse Code Modulation,DPCM)。

如果根据同一帧样本进行预测的编码方法叫帧内预测编码。

根据不同帧样本进行预测的编码方法叫帧间预测编码。

如果预测器和量化器参数按图像局部特性进行调整,称为自适应预测编码(ADPCM)在帧间预测编码中,若帧间对应像素样本值超过某一阈值就保留,否则不传或不存,恢复时就用上一帧对应像素样本值来代替,称为条件补充帧间预测编码。

在活动图像预测编码中,根据画面运动情况,对图像加以补偿再进行帧间预测的方法称为运动补偿预测编码方法。

3.DPCM编码算法一幅二维静止图像,设空间坐标(i,j)像素点的实际样本为f(i,j),是预测器根据传输的相邻的样本值对该点估算得到的预测(估计)值。

编码时不是对每个样本值进行量化,而是预测下一个样本值后,量化实际值与预测值之间的差。

第四章 预测编码和变换编码

第四章 预测编码和变换编码


一、静止图像的二维预测编码
选择值 预测值
c a
b d x
0
1 2 3 4
非预测
a b c a+b-c a+(b-c)/2 b+(a-c)/2
三邻域预测法
5 6
7
(a+b)/2
这种压缩算法被应用到JPEG标准的无损压缩模式之中, 中等复杂程度的图像压缩比可达到2:1。 Lossless JPEG
发送端预测器带有存储器,把tn时刻以前的采样值x1, x2, x3,…, xk-1
^ ek为xn与Xk的差值, ek’为ek经量化器量化的值
xk’是接收端的输出信号 误差ek为
^ 存储起来并据此对xk进行预测,得到预测值 X
k
^ ek= xk- xk’= xk-( k +ek’)= (xkXk )- ek’= ek - ek’ X
自适应量化
在一定量化级数下减少量化误差或在同样的误
差条件下压缩数据,根据信号分布不均匀的特 点,希望系统具有随输入信号的变化区间足以 保持输入量化器的信号基本均匀的能力,这种 能力叫自适应量化。
示例二:
ADPCM采用与DPCM相同的预测器,但对误差量化时采用自 适应改变量化器的量化阶数的压缩结果
^
实际上就是发送端的量化器对误差ek’量化的误差 对 ek’的量化越粗糙,压缩比越高,失真越大.
为接纳量化步骤,需要改变图4-1中的无损编码器以使编码器和解 码器所产生的预测能相等。为此在图4-2中将有损编码器的预测器 放在1个反馈环中。这个环的输入是过去预测和与其对应的量化误 差的函数
’ =e ’ + ^ x k k Xk
DM编码失真示例

图像编码常用方法介绍(七)

图像编码常用方法介绍(七)

图像编码是将图像数据进行压缩存储的过程,它在数字图像处理领域占据着重要的地位。

通过合理选择和减少冗余的编码方式,可以有效地降低图像的存储空间和传输带宽。

本文将介绍图像编码常用的方法,包括无损编码和有损编码两大类。

一、无损编码无损编码是指在压缩图像数据时能够完全还原原始信息的编码方法。

常用的无损编码方法有:1. 霍夫曼编码霍夫曼编码是一种变长编码方法,它根据每个符号出现的概率进行编码,出现频率高的符号用短码表示,出现频率低的符号用长码表示。

通过构建霍夫曼树,可以实现对图像数据的高效压缩。

2. 预测编码预测编码是一种根据已知像素值预测待编码像素值的方法。

常用的预测编码方法有差值编码和差分编码。

差值编码将像素值与周围像素值的差作为编码值,差分编码则是将像素值与前一个像素值的差进行编码。

这种编码方式能够显著减少冗余信息,提高图像编码效率。

二、有损编码有损编码是指在压缩图像数据时会丢失一部分信息的编码方法。

常用的有损编码方法有:1. 离散余弦变换(DCT)DCT是将图像数据转换到频域的一种方法,通过将图像分块并进行DCT变换,可以将图像数据转换为频域系数。

DCT编码后的图像在高频部分的系数较小,可通过舍弃掉一部分高频系数来减少数据量,从而实现压缩。

2. 小波变换小波变换可以将图像数据分解成多个频域的子带,其中包含了不同尺度和方向的信息。

通过对低频系数进行较少的保留和高频系数的舍弃,可以实现对图像数据的压缩。

3. 基于向量量化的编码基于向量量化的编码是一种将相似的图像块归类到同一类别并用较少的索引值表示的编码方式。

通过对图像块进行聚类和索引编码,可以有效地降低图像数据的存储空间。

总结起来,图像编码常用的方法包括无损编码和有损编码两大类。

无损编码通过霍夫曼编码和预测编码等方法实现对图像数据的高效压缩;有损编码通过DCT、小波变换和基于向量量化的编码等方法在压缩图像数据的同时,会有一定的信息损失。

根据实际需求和应用场景,选取适合的编码方法可以达到较好的图像压缩效果。

预测编码

预测编码
§5.1 DPCM的基本原理 §5.2 最佳线性预测 §5.3 语音信号的预测编码 §5.4 静止图像预测编码 §5.5 活动图像的预测编码
31
5.3 语音信号的预测编码
语音压缩的依据 语音信号本身的冗余度和人类的听觉感知机理。
语音压缩的质量要求:下面三方面的折中 保持可懂度和音质; 限制比特率; 降低编码过程的计算代价。
使得预测误差的均方值

2 e

E{( xk

xˆk
)2}
最小。
19
当N 给定后,σe2是依赖预测系数ai的函数,使MSE最小, σe2对ai求导等于0,有 :

2 e
ai

E 2(xk


xˆk
)
xˆk ai
0,
i 1, 2,L , N
将式(5.2-1)之 xˆk 带入, 得到:
34
⑤ 静止系数(话音间隔): 话音间隙使得全双工话路的典型效率为通话时间40%(或静 止系数为60%),话音间隙本身是一种冗余,若能检测(或预 测出)该静止段,便可“插空”传输更多的信息。
⑥ 长时间自相关函数: 在较长的时间间隔(短时间隔一般为20ms,长时为几十秒) 进行统计,便得到长时的自相关函数。长时统计表明,8kHz 取样语音的相邻样本间,平均相关系数高达0.9。
同年,该实验室的C.C.Culter取得了DPCM (Differential Pulse Code Modulation, 差分脉冲 编码调制)系统的专利,奠定了真正实用的预测 编码系统的基础。
10
直观理解: 预测编码技术: 从过去的符号样本来预测下一个符号样本的值。
根据:
认为在信源符号之间存在相关性。如果符号的预测值 与符号的实际值比较接近,它们之间的差值幅度的变 化就比原始信源符号幅度值的变化小,因此量化这种 差值信号时就可以用比较少的位数来表示差值。

预测编码的原理及主要应用

预测编码的原理及主要应用

预测编码的原理及主要应用1. 概述预测编码是一种基于数据的压缩技术,通过利用数据的统计特性来减少存储或传输所需的比特数。

预测编码技术通过构建对数据进行预测的模型,并利用预测误差来表示数据,从而实现数据的高效压缩和重建。

2. 原理预测编码的原理可以分为两步:预测和编码。

预测阶段利用已知的数据来构建模型,根据模型对未知数据进行预测,得到预测误差。

编码阶段将预测误差进行编码,生成压缩后的数据。

2.1 预测阶段预测阶段是预测编码的关键步骤。

常用的预测方法包括线性预测、差值预测和上下文预测等。

•线性预测:建立线性模型来预测数据。

使用历史数据计算线性模型的系数,然后将模型应用于未知数据,得到预测值。

•差值预测:基于已知数据的差值来预测未知数据。

通过计算当前数据与前一个数据之间的差值,然后将差值应用于前一个数据,得到预测值。

•上下文预测:根据当前数据的上下文信息来进行预测。

上下文信息包括当前数据前后的数据、相邻像素的数值等。

根据上下文信息构建模型,然后利用模型预测未知数据。

2.2 编码阶段编码阶段将预测到的误差进行编码。

编码方法一般包括霍夫曼编码、算术编码和自适应编码等。

•霍夫曼编码:根据预测误差的概率分布来为不同的预测误差赋予不同长度的编码。

概率较大的预测误差使用短编码,概率较小的预测误差使用长编码,以此来减少编码所需的比特数。

•算术编码:根据预测误差的概率分布来为每一个预测误差分配一个区间。

编码过程中,根据预测误差的值和区间,将区间分为若干段,每段对应一个比特序列,拼接比特序列即可得到压缩后的数据。

•自适应编码:根据实际数据进行编码表的动态调整,以适应数据的变化。

自适应编码能够在不损失数据质量的前提下实现较好的压缩效果。

3. 主要应用预测编码在多个领域中得到广泛应用。

3.1 图像压缩预测编码技术在图像压缩领域有着重要应用。

通过预测图像中每个像素点的数值,然后利用预测误差进行编码,可以大幅度减少图像的存储空间,并在解码时实现高质量的图像重建。

H264基本概念之 预测编码、变换编码和熵编码

H264基本概念之 预测编码、变换编码和熵编码

H264基本概念之预测编码、变换编码和熵编码2009-11-23 14:41 1984人阅读评论(1) 收藏举报算法扩展活动1、预测编码压缩算法的本质就是去除信号间的冗余,什么是信号的冗余呢?信号之间的相关性就是冗余,人类听觉或视觉系统感觉不到的或者掩蔽的也可以当做冗余成分。

今天谈谈预测编码的概念,这是一种非常直观和简单易行的方法。

说它直观,以图像为例,前后两帧或者同一图像的相邻像素都存在着相似性、相关性,我们完全可以通过当前帧和一组预测系数,推测出下一帧图像,当然也可以从当前像素推测出周围像素的变化。

通过实际值与预测值的差,去除了一部分冗余,使得信号的动态范围变小了,表示这些信号的比特数减少了,从而达到压缩的目的。

对于视频信号的预测编码分成两种,一个是帧间预测编码,一个是帧内预测编码。

帧内预测是从空间上去除同一帧图像内宏块之间的冗余。

H264中,有4x4亮度预测模式、16x16亮度预测模式、8x8色度块预测模式以及一种I_PCM编码模式,如何选择最优的编码模型是一个不太容易的问题。

帧间预测编码效率比帧内编码要高,它是从时间上去除图像帧与帧之间的冗余,分为单向预测、双向预测。

一般双向预测会增加编码延时,所以在实时通信中用的不多。

在帧间预测中,就不得不提运动估计这个概念,在活动图像邻近帧中的景物会发生空间上的位移,得到这个运动偏移的过程就是运动估计,涉及到各种搜索算法,同时这一部分的复杂度也是H264的重点。

2、变换编码变换编码是指将空间域的图像变换到频域,这样会产生相关性很小的一些变换系数,并对其进行压缩编码。

通常采用DCT变换,因为它的性能接近K-L变换,同时具有快速算法,非常适合图像变换编码。

变换编码比预测编码要复杂,但是各种误差(量化、信道误差)不会向后面扩展,对视觉影响不大。

3、熵编码利用信源的统计特性进行码率压缩的编码称为熵编码。

特点是无损编码,但是压缩率比较低,一般用在变换编码后面作进一步压缩。

4.4 _________预测编码

4.4 _________预测编码

预测可以是线性预测(用线性方程计算)或非线性 预测(用非线性方程计算),但绝大多数使用的 是线性预测。 线性预测的基本问题是:由实际值和预测值之间 差值的误差函数和一个时序样值集,对每一样 值求出加权常数因子(根据样值出现概率)以使 建立在加权样值线性和之上的预测能使误差函 数最小。 通常使用的误差函数是均方误差(mse):
预测编码方法的特点
(1) 算法简单, 速度快, 易于硬件实现. (2) 编码压缩比不太高. (3) 误码易于扩散, 抗干扰能力差.
2.自适应预测 . 首先,为了减少计算工作量,预测参 数仍采用固定的值,但此时有多组 多组预测参 多组 数可供选择,这些预测参数根据常见的信 源特征求得。 为了自适应地选择最佳参数,通常将 信源数据分区间 分区间编码,编码时自动地选择 分区间 自动地选择 一组预测参数,使该区间实际值与预测值 一组预测参数 的均方误差最小。
4.4.3 帧间预测编码
条件补充法
若帧间各对应象素的亮度差超过阈值,则把 这些象素存在缓冲区中,求出与其它帧上对应象 素的差值,并以恒定的传输速度传送;若与其它 帧对应象素的亮度差低于阈值,则不传送,在接 收端用上一帧相应象素值代替。这样, 一幅电视 图象可能只传送其中较少部分的象素,且传送的 只是帧间差值,可以得到较好的压缩比。
预测编码中典型的压缩方法有DPCM,ADPCM 等,它们较适合用于声音、图像数据的压缩。
4.4.2 差分脉冲编码调制(DPCM)
为了压缩传输的数码,可以不对每一样值都 进行量化,而是预测下一样值,并量化实际值与 预测值之间的差,这是差分脉冲编码调制(DPCM) 的基本点。在DPCM中,特殊的“1位量化”情况 称△调制。
把图象分成若干个子块,设子块为 M×N 象素的矩阵块,当前帧图象亮度 信号为 fk (m, n), 前一次传送的图象为 f k – Ns (m, n), 这里 Ns 为帧差数目(通常为 1、3或7), 假定当前第 k 帧中的一个 M×N 子 块是从第 k – Ns 帧平行移动而来(设水平 位移与垂直位移最大为L) ,并设 M×N 子块内所有象素都具有同一个位移值, 在 第 k – Ns 帧搜索区域 SR = (M+2L, N+2L) 内进行搜索,

预测编码的原理和主要应用

预测编码的原理和主要应用

预测编码的原理和主要应用1. 什么是预测编码预测编码(Predictive Encoding)是一种数据压缩技术,用于在不丢失信息的情况下减小数据的存储空间。

它通过利用数据中的统计特性,将重复、无效或不必要的信息压缩存储,从而实现数据的高效传输和存储。

预测编码的基本原理是利用数据中的冗余性,通过预测当前样本的值来编码数据。

预测编码根据当前样本的值和前面的样本值之间的关系来生成编码。

通过将预测误差编码,可以有效地提取和表示数据的重要信息。

2. 预测编码的原理预测编码的原理基于信源的统计特性,通过建立一个预测模型来预测下一个样本。

预测模型可以是线性模型、非线性模型或其他机器学习算法。

根据预测模型的不同,预测编码可以分为两种类型:无记忆(Memoryless)预测编码和有记忆(Context-based)预测编码。

•无记忆预测编码:该类型的预测编码仅仅使用当前样本的信息来进行预测。

在无记忆预测编码中,简单的算法可以是使用前一个样本的值作为预测值。

在预测编码器中,通过比较预测值和实际值之间的误差来编码数据。

•有记忆预测编码:该类型的预测编码利用了前面的样本值和预测误差来进行预测。

在有记忆预测编码中,预测模型可以是线性的,如自回归模型,也可以是非线性的,如递归神经网络 (RNN)。

有记忆预测编码可以更好地利用数据中的时间和空间相关性。

3. 预测编码的主要应用预测编码技术在许多领域中都有广泛的应用,在以下几个方面尤为突出:3.1 数据压缩预测编码作为一种数据压缩技术,被广泛应用于无损和有损的数据压缩。

通过对数据进行预测和编码,可以显著减小数据的存储空间,节省传输和存储成本。

3.2 语音和音频编码在语音和音频编码中,预测编码被用于将声音信号压缩,并实现高质量的音频传输。

通过利用声音信号的冗余性,预测编码可以减小音频数据的大小,而不会丢失重要的音频信息。

3.3 图像和视频编码在图像和视频编码中,预测编码被用于将图像和视频数据压缩,并实现高质量的图像和视频传输。

图像编码中的预测编码原理与应用(一)

图像编码中的预测编码原理与应用(一)

图像编码是数字图像处理领域中非常重要的一项技术,它可以将图像数据通过压缩的方式储存和传输。

而在图像编码中,预测编码是一种常见且有效的编码方法。

本文将从预测编码的原理和应用两个方面进行论述,以帮助读者更好地了解图像编码中的预测编码。

一、预测编码的原理预测编码的基本原理是利用当前像素点与其周围像素点之间的相关性进行编码。

在图像中,相邻像素点之间往往存在一定的空间相关性和统计相关性。

预测编码利用这些相关性,推断当前像素点的取值,并与其真实取值之间的差异进行编码。

主要应用的原理有如下两种。

空间域预测编码空间域预测编码是一种基于像素点之间空间相关性的编码方法。

它通过分析当前像素点与其周围像素点之间的关系,以预测当前像素点的取值。

一般常用的预测方法有平均预测、最近邻预测和线性预测等。

当预测得到当前像素点的取值后,再对其与真实取值之间的差异进行编码传输。

这种编码方法可以在一定程度上减小了重复信息的传输,从而实现了图像数据的压缩。

统计域预测编码统计域预测编码是一种将当前像素点与周围像素点的统计相关性应用于编码的方法。

其核心思想是通过分析图像中不同像素点之间的统计规律,并基于这种规律进行编码。

主要应用的方法有上下文建模和自适应预测等。

在统计域预测编码中,一个重要的概念是熵编码,即根据不同像素点的概率分布进行编码传输。

这种编码方法可以充分利用图像中像素点之间的统计规律,提高编码效率。

二、预测编码的应用预测编码在图像编码领域有着广泛的应用。

下面将从图像压缩和图像传输两个方面具体介绍其应用。

图像压缩图像压缩是预测编码最常见的应用之一。

通过预测当前像素点的取值,并与真实取值之间的差异进行编码,可以大大减小图像数据的冗余信息,从而实现压缩效果。

预测编码方法可以利用空间域和统计域的相关性,提高压缩比,同时也能保持较好的图像质量。

图像传输在图像传输中,预测编码可以减少图像数据的传输量,提高传输速度。

通过预测和编码的方式,只需传输图像数据的差异部分,而不需要传输全部的像素点信息。

图像编码中的动态编码技术介绍(三)

图像编码中的动态编码技术介绍(三)

图像编码是将原始图像数据转换为更紧凑的表示形式,用于存储或传输的过程。

动态编码技术是图像编码中一种重要的技术方法,它通过对图像数据进行分析和处理,以提高图像压缩效果和图像质量。

本文将介绍图像编码中的动态编码技术,包括熵编码、预测编码和变换编码。

一、熵编码熵编码是一种基于概率模型的编码方法,它根据图像的统计特性来对图像数据进行编码。

熵编码的目标是使用较短的编码表示来表示数据中出现频率较高的符号,而使用较长的编码表示来表示数据中出现频率较低的符号。

在图像编码中,熵编码主要用于对图像中的灰度值或颜色分量值进行编码。

最常用的熵编码方法是霍夫曼编码和算术编码。

霍夫曼编码通过构建霍夫曼树来实现编码。

它首先对图像数据进行统计,得到每个符号的概率分布,并根据概率构建霍夫曼树。

然后,根据霍夫曼树确定每个符号的编码表示,使得高频符号具有较短的编码,低频符号具有较长的编码。

最后,根据编码表对图像数据进行编码。

算术编码是一种基于概率的编码方法,它通过逐步逼近符号的概率来实现编码。

算术编码将整个图像作为一个整体进行编码,而不是像霍夫曼编码那样对每个符号进行编码。

它根据图像数据的连续性和统计特性来确定每个符号的编码表示,使得高频符号具有较短的编码,低频符号具有较长的编码。

二、预测编码预测编码是一种基于图像数据的空间相关性进行编码的方法。

它利用图像中相邻像素之间的相关性来实现编码。

预测编码通过预测当前像素的值,然后用真实值与预测值之间的差值表示编码结果。

在图像编码中,最常用的预测编码方法是差分编码和运动补偿编码。

差分编码是一种基于图像像素差值的编码方法,它利用相邻像素之间的差值来表示编码结果。

差分编码首先对图像进行预测,然后用预测值与真实值之间的差值进行编码。

差分编码适用于图像中像素值变化较小的情况,可以有效地减小编码结果的位数。

运动补偿编码是一种基于图像的运动信息进行编码的方法,它利用两幅连续图像之间的运动信息来表示编码结果。

第四章 预测编码和变换编码

第四章 预测编码和变换编码

示例一: 德尔塔调制(DM或ΔM)
最简单的有损预测编码方法是德尔塔(或称增量)调制(DM或ΔM) 方法, 早期在数字电话中采用, 是一种最简单的差值脉冲编码 。
其预测器和量化器分别定义为
其中a是预测系数(一般小于等于1), c是1个正的常数。 因为量化器的输出可用单个位符表示(输出只有2个值), 所以编码器中的
编码会产生颗粒噪声, 即误差正负波动。 其二, 当c远小于输入中的最大变化时, 如在n=5到n=9的相对陡峭区间, DM编码
会产生斜率过载, 有较大的误差。 对大多数图像来说, 上述2种情况分别会导致图像中目标边缘发生模糊和整个图 像产生纹状表面。
DM编码失真示例
4.1.3 自适应差分脉冲调制(ADPCM)预测
lim
n
H
n
(
xn
|
xn1 xn2 ...x1 )
▪ 所以参与预测的符号越多,预测就越准确,该信源的不确定性就越小, 数码率就可以降低。
▪ 原理
▪ 利用以往的样本值对新样本值进行预测, 将新样本值的实际值与其 预测值相减, 得到误差值, 对该误差值进行编码, 传送此编码即可。
▪ 理论上数据源可以准确地用一个数学模型表示, 使其输出数据总是 与模型的输出一致, 因此可以准确地预测数据, 但是实际上预测器 不可能找到如此完美的数学模型;
▪ 为接纳量化步骤, 需要改变图4-1中的无损编码器以使编码器和解 码器所产生的预测能相等。为此在图4-2中将有损编码器的预测器 放在1个反馈环中。这个环的输入是过去预测和与其对应的量化误 差的函数

xk’ =ek’ + ^Xk
▪ 这样一个闭环结构能防止在解码器的输出端产生误差。这里解码 器的输出也由上式给出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.4预测编码
1.预测编码的基本原理
预测编码(Prediction Coding)是根据某一种模型,利用以前的(已收到)一个或几个样值,对当前的(正在接收的)样本值进行预测,将样本实际值和预测值之差进行编码。

如果模型足够好,图像样本时间上相关性很强,一定可以获得较高的压缩比。

具体来说,从相邻像素之间有很强的相关性特点考虑,比如当前像素的灰度或颜色信号,数值上与其相邻像素总是比较接近,除非处于边界状态。

那么,当前像素的灰度或颜色信号的数值,可用前面已出现的像素的值,进行预测(估计),得到一个预测值(估计值),将实际值与预测值求差,对这个差值信号进行编码、传送,这种编码方法称为预测编码方法。

预测编码的基本思想
建立一个数学模型利用以往的样本数据对新样本值进行预测将预测值与实际
值相减对其差值进行编码,这时差值很少,可以减少编码码位。

2.预测编码的分类
最佳预测编码:在均方误差最小的准则下,使其误差最小的方法。

线性预测:利用线性方程计算预测值的编码方法。

非线性预测:利用非线性方程计算预测值的编码方法。

线性预测编码方法,也称差值脉冲编码调制法(Differention Pulse Code Modulation,DPCM)。

如果根据同一帧样本进行预测的编码方法叫帧内预测编码。

根据不同帧样本进行预测的编码方法叫帧间预测编码。

如果预测器和量化器参数按图像局部特性进行调整,称为自适应预测编码(ADPCM)
在帧间预测编码中,若帧间对应像素样本值超过某一阈值就保留,否则不传或不存,恢复时就用上一帧对应像素样本值来代替,称为条件补充帧间预测编码。

在活动图像预测编码中,根据画面运动情况,对图像加以补偿再进行帧间预测的方法称为运动补偿预测编码方法。

3.DPCM编码算法
一幅二维静止图像,设空间坐标(i,j)像素点的实际样本为f(i,j),是预测器根据传输的相邻的样本值对该点估算得到的预测(估计)值。

编码时不是对每个样本值进行量化,而是预测下一个样本值后,量化实际值与预测值之间的差。

计算预测值的参考像素,可以是同一行扫描行的前几个像素,这种预测叫一维预测;也可以是本行、前一行或者前几行的像素,这种预测叫二维预测;除此之外,甚至还可以是前几帧图像的像素,这种预测就是三维预测。

一维预测和二维预测属于帧内预测,三维预测则属于帧间预测。

实际值和预测值之间的差值,以下式表示:e(i,j)=f(i,j)-
将差值e(i,j)定义为预测误差,由于图像像素之间有极强的相关性,所以这个预测误差是很小的。

编码时,不是对像素点的实际灰度f(i,j)进行编码,而是对预测误差信号进行量化、编码、发送,由此而得名为差值脉冲编码调制法,简写DPCM。

DPCM预测编、解码的原理图如下。

DPCM系统包括发送端、接收端和信道传输3个部分。

发送端由编码器、量化器、预测器和加减法器组成;接收端包括解码器和预测器等。

DPCM系统的结构简单,容易用硬件实现。

预测编码的步骤:
①f(i,j)与发送端预测器产生的预测值相减得到预测误差e(i,j)。

②e(i,j)经量化器量化后变为e'(i,j),同时引起量化误差。

③e'(i,j)再经过编码器编成码字发送,同时又将e'(i,j)加上恢复输入信号f'(i,j)。

因存在量化误差,所以f(i,j)≠f'(i,j),但相当接近。

发送端的预测器及其环路作为发送端本地解码器。

④发送端预测器带有存储器,它把f'(i,j)存储起来以供对后面的像素进行预测。

⑤继续输入下一像素,重复上述过程。

4.预测编码方法的特点
①算法简单、速度快、易于硬件实现。

②编码压缩比不太高,DPCM一般压缩到2~4bit/s。

③误码易于扩散,抗干扰能力差。

相关文档
最新文档