8一元一次方程-列方程解应用题的基本格式

合集下载

四、列一元一次方程解应用题的步骤有:

四、列一元一次方程解应用题的步骤有:

四、列一元一次方程解应用题的步骤有:1、审清题意:应认真审题,分析题中的数量关系,找出问题所在。

2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。

3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。

4、列方程:根据等量关系列出方程。

列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。

5、解方程:求出方程的解. 方程的变形应根据等式性质和运算法则。

6、检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。

7、作答:正确回答题中的问题。

五、常见的一元一次方程应用题:1、和差倍分问题:(1)增长量=原有量×增长率; (2)现在量=原有量+增长量2、等积变形问题:常见几何图形的面积、体积、周长计算公式,依据形虽变,但面积不变。

(1)圆柱体的体积公式 V=底面积×高=S ·h = r 2h(2)长方开的面积 周长=2×(长+宽) S=长×宽3、数字问题:一般可设个位数字为a ,十位数字为b ,百位数字为c 。

十位数可表示为10b+a , 百位数可表示为100c+10b+a 。

然后抓住数字间或新数、原数之间的关系找等量关系列方程。

4、市场经济问题:( 以下“成本价”在不考虑其它因素的情况下指“进价” )(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100% (3)售价=成本价×(1+利润率) (4)商品销售额=商品销售价×商品销售量(5)商品的销售利润=(销售价-成本价)×销售量(6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。

或者用标价打x 折: 折后价(售价)=标价×10x 计算。

一元一次方程应用题解法归纳汇总

一元一次方程应用题解法归纳汇总
练习8、已知:商店中某个玩具的进价为40元,标价为60元; 若按标价出售该玩具,则所得的利润及利润率分别是多少? 若顾客在及店主还价时,店主要保住15%的利润率,则店主出售这个玩具的售价底线是多少元? 若店主为吸引顾客,把这个玩具的标价提高10%后,再贴出打8.8折的告示,则这个玩具的实际售价是多少元? 若店主设法将进价降低10%,标价不变,而贴出打8.8折的告示,则出售这个玩具的利润及利润率分别是多少?
例3、为了把2013年沈阳全运会举办成一届绿色全运会,实验中学和潞河中学的同学积极参加绿化工程的劳动。两校共绿化了4415平方米的土地,潞河中学绿化的面积比实验中学绿化面积的2倍少13平方米,这两所中学分别绿化了多少面积?
例4、出租汽车4千米起价10元,行驶4千米以后,每千米收费1.2元(不足1千米按1千米计算)。张天和张智要到离学校15千米的博物馆为同学们联系参观事宜。为了尽快到达博物馆,他们想坐出租车,如果他们只有22元,则,他们乘出租车能直接到达博物馆吗?
解:设该市每户每月用水标准量为x立方米。 ∵1.2×9=10.8(元) 10.8<16.2 ∴张大爷家的用水量超出了标准用水量,即x<9 根据题意得 1.2x+(9-x)×3=16.2 解这个方程,得 x=6 答:该市每户每月的标准用水量是6立方米。
例2 :小丽的爸爸前年存了年利率为2.25%的二年期定储蓄,今年到期后,扣除利息的20%作为利息税,所得利息正好为小丽买了一只价值36元的计算器,问小丽爸爸前年存了多少元钱?
例3 5年定期储蓄的年利率为2.88%,若存入5年定期的本金是1000元,请计算存款到期时,应得的本利和是多少?
例4、王利到银行存入5年定期的储蓄若干元,到期后一共缴了72元的利息税,若这种储蓄的年利率为2.4%,求王利当初存入银行多少元?

列一元一次方程解应用题的一般步骤

列一元一次方程解应用题的一般步骤

列一元一次方程解应用题的一般步骤
嘿,咱来说说列一元一次方程解应用题的一般步骤哈!
首先啊,那得仔细审题,就像警察破案一样,不放过任何一个小细节。

比如说,小明天天上学走路,突然有一天走路时间变长了,咱就要搞清楚为啥会这样啊。

然后呢,设未知数,这可太关键啦!就好比给这个问题找个主角一样。

像是上面小明的例子,咱可以设他原来的速度是 x 呀。

接着就是找等量关系啦,这就如同找到了解题的钥匙!好比说他平时走这段路用的时间和现在走这段路用的时间有个关联呀。

随后列出方程,哇塞,这就是把你的思路转化成数学语言啦!
再然后解方程呀,一步步算出答案,就像挖宝藏一样有成就感。

最后一定要检验答案是不是合理,别弄出个荒唐的结果来。

这就像做菜,做好了总得尝尝味道对不对嘛!
比如说商店卖东西,已知进价和利润,让你求售价,那咱就可以按这些步骤来啊!先审题,知道进价和利润的具体数值;设售价为 x;找等量关系就是进价加上利润等于售价呀;列出方程,求解方程,最后检验一下,看看这个售价合不合理。

怎么样,是不是挺有意思的?你也快去试试吧!。

一元一次方程应用题(常见类型题)

一元一次方程应用题(常见类型题)

一、列一元一次方程解应用题的一般步骤:(1)审题:弄清题意;(2)找出等量关系:找出能够表示本题含义的相等关系;(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;(4)解方程:解所列的方程,求出未知数的值;(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。

二、若干应用题等量关系的规律:类型一:和、差、倍、分问题(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

【典型例题】例1.x 的43与1的和为8,求x ?例2.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。

例3.甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。

例4.有甲、乙两个数,甲数比乙数的2倍多1,乙数比甲数小4,求这两个数。

类型二:数字问题一般可设个位数字为a ,十位数字为b ,百位数字为c①两位数可表示为:10b a + ②三位数可表示为:10010c b c ++然后抓住数字间或新数、原数之间的关系找等量关系列方程。

【典型例题】例1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得的数比原数小63,求原数?例2.一个三位数,十位上的数字比个位上的数字大3,而比百位上的数字小l ,且三个数字之和的50倍比这个三位数小2,求这个三位数?例3.一个两位数,十位上的数字与个位上数字的和是8,将十位上的数字与个位上的数字对调,得到的新数比原数的2倍多l0,求原来的两位数?类型三:利润问题出现的量有:进价、售价、标价、利润、成本、利润率、折扣等用到的公式有:①利润=卖的钱—成本 ②利润=成本X 利润率注意打几折是按原价的百分之几十出售。

一般的相等关系:卖的钱—成本=成本X 利润率【典型例题】例1.一件商品的售价是30元,①、如果卖出后盈利25元,那么这件商品的进价是多少?②若卖出后亏损25元,那么进价又是多少?例2.某商品标价110元,八折出售后,仍获利10%, 则该商品的进价为多少元?例3.某商场把进价为80元的商品按标价的八折出售,仍获利10%, 则该商品的标价为多少元?例4.某商场把进价为80元的商品按标价110元折价出售后,仍获利10%, 则商品打了几折?例5.商店对某种商品进行调价,决定按原价的九折出售,此时该商品的利润率是15℅,已知这种商品每件的进货价为1800元,求每件商品的原价。

一元一次方程解题技巧计算题+应用题方法总结和练习

一元一次方程解题技巧计算题+应用题方法总结和练习

一元一次方程解题技巧计算题类【解方程基本步骤】⒈去分母方程两边同时乘各分母的最小公倍数。

⒉去括号一般先去小括号,再去中括号,最后去大括号。

但顺序有时可依据情况而定使计算简便。

可根据乘法分配律。

⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。

⒋合并同类项将原方程化为ax=b(a≠0)的形式。

⒌系数化一方程两边同时除以未知数的系数。

⒍得出方程的解同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。

方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

应用题类【应用题基本步骤】⑴审题。

理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。

①直接未知数②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。

一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答题。

【11大类型及对应破题法】(1)和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。

审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

(2)等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

(3)调配问题从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

这类问题要搞清人数的变化,常见题型有:①既有调入又有调出;②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。

列一元一次方程解应用题的一般步骤-

列一元一次方程解应用题的一般步骤-

解: 设苹果为x筐,则香蕉为(12 - x )筐,根据题 意得:
60x +40(12-x)=620.
解得
20x=140,
x=70
2)某种家电商品5月份单价是3000元,6月份按5月份 价格降价了x%,则6月份的单价是___30_0_0(_1_- _x__)__.
3)某一时期,美元与人民币的比价为100:800元,则 2000元人民币可兑换美元为____25_0___元.
例1、如图:用直径为200毫米的圆钢,锻造一个长、宽、 高分别为300毫米、300毫米和80毫米的长方体毛坯底板, 应截取圆钢多少(圆柱的体积公式:体积 = 底面积 高 线长.计算时取3.14.要求结果误差不超过1毫米)?
200
x
80
圆钢
300
300
长:
列一元一次方程解应用题的一般步骤是:
1、分析题意,找出等量关系,分析题中数量及其
关系,用字母(例如x),表示问题里的未知数.
2、用字母的一次式表示有关的量.
3、根据等量关系列出方程.
4、解方程,求出未知数的值.
5、检验求得的值是否正确和符合实际情形,并写 出答案.
1) 苹果单价是每筐60元,香蕉单价是每筐40元,初三 某班要搞毕业联欢会,共买了12筐,合计付款620元,问 苹果和香蕉各多少筐?
方程为:__0_._52__x_=__0_.3_2_0_.5______ 解这个方程:__x_=_0_._18____ 答:_容__器__内_水__面__将_升__高__0_.1_8_m____
例2、 甲煤矿有煤432吨.乙煤矿有煤96吨,为了使甲煤矿存煤数 是乙煤矿的2倍.应从甲煤矿运多少吨煤到乙煤矿?
432-x = 2(96+x) 得这个方程:432-x = 192+2x,

一元一次方程的应用

一元一次方程的应用

一元一次方程的应用一、列方程解应用题的一样步骤:1.认真审题,找出已知量和未知量,以及它们之间的关系;2.设未知数,能够直截了当设未知数,也能够间接设未知数;3.列出方程中的有关的代数式;4.依照题中的相等关系列出方程;5.解方程;6.答题。

二、列方程解应用题的关键是找出题中的等量关系三、常见的应用题类型有:行程问题:1)追击问题:a、两个物体在同一地点不同时刻同向动身最后在同一地点的行程问题等量关系:甲路程=乙路程甲速度×甲时刻=乙速度×(甲时刻+乙先走的时刻)b、两个物体从不同地点同时同向动身最后在同一地点的行程问题等量关系:甲路程-乙路程=原相距路程2)相遇问题:两个物体同时从不同地点动身相向而行最后相遇的行程问题等量关系:甲路程+乙路程=相遇路程甲速度×相遇时刻+乙速度×相遇时刻=原两地的路程3)一样行程问题:等量关系:速度×时刻=路程4)航行问题:等量关系:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度练习:1.一猎狗发觉在它前方240米处有一以80米/分的速度逃跑的兔子,猎狗迅速以120米/分速度追击,要多久才能追到?2.一部队从军部动身行军,每小时走40千米,3.5小时后一通讯兵传达一军部命令骑摩托车从军部动身追赶,4小时后追上,则通讯兵每小时比部队多行多少千米?3.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再动身,问甲动身后几小时与乙相遇?4.学生队伍以每小时5千米的速度外出春游,他们从学校动身走了4小时12分钟后,学校派通讯员骑摩托车以每小时40千米的速度追赶学生队伍,传达紧急通知,求通讯员用了多少时刻赶上学生队伍?5.甲乙两站相距40千米,一列慢车从甲站开出,每小时行使56千米,同时一列快车由乙站开出,每小时行使72千米,两车同向而行,快车在慢车的后面,通过多少小时快车可追上慢车?6.甲乙两人环湖竞走,一周400米,乙每分钟走80米,甲的速度是乙的5/4倍,现在甲在乙的前面100米;多少分钟后两人相遇?7.甲乙两人练习短距离赛跑,甲每秒跑7米,乙每秒跑6.5米,假如甲让乙先跑2秒钟,甲通过几秒能够追上乙?8.敌军和我军相距14千米,敌军以4千米/小时的速度逃跑,我军迅速以7千米/小时的速度追击敌军,需几小时能够追上?9.一般飞机和喷气式飞机从相距600千米的两个机场相向起飞,30分钟后相遇,假如喷气式飞机的速度是一般飞机的3倍,求一般飞机和喷气式飞机的速度?10.一条环行跑道长400米,甲练习自行车,平均每分钟骑550米,乙练习赛跑,平均每分钟跑250米,两人同时同地同向动身,通过多少分钟两人相遇?11.甲乙两站相距245千米,一列慢车由甲站开出,每小时行使50千米,同时,一列快车由乙站开出,每小时行使70千米,两车同向而行,快车在慢车的后面,通过几小时快车能够追上慢车?12.小红和小军两人同时从各自的家里动身去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用1小时在途中某点相遇,则小军每分钟走多少米?613.小明上山的速度是每小时3.5千米,下山的速度是每小时5千米,若小明上山比下山多用了3小时,求小明下山走了几小时,这段山路共有多少千米?14.A、B两地相距80米,甲从A地动身,每秒走1米,乙从B地动身每秒走1.5米,如甲先走15米,求乙动身后多少秒与甲相遇?15.小船的静水速度是27千米/时,顺流航行60千米逆流返回,假如水流速不变,返程所用时刻比顺流多用25%,求水流速度?16.A、B两地间的路程为360km,甲车从A地动身开往B地,每小时72km,甲车动身25分钟后,乙车从B地动身开往A地,每小时行驶48km,两车相遇后,各自仍按原速度原方向连续行驶,那么相遇后两车相距100km时,甲车从动身共行驶了多少小时?17.一艘轮船,航行于甲、乙两地之间,顺水用3小时,逆水比顺水多用30分钟。

一元一次方程解题步骤详解

一元一次方程解题步骤详解

一元一次方程的应用(一)1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。

2运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。

一、目标导入前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。

二、例题例1 有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少分析:从符号与绝对值两方面观察,这列数有什么规律符号正负相间;后者的绝对值是前者绝对值的3倍。

即后一个数是前一个数的-3倍。

如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗后面两数分别是-3x,9x。

问题中的相等关系是什么三个相邻数的和=-1701。

由此可得方程 x-3 x+9x=-1701解之,得x=-243。

所以这三个数是-243,729,-218。

注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。

这一点要注意学习。

例2 根据下面的两种移动电话计费方式表,考虑下列问题。

方式一方式二月租费30元/月0元本地的通话费0.30元/分0.4元/分(1)一个月内在本地通话200分和350分,按方式一需交费多少元按方式二呢(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗分析:(1)按方式一在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:30+200×0.3=90元;通话350分钟需要交费:30+350×0.3=135元.按方式二在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:200×0.4=80元;通话350分钟需要交费:350×0.4=140元.(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?按方式一要收费(30+0.3t)元;按方式二要收费0.4t元.问题中的等量关系是什么?方式一的收费=方式二的收费.由此可列方程 30+0.3t=0.4t解之,得 t =300所以,当一个月内通话300分钟时,两种计费方式的收费一样多.引申:你知道怎样选择计费方式更省钱吗?当t=400时, 30+0.3t=30+0.3×400=150元;0.4t=0.4×400=160元.当时间大于300分钟时,方式一更省钱.三、一元一次方程解实际问题的基本过程将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。

一元一次方程应用题归类汇集超详细解题过程含答案(特级教师整理版)

一元一次方程应用题归类汇集超详细解题过程含答案(特级教师整理版)

一元一次方程应用题归类汇集含详细答案整理版本一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列-列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等.第一类、行程问题基本的数量关系:(1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。

6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析.常用数据:① 时针的速度是0。

5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

一元一次方程解题步骤详解

一元一次方程解题步骤详解

一元一次方程的应用(一)1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。

2运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。

一、目标导入前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。

二、例题例1有一列数,按一定规律排列成1,—3, 9,—27, 81,—243,…,其中某三个相邻数的和是-1701,这三个数各是多少分析:从符号与绝对值两方面观察,这列数有什么规律符号正负相间;后者的绝对值是前者绝对值的3倍。

即后一个数是前一个数的-3倍。

如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗后面两数分别是-3x , 9x。

问题中的相等关系是什么三个相邻数的和=-1701。

由此可得方程x-3 x+9x=-1701解之,得x=-243。

所以这三个数是-243 , 729, -218。

注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。

这一点要注意学习。

例2(1)一个月内在本地通话200分和350分,按方式一需交费多少元按方式二呢(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗分析:(1)按方式一在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:30+200X 0.3=90元;通话350分钟需要交费:30+350X 0.3=135元.按方式二在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:200X 0.4=80元;通话350分钟需要交费:350X 0.4=140元.(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?按方式一要收费(30+0.3t)元;按方式二要收费0.4t元.问题中的等量关系是什么?方式一的收费=方式二的收费.由此可列方程30+0.3t=0.4t解之,得t =300 所以,当一个月内通话300分钟时, 两种计费方式的收费一样多.引申: 你知道怎样选择计费方式更省钱吗?当t=400 时,30+0.3t=30+0.3 X 400=150元;0.4t=0.4 X 400=160 元.当时间大于300 分钟时, 方式一更省钱.三、一元一次方程解实际问题的基本过程将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。

利用一元一次方程解应用题的一般步骤(纯知识点)

利用一元一次方程解应用题的一般步骤(纯知识点)

课题:一元一次方程的应用——利用一元一次方程解应用题的一般步骤(纯知识点)1. 列方程解应用题的一般步骤:⑴“审”:仔细审题,明确题目中的已知量和未知量.⑵“设”:根据问题的要求,确定适当的未知数;⑶“找”:根据各数量之间的关系,找出题目中的等量关系;⑷“列”:根据等量关系,列出方程.⑸“解”:按照步骤解所列方程.⑹“检验”:将求出的方程的解代入实际情境中检验是否符合实际情况.⑺“答”:最后要对解决的问题做一个综合的回答.2.一元一次方程解决实际应用问题的一般步骤如下:注意:⑴设未知数分为“直接设”和“间接设”两种,一般地求什么就设什么为未知数,若直接设未知数解决有困难的时候,就可以间接的设未知数,有时还要设辅助的未知数.⑵找等量关系时,可采取画线段图、列表、演示等多种方法,这也是提高列方程解应用题的有效方法和手段.⑶列方程的时候要注意单位要统一.3.实际问题常见类型(一)等积变形问题1.相关公式长方体体积=长×宽×高圆柱体体积=底面积×高2.等量关系变形前的体积=变形后的体积3.注意问题(1)注意圆的半径和直径的区分;(2)平面内,“周长不变围长方形”和此问题类似.(二)利息问题1.相关公式本金×期数×处率=利息(未扣税)2.等量关系本息=本金+利息3.注意问题:(1)要会区分年利率和月利率;(2)目前银行,不同存期,年利率也不同.(三)利润问题1.相关公式利润率=利润/进价2.等量关系利润=售价-进价3.注意问题:(1)打折销售,即为售价,n折即为标价的十分之n为售价;(2)总利润=某单个商品的利润×商品总量.(四)行程问题1.相遇问题路程=速度×时间两者路程之和=总路程2.追及问题路程=速度×时间两者路程之差=总路程3.注意问题:(1)注意相遇问题和追及问题的区别;(2)关注出发的时间和地点;(3)画线路图,有助于分析等量关系.(五)工程问题1.相关公式工作量=工作效率×工作时间2.等量关系总工作量=各部分工作量之和3.注意问题:一般把总工作量设为单位1.(六)数字问题若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数表示为++.10010a c注意问题:等量关系,由已知给定的条件来确定.。

如何解一元一次方程应用题

如何解一元一次方程应用题

如何解一元一次方程应用题一、如何根据实际问题列方程1、实际问题与数学知识的相互转换数学来源于实践,在实际问题中,我们应学会用数学的观点考察与分析问题,我们经常是这样。

列一元一次方程解题,就是根据已知条件,列出一个一元一次方程,通过求方程的解到达解决问题的目的,列方程的关键是抓住问题中有关数量的相等关系,即找到一个包含题目含义的数量关系,所以在列方程时,要把握三个重要环节:①整体地、系统地审题,弄清题意和其中的数量关系,用字母表示适当的未知数。

②找出能表示问题含义的一个主要的“等量关系”。

③根据等量关系中涉及的量,列出表达式及方程,正确求解。

2、利用一元一次方程解决实际问题的常见题型:题型基本量,基本数量关系寻找相等关系的思路方法等积形式问题常见几何图形的长、宽、高、面积、周长、体积的公式,及相互之间的关系。

〔1〕形变积不变〔2〕形变积也变,但重量不变利息问题本息和、本金、利息、利息和、利息税、期数的关系。

利息=本金×利率×期数本息和=本金+利息年龄问题大小两个年龄差不会变抓住年龄增长,一年一岁,人人平等数字问题多位数的表示方法:是一个多位数,它可表示为:1. 抓住数字间或新数、原数之间的关系,寻找相等关系。

2. 常需设间接未知数。

比例问题甲:乙:丙=a:b:c 各部分量之和=总量设其中一份为x,由已知各部分量在总量中所占的比例,可得各部分量的代数式。

追及问题路程、速度、时间的关系路程=速度×时间甲走的路程与乙走的路程之间关系等式。

相遇问题路程、速度、时间的关系甲走的路程+乙走的路程=A、B两地间的路程航行问题顺水速度、静水速度、水流速度、时间、路程、速度之间的关系。

两地间距离不变顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度三、设未知数的方法:根据具体问题作具体分析,设未知数通常有两种方法:①直接设未知数法:即题目里问什么,就设什么作为未知数,这样设之后,只要能求出所列方程的解,就可以直接求得题目的所问。

一元一次方程应用题的解法

一元一次方程应用题的解法

⼀元⼀次⽅程应⽤题的解法⼀元⼀次⽅程应⽤题的解法⼀、直列法。

即由题中的“和”、“少”、“倍”等表⽰数量关系的字眼,直接列出相关的⽅程。

例1 在甲处劳动的有27⼈,在⼄处劳动的有19⼈,现在另调20⼈去⽀援,使在甲处⼈数为在⼄处的⼈数的2倍,应调往甲、⼄两处各多少⼈?分析:显然,⼈员调动完成后,甲处⼈数=2×⼄处⼈数。

解:设调x⼈到甲处,则调(20-x)⼈到⼄处,由题意得:27+x=2(19+20-x),解之得x=17∴20-x=20-17=3(⼈)答:应调往甲处17⼈,⼄处3⼈。

⼆、公式法。

学⽣熟识的公式诸如“路程=速度×时间”、“⼯作总量=⼯作效率×⼯作时间”、“利润=售价-进价”、“利润率=利润/进价”等都是解答相关⽅程应⽤题的⼯具。

例2 商品进价1800元,原价2250元,要求以利润率不低于5%的售价打折出售,则此商品最低可打⼏折出售?分析:根据利润率公式,列出⽅程即可。

解:设最低可打x折。

据题意有:5%=(2250x-1800)/1800,解之得x=0.84答:最低可打8.4折。

三、总分法。

即根据总量等于各分量之和来列出⽅程,⽤此法要注意分量不可有所遗漏。

例3 “过路的⼈!这⼉埋葬着丢番图。

请计算下列题⽬,便可知他⼀⽣经过了多少寒暑。

他⼀⽣的六分之⼀是幸福的童年,⼗⼆分之⼀是⽆忧⽆虑的少年。

再过去七分之⼀的年程,他建⽴了幸福的家庭。

五年后⼉⼦出⽣,不料⼉⼦竟先其⽗四年⽽终,只活到⽗亲岁数的⼀半。

晚年丧⼦⽼⼈真可怜,悲痛之中度过了风烛残年。

请你算⼀算,丢番图活到多⼤,才和死神见⾯?”分析:本题即是著名的丢番图的“墓志铭”,题中巧妙地把丢番图的总年龄划分为了⼏个部分,解题时只需运⽤其总年龄=各部分年龄的和即可得出解答。

解:设丢番图活了x年。

据题意可得:x=x/6+x/12+x/7+5+x/2+4解之得x=84答:丢番图共活了84岁。

由此题的解答,我们还可知道古希腊的这位⼤数学家丢番图33岁结婚,38岁得⼦,80岁死了⼉⼦,⼉⼦活了42岁等。

一元一次方程解应用题的思路和解法(全)

一元一次方程解应用题的思路和解法(全)

一元一次方程解应用题的思路和解法一元一次方程应用题是初一数学学习的重点,也是一个难点。

主要困难体现在两个方面:一是难以从实际问题中找出相等关系,列出相应的方程;二是对数量关系稍复杂的方程,常常理不清楚基本量,也不知道如何用含未知数的式子来表示出这些基本量的相等关系,导致解题时无从下手。

事实上,方程就是一个含未知数的等式。

列方程解应用题,就是要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来。

而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系。

由此,解方程应用题的关键就是要“抓住基本量,找出相等关系”。

所以,我认为解题关键为:先找出等量关系,根据基本量设未知数。

一般是问什么设什么,但是一些特殊的题目为了使方程简便有时会设一些中间量为未知数。

初中一年级涉及到的一元一次方程应用题主要有以下几类:(1)行程问题;(2)工程问题;(3)溶液配比问题;(4)销售问题;(5)数字问题;(6)比例问题;(7)设中间变量的问题。

不管是什么问题,关键是要了解各个具体问题所具有的基本量,并了解各个问题所本身隐含的等量关系,结合具体的问题,根据等量关系列出方程。

下面针对以上七项分别进行讲解。

1 行程问题行程问题中有三个基本量:路程、时间、速度。

等量关系为:①路程=速度×时间;;②速度=路程时间。

③时间=路程速度特殊情况是航行问题,其是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化。

①顺水(风)速度=静水(无风)速度+水流速度(风速);②逆水(风)速度=静水(无风)速度-水流速度(风速)。

由此可得到航行问题中一个重要等量关系:顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。

例1:一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?此题的等量关系是:列车改变速度以后所用的总时间=原计划的时间。

一元一次方程应用题8种类型解法及典型例题

一元一次方程应用题8种类型解法及典型例题

一、概述1. 介绍一元一次方程的定义和基本形式2. 引出本文将要讨论的内容二、一元一次方程的八种类型1. 类型一:简单应用题1)例题:小明买了一些苹果,一共花了20元,每个苹果2元,问他买了多少个苹果?2)解法:设苹果的数量为x,根据题意可列出方程2x=20,解得x=10。

2. 类型二:两个未知数的应用题1)例题:甲乙两地相距180公里,相对而行,甲地的时速是每小时30公里,问几小时能相遇?2)解法:设相遇时间为t小时,甲地行驶的距离为30t,乙地行驶的距离为180-30t,根据题意可列出方程30t+30t=180,解得t=3。

3. 类型三:含有括号的应用题1)例题:一个数比8大,乘以3再减去2的结果是20,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程3(x-8)-2=20,解得x=18。

4. 类型四:含有分数的应用题1)例题:某数的1/3等于它的2/5减去3,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程1/3=2/5-3,解得x=-9。

5. 类型五:含有小数的应用题1)例题:一块钢铁的重量是另一块的3/5,如果重量相差5.2公斤,问两块钢铁的重量各是多少?2)解法:设较重的钢铁重量为x,根据题意可列出方程x-x*3/5=5.2,解得x=13。

6. 类型六:含有分母的应用题1)例题:一个数加上15的4/5等于这个数的3/4,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程x+15=3x/4,解得x=60。

7. 类型七:字母表示未知数的应用题1)例题:甲乙两个数的和是50,甲是乙的2倍,问甲乙两个数各是多少?2)解法:设甲的数为x,乙的数为y,根据题意可列出方程x+y=50和x=2y,解得x=40,y=10。

8. 类型八:几何问题转化为一元一次方程1)例题:一个三角形的底边长度是两腿长度的和的2倍,底边长8米,腿长是多少?2)解法:设腿长为x,根据题意可列出方程2x+x=8,解得x=4。

一元一次方程方程应用题总结归类

一元一次方程方程应用题总结归类

一元一次方程方程应用题总结归类列方程解应用题,是初中数学的重要内容之一;许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.一行程问题:基本量、基本数量关系:路程=速度×时间,顺水速=静水速+水速,逆水速=静水速-水速,寻找相等关系的方法:抓住两码头之间的距离不变,水流速度,船在静水中的速度不变的特点来考虑;1相向问题,寻找相等关系的方法:甲走的路程+乙走的路程=两地距离2追击问题:寻找相等关系的方法:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两地距离=追者所走的路程3航行问题:4飞行问题:1、火车提速后由天津到上海的时间缩短了,若天津到上海的路程为1326km,提速前火车的平均速度为xkm/h,提速后火车的平均速度为ykm/h,x、y应满足的关系式为:2、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑千米,求乙的时速各是多少3、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米4、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时;1求无风时飞机的飞行速度2求两城之间的距离;5、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.1甲、乙两人同时同地反向出发,问多少分钟后他们再相遇2甲、乙两人同时同地同向出发,问多少分钟后他们再相遇6、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里;1慢车先开出1小时,快车再开;两车相向而行;问快车开出多少小时后两车相遇2两车同时开出,相背而行多少小时后两车相距600公里3两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里4两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车5慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车1、一列火车长150米,每秒钟行19米;全车通过长800米的大桥,需要多少时间2、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒3、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟;求这列火车的速度是每秒多少米车长多少米4、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少5、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过6、一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车上桥到车尾离要多少分钟7、一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是多少米8、铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米9、已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒10、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟11、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过多少秒后,甲、乙两人相遇12、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米;两车在距中点32千米处相遇;东西两地相距多少千米13、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米14、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米;当摩托车行到两地中点处,与汽车相距75千米;甲乙两地相距多少千米15、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程;16、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地17、学校运来一批树苗,五1班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵;如果这批树苗平均分给五1班的同学去植,平均每人植多少棵18、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米;中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙;求东西两村相距多少千米19、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米;甲到达B地后立即返回A地,在离B地千米处相遇;A、B两地之间相距多少千米20、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米;30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红;小红每分钟走多少米21、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米;上午11时到达B地后立即返回,在距离B地24千米处相遇;求A、B两地相距多少千米22、甲乙两队学生从相距18千米的两地同时出发,相向而行;一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络;甲队每小时行5千米,乙队每小时行4千米;两队相遇时,骑自行车的同学共行多少千米23、长100米的列车,以每秒20米的速度通过了一条座长500米的桥;列车通过这座桥要用多少秒24、一列货车要通过一条1800米长的大桥;已知从货车车头上桥到车尾离开桥共用120秒,货车完全在桥上的时间为80秒,这列货车长多少米25、两码头相距360千米,一艘汽艇顺水航行完全程要9小时,逆水航行完全程要12小时;这艘船在静水中的速度是多少千米这条河水流速度是多少千米26、甲、乙两个码头相距336千米;一艘船从乙码头逆水而上,行了14小时到达甲码头;已知船速是水速的13倍,这艘船从甲码头返回乙码头需要多少小时27、在400米的环形跑道上,甲乙两人同时起跑,如果同向跑3分20秒相遇,如果背向跑25秒相遇,已知甲比乙跑得快,求甲乙两人的速度各是多少28、一列客车车身上190米,每秒运行24米;在这列客车前面有一列长230米的货车,每秒运行18米,两列车在并行的两条轨道上运行;客车从后面追上并完全超过货车要用多少秒29、甲乙两人去同一地点办事,甲每小时走5千米,乙每小时走6千米,甲有急事先出发1小时后,乙才出发,经过几小时后能追上甲二工程问题:基本量、基本数量关系:把总工作量看作单位“1”工作量=工作效率×工作时间;相等关系:各部分工作量之和等于11.一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工2.一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的错误!3.4.一项工作,甲单独做要10天完成,乙单独做要15天完成;甲、乙合做几天可以完成这项工作的80%5.一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/36.一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完7.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天8.一项工程,甲单独做16天可以完成,乙单独做12天可以完成;现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程9.一项工程,甲独做要12天,乙独做要16天,丙独做要20天,如果甲先做了3天,丙又做了5天,其余的由乙去做,还要几天10. 一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完;用小卡车单独运,要几小时运完11. 小王和小张同时打一份稿件,5小时打了这份这稿件的65;如果由小王单独打,10小时可以打完;求如果由小张单独打,几小时可以打完;12. 一项工程,甲队独做15天完成,乙队独做12天完成;现在甲、乙合作4天后,剩下的工程由丙队8天完成;如果这项工程由丙队独做,需几天完成13. 甲和乙两队合修一条公路,完成任务时,甲队修了这条公路的158;如果乙队单独完成要24天,甲队单独做几天完成14. 一项工程,甲独做要10天,乙独做要15天,丙独做要20天;三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假15. 一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完16. 一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成浙江江山市17. 师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成18. 一项工程,由甲工程队修建,需要20天完成;由乙工程队修建,需要的天数是甲工程队的倍才能完成;两队合修共需要多少天完成19.20. 一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作21. 一项工程,甲队独做要20天完成,乙队独做要5天能完成全工程的61;现由两队合做,多少天可以完成22.23.24. 修一条水渠,甲队3天可以修全长的101,乙队单独修20天可以修完,如果两队合修,多少天可以修完25.26.27. 一件工作,甲队独做每天能完成这件工作的201,乙队单独完成这件工作需要12天,如果两面三刀队合作完成这件工作的201,需要多少天 28.29. 一件工作,甲单独做需要12天,乙的工作效率是甲的43,两个合做,几天能完成这件工作的54 30. 31. 一套家具,由一个老工人做40天完成,由一个徒工做80天完成;现由2个老工人和4个徒工同时合做,几天可以完成32. 一个水池上有两个进水管,单开甲管,10小时可把空池注满,单开乙管,15小时可把空池注满;现先开甲管,2小时后把乙管也打开,再过几小时池内蓄有3/4的水33.原是空池34.25、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程26、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.三.分配问题:这类问题要搞清人数的变化,常见题型有:1既有调入又有调出;2只有调入没有调出,调入部分变化,其余不变;3只有调出没有调入,调出部分变化,其余不变;1、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套2、、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母3、、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人4、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母某水利工地派 48 人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走5、某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数6、某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利500元,制成酸奶销售,每吨可获利1200元,制成奶片销售,每吨可获利2000元;该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该厂设计出了两种可行方案:方案一:尽可能多的制成奶片,其余的直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; 你认为那种方式获利最多为什么四、浓度问题以盐水为例,像盐这样能溶于水或其他液体中的纯净物质叫做溶质;像水这样能溶解物质的纯净液体叫做溶剂;溶质与溶剂的混合物叫做溶液,溶质在溶液中所占的百分比叫做浓度,又叫做百分比浓度;浓度问题常见的数量关系式有:溶液的重量=溶质的重量+溶剂的重量浓度=溶质重量÷溶液重量×100%溶液的重量=溶质重量÷浓度溶质重量=溶液重量×浓度1、含盐6%的盐水900克,要使其含盐量加大到10%,需要加盐多少克2、把浓度为25%的盐水30千克,加水冲淡为15%的盐水,问需要加水多少千克3、有浓度为%的盐水210克,为了制成浓度为%的盐水,从中要蒸发掉多少克水4、5、一瓶100克的酒精溶液加入80克水后,稀释成浓度为40%的新溶液,原溶液的浓度是多少5、甲、乙两种酒精浓度分别为70%和55%,现在要配制浓度为65%的酒精3000克,应当从这两种酒精中各取多少克6、一杯纯牛奶,喝去25%再加满水,又喝去25%,再加满水后,牛奶的浓度是多少7、三个容积相同的瓶子里装满了酒精溶液,酒精与水的比分别为2:1,3:1,4:1,当把三种酒精溶液混合后,酒精与水的比是多少1:甲、乙、丙三人到银行存款,甲存入的款数比乙多错误!,乙存入的款数比丙多错误!,问甲存入的款数比丙多几分之几2:小明从甲地到乙地需要2天,第一天走了全程地错误!多72千米,第二天所走的路程等于第一天所走路程地错误!,求甲乙两地的距离;3:兄弟四人合修一条路,结果老大修了另外三人的一半,老二修了另外三人的错误!,老三修了另外三人总数的错误!,老四修了91米,问:这条路长多少米4:一本书,已经看了130页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书的错误!,这本书共有多少页5:书店售一种挂历,每售出一种棵获利18元,售出一部分后每本降价10元出售,全部售完已知减价出售的本数是原价出售挂历本数的错误!,书店售完这种挂历共获利2870元,问:书店共售出这种挂历多少本6:甲乙两个水杯,甲杯有水1千克,乙杯是空的,第一次将甲杯水的错误!倒入乙杯,第二次将乙杯水的水的错误!倒回甲杯里,第三次将甲杯里的水的错误!倒回乙杯里,第四次将乙杯里水的错误!倒回甲杯,照这样来回倒下去,一直倒了1999次以后,甲杯里还剩下水多少克7:哥哥有250张邮票,弟弟有200张邮票,哥哥的邮票比弟弟的邮票多几分之几弟弟邮票比哥哥少几分之几2.一瓶容器盛满药液10升,第一次倒出若干升,用水加满,第二次倒出同样的升数,这时容器剩下药液升那么第一次倒出升数多少;五、利息问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率;利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率20%1、某同学把250元钱存入银行,整存整取,存期为半年;半年后共得本息和元,求银行半年期的年利率是多少不计利息税2.李叔叔于2000年1月1日在银行存了活期储蓄1000元,如果每月的利率是%,存款三个月时,可得到利息多少元本金和利息一共多少元3、叔叔今年存入银行10万元,定期二年,年利率% ,二年后到期,扣除利息税5% ,得到的利息能买一台6000元的电脑吗4、小华妈妈是一名光荣的中国共产党员,按党章规定,工资收入在400-600元的,每月党费应缴纳工资总额的%,在600-800元的应缴纳1%,在800-1000元的,应缴纳%,在1000以上的应缴纳2%,小华妈妈的工资为2400元,她这一年应缴纳党费多少元5、银行定期壹年存款的年利率为%,某人存入一年后本息元,问存入银行的本金是多少元六. 利润问题1销售问题中常出现的量有:进价、售价、标价、利润等2有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率1、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少2、某商品的进价是500元,标价是750元,商店要求以利润低于5%的售价打折出售,售货员最低可以打折出售此商品3、某书店出售一种优惠卡,花100元买这种卡后,可打6折,不买卡可打8折,你怎样选择购物方式;4、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%;则进价为每件多少元5、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少6、某种商品的进价是1000元,售价为1500元, 由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品;7、某商品的进价是150元,售价是180元;求此商品的利润率8、商店对某种商品作调价,按原价的八五折出售,此时商品的利润率是9%, 此商品的进价为500元;求商品的原价9、某商品的进价为200元,标价为300元,折价销售时的利润率为5%,此商品是按几折销售的10、某商品标价是1955元,按此标价的九折出售,利润率为15%;求此商品的进价是多少七、数字问题1要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9则这个三位数表示为:100a+10b+c;2数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示;1、一个两位数,十位上的数字比个位上的数字大1,十位与个位上的数字和是这个两位数的1/6,这两个数是多少2、一个两位数字之和为11,如果原数加45,得的数恰是原两位数字交换后的两位数,求原来这个两位数;3、一个两位数,十位上的数字比个位上的数字的2倍大3,把这两位数的位置对调后组成的两位数比原数小45,求原来这个两位数;4、一个三位数,基个位上的数字相加之和为9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数;5、三个连续自然数,它们的和为108,求这三个数;6、有一个两位数,十位上的数字比个位上的数字大2,若把这个两位数的十位与个位对调,所得的两位数比原数小18,求原来的两位数;7、一个两位数,十位数字比个位数字少3,两个数字之和等于这两位数的1/4;求这个两位数;8、一个三位数,三个数位上的数字和是15,百位上的数比十位上的数多5,个位上的数字是十位上的数字的3倍,求这个三位数;9、一个两位数的个位与十位数字的和为15,如果把十位数字与个位数字对调,则所得新数比原数小27,则原来的两位数是多少10、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;11、一个三位数,三个数位上的数字和为13,百位上的数字比十位上的数少3,个位上的数字是十位上的数字的2倍,求这三位数;12、有一个两位数,十位上的数比个位上的数大2,若把这个两位数的十位与个位对调所得的两位数比原数小18,求原来的两位数;13、三个连续偶数的和比其中最小的一个大14,求这三个连续偶数的积;14、一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的1/5,求这个两位数;15、甲、乙、丙三辆汽车所运货物的吨数比是6:5:4,已知三辆汽车共运货物120吨,求这三丙汽车各运多少吨货物16、甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2;乙、丙两仓存粮数这比是1:,求甲、乙、丙三仓各存粮多少吨17、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资额度比例是5:2:3,问他们各应提交多少元18、三个连续整数之和是81,这三个整数分别是:_______ 、_______、_______连续三个偶数之和是276,这三个数分别是:_______、_______、_______ 三个数之比是5:6:7,他们的和是198,则这三个数分别是:_______、_______、_______19、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;20、一个两位数,个位数字比十位数字的2倍大3,如果把个位数字与十位数字对调,则所得两位数比原两位数大45;求这个两位数;21、甲、乙、丙三辆汽车所运货物的吨数是6:5:4,已知三辆汽车共运货物120吨,求这三辆汽车各运货物多少吨22、要拌制一种建筑用的沙桨,生石灰、水泥、黄沙的质量比为2:1:4,现在要拌制这种沙桨1400千克,需生石灰、水泥、黄沙各多少23、一个两位数,十位数字比个位数字少3,两个数字之和等于这个两位数的1/4,求这个两位数;24、有一个三位数,其各数位的数字之和是16,十位数字是个位数字与百位数字的和,若把百位数字与个位数字对调,那么新数比原数大594,求原数;25、一个四位数,千位数字是1,若把1移到个位上去,则所得的新四位数字是原来的5倍少14,求这个四位数;26、一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数27、一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原来两位数;八、和倍问题:基本相等关系:增长量=原有量×增长率,现有量=原有量+增长量或现有量=原有量-降低量寻找相等关系的方法:抓住关键性词语:共、多、少、倍、几分之几以及原有量、先有量之间的关系推导出相等关系;1、根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了%,1990年6月底每10万人中约有多少人具有小学文化程度2、某商场甲、乙两个柜组十二月份营业额共64万元;一月份甲增长了20%,。

一元一次方程的形式

一元一次方程的形式

一元一次方程的形式一元一次方程是初等代数中最基础的方程形式之一,它是一种形如ax+b=0的方程,其中a和b是已知实数,x是未知数。

在这篇文章中,我们将详细阐述一元一次方程的形式及其应用,帮助读者更好地理解和运用这一概念。

一元一次方程的形式可以看作是一种简化形式的数学模型,它可以用来描述许多实际问题中的关系和情况。

例如,假设一个人在一段时间内以相同的速度行走,那么他走过的距离可以通过一元一次方程来表示。

设他的速度是v,行走的时间是t,行走的距离是d,则有d=vt。

这里,v和t是已知数,d是未知数,我们可以通过解这个一元一次方程来计算出他走过的距离。

在解一元一次方程时,我们需要遵循一定的步骤。

首先,我们将方程中的未知数和已知数分开,将所有含有未知数的项移到方程的左边,将已知数移到方程的右边,使得方程变成形如ax+b=0的形式。

然后,我们可以通过一系列的运算,如加减乘除,将方程进一步简化,直到得到未知数的具体值。

最后,我们要检验所得解是否符合原方程,以确保解的正确性。

除了解方程外,一元一次方程还可以用于建立数学模型,解决实际问题。

例如,假设一辆汽车以恒定的速度行驶,已知它行驶了一段时间后行驶的距离为100公里,我们可以通过建立一元一次方程来求解汽车的速度。

设汽车的速度为v,行驶的时间为t,则有100= vt。

通过解这个一元一次方程,我们可以计算出汽车的速度。

一元一次方程的应用还可以拓展到经济学、物理学等领域。

在经济学中,一元一次方程可以用来描述供需关系、市场价格等问题。

在物理学中,一元一次方程可以用来描述物体的运动、力的作用等问题。

通过应用一元一次方程,我们可以更好地理解和分析这些问题,并进行合理的预测和决策。

总结起来,一元一次方程的形式是初等代数中最基础的方程形式之一,它可以用来描述许多实际问题中的关系和情况。

通过解一元一次方程,我们可以计算未知数的具体值,通过应用一元一次方程,我们可以建立数学模型,解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程
➢ 列方程解应用题的基本格式
【基础练习】
1. 根据题意列出方程:
用一根长60厘米的铁丝围成一个长方形。

② 长方形的宽是长的3
2,求这个长方形的长和宽;解设: 列方程为: ②若长方形的宽比长少4厘米,求这个长方形的面积。

解设: 列方程为:
2. ①某班同学给地震灾区捐款131元,比每人平均2元还多35元,设这个班的学生有x 人,根据题意可列方程为
②某厂今年的产值比去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值。

解设: 列方程为:
③ 位同学买了5支铅笔和8本练习本,已知每支铅笔比每本练习本便宜0.1元,该同学共用去6元,求每支铅笔的价格。

解设: 列示为:
3.如图,天平的两个盘内分别盛有51g、45g盐,问应该从A盘内拿出多少盐到B盘内,才
能使两者所盛盐的质量相等?
4.学校团委组织65名新团员为学校建花坛搬砖。

女同学每人每次搬6块,男同学每人每次搬8
块,每人各搬了4次,共搬了1800块。

问这些新团员中有多少名男同学?
【培优练习】
5.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款
多少元?
6.某班50名学生准备集体去看电影,电影票中有1.5元的和2元的,买电影票共花88元,
问这两种电影票应各买几张?
7.“一方有难,八方支援”,“莫拉克”台风让台湾遭受了严重的损失,某地区向台湾捐助A、
B两种帐篷共600顶,已知A种帐篷的顶数是B种帐篷顶数的2倍,问A、B两种帐篷各多少顶?
【课后作业】
1.据某统计数据显示,在我国的664座城市中,按水资源可分为三类:暂不缺水城市、一
般缺水城市和严重缺水城市,其中暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍,求严重缺水城市有多少座?
2.2008年北京奥运会,中国运动员获得金、银、铜牌共100枚,金牌数位列世界第一,其中
金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚,问金、银、铜牌各多少牌?
3.小华去商店买了5支不同的笔,他计算了一下,这5支笔的平均价格为2.5元,后来又买
了一支钢笔,6枝笔的平均价格变成了3.5元,你能帮小华算出买这支钢笔花了多少钱吗?。

相关文档
最新文档