第五章.固体表面对溶液中溶质的吸附
固体在溶液中的吸附
综合化学实验安徽师范大学2007年度校级精品课程1固体在溶液中的吸附一目的要求1.掌握测量固体在溶液中吸附作用的方法和技能。
2.推算活性碳的吸附量及比表面积。
二实验原理吸附能力的大小常用吸附量Г表示(有时也用q)。
吸附量Г指每克吸附剂吸附溶质的物质的量。
弗罗因德利希(Freundlich)从吸附量和平衡浓度的关系曲线得出经验方程:1jnkcmΓ= = g (1)式中,n 表示吸附溶质的物质的量(mol);m 表示吸附剂的质量(g);c 表示吸附平衡时溶液的浓度(mol/L);k,j 表示经验常数,由温度、溶剂、吸附质与吸附剂的性质决定。
将式(1)取对数得:1lg lg c lg kjΓ= + (2)以lgΓ对lgc作图可得一直线,由直线的斜率和截距可求得j 和k。
实验表明在一定浓度范围内,活性炭对有机酸的吸附符合朗格缪尔(Langmuir)吸附方程:KC Γ1KC ∞Γ=+(3)式中,Г表示吸附量,通常指单位质量吸附剂上吸附溶质的摩尔数;Г∞表示饱和吸附量;C表示吸附平衡时溶液的浓度;K为常数。
将(3)式整理可得如下形式:C1 1CΓK Γ∞∞=+Γ(4)作C/Г-C图,得一直线,由此直线的斜率和截距可求Г∞和常数K。
如果用醋酸作吸附质测定活性炭的比表面时,按照Langmuir 单分子层吸附模型,假定吸附质分子在吸附剂表面上是直立的,利用活性炭在醋酸溶液中吸附作用可测定活性炭的比表面积(S0)。
可按下式计算:S0=Г∞×6.023×1023×2.43×10-19(4)式中,S0 为比表面(m2·kg-1);Г∞为饱和吸附量(mol·kg-1);6.023×1023为阿佛加德罗常数;2.43×10-19为每个醋酸分子所占据的面积(m2)。
式(3)中的吸附量Г可按下式计算()VmC C Γ−= 0 (5)式中,C0 为起始浓度;C 为平衡浓度;V 为溶液的总体积(dm3);m 为加入溶液中吸附剂质量(g)。
固体表面的物理吸附和化学吸附 Word 文档
1.这种吸附包括对电解质吸附和非电解质吸附:对电解质吸附将使固体表面带电或电双层中组分发生变化,也可能是溶液中的某些离子被吸附到固体表面,而固体表面的离子则进入溶液之中,产生离子交换作用。
对非电解质吸附,一般表现为单分子层吸附,吸附层以外就是本体相溶液。
2.溶液有溶质和溶剂,都可能被固体吸附,但被吸附的程度不同。
正吸附:吸附层内溶质的浓度比本体相大。
负吸附:吸附层内溶质的浓度比本体相小。
显然,溶质被正吸附时,溶剂必被负吸附,反之亦然。
在稀溶液中,可以将溶剂的吸附影响忽略不计,可以简单的如气体吸附一样处理溶质的吸附,但在浓度较大时,则必须同时考虑二者的吸附.3.固体表面的粗糙度及污染程度对吸附有很大的影响,液体表面张力的影响也很重要。
图2-4给出了表面张力和接触角的关系(点击放大),图中:θ为接触角,图2-4 表面张力与接触角的关系当θ<90o时,为润湿。
θ越小,润湿性越大,液体在表面的展开能力越强。
当θ=0o时,为完全润湿。
液体在表面完全铺展开来当θ>90o时,为不润湿。
θ越大,润湿性越小,液体越不易铺展开,易收缩为球状。
当θ=180o时,完全不润湿,为球状。
θ角的大小。
与界面张力有关:γs=γL cosθ+γsL 其中:γs为固体表面张力;γL为液体表面张力;γsL为固体和液体界面张力。
该方程叫做Yong方程式。
它表明接触角的大小与三相界面之间的定量关系。
因此,凡是能引起任一界面张力变化的因素都能影响固体表面的润湿性。
从上式可以看到:当γs>γsL时,则cosθ>0为正值,θ<90°,此时为润湿;而且γs与γsL相差越大,θ角越小,润湿性越好。
当γs<γsL时,则cosθ<0为负值,θ>90°,此时不润湿;而且γs越大和γsL越小时,θ角越大,不润湿程度越严重。
应当指出的是,上面的平衡式仅适用于固、液、气三相的稳定接触的情况。
实验十六固体在溶液中的吸附
实验十六 固体在溶液中的吸附一 实验目的1. 测定活性炭在醋酸水溶液中对醋酸的吸附量;2. 通过实验进一步理解吸附等温线及弗兰德列希方程的意义。
二 实验原理1. 溶质在溶液中被吸附于固体表面是一种普遍现象,也是物质提纯的主要方法之一。
活性炭是用途广泛的吸附剂,它不仅可以用于吸附气体物质,也可以在溶液中吸附溶质。
2. 吸附量通常以每克吸附剂吸附溶质的物质的量来表示。
在一定温度下,达到吸附平衡的溶液中,吸附量与溶液浓度的关系,符合弗兰德列希经验方程:n c k mxq ⋅==(16-1) 式中x - 吸附质物质的量(mol ); m - 吸附剂的质量(g ); q - 吸附量(mol·g -1c - 平衡时溶液的浓度(mol·dm );-3k 、n - 常数,由温度、溶剂、吸附质及吸附剂的性质决定,一般由实验确定; );将式(16-1)取对数,则有:k c n mxlg lg lg+= (16-2) 若以mxlg对c lg 作图,可得一斜率为n ,截距为k lg 的直线,由直线可求得n 和k 的值。
式(16-1)中mx可以通过吸附前后溶液浓度的变化及活性炭准确称量值求等得,即:V mc c m x ⋅−=)(0 (16-3) 式中V - 溶液的总体积(dm 3m - 活性炭的质量(g )。
); 三 仪器和试剂125cm 3锥形瓶8个;25 cm 3酸式、碱式测定管各1支; 5 cm 3、10 cm 3和25 cm 30.4mol·dm 移液管各1支;漏斗6只;振荡机一台。
-3HAc 标准溶液;0.1mol·dm -3四 实验步骤NaOH 标准溶液;酚酞指示剂一瓶;活性炭(颗粒状或粉状)若干。
1.将0.4mol·dm -3HAc 标准溶液按下列比例稀释配制成50 cm 3不同浓度的HAc 溶液并分别置于干燥洁净的锥形瓶中,编好号并盖好瓶塞,防止醋酸挥发。
3.5 固液界面(吸附作用)
1.固液吸附的本质和特点
1)本质 是由于固体表面分子对液体分子的作用力大于液体 分子间的作用力而引起的。液体分子在此力的作用 下,向固体表面富集,同时降低表面张力。 2)特点 a、分子间作用力比气相大; b、相互作用力较复杂; c、杂质将影响吸附结果;d、吸附平衡比气相慢; e、以物理吸附居多; f、实验方法简单。
双电层模型
• 图上画出被化学吸附的去水化负离子,它的中心连线形 成的平面称为内赫姆霍茨平面,以 IHP 表示。而由于 静电作用吸附在表面上的水化正离子的中心连线形成的 平面称为外赫姆霍茨平面,以 OHP 表示。在此以内至 电极表面称为紧密层,在此以外延伸至本体溶液,称为 扩散层,扩散双电层即由紧密层和扩散层共同构成。其 电势分布如上图右所示。其中 ψ 为热力学电势, ζ(Zeta) 称为扩散层电势,(ψ-ζ) 为紧密层电势。
1 1 2 2
若以 n , n 表示1g吸附剂在组分1和2的纯饱和蒸 汽中吸附的单层饱和吸附量。即
s 0 1 s 0 2
自浓溶液中的吸附
S1 n
s 1
S
n
s 1 0
0
,S 2
s 2
S
n
s 2 s 1
0
n
s 1
n
n
s 2
0
1, n n
s 1
0
n x n x2 n x x2 n x2
0
n x2 s s s s s n2 x1 n1 x2 n2 n1 n2 x2 m
自浓溶液中的吸附
n0 x2 x2 m 0 n x2 0 x2 x2 , 0 m 0 n x2 0 x2 x2 , 0 m 0 n x2 0 x2 x2 , 0 m
4.5 固体从溶液中的吸附
K a1
L
,
则上式可改写为N2
ba2
L L
1 ba2
若只有溶质和溶剂两种质点吸附, n1 n 2 n
n2
n ba2
L L 2
(1 b a ) 1
,假 设 铺 满 一 层 的 最 大 吸 附 量 为 n2 n ,以 a2
L
, 则 有 a2
0
0
可 将 吸 附 剂 分 别 放 在 纯 A、 B的 饱 和 蒸 气 中 测 得 A A A / n A 和 AB A / n B 代 入 ( a )式 得
0
0
nA
n
A
0
nB
n
B
0
1 ( 4 .9 7 )
将式(4.96)、(4.97)联立,即可得出一组
L
ba2
L L 2
1 ba
L
a2
L
b
对 a 2 作 图 可 求 得 和 b.
对 吸 附 平 衡 常 数 用 热 力 学 函 数 表 示 K=e
S / R
0
e
H
0
/ RT
S 0 H 0 L 1 H 0 则 有 b ex p ex p ( a 1 ) b ex p RT RT R 考 虑 到 a2 c2 ,
(2)溶质间互相影响
• • • • • • • 主要是存在竞争吸附和诱发吸附 例1:碳自水溶液中吸附脂肪酸 吸附质:甲酸、乙酸、丙酸、丁酸 判断:吸附量顺序? 吸附量的顺序:甲酸<乙酸<丙酸<丁酸 原因:非极性吸附剂总是易自极性溶剂中 吸附非极性组分。
固体自溶液中的吸附
盐影响溶剂和溶质间的相互作用,因此影 响吸附过程。
例:盐使溶质的溶解度减少,则吸附量随盐浓度 的增加而增加,反之,盐使溶质的溶解度减少, 则吸附量随盐浓度的增加而减少。
4.混合(物)吸附(溶液中的溶质有两种以上)
一种溶质(A) 的吸附量会因另一种溶质(B)的 加入而降低
界面层上固体与溶质之间的相互作用力。 固体与溶剂之间的作用力 溶液中溶质与溶剂之间的相互作用力 结论:
溶液中的吸附是溶质和溶剂分子竞争吸附净 结果;固体表面的溶质浓度比溶液内部大, 为正吸附;否则为负吸附。
★固-液吸附速率
溶液中的吸附速率一般小于气体吸附速率,所以 溶液吸附平衡时间较长。
吸附量的顺序:甲酸<乙酸<丙酸<丁酸 原因:非极性吸附剂总是易自极性溶剂中
吸附非极性组分。
例2:硅胶自四氯化碳中吸附脂肪醇
吸附质:乙醇、正丙醇、正丁醇、正戊醇、
正己醇、正辛醇
判断吸附量顺序?
乙醇>正丙醇>正丁醇>正戊醇>正己醇>正 辛醇
原因:极性吸附剂总是易自非极性溶剂中
★ 溶液中所含杂质的影响往往不可忽略。
★多为物理吸附。一般来说,和固体表面性质相近 者易被吸附
2.在稀溶液中的吸附
(1)稀溶液是由溶剂和具有一定溶解度的溶质组成的 溶液,由于稀溶液中溶质的摩尔数接近于1,吸附 过程中溶剂的浓度基本不变,所以测得的吸附量 基本只是由溶质的吸附引起的。
(2)固体自稀溶液中的的吸附等温线的形状与固气吸附相似,通常气体吸附中的公式也可用于溶 液吸附。
范例(1):活性碳用于水和废水的处理 生活饮用水和工业用水标准 活性碳的吸附机理 活性碳吸附对废水处理的方式 水处理后活性碳的再生 范例(2): 黏土矿物吸附的应用
固液界面上的吸附实验报告
固液界面上的吸附实验报告一、实验目的本实验旨在研究固液界面上的吸附现象,了解吸附的基本原理和影响因素,掌握吸附量的测定方法,以及分析吸附等温线和吸附动力学。
二、实验原理当固体与液体接触时,液体中的溶质分子会在固体表面发生吸附。
吸附的驱动力通常是溶质分子与固体表面之间的相互作用力,如范德华力、氢键、静电引力等。
吸附量通常用单位质量的固体吸附溶质的物质的量或质量来表示。
常见的吸附等温线模型有 Langmuir 等温线和 Freundlich 等温线。
Langmuir 等温线假设吸附是单分子层的,且吸附位点是均匀的;Freundlich 等温线则是经验公式,适用于非均匀表面的吸附。
吸附动力学可以用准一级动力学方程和准二级动力学方程来描述。
准一级动力学方程基于吸附速率与未被吸附的吸附质浓度成正比;准二级动力学方程则基于吸附速率与未被吸附的吸附质浓度的平方成正比。
三、实验仪器与试剂1、仪器恒温振荡器离心机分光光度计电子天平容量瓶、移液管等玻璃仪器2、试剂某种吸附质的标准溶液待吸附的固体材料四、实验步骤1、准备不同浓度的吸附质溶液准确称取一定量的吸附质标准品,用溶剂配制成一系列不同浓度的溶液。
2、称取固体吸附剂使用电子天平称取若干份等质量的固体吸附剂。
3、吸附实验将称好的固体吸附剂分别加入到不同浓度的吸附质溶液中,放入恒温振荡器中,在一定温度下振荡一定时间,使吸附达到平衡。
4、离心分离将振荡后的溶液离心,使固体吸附剂与溶液分离。
5、测定吸附后溶液中吸附质的浓度使用分光光度计测定离心后上清液中吸附质的浓度。
6、计算吸附量根据吸附前后溶液中吸附质的浓度变化,计算单位质量固体吸附剂的吸附量。
五、实验数据处理与分析1、绘制吸附等温线以吸附量为纵坐标,吸附质平衡浓度为横坐标,绘制吸附等温线。
通过对实验数据的拟合,判断符合哪种等温线模型(如 Langmuir 或Freundlich),并求出相应的模型参数。
2、分析吸附动力学根据不同时间点的吸附量数据,采用准一级动力学方程和准二级动力学方程进行拟合,确定吸附动力学方程,并求出速率常数。
吸附的概念及分类
吸附的概念及分类吸附是指物质在表面或者界面附着并保持稳定状态的现象。
在吸附过程中,吸附物质可以是气体、溶质或固体。
吸附可以分为物理吸附和化学吸附两种类型。
物理吸附,又称为静电吸附或范德华力吸附,是使吸附物质附着在固体表面上的吸附过程。
物理吸附主要是通过范德华力作用来实现的,其吸附强度较弱,吸附剂和吸附物之间的相互作用力小。
范德华力是由于吸附物质的电子运动与分子之间的相互作用而产生的。
物理吸附一般随着温度的升高而减小,可以通过提高温度来解吸。
化学吸附,又称为化学键吸附,是指在固体表面上形成化学键的吸附过程。
化学吸附的特点是吸附剂与吸附物之间的键能较大且较稳定。
化学吸附分为离子键、共价键和配位键三种类型。
离子键吸附是通过正负离子间的电荷吸引作用而形成的吸附。
共价键吸附是在吸附剂和吸附物质之间共享电子而形成的吸附。
配位键吸附是指吸附剂通过其孤对电子与吸附物之间的正离子形成的化学键。
根据吸附剂和吸附物质的性质,吸附可以分为气体吸附、液体吸附和溶液吸附。
气体吸附发生在固体表面上的气体和吸附剂之间。
吸附剂可以是固体或液体,吸附物质可以是气态分子或气体化合物。
气体吸附的应用广泛,例如通过活性炭吸附空气中的有毒气体,或者利用介孔材料吸附气体催化反应中的中间体等。
液体吸附是在固体表面上的吸附剂和液体中的溶质之间发生的吸附。
液体吸附的应用广泛,常见的例子是利用活性炭吸附水中的有机物质,或利用树脂吸附水中的金属离子。
液体吸附也可以用于分离纯化和催化反应等领域。
溶液吸附是指在溶液中的吸附剂与溶质之间的吸附作用。
溶液吸附也有着广泛的应用,例如在污水处理中,利用活性炭吸附溶液中的有机物质,或者利用树脂吸附溶液中的离子等。
综上所述,吸附是指物质在界面或表面附着并保持稳定状态的现象。
根据吸附过程中物质之间相互作用的类型,吸附被分为物理吸附和化学吸附两种类型。
根据吸附剂和吸附物质的性质,吸附又可以分为气体吸附、液体吸附和溶液吸附。
环境工程原理-环境工程原理课后思考题解答5吸附
第五章 吸 附1、固体表面吸附力有哪些,常用的吸附剂有哪些,主要特性是什么,各有什么应用? 答:吸附剂与吸附质间的吸附力有分子引力和化学键引力。
分子引力,吸附力较弱,所以也称范德华吸附。
化学键引力比分子引力大得多。
吸附过程分可逆和不可逆。
常见的吸附剂有活性炭吸附剂、硅胶吸附剂、活性氧化铝、沸石分子筛、有机树脂吸附剂等。
2、吸附平衡是如何定义的,平衡吸附量如何计算?答:吸附平衡是指在一定温度和压力下,吸附剂与吸附质有足够接触时间,吸附量与解吸量相等,载体中吸附质的浓度不再发生变化时,吸附即达到了动态平衡。
3、吸附等温线的物理意义是什么,温度、吸附质分压对吸附是如何影响的?答:气相吸附过程中,操作温度、压力等均有影响,所以吸附平衡关系可以用不同的方法表示,通常用于等温条件下单位质量吸附剂的吸附容量与气相中吸附质分压的关系来表示,即q*=f(p),表示吸附容量与气相中吸附质分压的关系曲线称为吸附等温线。
一般,同一平衡分压下,平衡吸附量随着温度升高而降低。
一定温度下,平衡吸附量随气体压力的升高而增加,所以吸附-解吸循环操作方式通常是低温吸附,高温解吸;高压吸附,低压解吸。
4、Langmuir 方程的基本假设是什么,方程的形式和适用范围,方程式中的常数如何求解? 答:假设:① 吸附剂表面是单分子层吸附;② 被吸附的分子之间没有相互作用力;③ 吸附剂表面是均匀的。
也可写为mm kq q p q p 1*+= 对于一定的吸附剂,其吸附容量是一定的,即q m 一定。
若以p/q*为纵坐标,p 为横坐标作*m 1k q p q kp =+图,可得一直线,该直线斜率为1/q m 。
5、BET 方程的物理意义是什么?答:BET 吸附模型是在Langmuir 方程模型的基础上建立起来的,BET 方程是等温多分子层的吸附模型,其假设条件为:① 吸附剂表面为多分子层吸附,吸附分子在吸附剂上按层次排列;② 被吸附分子间没有相互作用力,每层的吸附服从朗格缪尔吸附模型;③ 第一层的吸附释放的热量为物理吸附热,第二层以上吸附释放的热量为液化热; ④ 总吸附量为各层吸附量的总和。
固体在溶液中的吸附实验报告
固体在溶液中的吸附实验报告1. 引言固体在溶液中的吸附是物理化学领域中的重要研究课题。
吸附是指物质在固体表面上的附着现象,它广泛应用于环境治理、化学工程、材料科学等领域。
本实验旨在研究不同条件下固体在溶液中的吸附行为,为进一步理解吸附过程提供实验依据。
2. 实验目的1) 研究不同溶液浓度对固体吸附行为的影响;2) 探究不同温度下固体吸附过程的变化;3) 分析固体表面性质对吸附行为的影响。
3. 实验原理3.1 吸附等温线吸附等温线描述了单位质量或单位表面积上被溶质占据的量与溶液浓度之间的关系。
它是研究固体与溶液相互作用强弱及其影响因素之一。
3.2 吸附热力学吸附过程中,系统发生能量变化,其大小与系统内部能量及外界条件有关。
通过测定系统在不同温度下的吸附量,可以计算吸附过程的热力学参数,如吸附热、吸附熵等。
3.3 吸附动力学吸附动力学研究的是吸附过程中的速率与时间的关系。
通过测定不同时间下的吸附量,可以了解吸附速率及其变化规律。
4. 实验装置与试剂4.1 实验装置本实验采用常规实验室设备,包括恒温槽、振荡器、天平等。
4.2 实验试剂本实验使用了甲基橙作为模型溶质。
溶剂为水。
5. 实验步骤5.1 准备工作1) 将恒温槽加热至设定温度;2) 准备不同浓度的甲基橙溶液;3) 称取一定质量的固体样品。
5.2 吸附等温线测定1) 将恒温槽中的溶液加入振荡器中;2) 将固体样品加入振荡器中,并开始振荡;3) 在一定时间间隔内取出一部分溶液样品,并通过分光光度计测定其浓度;4) 计算吸附量,并绘制吸附等温线。
5.3 吸附热力学测定1) 在不同温度下重复5.2步骤;2) 根据吸附等温线计算吸附量,并绘制不同温度下的吸附等温线;3) 根据热力学公式计算吸附热、吸附熵。
5.4 吸附动力学测定1) 在设定温度下,重复5.2步骤,但取样时间间隔缩短;2) 计算不同时间点的吸附量,并绘制吸附动力学曲线。
6. 实验结果与讨论6.1 吸附等温线结果与分析根据实验数据,得到了甲基橙在不同溶液浓度下的吸附等温线。
实验19固体在溶液中的吸附
物理化学实验备课材料 实验19 固体在溶液中的吸附当固体和溶液接触时,其表面总是被溶质和溶剂分子所占满,即溶液中的固相吸附是溶质和溶剂分子争夺表面的净结果。
溶质在固体表面或自然胶体表面上相对聚集的现象称为吸附。
另一方面,溶质在自然胶体或固体表面上浓度升高、在液相中浓度下降的现象也被称为吸附。
考虑到这种吸附是一种表观现象,所以又称为吸着或吸持。
吸持(或吸着)包括吸附、表面沉淀和聚合等。
吸附溶质的胶体或固体称为“吸附剂”,被吸附的溶质称为“吸附质”。
吸附的分类有多种。
归纳起来主要包括:(1)物理吸附(固体通过范德华引力的作用吸附周围分子)和化学吸附(固体通过化学键力的作用吸附周围分子);(2) 选择吸附(固体从溶液中选择吸附某种离子)、分子吸附(固体在溶液中等当量地吸附正离子和负离子)和交换吸附(固体从溶液中吸附了一种离子,同时又放出一种离子);(3)专性吸附(吸附剂和吸附质的结合力较强)和非专性吸附(吸附剂和吸附质的结合力较弱);(4)表面吸附(又称物理吸附)、离子交换吸附(固体对各种离子的吸附)和专属吸附(吸附过程中既有化学键的作用,也有加强的憎水键和范德华力作用)。
在各种分类中,物理吸附和化学吸附因充分考虑了吸附分子与表面固体分子或原子间的相互作用力性质而相对有助于揭示吸附机制。
固相表面的吸附过程和特征可用非线性吸附等温式来描述 ,其中常用的有Langmuir 和Freundlic 吸附等温式。
固体在溶液中的吸附是最常见的吸附现象之一,许多吸附剂、催化剂载体及粉状填料如硅胶、活性氧化铝、硅藻土以及各种吸附树脂等都是多孔性物质,具有高度发达的比表面,根据其组成和结构的差异,各有不同的吸附特性。
活性炭(activated carbon)是一种主要的吸附剂,用途广泛,气相吸附中可用于吸附各类有机蒸气、油品蒸气及许多有害气体,也可用于对溶液中某种物质的吸附。
活性炭在水溶液中对不同吸附质有着不同的吸附能力,根据这种吸附作用的选择性,在工业上有着广泛的应用,如各种水溶液的脱色、除臭,水的净化,食品、药物的精制提纯以及废水处理等。
固体在溶液中的吸附实验报告
固体在溶液中的吸附实验报告固体在溶液中的吸附实验是一种常见的实验方法,用于研究固体与溶液中溶质之间的吸附关系。
本实验通过将不同种类的固体置于不同浓度的溶液中,观察固体表面对溶质的吸附情况,以揭示固体与溶液之间的相互作用机制。
实验首先选择了几种常见的固体样品,包括活性炭、沥青、硅胶等,分别将它们置于不同浓度的甲醇溶液中进行实验。
实验过程中,首先测量了溶液的初始浓度、固体的初始质量,然后将固体样品投入溶液中,经过一定时间的搅拌和反应,再次测量固体质量和溶液浓度,计算出固体表面对溶质的吸附量。
实验结果显示,不同种类的固体在不同浓度的溶液中表现出不同的吸附能力。
活性炭在高浓度的甲醇溶液中表现出较高的吸附量,而沥青在低浓度的溶液中表现出较高的吸附量。
硅胶则在中等浓度的溶液中表现出较高的吸附量。
这表明固体与溶液之间的吸附关系受到多种因素的影响,包括固体材料性质、溶液浓度、溶质特性等。
通过对实验结果的分析,我们进一步探讨了固体与溶液之间的吸附机制。
在高浓度溶液中,溶质分子与固体表面的吸附作用受到多种因素的共同影响,包括静电作用、疏水作用、分子尺寸等。
这些因素相互作用,决定了固体与溶质之间的吸附程度。
而在低浓度溶液中,溶质分子的浓度较低,固体表面可容纳更多的溶质分子,从而表现出较高的吸附量。
此外,我们还通过实验探讨了固体表面积对吸附量的影响。
实验中使用了不同形状和大小的固体样品,观察了它们对溶质的吸附情况。
实验结果显示,固体表面积对吸附量有着显著影响。
表面积较大的固体样品表现出较高的吸附量,表明固体表面积是影响固体与溶质之间吸附关系的重要因素之一。
最后,我们还讨论了实验中可能存在的误差和改进方法。
实验中可能存在的误差主要包括称量误差、溶液浓度误差、实验操作误差等。
为减小误差,我们可以采用精密的称量仪器、标定溶液浓度、规范实验操作流程等方法。
通过不断改进实验方法,我们可以更准确地研究固体在溶液中的吸附机制,为相关领域的研究提供重要参考。
固体在溶液中的吸附实验报告
固体在溶液中的吸附实验报告
实验目的:研究固体在溶液中的吸附现象。
实验原理:固体在溶液中的吸附是指固体表面对溶液中的溶质发
生吸附作用。
吸附过程涉及到物质的表面化学性质和溶液中的溶质分
子结构,吸附剂的表面可以通过物理吸附和化学吸附两种方式发生吸
附作用。
实验步骤:
1. 准备实验装置:取一定量的固体样品并将其放置在一个玻璃容器中。
2. 准备溶液:根据实验需要,配制出一定浓度的溶液。
3. 将溶液倒入玻璃容器中,与固体样品接触。
4. 让溶液和固体样品充分接触,并保持一定的反应时间。
5. 根据实验要求,可以调节温度、PH值等条件,观察吸附效果的变化。
6. 取出固体样品,用适当的方法对其进行分析和测量,以获得吸附量
的数据。
7. 根据实验结果,分析固体在溶液中的吸附现象,并总结影响吸附效
果的因素。
实验结果:根据实验数据,可以得到固体在溶液中的吸附量,并
可以通过吸附等温线等图像来描述吸附效果。
实验结论:根据实验结果,可以得出固体在溶液中的吸附效果受
到多种因素的影响,包括溶液浓度、温度、PH等条件。
吸附等温线的
形状可以提供一定的信息,如吸附类型(物理吸附或化学吸附)和吸
附强度等。
实验总结:固体在溶液中的吸附现象是一个复杂的过程,需要考
虑多个因素的影响。
通过实验可以了解吸附行为,并为实际应用中的
吸附分离、废水处理等提供参考。
在实验过程中,需要注意实验条件
的准确控制和数据的准确测量,以保证实验结果的可靠性。
第五章 气—固界面
(一) Langmuir理论模型 二、Langmuir 吸附等温式—单分子层吸附 1.对于化学吸附,吸附力近似化学键力,故为单 理论 分子层吸附;也包括单层的物理吸附; 2.吸附是局部的,即吸附质分子吸附在固面上的 活化中心上,这些地方具有很强的不饱和力场, 因此具有强烈的吸附气体分子以平和不饱和力场 的能力; 3.吸附热与表面覆盖率无关。按式5-11覆盖率可 S0 V 表示为:
vd k d S o
Ao p
1 2
ka =
Ao p (2πm kT)
1 2
解出覆盖率:
S0 k o (2πm kT) exp( q / kT ) θ= = Ao p S 1+ 1 k o (2πm kT) 2 exp( q / kT )
bp 或 θ= 1 + bp
bp θ= 1 + bp
V = Vm bp 1 + bp p p 1 V Vm b Vm
二、固体的表面结构
(一)固体表面的粗糙度ω 粗糙度ω定义为: ω=真实表面积/理想几何表面积 »1
表5—1 几种表面粗糙度ω 表面 ω 一次清洁玻璃球 二次清洁玻璃球 充分清洁玻璃球 银箔 腐蚀过的银箔 电抛光的钢材 1.6 2.2 5.4 5 15 1.13
(二)表面晶型的无定形化
Vm S
4.不考虑被吸附分子之间的作用力; 5. 吸附平衡是吸附与解吸间的平衡。
单位重量固体,其表面上有 S 个活性基点,其 (二)Langmuir吸附等温式 中有So个已被气体分子所占据,那么吸附速率 可表示为: va k a ( S S o ) 通过分子运动论可以给出: 解吸速率为:
一、固体表面与 第一节 液体表面比较
固体从溶液中的吸附实验报告
固体从溶液中的吸附实验报告篇一:活性碳吸附综合实验报告1 实验目的通过实验进一步了解活性炭的吸附工艺及性能;熟悉整个实验过程的操作;掌握用“间歇法”、“连续流”法确定活性炭处理污水的设计参数的方法;学会使用一级动力学、二级动力学方程拟合分析,对PAC 的吸附进行动力学分析研究;了解活性炭改性的方法以及其影响因素。
2 实验原理活性炭间隙性吸附实验原理活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,己达到净化水质的目的。
活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。
活性炭的吸附是上述两种吸附综合的结果。
当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡而此时被吸附物质在溶液中的浓度称为平衡浓度。
活性炭的吸附能力以吸附量q表示。
q=VX= 式中:q ——活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g;V ——污水体积,L;C0、C ——分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L;X ——被吸附物质重量,g;M ——活性炭投加量,g。
在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。
q=K·C式中:q ——活性炭吸附量,g/g ;C ——被吸附物质平衡浓度g/L;K、n ——溶液的浓度,pH值以及吸附剂和被吸附物质的性质有关的常数。
K、n值求法如下:通过间歇式活性炭吸附实验测得q、C相应之值,将式取对数后变换为下式:1lgq=lgK+lgC 将q、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为K。
溶质表面吸附量
溶质表面吸附量表面吸附是溶质在水体中的重要过程之一,它在环境科学和工业领域中具有广泛的应用。
溶质表面吸附量是衡量溶质在溶液与固体表面之间吸附程度的重要指标。
本文将从溶质表面吸附量的定义、影响因素和测定方法等方面进行探讨。
溶质表面吸附量指的是溶质在固液界面上单位面积吸附的物质数量。
它是表征溶质与固体表面间相互作用强度的一种重要参数。
溶质表面吸附量的高低与很多因素有关,比如溶质与固体表面的亲疏水性、溶液中溶质浓度、固体材料表面积和孔隙结构等。
同时,环境因素如温度、溶液pH值和电解质浓度也对表面吸附量产生影响。
溶质表面吸附量的测定方法多种多样,常见的有批量实验法、柱实验法、质谱法和表面等离子体共振法等。
其中,批量实验法是最常用的方法之一。
该方法通过将固体与溶液混合,一定时间后测定溶液中溶质的浓度变化来计算表面吸附量。
柱实验法则是将含有溶质的溶液通过固定在柱子上的固体颗粒,测定通过柱子前后溶液中溶质浓度的变化,从而计算表面吸附量。
质谱法利用质谱仪测定溶质在固体表面吸附前后的质谱图,从中推断溶质的表面吸附量。
表面等离子体共振法则是通过测量溶质吸附在固体表面中的等离子体振荡频率变化来计算表面吸附量。
影响溶质表面吸附量的因素很多,其中溶质与固体表面的亲疏水性是最重要的一个因素。
亲疏水性的大小决定了溶质分子与固体表面之间的相互作用强度。
亲水性溶质在亲水性固体表面上的表面吸附量要大于疏水性溶质;相反,疏水性溶质在疏水性固体表面上的表面吸附量较大。
此外,溶液中溶质的浓度也会显著影响表面吸附量。
浓度越高,表面吸附量也会随之增加。
固体材料的表面积和孔隙结构对溶质的表面吸附量也有影响。
表面积越大的固体材料,其表面吸附量也会相应增加。
孔隙结构则会影响溶质在固体内部的扩散速度,从而影响表面吸附量。
此外,温度、溶液pH值和电解质浓度也会对表面吸附量产生影响。
温度升高,一般会使表面吸附量减小;溶液pH值和电解质浓度的变化也可能引起溶质与固体表面的相互作用强度的改变,进而改变表面吸附量。
固体在溶液中的吸附
S0为比表面,即每克吸附剂具有的总表面积(米 /克);N0为阿佛加德 罗常数(6.02×1023分子/摩尔);α∞为每个吸附分子的横截面积
二、影响固体在溶液吸附的因素
固体自稀溶液吸附受很多因素影响,一般在固定其它因素的条件下 研究某一因素对吸附的影响. 1、溶质、溶剂、吸附剂三者的性质(极性的影响) 2、溶解度的影响 3、温度的影响
四、实验步骤
(1)、准备6个干的编好号的125 mL锥形瓶(带塞)。按记录表 格中所规定的浓度配制50 mL醋酸溶液,注意随时盖好瓶塞,以防 醋酸挥发。 (2)、将120度下烘干的活性炭(本实验不宜用骨炭)装在称量 瓶中,瓶里放上小勺,用差减法称取活性炭各约1g(准确到0。 001g)放于锥形瓶中。塞好瓶塞,在振荡器上振荡半小时,或在不 时用手摇动下放置1小时。 (3)、使用颗粒活性炭时,可直接从锥形瓶里取样分析。如果是 粉状性活性炭,则应过滤,弃去最初10ml滤液。按记录表规定的 体积取样,用0.1M标准碱溶液滴定。 (4)、活性炭吸附醋酸是可逆吸附。使用过的活性炭可用蒸馏水 浸泡数次,烘干后回收利用。
三、实验仪器及试剂
1、仪器 HY-4型调速多用振荡器(江苏金坛)、(带塞)锥形瓶(125mL)7只、 移液管(25mL、5mL、10 mL)各1支、洗耳球1支,碱式滴定管1支, 温度计一支,天平一台,称量瓶 2、试剂
NaOH标准溶液(0.1mol· L-1)、醋酸标准溶液(0.4 mol· L-1)、 活性炭 ,酚酞指示剂
这个k实际上带有吸附和脱附平衡的平衡常数性质而不同于弗罗因德利希方程式中的kn1kcnlglg1lgck1ckc11根据的数值按照兰格缪尔单分子层吸附的模型并假定吸附质分子在吸附剂表面上是直立的则吸附剂的比表面s0可按下式计算得到
吸附和溶解知识点总结
吸附和溶解知识点总结一、吸附的概念及分类1. 吸附的概念吸附是指气体、液体或溶液中的分子或离子在接触到固体表面后,由于表面的吸附作用而附着在固体表面上的过程。
吸附分为物理吸附和化学吸附两种类型。
2. 物理吸附物理吸附是指吸附物在吸附表面上的分子之间通过范德华力而发生的现象。
物理吸附一般发生在低温下,吸附物与吸附剂之间的作用力较弱,吸附物可以在吸附剂表面上自由移动。
3. 化学吸附化学吸附是指吸附物在吸附表面上与吸附剂发生化学反应而发生的现象。
化学吸附一般发生在高温下,吸附物与吸附剂之间的作用力较强,吸附物难以在吸附剂表面上移动。
二、吸附的影响因素1. 温度温度对吸附过程有着明显的影响。
一般情况下,物理吸附随着温度的升高而减弱,而化学吸附则随着温度的升高而增强。
2. 吸附剂的性质吸附剂的种类、表面积、颗粒大小以及孔隙结构都会影响吸附过程的效果。
通常来说,表面积大、孔隙多的吸附剂对吸附效果更好。
3. 吸附物的性质吸附物的分子大小、形状、极性以及浓度都会对吸附过程产生影响。
4. 溶液的性质溶液的pH值、离子浓度、溶液颜色等因素都会对吸附过程产生影响。
三、溶解的概念及分类1. 溶解的概念溶解是指固体、液体或气体在液体中形成溶液的过程。
溶解分为溶解度、溶解过程和溶解热。
2. 溶解度溶解度是指在特定温度下,单位体积溶剂中最大能溶解的溶质的量。
溶解度与温度、压强等因素有关。
3. 溶解过程溶解过程包括固体、液体或气体在液体中形成溶解过程。
液体和气体的溶解过程一般通过溶解度来描述,而固体的溶解过程通常通过溶解速率来描述。
4. 溶解热溶解热是指溶质在溶剂中溶解时所伴随产生或吸收的热量。
溶解热的大小与溶质、溶剂的性质、溶解度、温度等因素有关。
四、溶解的影响因素1. 温度温度对溶解度和溶解过程有着显著的影响。
一般来说,溶解度随着温度的升高而增大,而溶解过程也会随着温度的升高而加快。
2. 压力对于气体溶解,压力对溶解度有着重要的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这种现象的产生是由于stern层吸附饱和后,又发生
了双分子层吸附所致。因为表面活性剂的烷基链具有
疏水性,促使活性剂分子向固体表面聚集。于是促进
了双分子层吸附的发生。链越长,吸附量也越大。
碘化银粒子对不同链长的烷基吡啶离子的吸附情况 见图:
1-C16PyBr 2- C12PyBr 3- C8PyBr 吸 附 量 1
第五章
固体表面对溶液中溶质的吸附
当一溶液与固体表面接触时,固体表面 将会吸附溶质。 用途:可利用该现象从溶液中分离溶质,
同时也可用来研究固体表面的状态;染色、色层分
离;离子交换、分散、润湿的调节
正如绪论所说:吸附是许多界面现象的原因。固体 对溶质的吸附比较复杂,下面分别加以讨论。 ① 低分子的吸附: 活性炭从水溶液中吸附脂肪酸的吸附等 温线如图所示:
周围的双电层的扩散层部分。因此这一区域内的吸
附并不引起ξ 电位的变化。
第二区 吸附等温线的斜率急剧增大,ξ 电位也急剧 变化。
此时吸附发生在双电层内侧的stern层中,因为吸附 使得氧化铝粒子表面电荷被中和。
第三区 吸附等温线的斜率又变小。这时的吸附又趋 于平滑,ξ 电位则发生变号,这点为2区和3区的交 界处,把该点叫做ξ 电位逆转点,PZR。
吸附量随浓度的增加而增加,且趋于定值。
这一规律符合Langmuir方程式。(单分子
层吸附)
5
2.0 mmol / g
4 3 2
am K c a 1 Kc
1.5
1
1.0
0.5 0.05 0.10 0.15 0.20
am-饱和吸附量,K 是与溶质有关的常
数。
浓度
mol /
l 1~5------甲~戊酸
10-10mmol/cm2
吸 附 量
加盐
未加盐
平衡浓度 m mol / l
溶液中吸附的应用 1. 对分散度的调节
利用固体对界面活性物质及高分子物质等的吸附,能
够调节固体粒子在液体中的分散性。
应用领域:涂料、化妆品、工业废水处理等。
长链化合物(表面活性剂)对分散性的调节
固体粉末易于分散在能润湿其粒子表面的溶液中。反
高分子吸附方程式: 高分子吸附一般随分子量增大而增大。假定相对分 子量为M,饱和吸附量为 X
m
则有:
X m KM
a
a为与相对分子质量有关的常数; K为与溶剂有关的常数。
a=0时,吸附量与分子相对分子质量无关,吸附时
分子平均在固体表面上,X m=常数; a=1 时,吸附量与M成正比,被吸附分子垂直于固 体界面。 0<a<0.5 时,界于上述二者之间。 影响吸附的因素及规律 1.使固体界面自由焓降低最多者易被吸附。
-30
-20 -10 ξ 10 电 位 20 30 0
10-10 10-11 10-12
吸附量
区域 3
40
10-13 10-5 10-4 10-3 mol / l 10-2
表面活性剂浓度
第一区是低浓度时的吸附情况,表面活性剂与氯离
子之间的竞争吸附(氯离子为调节离子强度时引入
的),属离子交换型吸附。吸附发生在氧化铝粒子
多分子吸附实例:
硬脂酸在碳酸钙上的吸附,其吸附量变化的特点:
①不呈现稳定趋势;
②吸附量因溶解硬脂酸的溶剂种类不同而有显著差 异。
原因:多分子层吸附无饱和量。表面吸附不仅吸附 溶质,也吸附溶剂。存在竞争吸附性。
2.0
m mol / g
1.5 1.0 0.5 0.05 0.10 0.15 0.20
浓度
mol /
l 硬脂酸在碳酸钙上的吸附
2. 界面活性剂的吸附 与脂肪酸等低分子量物质相比,界面活性剂的吸附能 力很强,它在极低浓度下就能在固体表面达到很高的
吸附量。
右图为氧化铝吸附水溶液中十二烷基磺酸钠时的吸附
等温线。同时也示出了氧化铝ξ 电位在吸附量变化时
的变化规律。
PZR mol / cm2 区域 1 区域 2
2 3
一区
二区
三区
浓度
由图可见,链长越长,吸附量越大。
单分子吸附
多分子吸附
固体粒子上界面活性剂粒子的吸附过程
高分子吸附特征 高分子体积大,形状可变,因而其吸附具有独 特性。
①分子形状与溶剂的种类有关 良好溶剂中高分子舒展为带状,而不良溶剂 中则呈卷曲状。 ②高分子在固体表面吸附时,会变形,并形 成多点吸附且脱附困难。 ③因体积大,移动慢,向固体内孔扩散,将 受到阻力,所以吸附平衡慢。
之,在不易润湿固体表面的溶液中,固体粒子则不易
分散。
2.应用实例: ①利用固体对界面活性物质及高分子物质等的吸附,
能够调节固体粒子在液体中的分散性,这在涂料工
业,化妆品工业及工业废水处理中很有用;
②利用吸附原理可制成色谱分离柱~制备色谱
活性炭对脂肪酸的吸附
Γ
甲酸
乙酸
丙酸
丁酸
极 性 减 小
CLeabharlann mol / l各种脂肪酸水溶液表面张力和浓 度的关系
丁酸 吸 附 量 丙酸
乙酸
甲酸
C
mol / l
活性炭自脂肪酸水溶液中的吸附 等温线
2.溶解度越小的物质越易被吸附,溶解度越 小,其化学势越大,因而自溶液中逃离的倾 向也越大,越易被吸附。 3.极性对应者易被吸附,极性吸附剂易于吸 附极性溶质,优先吸附极性强者。 非极性吸附剂易于吸附非极性溶质,优先吸 附非极性强者。
吸 附 量
CCl4 溶解度:4.18 mol/l C 6H 6 溶解度:12.43 mol/l C mol / l 不同溶解度的吸附等温线
4.温度的影响 5.吸附剂性质的影响
(PH值的影响;电解质的影响)
加入中性盐时,随电解质浓度增加,将使表面双电
层压缩。被吸附的表面活性离子之间斥力减弱,容
易吸附更多的表面活性离子。