初中数学教程分式的运算

合集下载

(完整版)分式加减乘除运算

(完整版)分式加减乘除运算

(三)分式 的运算知识点一:分式 的乘法 ---分式乘分式,用分子 的积作为积 的分子,分母 的积作为积 的分母23bc 2a b 4、 ;3a 16b4b 9a 24x y2b 2a 1、; 2、; 3、; 3y 2x 3 5a 2 2b5a 2 3c 22x 2 2x 2 4;x y x y ;x y x y3a 3b 25a b 396、; 7、5、a 2b 2x 2x x 3x210ab知识点二:分式 的乘方 ---要把分式 的分子、分母分别乘方 23222222 y 2x y 24a b a1 b 2a 2; 2、; 3、; 4、; 5、; 6、1、3y3x3zx y知识点四:分式 的除法 --分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘2y 2 3x ab 22c 23a b 223x5y 220a y 4;3x512xy 5a28x y ;2、 3xy6xy16a y 321、;3、 ;4、 ;5、 4cd2x 2 y 2xyx 1 1 x x 2 4x 4 x 2;9、 x 4y 22x 2y2y x ;7、;8、6、x 2x xx 2xy y 2 2x 2xy2 2 x 1x 1知识点五:分式 的乘除混合运算322x 222322x 2 x x 2x x 21aab 2x y y 1、; 4、; 5、;2 x2b b4x2axay23232ab 3 6a 4 b 33c a b aba a ab 2;7、6、2b 22c db a1.下列各式计算结果是分式 的是( ). x 37x 2 n a m bn 3m m 2n(C) 3 5x x(A)(B)(D) 3y 24y32.下列计算中正确 的是().- 1(A)(-1)=- 1 (B)(- 1)=11 1 (C) 2a 33(D) ( a) ( a)72a 3a 43.下列各式计算正确 的是().1 (A) m ÷n · m =m (B) m nmn(C) 1 m m 1m (D) n ÷m · m =n).4.计算 ( a b )4 (a ) 5 的结果是 (ab a 1 a (A)-1(B)1(C) (D)aa b5.下列分式中,最简分式是( ).x 2xy y 2 2x y 2 2x 2y 221xy (A)(B)(C) (D) x yx y15 y 2x y2y 2 x x 9. ( ) ( )2 __________.3 10. [(x ) ]3 2__________.y 2 y知识点六:分式 的加减运算法则:①同分母分式相加减,分母不变,把分子相加减②异分母分式相加减,先通分,变为同分母 的分式,再加减x 1 1; 2、a 2a 3c117102;1、; 3、; 4、22c d 3cd 222xxabc abc abcx yz x y xyza 2a 3a3 8 11 x y y2x y ;y x; 6、 ; 7、 y x x y 5、 x 1 x 1 x 2 2 21b 1 b 1 b 1 1 y 1 2xy 3 2m n 8、; 9、; 10、;2x y x 2 y 222x y2m ny 2x2m n4 x 2 y 2 x 2 y 211、 a 2;12、 xy2 axy知识点 7:分式 的混合运算 2x y x 2y 2 x 11x a 1 2 a ; ;2、x1 ;3、 1、2x y 2 x a 2a 3 a 9 a2 2y1 1x y 1 x 2 y 21 3 x 5 4、5、x 22x 4x 2知识点 8:化简求值 ---化简求值问题 的解题步骤一般都是先对式子进行化简,再将已知值代入求值 2x 2 x 2 2x 11x 2x 2 2x 2 1、先化简,再求值: (2x 3xx 9,其中 x 2.2、先化简,再求值: 1)÷x ,其中 x=.x321 x 1 x 3 5 ),其中 x =- 4x 2x 3.4、先化简,再求值:2、先化简,再求值: 1,其中(x 2x 22x 4x 2a 1a 1a 1,其中aa 1 25、先化简,再求值:a 2 2a 1分式阶段水平测评(二)1.下列分式中是最简分式 的是( ).2x 4 x 1 1 x (D )x 1(A )(B )(C )22x 12xx 12.用科学记数法表示 0.000078,正确 的是().(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3(D )0.78×10-41 3.下列计算:① ( 1)01;② ( 1) 1 1;③ 3a 35( x) ( x) 3 x 2.其;④3a 3中正确 的个数是().(A )4 (B )3(C )1( D )0 1 1 1(R 1 R ),则表示 R 的公式是( 4.已知公式1).2R R 1 R 2R 2 RRR 2RR 2 R( R R )2(A ) R 1(C ) R 1) .(D ) R 1() R 1B RR 2RR 2R 2RR 25.下列分式 的运算中,其中结果正确 的是(( a ) 231a 1 b2 a 3(A )( B )abaa 2b 2a 3a 2 6a 91 (C )a b( D )a b a 3a a ).a 24 a 2a6.化简 ( (A )-4的结果是().a 2(B ) 4 (C )2a(D)2a+4二、填空题(每小题 4分,计 16分)27.若 (a 1)0有意义,则 a ≠. 8.纳米是非常小 的长度单位, 1纳米 =0.000000001米,那么用科学记数法表示 1纳米 =米.x y y 1 2 x y9.如果= .,则 a b 2m dc10.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为 2,则 .a b c三、解答题11.计算化简(每小题 5分,计 20分)x 2 4x 2(x 9);( 1) 2 x x 2;(2)2x 3x2 3a 4 1 a 1;( 4) a(3) a 2 a 1.2a 4a 4 a 1 a 2 a 112.请将下面 的代数式尽可能化简,再选择一个你喜欢 的数(要合适哦! )代入求值:a 2 a 1 1.2a (a 1)2x 111 213.(10分)先化简,再求值,其中 x. 2x 2x 1 2x 2a x2bx 3 3 aba14.(10分)若关于 x 的方程的解是 x=2,其中 a b ≠ 0,求 的值. b快速练习21.①若 9x kxy 16y 2k =是一个完全平方式,则;2②若三项式 x 8xy m 是一个完全平方式,则 m = . 2.已知 a 2 ab 5,ab b 222,那么 a b 2.2x(x y 2 xy) y(x 2 x y) 2 34、 (3x 2y) (3x y)(3x y)5、211 2 23b c 27、 2m 26、 2a b 2ab c;2mnmn4 2228.已知 x y 3, xy 2,求 x 2 y ,x y的值。

分式的运算知识点总结

分式的运算知识点总结

分式的运算知识点总结一、分式的含义和性质1. 分式的定义分式是指两个整数的比例,通常用a/b表示,其中a称为分子,b称为分母,b不等于0。

分式通常表示成有理数的形式,例如1/2、3/4等。

2. 分式的性质分式有以下性质:(1)分式的分母不可以为0,因为0不能作为除数。

(2)分式可以化简,即约分,将分子与分母的公因数约掉。

(3)分式可以相互转换,即通过乘以相同的数或者分式和分数的换算,可以将分式相互转换。

二、分式的加减法1. 分式的相加分式的相加即将两个分式的分子相加,分母不变,然后化简得到最简分式。

例如:1/2 + 1/3 = (1*3+1*2)/(2*3) = 5/6。

2. 分式的相减分式的相减即将两个分式的分子相减,分母不变,然后化简得到最简分式。

例如:2/3 - 1/4 = (2*4-1*3)/(3*4) = 5/12。

三、分式的乘除法1. 分式的相乘分式的相乘即将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,然后化简得到最简分式。

例如:1/2 * 2/3 = (1*2)/(2*3) = 2/6 = 1/3。

2. 分式的相除分式的相除即将两个分式的分子相除作为新的分子,分母相除作为新的分母,然后化简得到最简分式。

例如:3/4 ÷ 1/2 = (3*2)/(4*1) = 6/4 = 3/2。

四、分式的乘方和括号的运算1. 分式的乘方分式的乘方即将分式的分子和分母分别进行乘方运算,得到新的分子和分母,然后化简得到最简分式。

例如:(1/2)^2 = 1^2/2^2 = 1/4。

2. 分式的括号运算分式的括号运算即根据括号内的运算顺序进行计算,先乘除后加减,然后化简得到最简分式。

例如:(1/2 + 1/4) ÷ (1/2 - 1/4) = (2/4 + 1/4) ÷ (2/4 - 1/4) = 3/4 ÷ 1/2 = 3/4 * 2/1 = 3/2。

初中数学分式及其计算

初中数学分式及其计算
分式及其计算
1、分式的概念
A
A
一般地,用 A、B 表示两个整式,A÷B 就可以表示成 的形式,如果 B 中含有字母,式子 就叫做
B
B
分式。其中,A 叫做分式的分子,B 叫做分式的分母。分式和整式通称为有理式。
A
A
A
当 B≠0 时,分式 有意义,当 B=0 时,分式 无意义;当 A=0 且 B≠0,分式 的值等于 0.




故选:A.
)

D.
5.下面的计算过程中,从哪一步开始出现错误(
A.①
B.②
【解答】解:






故从第②步开始出现错误.
故选:B.
)
C.③
D.④

6.已知 P=
(a≠±b)
(1)化简 P;
(2)若点(a,b)在一次函数 y=x﹣
解:(1)P=


(2)∵点(a,b)在一次函数 y=x﹣
)
【解析】(x+3
x3
x3
x2 9
7
2 x2 8x
=(
)

x 3 x 3
x3

x 3
( x 4)( x 4)
·
2 x( x 4)
x 3

x4

2x
当 x=1 时,原式
1 4 5

2 1 2
a b 2 2a 2b
4a 2
3a
14 先化简,再求值:(
B
B
B
2、分式的性质
(1)分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式, 分式的值不变。

分式运算公式

分式运算公式

分式运算公式分式是数学中常见的一种表示形式,由分子和分母组成的比值。

在运算中,我们常常需要对分式进行加减乘除等操作。

下面将介绍分式运算的公式以及具体的计算方法。

1. 分式加法公式:a/b + c/d = (ad + bc) / bd这个公式表示了两个分式相加后的结果。

要进行分式的加法,首先将两个分式的分母进行通分,然后将分子相加,最后将得到的结果的分子和分母写在一个新的分式中即可。

2. 分式减法公式:a/b - c/d = (ad - bc) / bd与分式加法公式类似,分式的减法也需要先通分,然后将分子相减,最后得到的结果写在一个新的分式中。

3. 分式乘法公式:(a/b) * (c/d) = ac / bd分式的乘法只需要将两个分式的分子相乘,分母相乘,然后将结果写在一个新的分式中。

4. 分式除法公式:(a/b) / (c/d) = ad / bc分式的除法可以转化为乘法,即将除法转化为被除数乘以倒数的形式,然后按照分式乘法的计算方法进行运算。

在进行分式运算时,我们还需要注意以下几点:1. 通分:在分式加法和减法中,通分是必要的。

要通分,需要找到两个分数的最小公倍数作为新分数的分母,并将分子按比例扩大或缩小。

2. 约分:在分式的结果中,如果分子和分母有公因数,可以进行约分化简,将它们的最大公因数约去。

3. 分母为零:在运算时,分母不能为零,否则分式将无意义。

下面通过一些例子来演示分式运算的具体过程:例题1:计算 1/2 + 1/3解:首先将两个分数进行通分,分母取2和3的最小公倍数6,将分子按比例扩大或缩小,得到 3/6 和 2/6。

然后将分子相加,得到 5/6,所以结果为 5/6。

例题2:计算 3/4 * 2/5解:将分子相乘,分母相乘,得到 6/20。

然后可以进行约分,将分子和分母同时除以它们的最大公因数2,得到 3/10,所以结果为 3/10。

通过以上的分式运算公式和例子,我们可以看到,掌握了分式的运算方法,就能够轻松地进行分式的加减乘除等运算。

分式的基本运算

分式的基本运算

分式的基本运算分式是数学中一种常见的表示有理数的形式,它由分子和分母组成,用横线隔开。

在分式的计算中,我们需要掌握分数的加减乘除四种基本运算法则。

一、分数的加法和减法当两个分数的分母相同时,我们可以直接对分子进行加减操作。

例如,对于分数$\frac{a}{b}+\frac{c}{b}$,我们只需要将分子相加即可得到结果$\frac{a+c}{b}$。

当两个分数的分母不同时,我们需要通过通分的方法将它们的分母转换为相同的数,再进行加减操作。

通分的方法是找出两个分母的最小公倍数,然后将分子和分母分别乘以各自的倍数以使得分母相同。

例如,对于分数$\frac{a}{b}+\frac{c}{d}$,我们可以通过找出$b$和$d$的最小公倍数$lcm(b,d)$,然后对分子进行乘法变换得到$\frac{a\times(lcm(b,d)/b)}{lcm(b,d)}+\frac{c\times(lcm(b,d)/d)}{lcm(b,d)}$。

接下来,我们可以直接对分子相加,将分母保持不变,得到结果$\frac{a\times(lcm(b,d)/b)+c\times(lcm(b,d)/d)}{lcm(b,d)}$。

二、分数的乘法两个分数相乘时,我们只需将分子相乘得到新的分子,分母相乘得到新的分母即可。

例如,对于分数$\frac{a}{b}\times\frac{c}{d}$,结果为$\frac{a\times c}{b\times d}$。

三、分数的除法两个分数相除时,我们需要将除数转换为倒数,然后再进行乘法操作。

将一个分数的分子和分母互换位置得到的新分数称为该分数的倒数。

例如,对于分数$\frac{a}{b}\div\frac{c}{d}$,我们可以将除数$\frac{c}{d}$转换为倒数$\frac{d}{c}$,然后再将它与被除数$\frac{a}{b}$相乘,得到结果$\frac{a}{b}\times\frac{d}{c}=\frac{a\times d}{b\times c}$。

数学八下分式

数学八下分式

数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。

以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。

2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。

3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。

4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。

5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。

八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。

建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。

分式的运算

分式的运算

分式的运算一、分式的定义分式是由两个整数构成的比值形式,写作“a/b”,其中a称为分子,b称为分母。

分数常用于表示部分、比率、系数等概念。

二、分式的四则运算1. 分式的加法当分式的分母相同时,可以直接将分子相加,分母保持不变,即:a c a + c- + - = -----b b b例如:计算1/3 + 2/3 = 3/3 = 12. 分式的减法当分式的分母相同时,可以直接将分子相减,分母保持不变,即:a c a - c- - - = -----b b b例如:计算5/6 - 1/6 = 4/6 = 2/3将两个分式相乘,分子相乘,分母相乘,即:a c a * c- * - = -----b b b * d例如:计算2/5 * 3/4 = 6/20 = 3/104. 分式的除法将一个分式除以另一个分式,即:a c a d a * d- / - = - * - = -----b d bc b * c例如:计算2/3 ÷ 1/4 = 2/3 * 4/1 = 8/3 = 2 2/3三、分式的化简1. 分式的最简形式如果一个分式的分子和分母没有相同的约数,那么这个分式就是最简形式。

例如:4/6可以化简为2/3,因为4和6的最大公约数是2,通过分子和分母同时除以最大公约数,可以得到最简形式。

将分式的分子和分母同时除以它们的最大公约数,得到的新分式与原分式相等,但是分子和分母的数值更小。

这个过程叫做约分。

例如:8/12可以通过约分化简为2/3。

3. 分式的通分当需要进行分式的加减运算时,如果两个分式的分母不同,需要进行通分。

通分就是让两个分式的分母相等,通过对分子和分母同时乘以一个适当的数使得分母相等。

例如:计算2/3 + 1/4,通分后的分式为8/12 + 3/12 = 11/12四、分式运算的注意事项1. 注意分母为0的情况分母为0的分式是没有意义的,因此在分式运算中,要注意分母是否为0,如果为0,需要特别处理。

分式的运算课件

分式的运算课件

分式的运算课件分式是数学中的一种特殊表示方法,它可以表示一个数或者一个算式。

在运算中,分式的加减乘除是非常常见和重要的操作。

本份课件将为大家详细介绍分式的运算方法,包括加法、减法、乘法和除法。

让我们一起来学习吧!一、分式的加法分式的加法是指两个分式相加的运算。

当两个分式的分母相同时,我们只需要将它们的分子相加,而保持分母不变。

例如:1/3 + 1/3 = 2/3当两个分式的分母不相同时,我们需要找到它们的公共分母,然后进行分子的相加。

具体步骤如下:Step 1: 找到两个分式的公共分母。

Step 2: 将每个分式的分子乘以使分母相同的数值。

Step 3: 相加得到新的分子,并将其分母保持不变。

例如:1/4 + 2/3Step 1: 公共分母为12。

Step 2: 将1/4乘以3/3,将2/3乘以4/4。

Step 3: 得到分子为3/12和8/12,分母保持不变。

Step 4: 3/12 + 8/12 = 11/12二、分式的减法分式的减法与加法类似,只需将分式的减数取其相反数,即正数变负数,负数变正数,然后按照加法的规则进行计算。

例如:1/3 - 1/3 = 01/2 - 1/4Step 1: 公共分母为4。

Step 2: 将1/2乘以2/2,将1/4乘以4/4。

Step 3: 得到分子为2/4和4/4,分母保持不变。

Step 4: 2/4 - 4/4 = -2/4 = -1/2三、分式的乘法分式的乘法是指两个分式相乘的运算。

我们只需要将两个分式的分子相乘,分母相乘,然后进行约分。

例如:2/3 * 3/4分子相乘:2 * 3 = 6分母相乘:3 * 4 = 12约分:6/12,可以约分为1/2四、分式的除法分式的除法是指一个分式除以另一个分式的运算。

我们只需要将除法转化为乘法,即将除数取其倒数,然后按照乘法的规则进行计算。

例如:(1/2) ÷ (2/3)转化为乘法: (1/2) * (3/2)分子相乘:1 * 3 = 3分母相乘:2 * 2 = 4约分:3/4总结:通过本课件的学习,我们了解了分式的加法、减法、乘法和除法运算。

分式的加减法与乘除法

分式的加减法与乘除法

分式的加减法与乘除法分式(Fraction)是数学中的一个重要概念,用来表示有理数的形式。

分式由分子和分母组成,分子表示被分割的单位数量,而分母表示整体被分成的份数。

在数学中,我们经常会遇到需要对分式进行加减法和乘除法的运算。

本文将详细介绍分式的加减法和乘除法的运算规则,并提供一些例子来帮助读者更好地理解。

一、分式的加减法1. 加法两个分式的加法规则:分子相乘加分母相乘。

例如:$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$这个规则同样适用于多个分式相加。

例如:$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}$2. 减法两个分式的减法规则:分子相乘减分母相乘。

例如:$\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$同样地,这个规则也适用于多个分式相减。

例如:$\frac{a}{b} - \frac{c}{d} - \frac{e}{f} = \frac{adf - bcf -bde}{bdf}$二、分式的乘除法1. 乘法两个分式的乘法规则:分子相乘,分母相乘。

例如:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$这个规则同样适用于多个分式相乘。

例如:$\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} =\frac{ace}{bdf}$2. 除法两个分式的除法规则:将第一个分式的分子乘以第二个分式的倒数。

例如:$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times\frac{d}{c} = \frac{ad}{bc}$同样地,这个规则也适用于多个分式相除。

例如:$\frac{\frac{a}{b}}{\frac{c}{d}} \div\frac{\frac{e}{f}}{\frac{g}{h}} = \frac{a}{b} \times \frac{d}{c} \div\frac{f}{e} \times \frac{h}{g} = \frac{adh}{bcfge}$三、实例演算让我们通过几个实际运算的例子来更好地理解分式的加减法和乘除法。

分式的加减乘除

分式的加减乘除

分式的加减乘除分式是数学中的一种常用表示方法,用于表示一个数与另一个数之间的比率关系。

分式的运算包括加法、减法、乘法和除法。

在本文中,我们将详细介绍分式的加减乘除运算。

一、分式的加法分式的加法是指将两个分式相加的运算。

我们可以通过以下步骤来完成分式的加法:Step 1:找到两个分式的公共分母。

Step 2:将两个分式的分子分别乘以对方的公共分母。

Step 3:将两个分式的分子相加,并将结果放在一个新的分子上。

Step 4:将两个分式的公共分母保持不变,并将结果放在一个新的分数上。

Step 5:将新的分子和分母进行约分,得到最简分数。

例如,我们有以下两个分式需要相加:1/3 + 2/5Step 1:两个分式的公共分母为15。

Step 2:将1/3乘以5/5,得到5/15;将2/5乘以3/3,得到6/15。

Step 3:5/15 + 6/15 = 11/15。

Step 4:保持公共分母为15。

Step 5:11/15已经是最简分数。

所以,1/3 + 2/5 = 11/15。

二、分式的减法分式的减法是指将一个分式减去另一个分式的运算。

我们可以通过以下步骤来完成分式的减法:Step 1:找到两个分式的公共分母。

Step 2:将第一个分式的分子乘以第二个分式的分母。

Step 3:将第二个分式的分子乘以第一个分式的分母。

Step 4:将第一个分式的分子减去第二个分式的分子,并将结果放在一个新的分子上。

Step 5:将两个分式的公共分母保持不变,并将结果放在一个新的分数上。

Step 6:将新的分子和分母进行约分,得到最简分数。

例如,我们有以下两个分式需要相减:3/4 - 1/8Step 1:两个分式的公共分母为8。

Step 2:将3/4乘以2/2,得到6/8。

Step 3:将1/8乘以4/4,得到4/32。

Step 4:6/8 - 4/32 = 24/32 - 4/32 = 20/32。

Step 5:保持公共分母为32。

初中数学专题: 分式的运算及化简求值

初中数学专题: 分式的运算及化简求值

7.(黔南中考)先化简再求值:(x-1 y-x+1 y)÷x2-yy,其中 x,y 满足 |x-1|+(y+2)2=0.
解:∵x,y 满足|x-1|+(y+2)2=0, ∴x-1=0,y+2=0.∴x=1,y=-2. 原式=(xx-+yy)-(x+ x+yy)·x- 2yy=x+1 y. 当 x=1,y=-2 时,原式=1-1 2=-1.
8.(毕节中考)先化简,再求值:(x2-x2-2x+ x 1+xx22+-24x)÷1x,且 x 为满 足-3<x<2 的整数.
解:原式=[x((xx--11))2+(x+x(2)x+(2x)-2)]·x=(x-x 1+ x-x 2)·x=2x-3.
∵x 为满足-3<x<2 的整数, ∴x=-2,-1,0,1. ∵x 要使原分式有意义, ∴x≠-2,0,1. ∴x=-1. 当 x=-1 时,原式=2×(-1)-3=-5.
3.计算: (1)(x+1 1+x-1 1)·(x2-1); 解:原式=(xx+-11)+(x+ x-11)·(x+1)(x-1) =2x.
(2)(x+3 1-1x)÷x22+x22-x+x 1; 解:原式=[x(x3+x 1)-x(xx++11)]·x22+x22-x+x 1 =x3(x-x+x-1)1 ·x((x2+x-1)1)2 =x(2xx-+11)·x((x2+x-1)1)2 =x+x2 1.
(3)m2+m2m2 +1÷(1-m+1 1); 解:原式=(mm+21)2÷mm++1-1 1 =(mm+21)2·mm+1 =mm+1.
(4)(2-1 x+1)÷xx2--34·x2+4xx+4. 解:原式=32--xx·(x+2)x-(3x-2)·(x+x 2)2 =x+x 2.
4.(遵义中考)先化简,再求值:x-x y÷(x-2xyx-y2),其中 x=2,y =-1.

分式的运算法则公式

分式的运算法则公式

分式的运算法则公式一、分式的加法法则公式设a/b和c/d是两个分式,那么它们的和可以表示为一个新的分式:a/b + c/d = (ad + bc)/bd例如:1/2+2/3=(1*3+2*2)/(2*3)=7/6二、分式的减法法则公式设a/b和c/d是两个分式,那么它们的差可以表示为一个新的分式:a/b - c/d = (ad - bc)/bd例如:2/3-1/4=(2*4-1*3)/(3*4)=5/12三、分式的乘法法则公式设a/b和c/d是两个分式,那么它们的乘积可以表示为一个新的分式:(a/b) * (c/d) = (ac)/(bd)例如:1/2*2/3=(1*2)/(2*3)=1/3四、分式的除法法则公式设a/b和c/d是两个分式,那么它们的除法可以表示为一个新的分式:(a/b)/(c/d)=(a/b)*(d/c)=(a*d)/(b*c)例如:1/2÷2/3=(1/2)*(3/2)=(1*3)/(2*2)=3/4五、带分数的乘积法则公式设a是一个整数,b/c是一个带分数,那么它们的乘积可以表示为一个新的分式:a*(b/c)=(a*b)/c例如:2*(11/2)=(2*3)/2=3设a/b是一个分式,并且a/b不等于0,那么它的倒数可以表示为一个新的分式:1/(a/b)=b/a例如:1/(2/3)=3/2设a/b是一个分式,并且a/b不等于0,那么它的负数可以表示为一个新的分式:-(a/b)=(-a)/b=a/(-b)例如:-(2/3)=(-2)/3=2/(-3)以上就是关于分式的运算法则公式的详细介绍。

通过运用这些公式,我们可以简化分式的运算,更加方便地求解分式的加减乘除问题。

分式运算初中数学知识点之分式的四则运算法则

分式运算初中数学知识点之分式的四则运算法则

分式运算初中数学知识点之分式的四则运算法则初中数学中,分式是一个重要的知识点,它在数学运算中起到了重要的作用。

分式的四则运算法则是我们学习分式运算的基础,掌握了这些法则,我们就能够正确地进行分式的加减乘除运算。

下面我们将详细介绍分式的四则运算法则。

一、分式的加法和减法假设我们有两个分式,分别为a/b和c/d,它们的分子分别为a和c,分母分别为b和d。

那么它们的加法运算可以通过以下步骤进行:1. 找到两个分式的公共分母,记为m;2. 将两个分式的分子分别乘以m/b和m/d,得到分子为am/b,cm/d的两个分式;3. 将两个新分式的分子相加,即(am/b) + (cm/d);4. 分子的和除以公共分母m,即[(am/b) + (cm/d)] / m。

同样地,分式的减法运算也可以按照上述步骤进行,只需要将第3步的相加改为相减即可。

二、分式的乘法分式的乘法运算较为简单,只需要将两个分式的分子相乘,分母相乘即可。

假设我们有两个分式,分别为a/b和c/d,那么它们的乘法运算可以用以下公式表示:(a/b) * (c/d) = (a * c) / (b * d)。

三、分式的除法分式的除法与乘法类似,只需要将两个分式的分子相乘,分母相乘即可。

假设我们有两个分式,分别为a/b和c/d,那么它们的除法运算可以用以下公式表示:(a/b) / (c/d) = (a * d) / (b * c)。

需要注意的是,除法的时候我们需要将第二个分式取倒数后再进行乘法运算。

以上就是分式的四则运算法则,通过掌握这些法则,我们可以正确地进行分式的加减乘除运算。

在实际运算中,我们还需要注意约分的情况和分母为0的特殊情况。

当分式中的分子和分母有公因子时,我们需要将其约分为最简形式,即分子和分母没有共同的约数。

而当分式的分母为0时,这个分式是无定义的,因为在数学中,除数不能为0。

通过不断的练习和运用,我们可以更好地掌握分式的四则运算法则,为更复杂的数学运算打下坚实的基础。

分式的运算

分式的运算

分式的运算1. 基本概念分式是数学中常见的一种数的表示形式,它可以用分子与分母的比值来表示一个数。

分式的基本形式为$\\frac{a}{b}$,其中a为分子,a为分母。

分子和分母都可以是整数、小数或变量。

2. 分式的四则运算2.1 加法和减法分式的加法和减法运算规则如下:加法:两个分式$\\frac{a}{b}$和$\\frac{c}{d}$相加的结果为$\\frac{ad + bc}{bd}$。

减法:两个分式$\\frac{a}{b}$和$\\frac{c}{d}$相减的结果为$\\frac{ad - bc}{bd}$。

2.2 乘法和除法分式的乘法和除法运算规则如下:乘法:两个分式$\\frac{a}{b}$和$\\frac{c}{d}$相乘的结果为$\\frac{ac}{bd}$。

除法:两个分式$\\frac{a}{b}$和$\\frac{c}{d}$相除的结果为$\\frac{ad}{bc}$。

3. 分式的化简在进行分式的运算时,化简是十分重要的一步,它可以简化计算过程,使结果更加直观。

对分式进行化简的方法主要有约分和合并同类项。

3.1 约分约分是指将分式的分子和分母的公因子约去,使分数的结果更简洁。

例如,对于分式$\\frac{6}{12}$,可以约分为$\\frac{1}{2}$,因为6和12都可以被2整除。

3.2 合并同类项合并同类项是指将具有相同分母的多个分式进行合并,得到一个分式。

例如,对于分式$\\frac{1}{2} + \\frac{1}{3}$,可以合并同类项得到$\\frac{3}{6} + \\frac{2}{6} =\\frac{5}{6}$。

4. 分式的应用分式在实际生活中有很多应用,例如在物理学中,分式可以用来表示单位速度和单位加速度;在化学中,分式可以用来表示物质的摩尔比例;在经济学中,分式可以用来表示成本和利润的比例等等。

5. 总结分式是数学中一种常见的数的表示形式,它可以用分子和分母的比值来表示一个数。

分式的运算

分式的运算

分式的运算
★一、分式的四则运算:
⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:
⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:
⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:
⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:
⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:
★二、约分与通分
1.确定最简公分母的方法:
①最简公分母的系数,取各分母系数的最小公倍数;
②最简公分母的字母因式取各分母所有字母的最高次幂.
2.确定最大公因式的方法:
①最大公因式的系数取分子、分母系数的最大公约数;
②取分子、分母相同的字母因式的最低次幂.
★三、整数指数幂
1.知道负整数指数幂=(a≠0,n是正整数).
2.回忆0指数幂的规定,即当a≠0时,.
3.科学计数法:
①你还记得1纳米=0.000000001米?②太阳离地球150********00千米?。

分式运算课件ppt

分式运算课件ppt

详细描述
在进行分数与小数的混合运算时,应先将小数转换为分数,然后 按照分数的运算法则进行计算。例如,计算(2/3) + (3/4)时,可 以先将小数0.75转换为分数3/4,然后进行分数的加法运算,得到 结果为5/6。
总结词
理解分数与整数的混合运算规则,避免运算错误。
详细描述
在进行分数与整数的混合运算时,应先将整数看作分数,然后 进行分数的加减乘除运算。例如,计算(2/3) + 3时,可以将整 数3看作分数9/3,然后进行分数的加法运算,得到结果为 11/3。
统计学
分式在统计学中用于表示概率、频率 等统计量,以及进行数据分析和预测 。
乘除混合运算的注意事项
总结词
注意约简和化简运算过程
详细描述
在进行乘除混合运算时,应注意分子和分母的约简,以简化表达式。例如,将$frac{2a}{4b} times frac{3c}{6d} div frac{4e}{2f}$化简为$frac{a}{2b} times frac{c}{2d} div frac{2e}{f}$。
总结词
理解分式除法在数学和实际问题中的应用
详细描述
分式除法在解决实际问题,如速度、密度、面积等问题中 有着广泛的应用。通过分式除法可以方便地计算出一个比 例与另一个比例的倒数之积。
乘除混合运算的注意事项
总结词
掌握乘除混合运算的顺序和规则
详细描述
在进行乘除混合运算时,应遵循“先乘后除”的原则,即先进行乘法运算再进行 除法运算。例如,计算$frac{a}{b} times frac{c}{d} div frac{e}{f}$时,应先进行 $frac{a}{b} times frac{c}{d}$的乘法运算,然后再进行除法运算。

分式的运算与性质

分式的运算与性质

分式的运算与性质一、引言分式是数学中常见的一种表达形式,它是数的比的记法。

分式的运算是数学中的基本操作之一,通过对分式进行加、减、乘、除等运算可以得到一个新的分式。

同时,分式还具有一些独特的性质和规律。

本文将深入探讨分式的运算与性质,通过几个实例来帮助读者掌握和理解分式的运算方法和特点。

二、加法和减法运算1. 加法运算:分式加法的基本原则是分母必须相同,即只有当两个分式的分母相同,我们才能进行相加。

具体步骤如下:a) 将两个分式的分母化为相同的形式;b) 将分子加起来,分母保持不变;c) 化简结果。

例如:求解分式1/2 + 2/3的结果。

解:a) 将两个分式的分母化为相同的形式,1/2 = 3/6,2/3 = 4/6;b) 将分子加起来,得到3/6 + 4/6 = 7/6;c) 结果7/6无法再化简,因此最终结果为7/6。

2. 减法运算:分式减法与加法类似,同样要求两个分式的分母相同。

具体步骤如下:a) 将两个分式的分母化为相同的形式;b) 将分子相减,分母保持不变;c) 化简结果。

例如:求解分式3/4 - 1/2的结果。

解:a) 将两个分式的分母化为相同的形式,3/4 = 6/8,1/2 = 4/8;b) 将分子相减,得到6/8 - 4/8 = 2/8;c) 结果2/8可以化简为1/4,因此最终结果为1/4。

三、乘法和除法运算1. 乘法运算:分式乘法可以简单地将两个分式的分子相乘,分母相乘,得到一个新的分式。

具体步骤如下:a) 将两个分式的分子相乘,分母相乘;b) 化简结果。

例如:求解分式2/3 × 4/5的结果。

解:a) 将两个分式的分子相乘,得到2 × 4 = 8;b) 将两个分式的分母相乘,得到3 × 5 = 15;c) 结果8/15无法再化简,因此最终结果为8/15。

2. 除法运算:分式除法可以将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘,得到一个新的分式。

分式的运算

分式的运算

分式的运算分式是数学中一种常见的表示形式,它由分子和分母组成,中间用分数线表示。

分式可以进行加、减、乘、除等运算,下面我将分别介绍这几种运算的方法和规则。

一、分式的加法和减法运算分式的加法和减法运算可以通过求出分母的最小公倍数来进行。

下面通过几个例子来具体说明。

例1:计算分式2/3 + 1/4。

首先找出2/3和1/4的最小公倍数,即12。

然后通过保持分子不变,将两个分式的分母都改为最小公倍数12。

计算得到(2×4)/(3×4) + (1×3)/(4×3) = 8/12 + 3/12 = 11/12。

例2:计算分式5/8 - 3/5。

同样地,求出5/8和3/5的最小公倍数,即40。

然后将两个分式的分母都改为最小公倍数40。

计算得到(5×5)/(8×5) - (3×8)/(5×8)= 25/40 - 24/40 = 1/40。

二、分式的乘法运算分式的乘法运算很简单,只需要将两个分式的分子和分母相乘即可。

下面通过一个例子来说明。

例3:计算分式3/5 × 4/7。

将分子相乘得到3×4=12,将分母相乘得到5×7=35,所以3/5 × 4/7 = 12/35。

三、分式的除法运算分式的除法运算可以通过求出两个分式的倒数,然后进行乘法运算来实现。

下面通过一个例子来说明。

例4:计算分式3/4 ÷ 2/3。

求出2/3的倒数,即3/2。

然后将3/4乘以3/2,得到(3×3)/(4×2) = 9/8。

四、分式的简化和化简有些分式可以进行简化,也就是将分子和分母的公因子约掉,使得分式的值保持不变。

下面通过一个例子来说明。

例5:将分式12/36化简为最简分式。

首先求出12和36的最大公因数,即12。

然后将分子和分母都除以12,得到1/3。

所以12/36化简为1/3。

有些分式也可以通过将分子和分母分别因式分解,然后约掉相同的因子,得到最简分式。

分式及其运算(完整版)ppt课件

分式及其运算(完整版)ppt课件

(1)x2
x 2x
(
x2
)
(分子分母都乘以 x)
(2)3x2 3xy xy
6x2
(
)
(分子分母都除以 3x)
例3(补充)判断下列变形是否正确.
(1)
a b
a2 b2
(
)
(2) b bc a ac
(c≠0)
(
)
(3) b b 1 ( )
a a 1
(4)
2x 2x 1
x x 1
(
)
(四)课堂练习
无意
-1 义 -1 0
思考:
1、第2个分式在什么情况下无意义? 2、 这三个分式在什么情况下有意义? 3、这三个分式在什么情况下值为零?
练习3:
A
1、归纳:对于分式 B
(1) 分式无意义的条件是 B=0 。
(2)分式有意义的条件是 B≠0

(3)分式的值为零的条件是 B≠0且A=0 。
2、当x ≠2 时,分式 x 有意义。 x2
5a2b2
4ab3cd
2bd .
10a2b2c2
5ac
课堂练习
练习1 计算:
( 1 ) b a ; ( 2 ) 2b; ( 3 ) n y m y. ac a2 a m x n x
课堂练习
练习2 计算:
(1)3a 4b
196ab2 ; (2)
3xy
2y2 3x

(3)12xy 8x2y;(4)x y y x.
解: 即2011年与2010年相比,森林面积增长率提 高了 S 1 S 3 - S 2 2 . S1S 2
八年级 上册
15.2 分式的运算
分式的乘方及分式乘除、乘方混合运算

完整版分式的计算

完整版分式的计算

完整版分式的计算分式是数学中一种特殊的表达形式,由两个整数之间用分数线表示而成,其中分子表示被除数,分母表示除数。

分式的计算可以包括加法、减法、乘法和除法四种基本运算。

下面将分别介绍这四种计算方法的完整版。

一、加法计算:对于两个分式的加法,可以先找到它们的公共分母,然后将分式的分子相加,分母保持不变。

例如,计算以下两个分式的和:(3/4)+(2/5)步骤1:确定公共分母,4和5的最小公倍数是20。

步骤2:对分子进行相加,得到:3/4+2/5=(15/20)+(8/20)=23/20步骤3:将分子23和分母20写在一起,得到最简分式:23/20所以,(3/4)+(2/5)=23/20二、减法计算:对于两个分式的减法,也需要找到它们的公共分母,然后将分式的分子相减,分母保持不变。

例如,计算以下两个分式的差:(5/6)-(1/3)步骤1:确定公共分母,6和3的公共倍数是6步骤2:对分子进行相减,得到:5/6-1/3=(5/6)-(2/6)=3/6步骤3:将分子3和分母6写在一起,得到最简分式:3/6所以,(5/6)-(1/3)=3/6三、乘法计算:对于两个分式的乘法,只需要将分式的分子相乘,分母相乘。

例如,计算以下两个分式的乘积:(2/3)*(4/5)步骤1:将分子相乘,得到:2*4=8步骤2:将分母相乘,得到:3*5=15步骤3:将分子8和分母15写在一起,得到最简分式:8/15所以,(2/3)*(4/5)=8/15四、除法计算:对于两个分式的除法,需要将除数的分子和被除数的分母相乘,除数的分母和被除数的分子相乘。

例如,计算以下两个分式的商:(3/4)÷(2/5)步骤1:将除数的分子和被除数的分母相乘,得到:3*5=15步骤2:将除数的分母和被除数的分子相乘,得到:4*2=8步骤3:将分子15和分母8写在一起,得到最简分式:15/8所以,(3/4)÷(2/5)=15/8以上就是分式的四种基本运算的完整版计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10、分式的运算【知识精读】1. 分式的乘除法法则a b c d acbd⋅=; a b c d a b d c ad bc÷=⋅=当分子、分母是多项式时,先进行因式分解再约分。

2. 分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。

求最简公分母是通分的关键,它的法则是: ①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取; ③相同字母(或含有字母的式子)的幂的因式取指数最高的。

(2)同分母的分式加减法法则a cbc a bc±=± (3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。

3. 分式乘方的法则()a b a bn nn =(n 为正整数)4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。

学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式; (3)运算中及时约分、化简; (4)注意运算律的正确使用; (5)结果应为最简分式或整式。

下面我们一起来学习分式的四则运算 【分类解析】例1:计算x x x x x x x x 22222662----÷+-+-的结果是( )A. x x --13B. x x +-19C. x x 2219--D. x x 2213++分析:原式=-+-+÷+-+-()()()()()()()()x x x x x x x x 21323221=-+-+⋅+-+-=+-+-=--()()()()()()()()()()()()x x x x x x x x x x x x x x 2132213211331922故选C说明:先将分子、分母分解因式,再约分。

例2:已知abc =1,求a ab a b bc b cac c ++++++++111的值。

分析:若先通分,计算就复杂了,我们可以用abc 替换待求式中的“1”,将三个分式化成同分母,运算就简单了。

解:原式=++++++++a ab a ab abc ab a abcabc abc ab1 =++++++++=++++=a ab a ab ab a abca ab a ab ab a 111111例3:已知:250m n -=,求下式的值: ()()11+--÷+-+n m m m n n m m m n分析:本题先化简,然后代入求值。

化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。

最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。

这是解决条件求值问题的一般方法。

解:()()11+--÷+-+n m m m n n m m m n=-+---÷+++-+=--÷+-=+-m m n n m n m m m n m m n n m n mm m n n m m n m m n n m n m n()()()()()()()()Θ25052m n m n -=∴=故原式=+-5252n nn n =÷=723273n n例4:已知a 、b 、c 为实数,且ab a b bc b c ca c a +=+=+=131415,,,那么abcab bc ca ++的值是多少?分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化。

解:由已知条件得:113114115a b b c c a+=+=+=,, 所以211112()a b c ++= 即1116a b c++=又因为ab bc ca abc c b a ++=++=1116所以abc ab bc ca ++=16例5:化简:()x x x x x x 322121241+-+-+⋅-+ 解一:原式=+++---+⋅--+()()()()()()()()x x x x x x x x x 32121222221=+-++=-++--+=+-++-+-+-+=+-+-+-++=+-+x x x x x x x x x x x x x x x x x x x x x x x x x x x x 432423222322323241311111311111133311244()()()()()()()()()()()解二:原式=+-+-⋅+-+++-+⋅+-+()()()()()()()()x x x x x x x x x x x x x 1122211122212=-+++--=-++-++-+=+-+()()()()x x x x x x x x x x x x x x x 2322232121222232244说明:解法一是一般方法,但遇到的问题是通分后分式加法的结果中分子是一个四次多项式,而它的分解需要拆、添项,比较麻烦;解法二则运用了乘法分配律,避免了上述问题。

因此,解题时注意审题,仔细观察善于抓住题目的特征,选择适当的方法。

例1、计算:12442222+--÷--+n m m n m n m mn n解:原式=---⋅-+-1222m n m n m n m n m n ()()()=--+=+-++=+1223m n m nm n m nm n n m n说明:分式运算时,若分子或分母是多项式,应先因式分解。

例2、已知:M x y xy y x y x yx y 222222-=--+-+,则M =_________。

解:Θ2222xy y x yx yx y --+-+ =-+-+-=-=-222222222222xy y x xy y x y x x y Mx y∴=M x 2 说明:分式加减运算后,等式左右两边的分母相同,则其分子也必然相同,即可求出M 。

中考点拨: 例1:计算:[()()]()111122a b a b a b a b +--÷+-- 解一:原式=--++-÷---+-()()()()()()a b a b a b a b a b a b a b a b 2222=-+-⋅+--=+-=-42222222ab a b a b a b a b b aa b a b a a b ()()()()()()解二:原式=++-+--÷+--()()()111111a b a b a b a b a b a b=++-=-+++-=-11222a b a ba b a b a b a b a a b ()()说明:在分式的运算过程中,乘法公式和因式分解的使用会简化解题过程。

此题两种方法的繁简程度一目了然。

例2:若a b ab 223+=,则()()1212333+-÷+-b a bba b 的值等于( ) A.12B. 0C. 1D.23解:原式=-+-÷-+-a b b a b a b ba b 3333322=+-⋅-+=+-+-++⋅-+=-+++=-+==a b a b a ba ba b a ab b a b a ab b a b a b a ab b a ab b ab abab ab ab ab 333322222222332412()()()()故选A【实战模拟】1. 已知:a b ab +==-25,,则a b ba+的值等于( ) A. -25 B. -145 C. -195 D. -2452. 已知x x 21610--=,求x x331-的值。

3. 计算:132********9202222x x x x x x x x +++++++++++ 4. 若A B =++=++999919999199991999911111222222223333,,试比较A 与B 的大小。

5. 已知:a b c abc ++==08,,求证:1110a b c++<。

【试题答案】1. 解:a b b a a b ab+=+22Θa b ab a b a b ab a b b a +==-∴∴+=+-=∴+=-=-25214145145222,()故选B2. 解:Θx x 21610--=∴=+-=-=x x x x x x 222161116161,,111111616336324234223⋅-=-=-++=++-x x x x x x x x x x x x x x ()()()=+-=+-=++-=+-162161621616161216163161642222()()()()x x x x x x x x x x=+-=+⨯=⨯=16316116316161625941442[()][]x x xx说明:此题反复运用了已知条件的变形,最终达到化简求值的目的。

3. 解:原式=+++++++++++112123134145()()()()()()()()x x x x x x x x=+-+++-+++-+++-+=+-+=++111212131314141511154652x x x x x x x x x x x x 说明:本题逆用了分式加减法则对分式进行拆分,简化计算。

4. 解:设a =99991111,则A a a B a a =++=++1111223, ∴-=++-++=+++---++A B a a a a a a a a a a a 111112111223434223()()=-++>a a a a ()()()1110223 ∴>A B5. 证明:Θa b c ++=0∴++=()a b c 20,即a b c ab bc ac 2222220+++++=∴++=-++ab bc ac a b c 12222() 又Θ111116222a b c bc ac ab abc a b c ++=++=-++()Θabc =8∴a b c 、、均不为零∴++>∴++<a b c a b c22201110。

相关文档
最新文档