模拟放大电路仿真实验

合集下载

电路仿真实验报告

电路仿真实验报告

Multisim模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。

(2)用仿真手段对电路性能作较深入的研究。

2.实验内容实验19-1 基本单管放大电路的仿真研究(2)静态工作点理论上,由V E=1.2V得:I E=V E/(R E1+R E2)=1mA,I B=I E/(β+1)=16.39uA,I C=βI B=0.9836mA;U CE=Vcc- I C*Rc-V E=7.554V。

实测值I B =13.995uA,Ic=0.9916mA,U CE=7.521V;相对误差分别为14.63%,0.817%,0.438%(3)电压放大倍数理论值r be=1.886kΩ,Au=-14.0565实测值Au=-13.8476,相对误差1.486%(4)波特图观察电压放大倍数为Au=-13.8530,下限截止频率为17.6938Hz,上限截止频率为18.07MHz,带宽为18.07MHz。

(5)用交流分析功能测量幅频和相频特性。

(6)加大输入信号强度,观测波形失真情况。

失真度为31.514%(7)测量输入电阻、输出电阻。

测输入电阻:U rms=1.00mV,I rms=148nA,则输入电阻R i= U rms/I rms=6.757kΩ;测输出电阻:空载时U oO=14.0mV,带载时U oL=10.6mV,R L=10kΩ,则输出电阻R o=(U oO/U oL-1)* R L =3.208kΩ(8) 将R E1去掉,R E2=1.2kΩ,重测电压放大倍数,上下限截止频率及输入电阻,对比说明R E1对这三个参数的影响。

测得放大倍数Au=-95.2477,下限截止频率为105.7752Hz,上限截止频率为18.9111MHz,带宽为18.9110MHz,输入电阻R i=1.859kΩ。

由表易知,去掉R E1后电压放大倍数变大;上下截止频率都略有增加,通频带变宽;输入电阻变小。

模拟电路仿真实验报告——仿真探究负反馈对放大电路的影响

模拟电路仿真实验报告——仿真探究负反馈对放大电路的影响
北京邮电大学
实 验
报 告
实验名称:仿真探究负反馈对多级放大电路的影响
学 班 姓 学
院:____信息与通信工程学院 ____ 级:__________________________ 名:__________________________ 号:__________________________
任课教师 :__________________________ 实验日期 :_______2009 年 12 月________
第2页
电子电路仿真实验报告
3.负反馈对电路增益的影响分析
如图 8,采用电压串联负反馈,根据反馈基本方程式 Ȧv = Ȧ ̇̇ 1 + AF
可知引入负反馈之后闭环增益将减小。 当深度负反馈时, Ȧv = 1/Ḟ 。 深度负反馈时, 由电路图得: Rv = 反馈深度: D = AF ≈ 220 × 0.1k ≫1 R13 + 0.1k R9 R 9 + R13
引入负反馈后电路电压增益稳定性有所改善,具体为:
dAv 1 dA = Av 1 + AF A
可见,稳定性提高了 |1 + AF|倍。
第3页
电子电路仿真实验报告
五、仿真测试 第一部分测试:未接入反馈时电路性能测试
1、电路增益: 如图 3 所示,实测电路中频(1kHz)电压增益 Av = 225.56; 2、频带宽度: 如图 4 所示,频带宽度为 BW = 858.50 kHz; 3、输入输出电阻: 如图 5、 图 6, 中频(1kHz)输入电阻为 R i = 20.00k Ohm, 输出电阻 R o = 4.60k Ohm。 (注: 为与后续带反馈测试形成对比,此处测试的 R i 是从三极管 Q1 看过去的输入电阻。 ) 4、动态范围: 由图 7 估计知动态范围大约为 -10mV ~ +10mV 。 5、稳定性: 由图 8,输入 5mV 变化 20%(即 1mV)时增益变化 1.41 × 10−2 % 。 (注:出于仿真图视 图精度考虑,便于直接观察变化,以输出电压代替增益进行打印。 )

放大电路multisim实验报告

放大电路multisim实验报告

放大电路multisim实验报告1. 实验目的通过实验,熟悉和掌握放大电路的基本原理和放大倍数的计算方法。

2. 实验原理放大电路是指用于增大输入信号的电压、电流或功率的电路。

常用的放大电路有共射放大电路、共集放大电路和共基放大电路等。

本实验以共射放大电路为例进行研究。

共射放大电路是一种常见的放大电路,其特点是输入信号加在基极上,输出信号从集电极取出。

放大电路的放大倍数可通过直流负载线和交流负载线的交点来确定。

3. 实验器材和仪器- Multisim电路仿真软件- 电脑4. 实验步骤4.1 搭建电路在Multisim电路仿真软件中,选择适当的元件并搭建共射放大电路。

4.2 设置输入信号为电路添加一个函数信号发生器,设置输入信号的振幅和频率。

4.3 测量输出信号连接示波器,测量输出信号的波形。

4.4 计算放大倍数根据示波器上的波形,测量输入信号和输出信号的幅值,然后计算放大倍数。

5. 实验结果将示波器上测得的信号波形截图作为实验结果。

6. 实验讨论分析实验结果,讨论放大倍数是否符合预期,有无改进的空间。

7. 实验结论通过实验,我们成功搭建了共射放大电路,并计算出放大倍数。

实验结果和预期的结果相符。

通过这次实验,我们对放大电路的原理和计算方法有了更深入的了解。

8. 实验总结本次实验通过Multisim电路仿真软件,从搭建电路到测量输出信号,并计算出放大倍数。

实验过程中我们掌握了放大电路的基本原理和计算方法。

通过实验,我们发现实际电路中可能存在误差,因此在实际应用中应对放大电路进行优化和调整,以获得理想的放大效果。

MOS放大电路设计仿真与实现实验报告

MOS放大电路设计仿真与实现实验报告

MOS放大电路设计仿真与实现实验报告实验报告:MOS放大电路设计、仿真与实现一、实验目的本实验的主要目的是通过设计、仿真和实现MOS放大电路来加深对MOSFET的理解,并熟悉模拟电路的设计过程。

二、实验原理MOSFET是一种主要由金属氧化物半导体场效应管构成的电流驱动元件。

与BJT相比,MOSFET具有输入阻抗高、功率损耗小、耐电压高、尺寸小等优点。

在MOS放大电路中,可以采用共源共源极放大电路、共栅共栅极放大电路等不同的电路结构。

三、实验步骤1.根据实验要求选择合适的电路结构,并计算所需材料参数(参考已知电流源和负载阻抗)。

2.选择合适的MOS管,并仿真验证其工作参数。

3.根据仿真结果确定电路的放大倍数、频率响应等。

4.根据电路需求,设计电流源电路和源极/栅极电路。

5.仿真整个电路的性能,并调整参数以优化电路性能。

6.根据仿真结果确定电路的工作参数,并进行电路的实现。

7.通过实验测量电路性能,验证仿真结果的正确性。

8.对实验结果进行分析,总结实验的过程和经验。

四、实验设备和材料1.计算机及电子仿真软件。

2.实验电路板。

3.集成电路元器件(MOSFET、电阻等)。

4.信号发生器。

5.示波器。

6.万用表等实验设备。

五、实验结果与分析通过仿真和实验,可以得到MOS放大电路的电压增益、输入输出阻抗、频率响应等参数。

根据实验结果,可以验证设计的合理性,并进行参数调整优化。

在实际应用中,MOS放大电路被广泛应用于音频放大器、功率放大器、运算放大器等场合。

因为MOSFET具有较大输入阻抗,所以MOS放大电路可以在输入端直接连接信号源,而不需要额外的输入电阻。

此外,MOS放大电路的功率损耗较小,适用于各种功率要求不同的应用场合。

六、实验心得通过设计、仿真和实现MOS放大电路的实验,我更加深入地理解了MOSFET的原理和应用。

在实验过程中,我通过不断调整电路参数和元器件选择,逐步提高了电路的性能。

通过与实验结果的对比,我发现仿真和实验结果基本吻合,验证了仿真的准确性。

模电实验-共射放大电路Multisim仿真

模电实验-共射放大电路Multisim仿真

Multisim模拟电路仿真实验1.Multisim用户界面与根本操作1.1Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。

Multisim用软件方法虚拟电子元器件与仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。

Multisim来源于加拿大图像交互技术公司〔Interactive Image Technologies,简称IIT公司〕推出的以Windows为根底的仿真工具,原名EWB。

IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench〔电子工作台,简称EWB〕,以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB 进展了较大变动,名称改为Multisim〔多功能仿真软件〕。

IIT后被美国国家仪器〔NI,National Instruments〕公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其根本操作。

图1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成局部。

图1-1 Multisim10用户界面菜单栏与Windows应用程序相似,如图1-2所示。

图1-2 Multisim菜单栏其中,Options菜单下的Global Preferences和Sheet Properties可进展个性化界面设置,Multisim10提供两套电气元器件符号标准:ANSI:美国国家标准学会,美国标准,默认为该标准,本章采用默认设置;DIN:德国国家标准学会,欧洲标准,与中国符号标准一致。

放大电路实验报告

放大电路实验报告

放大电路实验报告一、实验要求利用简单的三级放大电路实现对小信号放大1000倍,输入电阻大于等于100千欧,输出电阻限于等于500欧的目的。

二、实验环境Pspice仿真软件。

三、实验过程与分析初步设计:1、初步设计为第一级为共集放大电路,第二、三级为共射放大电路,分两次对信号进行放大。

2、由于输出电阻为500欧,设计第三级R C为500Ω,放大倍数为25倍,射级电阻的目的是保证一定的输入电阻,防止二、三级间损耗过大。

3、第二级放大倍数较大所以设计不带射级电阻,以尽量扩大放大倍数。

但需要考虑到第二级输出电阻不能过大,所以R C不应该过大。

4、第一级应保证足够大的输入电阻,由于共集电路的限制所以暂时没有考虑输出电阻。

5、电源利用正负6V电源。

6、为了使计算方便,三级间的连接方式使用阻容耦合的方式,使其静态工作点不互相影响。

7、利用以上的初步设计计算了电阻,在电阻的选取中主要考虑了各级放大电路的静态工作点,使U CE尽量保持在6V左右,以保证较大的放大幅度。

进行仿真:1、仿真过程中放大倍数没有准确的稳定在1000倍,通过调整了一些电阻的值使其在一定的频率范围内保持了1000(电容的值选取较大)。

2、在输出电阻的测量中没有问题,输出电阻在允许范围内。

3、在测量输入电阻时遇到了较大的问题,比计算中的共集输入电阻小了很多,被这个问题困惑了很久,最终通过仔细分析交流微变等效电路,发现第二级的输入电阻也对第一级的输入电阻产生了很大的影响(相当于负载),由于第二级的Rπ较小,所以极大的影响了第一级的输入电阻。

所以通过进一步的调整第二级的I CQ,来改变第二级的Rπ,使输入电阻达到100KΩ。

仿真结果:下面是我设计电路一些主要仿真结果的截图:上图为实验电路图及最终的各项参数上图为各三极管的静态工作点上图为取分贝后的放大倍数在一定的范围内分贝值为60,即放大倍数为1000倍上图为输入电阻大小上图为输出电阻四、设计的分析与评价优点:1、该设计静态工作点比较适中,即处于负载线的中点附近,能够放放大较大幅度的电压。

Multisim模拟电路仿真实验报告

Multisim模拟电路仿真实验报告

一、实验目的1.认识并了解Multisim的元器件库;2.学习使用Multisim绘制电路原理图;3.学习使用Multisim里面的各种仪器分析模拟电路;二、实验内容【基本单管放大电路的仿真研究】1.仿真电路如图所示。

2.修改参数,方法如下:双击三极管,在Value选项卡下单击EDIT MODEL;修改电流放大倍数BF为60,其他参数不变;图中三极管名称变为2N2222A*;双击交流电源,改为1mV,1kz;双击Vcc,在Value选项卡下修改电压为12V;双击滑动变阻器,在Value选项卡下修改Increment值为0.1% 或更小。

三、数据计算1.由表中数据可知,测量值和估算值并不完全相同。

可以通过更精细地调节滑动变阻器,使V E更接近于1.2V.2.电压放大倍数测量值A u =−13.852985 ;估算值A u =−14.06 ;相对误差=−13.852985−(−14.06)−14.06×100% =−1.47%由以上数据可知,测量值和估算值并不完全相同,可能的原因有:1) 估算值的计算过程中使用了一些简化处理,如动态分析时视电容为短路,r be =300+(β+1)∙26I E等与仿真电路并不完全相同。

2) 仿真电路的静态工作点与理想情况并不相同,也会影响放大倍数。

3. 输入输出电阻验相同的原因外(不再赘述),还有:万用表本身存在电阻。

4.去掉R E1后,电压放大倍数增大,下限截止频率和上限截止频率增大,输入电阻减小。

说明R E1减小了放大倍数,增大了输入电阻。

四、感想与体会电子实验中,估算值与仿真值、仿真值与实际测量值往往并不完全一致。

在设计电路时可以通过估算得到大致的判断,再在电脑中进行仿真,最后再实际测量运行。

用电脑仿真是很必要的,一方面可以及早发现一些简单错误,防止功亏一篑,另一方面还可以节省材料和制作时间。

但必须考虑实际测量与仿真的不同之处,并应以实测值为准。

MOS管相关仿真实验报告

MOS管相关仿真实验报告

MOS管相关仿真实验报告
一.MOS管共源放大电路仿真(基本要求)
电路如右图所示,
注意:1)设置静态工作点时,调整电位器Rp,使Vd为5~6V.
2)仿真时输出端必须接负载,否则会报错(可以将阻值设为很大的值来仿真开路情况)
放大电路仿真验证设计与仿真要求
(1)电路图
(2)静态工作点:ID、VGs、Vs
得ID=1.34862mA,VGs=2.16362V,Vs=1.41740V
(3)输入、输出电压波形,并计算电压增益A
即得电压增益为Av=45.4773
(4)幅频响应曲线:db((vo)(vs:+),测中频增益、上限频率fH和下限频率fL
如图,由图可知,测得中频增益为45.5854,上限频率fH=797.844kHz,下限频率fL=33.4688Hz (5)相频响应曲线:Vp(Vo)-p(vs:+)或p(V(vo)/Vvs:+))
(6)输入电阻的频率响应:Ri—V(v(i))/I(Vs)
(7)输出电阻的频率响应:Ro—V(V(o))/I(Vs)
(8)非线性失真现象
1)将Rp调整为最大值,做静态分析和瞬态分析,记录静态工作点和波形。

静态分析如下
瞬态分析如下
2)将Rp调整为最小值(不能为0,0是非法值),再做静态分析和瞬态分析,记录静态工作点和波形。

(如果发现没有失真,可以增大输入信号幅值。

)
静态分析如下
瞬态分析如下
由于此时失真不明显,故将输入振幅调至9V得到波形如下
得到明显失真图像。

选做部分
二.MOS管特性曲线仿真任务一:MOSFET输出特性曲线仿真
任务二:MOSFET转移特性曲线仿真。

模电实验三基本放大电路仿真

模电实验三基本放大电路仿真

基本放大电路仿真实验
1.使用Multisim软件仿真电路在空载和负载状态下的最大输出U o波形图,计算出放大倍数Au,分析Uo和U i相位关系图。

能否改变电路参数后在波形不失真时所得到的Au是你自己的序号。

如果可以请画出波形图并写出Au,如果不可以请说明原因。

断开负载电阻使放大电路空载,在输出端接交流电表,运行仿真,结果如下表所示。

V1(MV) V2(MV) V3(MV) A1(MA)
9.9 4.22 88.4 2.14
AVS=VO/VS=V3/V1=88.4/9.9=8.9
AV=V0/VI=V3/V2=88.4/4.2=20.9
示波器的输出输入波形
不能,改变参数后若得到我自己的序号,是会失真的
2.利用Multisim仿真出改变工作点后的波形截止失真图和饱和失真图。

并测出此时的Uce。

截止失真图
此时静态工作点为Ib=947.55nA 、Ic=208.40uA 、Uce=10.84V 饱和失真图
此时静态工作点为Ib=4.96uA 、Ic=1.07mA、Uce=6.07V。

(仅供参考)放大电路实验操作和multisim仿真

(仅供参考)放大电路实验操作和multisim仿真
图 3 三极管放大电路截止失真时的输出电压波形 再通过对电路图进行直流分析,可得图 4 中的数据。
图 4 三极管放大电路饱和失真时的静态工作点值 此时静态工作点为 Ib=947.55nA、Ic=208.40uA、Vce=10.84V。 3)观察不失真并测定参数 无需改变设计图中的任何参数。观察波形,发现输出电压波形出现了较为对称的波形(图 5)。
Av
=
vo vi
=
65.42
图 19 电压增益的测试电路
图 20 输出电压和输出电压的读数 6.电路的频率响应曲线和 fL、fH 值 1)电路的频率响应曲线 对电路进行交流分析,幅频,相频特性曲线如图 21 所示。
图 21 频率特性曲线 2) fL、fH 值的测定
通过软件得到幅频最大的值后,再通过三分贝点得到 fL、fH 值,从而得到通频带宽。 fL、fH 值的测定可通过图 22 得到。fL=69.21HZ、fH=27.13MHZ。
图 9 测试输入特性曲线的实验图
图 10 输入特性曲线
通过静态时的 Ib 找到 Q 点,在 Q 点附近取两个点,斜率的倒数即为 rbe。求 rbe 值的过
程如图 11 所示。r = Nhomakorabeax = 6K
be dy

图 11 通过输入特性曲线得到 rbe 3)测试三极管的输出特性曲线 图 12 为测试输出特性曲线的实验图,使得 IB=IBQ,使用直流扫描,可得输出特性曲线 如图 13 所示。
E=
be真 −
| be = 7.7%
rbe真
3)
R
i
=
R1||R
||r
2
be
=
5.11K
,则误差为
R R |

电路仿真实验实验报告

电路仿真实验实验报告

电路仿真实验实验报告电路仿真实验实验报告一、引言电路仿真实验是电子工程领域中重要的实践环节,通过计算机软件模拟电路的运行情况,可以帮助学生深入理解电路原理和设计方法。

本次实验旨在通过使用电路仿真软件,验证并分析不同电路的性能和特点。

二、实验目的1. 掌握电路仿真软件的基本操作方法;2. 理解并验证基本电路的性能和特点;3. 分析电路中各元件的作用和参数对电路性能的影响。

三、实验内容1. 简单电路的仿真通过电路仿真软件,搭建并仿真简单电路,如电阻、电容、电感等基本元件的串并联组合电路。

观察电路中电流、电压的变化情况,分析电路中各元件的作用。

2. 放大电路的仿真搭建并仿真放大电路,如共射放大电路、共集放大电路等。

通过改变输入信号的幅值和频率,观察输出信号的变化情况,分析放大电路的增益和频率响应。

3. 滤波电路的仿真搭建并仿真滤波电路,如低通滤波器、高通滤波器等。

通过改变输入信号的频率,观察输出信号的变化情况,分析滤波电路的截止频率和滤波特性。

四、实验步骤1. 下载并安装电路仿真软件,如Multisim、PSPICE等;2. 学习软件的基本操作方法,包括搭建电路、设置元件参数、设置输入信号等;3. 根据实验要求,搭建并仿真所需的电路;4. 运行仿真,观察电路中各元件的电流、电压变化情况;5. 改变输入信号的参数,如幅值、频率等,观察输出信号的变化情况;6. 记录实验数据和观察结果。

五、实验结果与分析1. 简单电路的仿真结果通过搭建并仿真电路,观察到电路中电流、电压的变化情况。

例如,在串联电路中,电压随着电阻值的增大而增大,电流保持不变;在并联电路中,电流随着电阻值的增大而减小,电压保持不变。

这说明了电阻对电流和电压的影响。

2. 放大电路的仿真结果通过搭建并仿真放大电路,观察到输入信号的幅值和频率对输出信号的影响。

例如,在共射放大电路中,输入信号的幅值增大时,输出信号的幅值也相应增大,但频率不变;在共集放大电路中,输入信号的频率增大时,输出信号的幅值减小,但频率不变。

东南大学模电实验报告模拟运算放大电路

东南大学模电实验报告模拟运算放大电路

东南大学电工电子实验中心实 验 报 告课程名称: 模拟电路实验第 一 次实验实验名称: 模拟运算放大电路(一) 院 (系): 专 业: 姓 名:学 号:实 验 室: 实验组别: 同组人员: 实验时间: 评定成绩: 审阅教师:实验一 模拟运算放大电路(一)一、实验目的:1、 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。

2、 熟练掌握运算放大电路的故障检查与排除方法,以及增益、传输特性曲线的测量方法。

3、 了解运放调零与相位补偿的基本概念。

二、实验原理:1、反向比例放大器反馈电阻R F 值一般为几十千欧至几百千欧,太大容易产生较大的噪声及漂移。

R 的取值则应远大于信号源v i 的内阻。

若R F = R ,则为倒相器,可作为信号的极性转换电路。

2、电压传输特性曲线F V R A =-R双端口网络的输出电压值随输入电压值的变化而变化的特性叫做电压传输特性。

电压传输特性在实验中一般采用两种方法进行测量。

一种就是手工逐点测量法,另一种就是采用示波器X-Y方式进行直接观察。

示波器X-Y方式直接观察法:就是把一个电压随时间变化的信号(如:正弦波、三角波、锯齿波)在加到电路输入端的同时加到示波器的X通道,电路的输出信号加到示波器的Y通道,利用示波器X-Y图示仪的功能,在屏幕上显示完整的电压传输特性曲线,同时还可以测量相关参数。

具体测量步骤如下:(1) 选择合理的输入信号电压,一般与电路实际的输入动态范围相同,太大除了会影响测量结果以外还可能会损坏器件;太小不能完全反应电路的传输特性。

(2) 选择合理的输入信号频率,频率太高会引起电路的各种高频效应,太低则使显示的波形闪烁,都会影响观察与读数。

一般取50~500Hz 即可。

(3) 选择示波器输入耦合方式,一般要将输入耦合方式设定为DC,比较容易忽视的就是在X-Y 方式下,X 通道的耦合方式就是通过触发耦合按钮来设定的,同样也要设成DC。

(4) 选择示波器显示方式,示波器设成X-Y 方式,对于模拟示波器,将扫描速率旋钮逆时针旋到底就就是X-Y 方式;对于数字示波器,按下“Display”按钮,在菜单项中选择X-Y。

模电仿真实验报告

模电仿真实验报告

模拟电路仿真实验报告一、实验目的本次模拟电路仿真实验旨在通过使用专业仿真软件,掌握模拟电路的基本原理和设计方法,提高分析和解决问题的能力。

二、实验原理模拟电路是用于模拟真实世界中的各种信号的电子电路。

它能够复制或放大这些信号,以便更好地进行研究和分析。

模拟电路通常由电阻、电容、电感、二极管、三极管等元件组成。

三、实验步骤1. 打开仿真软件,创建一个新的模拟电路设计。

2. 根据实验要求,添加所需的电子元件和电源。

3. 连接各元件,构成完整的模拟电路。

4. 调整电源和各元件的参数,观察并记录电路的输出结果。

5. 根据实验要求,对电路进行测试和调整,直到达到预期效果。

6. 记录实验数据和结果,分析电路的工作原理。

7. 完成实验报告,总结实验过程和结果。

四、实验结果与分析1. 实验结果:在本次模拟电路仿真实验中,我们设计了一个简单的RC振荡电路。

通过调整电阻和电容的值,我们观察到了不同频率的振荡波形。

实验结果表明,该电路能够有效地产生振荡信号,并且可以通过改变电阻和电容的值来调整振荡频率。

2. 结果分析:本次实验中,我们使用了RC振荡电路来模拟一个简单的振荡器。

当电流通过电阻和电容时,会产生一个随时间变化的电压。

该电压在电容两端累积,直到达到某个阈值,才会发生振荡。

通过调整电阻和电容的值,我们可以改变电压累积的速度和阈值,从而调整振荡频率。

此外,我们还发现,当改变电阻或电容的值时,振荡波形也会发生变化。

这表明该电路具有较好的频率特性和波形质量。

五、实验总结与建议本次模拟电路仿真实验让我们深入了解了模拟电路的基本原理和设计方法。

通过使用仿真软件,我们能够方便地进行电路设计和测试,并且可以随时调整元件参数来优化电路性能。

建议在今后的实验中,可以尝试设计更加复杂的模拟电路,以进一步提高我们的实验技能和解决问题的能力。

同时,也需要注意遵守实验规则和安全操作规程,确保实验过程的安全性。

实验二 模拟电路实验 单级放大器(仿真)

实验二 模拟电路实验 单级放大器(仿真)

2.静态工作点测量方法:
接通电源,调节RW ,使 VCE = 4 V。 用电压表(DC档)测量晶体管的VCE,使之接近于
要求值,然后测量VB、VC、VE的值;并填入表中。
注意:
静态工作点必须在输入信号(Vi=0)的情况下 进行测试。
3. 静态工作点调试
放大器的基本任务是不失真地放大信号。要
幅度或相 位设定 频率范 围设定 幅频选择 相频选择
读数指针可拖曳
指针垂 直读数
指针水平读
读数指针 移动按钮
座标起点
座标终点
三、操作示范




选取电阻和电容,双击后将阻值改为 200Ω,电容值为1uF。 连线时鼠标点中电阻一端,会出一个 小黑点,按住后再将鼠标向外沿伸, 一直拉到电容一端引脚(这时电容的 引脚也会出现一个小黑连接点)。 在仪器库中取出信号源和示波器,再 取出接地,按图示完成连线。 若连接点的线不平直,可选中接点 (或任何器件),利用键盘上的 ←↑→↓四个键作调整。 双击仪器的面板,可对信号源和示波 器进行参数设置。 双击连线,可改变连线的颜色。 与示波器相连的线的颜色会显示同色 的波形。
输 出 电 阻 :R o R c
五、EWB使用介绍
E W B 概述 EWB(Electronics Workbench)即电子工作 台,是加拿大Interactive Image Technologies公司 于八十年代末、九十年代初推出的专门用于电子线 路仿真的“虚拟电子工作台”软件,它界面直观、 操作方便,可大大提高电子设计工作的效率。
面板展开
外触发输入
X轴偏置
Y轴偏置 Y轴输入方式 自动触发
触发控制
为了能够更细致地观察波形,按下示波器面板上的Expand按钮将面板进一步展开成下 图所示。通过拖曳指针可以详细读取波形任一点的读数,以及两个指针间读数的差。

基于Multisim 负反馈放大电路的仿真实验分析

基于Multisim 负反馈放大电路的仿真实验分析

基于Multisim负反馈放大电路的仿真实验分析负反馈在放大电路中广泛应用,它对电路的性能指标有较大的影响。

根据反馈方式的不同,可分为电压串联型、电压并联型、电流串联型和电流并联型四种。

理论分析负反馈对放大电路的影响较为抽象,采用Multisim电路设计仿真软件进行仿真实验可直观地得出结果。

在放大电路中引入电压串联负反馈,会导致电压放大倍数下降,但输出电压的稳定性提高,非线性失真减少,通频带展宽,输入电阻增加,输出电阻减少。

下面借助于Multisim 电路设计仿真软件对电压串联负反馈放大电路进行仿真实验来验证这些影响。

1.编辑实验电路编辑电压串联负反馈放大电路如图1,R11、C3与R5组成负反馈网络。

电路中元件较多,电阻可采用虚拟电阻,便于改变其参数。

R12、R13分别设置为45%和30%。

图1 电压串联负反馈电路2.对放大倍数的影响在电路的输入、输出端接入交流电子电压表如图示2。

按计算机键盘A键改变开关J1选择有无引入负反馈,观察两个电压表的读数。

图2 测量电压放大倍数和稳定性以及非线性失真J1断开,无负反馈:Ui=3.150mv;Uo=1.335v;Kv=Uo/Ui=424。

J1闭合,有负反馈:Ui=3.299mv;Uo=0.103v;Kv=Uo/Ui=31。

可见引入负反馈后,电压放大倍数下降了。

3.对输出电压稳定性的影响如图2按A键改变开关J1选择有无引入负反馈,按B改变开关J2选择有无接入RL,观察输出电压的变化。

J1断开,无负反馈:J2断开时,Uo=1.725v;J2闭合时,Uo=1.335v。

相差0.390v。

J1闭合,有负反馈:J2断开时,Uo=0.106v;J2闭合时,Uo=0.103v。

相差0.003 v。

可见引入电压负反馈后,输出电压的稳定性提高了。

4.对非线性失真的影响在图2的输出端接入示波器XSC1可定性观察非线性失真的大小,接入失真度仪XDA1可定量分析失真系数。

如图2按A键改变开关J1选择有无引入负反馈,观察输出波形。

multisim模拟仿真实验

multisim模拟仿真实验

multisim模拟仿真实验⼀、实验⽬的和要求(1)学习⽤multisim 进⾏模拟电路的设计仿真 (2)掌握⼏种常见的实⽤电路原理图⼆、实验内容和原理2.1测量放⼤电路仿真分析在multisim11中画出如下电路原理图。

如图所⽰为测量放⼤电路,采⽤两级放⼤,前级采⽤同相放⼤器,可以获得很⾼的输⼊阻抗;后级采⽤差动放⼤器,可获得⽐较⾼的共模抑制⽐,增强电路的抗⼲扰能⼒。

该电路常常作为传感器放⼤器或测量仪器的前端放⼤器,在微弱信号检测电路设计中应⽤⼴泛。

电路的电压放⼤倍数理论计算为)1(94367R R R R R A u++=将电路参数代⼊计算:630)101001001(10300=++=uA2.2电压-频率转换电路仿真分析给出⼀个控制电压,要求波形发⽣电路的振荡频率与控制电压成正⽐,这种通过改变输⼊电压的⼤⼩来改变输出波形频率,从⽽将电压参数转换成频率参量电路成为电压—频率转换电路(VCO ),⼜称压控振荡器。

在multisim11中创建如图所⽰的电压-频率转换电路的电路原理图。

电路中,U1是积分电路,U2是同相输⼊迟滞⽐较器,它起开关左右;U3是电压跟随电流,输⼊测试电压U1。

电路的输出信号的振荡频率与输⼊电压的函数关系为Zi CU R R U R T f 31421==2.3单电源功率放⼤电路仿真分析在许多电⼦仪器中,经常要求放⼤电路的输出机能够带动某种负载,这就要求放⼤电路有⾜够⼤的输出功率,这种电路通称为功率放⼤器,简称“功放”。

⼀般对功放电路的要求有:(1)根据负载要求提供所需要的输出功率;(2)功率要⾼(3)⾮线性失真要⼩(4)带负载的能⼒强。

根据上述这些要求,⼀般选⽤⼯作在甲⼄类的共射输出器构成互补对称功率放⼤电路。

单电源功放电路中指标计算公式如下:功率放⼤器的输出功率:Lo oR U P = 直流电源提供的直流功率:CO CC E I U P ?=电路效率:%100?=EoP P η实验电路原理图如下:2.4直流稳压电源仿真分析在所以电⼦电路和电⼦设备中,通常都需要电压稳定的直流电源供电。

功率放大电路仿真与测试实验报告

功率放大电路仿真与测试实验报告

四、功率放大电路仿真与测试
4.1 低频功率放大器(OTL)
1.仿真目的
(1)理解OTL低频功率放大器的工作原理
(2)学会OTL电路的调试及主要性能指标的测试方法。

2.仿真电路
(1)比较甲类功率放大器与乙类功率放大器的特点、输出功率及效率。

(2)静态时调Q1、Q2之间电压为电源电压的一半。

(3)从示波器上观察,放大倍数不到50倍;测量负载电压有效值为295.98mV,测量函数信号发生器输出电压有效值为7.07mV,则电压放大倍数近似为42倍。

改变电阻R2交越失真明显。

如图4-1所示为低频功率放大器(OTL)电路图。

图4-1 低频功率放大器(OTL)电路图
如图4-2所示为低频功率放大器(OTL)波形图。

图4-2 低频功率放大器(OTL)波形图
3.测试内容
(1)测试各极静态工作点、最大不失真输出功率m P 0、效率η等
(2)改变电路参数,观察交越失真并研究如何消除这种失真。

模拟电路仿真软件实验报告

模拟电路仿真软件实验报告

竭诚为您提供优质文档/双击可除模拟电路仿真软件实验报告篇一:模拟电路仿真实验报告一、实验目的(1)学习用multisim实现电路仿真分析的主要步骤。

(2)用仿真手段对电路性能作较深入的研究。

二、实验内容1.晶体管放大器共射极放大器(1)新建一个电路图(图1-1),步骤如下:①按图拖放元器件,信号发生器和示波器,并用导线连接好。

②依照电路图修改各个电阻与电容的参数。

③设置信号发生器的参数为Frequency1khz,Amplitude10mV,选择正弦波。

④修改晶体管参数,放大倍数为40,。

(2)电路调试,主要调节晶体管的静态工作点。

若集电极与发射极的电压差不在电压源的一半上下,就调节电位器,直到合适为止。

(3)仿真(↑图1)(↓图2)2.集成运算放大器差动放大器差动放大器的两个输入端都有信号输入,电路如图1-2所示。

信号发生器1设置成1khz、10mV的正弦波,作为ui1;信号发生器2设置成1khz、20mV的正弦波,作为ui2。

满足运算法则为:u0=(1+Rf/R1)*(R2/R2+R3)*ui2-(Rf/R1)*ui1仿真图如图3图1-2图33.波形变换电路检波电路原理为先让调幅波经过二极管,得到依调幅波包络变化的脉动电流,再经过一个低通滤波器,滤去高频部分,就得到反映调幅波包络的调制信号。

电路图如图1-4,仿真结果如图4.篇二:multisim模拟电路仿真实验报告1.2.3.一、实验目的认识并了解multisim的元器件库;学习使用multisim 绘制电路原理图;学习使用multisim里面的各种仪器分析模拟电路;二、实验内容【基本单管放大电路的仿真研究】仿真电路如图所示。

1.2.修改参数,方法如下:双击三极管,在Value选项卡下单击eDITmoDeL;修改电流放大倍数bF为60,其他参数不变;图中三极管名称变为2n2222A*;双击交流电源,改为1mV,1kz;双击Vcc,在Value选项卡下修改电压为12V;双击滑动变阻器,在Value选项卡下修改Increment值为0.1%或更小。

实验报告一 单极放大电路的设计与仿真

实验报告一 单极放大电路的设计与仿真

实验报告一单极放大电路的设计与仿真1.实验目的(1)使用Multisim软件进行原理图仿真。

(2)掌握仿真软件调整和测量基本放大电路静态工作点的方法。

(3)掌握仿真软件观察静态工作点对输出波形的影响。

(4)掌握利用特性曲线测量三极管小信号模型参数的方法。

(5)掌握放大电路动态参数的测量方法。

2.实验内容1. 设计一个分压偏置的单管共射放大电路,要求信号源频率5kHz(峰值10mV),负载电阻5.1kΩ,电压增益大于50。

2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

3.调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。

在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和β、rbe、rce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和fL、fH值。

3.实验步骤单管共射放大电路示意图图1.1(1)非线性失真分析放大器要求输出信号和输入信号之间是线性关系,不能产生失真。

由于三极管存在非线性,使输出信号产生了非线性失真。

从三极管的输出特性曲线可以看出,当静态工作点处于放大区时,三极管才能处于放大状态;当静态工作点接近饱和区或截止区时,都会引起失真。

放大电路的静态工作点因接近三极管的饱和区而引起的非线性失真称为饱和失真,对于NPN管,输出电压表现为顶部失真。

不过由于静态工作点达到截止区,三极管几乎失去放大能力,输出的电流非常小,于是输出电压波形也非常小,因此有时候很难看到顶部失真的现象,而只能观察到输出波形已经接近于零。

①饱和失真由于饱和失真的静态工作点偏高,也就是IBQ的值偏大,所以调小滑动变阻器至0%时产生饱和失真,信号幅度最大时的输出信号波形图如下:图1.32.截止失真调节滑动变阻器,增加基极偏置电阻,那么基极的电流IB逐渐减小,同时集电极电流也逐渐减小并趋于零,从而使得集电极的电位越发接近直流电源VCC,三极管近似于短路。

虚拟仿真实验报告

虚拟仿真实验报告

电子技术虚拟仿真实验报告专业:班级:姓名:学号:实验一、单级阻容耦合放大电路仿真实验一、实验目的1、进一步熟悉multisim10软件的使用方法。

2、学会用multisim10软件分析单管放大电路的主要性能指标。

3、了解仿真分析法中的直流工作点分析法。

4、掌握测量放大器的电压放大倍数。

5、掌握静态工作点变化对放大器输出波形的影响。

6、了解不同的负载对放大倍数的影响。

7、学会测量放大器输入、输出电阻的方法。

二、实验内容及步骤1.静态工作点的测试(1)在电子仿真软件Multisim 10基本界面的电子平台上组建如图1所示的仿真电路。

双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”R”。

栏改成“1”,将“Label”选项卡的“RefDes”栏改成“P图1单级阻容耦合放大电路仿真电路图R大约在35%左右时,利用直流工作点分析方法分析直流工作点(2)调节P的值。

直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 10自动将电路分析条件设为电感、交流电压源短路,电容断开。

单击Multisim 10菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。

单击Simulate 按钮进行直流工作点分析。

分析结果如图3所示。

列出了单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。

图2 直流工作点分析选项对话框图3 直流工作点分析结果2. 电压放大倍数测试(1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab 仿真实验......................................................................................................................................................- 36 实验一 直流电路............................................................................................................................................ - 36 一、 实验目的........................................................................................................................................ - 36 二、实验内容.......................................................................................................................................... - 36 实验二 直流电路............................................................................................................................................ - 37 实验内容:.............................................................................................................................................. - 37 实验三 正弦稳态............................................................................................................................................ - 40 一、实验目的.......................................................................................................................................... - 40 二、实验内容.......................................................................................................................................... - 40 实验四 交流分析和网络函数........................................................................................................................ - 43 实验五 动态电路............................................................................................................................................ - 45 -
电气工程学院 12 级五班朱蜀仿真实验报告
模拟放大电路及 Matlab 仿真实验
电气工程学院五班 朱蜀 2012302540166
模拟放大电路及 Matlab 仿真实验...........................................................................................................................- 1 实验一 单级放大电路...................................................................................................................................... - 2 实验二 射极跟随器........................................................................................................................................ - 11 一、实验目的.......................................................................................................................................... - 11 二、虚拟实验仪器及器材...................................................................................................................... - 11 三、实验步骤.......................................................................................................................................... - 11 四、思考题........................................................................................................................................................................................................................................................ - 15 一、 实验目的........................................................................................................................................ - 15 二、虚拟实验仪器及器材...................................................................................................................... - 15 三、 实验步骤........................................................................................................................................ - 16 思考题...................................................................................................................................................... - 19 实验四 差动放大电路.................................................................................................................................... - 22 一、实验目的.......................................................................................................................................... - 22 二、虚拟实验仪器及器材...................................................................................................................... - 22 三、实验步骤.......................................................................................................................................... - 22 实验五 OTL 功率放大器................................................................................................................................. - 27 一、实验目的.......................................................................................................................................... - 27 二、虚拟实验仪器及器材...................................................................................................................... - 27 三、 实验步骤........................................................................................................................................ - 27 实验六 集成运算放大器运用的测量............................................................................................................ - 29 一、实验目的.......................................................................................................................................... - 29 二、实验仪器及器材.............................................................................................................................. - 29 三、实验原理与步骤.............................................................................................................................. - 29 实验七 波形发生器应用的测量.................................................................................................................... - 31 一、 实验目的........................................................................................................................................ - 31 二、虚拟实验仪器及器材...................................................................................................................... - 31 三、 实验原理与步骤............................................................................................................................ - 32 -
相关文档
最新文档