人教版八年级数学上册11.1 ---11.3期末复习题(含答案)
2022-2023人教版八年级数学上册《第11章三角形》期末综合复习题(附答案)
2022-2023学年人教版八年级数学上册《第11章三角形》期末综合复习题(附答案)一.选择题1.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1B.2C.3D.42.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2B.3C.6D.不能确定3.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.4.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°5.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°6.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠BDC=∠BAC;③∠ADC=90°﹣∠ABD;④BD平分∠ADC.其中正确的结论有()A.1个B.2个C.3个D.4个7.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β8.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二.填空题9.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=cm.10.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为cm2.11.如图,在△ABC,AD是角平分线,AE是中线.AF是高,如果BC=10cm,那么BE=;∠ABC=40°,∠ACB=60°,那么∠BAD=,∠DAF=.12.如图,△ABC的中线AD与高CE交于点F,AE=EF,FD=2,S△ACF=24,则AB的长为.13.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=.14.如图,在△ABC中,∠A、∠B的平分线相交于点I,若∠C=70°,则∠AIB=度,若∠AIB=155°,则∠C=度.15.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与F A交于点E,则∠E的度数为.16.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.三.解答题17.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.18.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上.(1)若三角形BDE的周长与四边形ACDE的周长相等,求线段AE的长.(2)若三角形ABC的周长被DE分成的两部分的差是2cm,求线段AE的长.19.如图,已知△ABC.(1)画中线AD;(2)画△ABD的高BE及△ACD的高CF.20.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,点F为AC延长线上的一点,连接DF.(1)求∠CBE的度数;(2)若∠F=25°,求证:BE∥DF.21.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.22.已知点A在射线CE上,∠BDA=∠C.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若BD⊥BC,请证明∠DAE+2∠C=90°;(3)如图3,在(2)的条件下,∠BAC=∠BAD,过点D作DF∥BC交射线CE于点F,当∠DFE=8∠DAE时,求∠BAD的度数.(直接写出结果)23.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=70°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q,∠A之间的数量关系.(3)如图③,延长线段BP,QC交于点E,在△BQE中,存在一个内角等于另一个内角的3倍,求∠A的度数.参考答案一.选择题1.解:①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1个.故选:A.2.解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选:A.3.解:B,C,D都不是△ABC的边BC上的高,故选:A.4.解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选:B.5.解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.6.解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,即①正确;∵BD、CD分别平分∠ABC、∠ACF∴∠DCF=∠ACF,∠DBC=∠ABC,∵∠DCF是△BCD的外角,∴∠BDC=∠DCF﹣∠DBC=∠ACF﹣∠ABC=(∠ACF﹣∠ABC)=∠BAC,即②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ABC,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°+∠ABC)=90°﹣∠ABC=90°﹣∠ABD,即③正确;∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠DBC=∠ABC,而∠BDC=∠BAC≠∠ACB,∴∠ADB≠∠CDB,即④错误;∴正确的有3个,故选:C.7.解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.8.解:∵CE为外角∠ACD的平分线,BE平分∠ABC,∴∠DCE=∠ACD,∠DBE=∠ABC,又∵∠DCE是△BCE的外角,∴∠2=∠DCE﹣∠DBE,=(∠ACD﹣∠ABC)=∠1,故①正确;∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠1)=90°+∠1,故②、③错误;∵OC平分∠ACB,CE平分∠ACD,∴∠ACO=∠ACB,∠ACE=ACD,∴∠OCE=(∠ACB+∠ACD)=×180°=90°,∵∠BOC是△COE的外角,∴∠BOC=∠OCE+∠2=90°+∠2,故④正确;故选:C.二.填空题9.解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC﹣AB=2cm,即AC﹣8=2cm,∴AC=10cm,故答案为:10;10.解:∵D为BC中点,根据同底等高的三角形面积相等,∴S△ABD=S△ACD=S△ABC=×4=2(cm2),同理S△BDE=S△CDE=S△BCE=×2=1(cm2),∴S△BCE=2(cm2),∵F为EC中点,∴S△BEF=S△BCE=×2=1(cm2).故答案为1.11.解:∵在△ABC,AD是角平分线,AE是中线.AF是高,BC=10cm,∴BE=5cm,∵∠ABC=40°,∠ACB=60°,∴∠BAC=180°﹣40°﹣60°=80°,∴∠BAD=40°,∵AF是高,∴∠CAF=90°﹣60°=30°,∴∠DAF=40°﹣30°=10°,故答案为:5cm;40°;10°.12.解:延长AD至点M,使MD=FD,连接MB,在△BDM和△CDF中,,∴△BDM≌△CDF(SAS).∴MB=CF,∠M=∠CFD.∴EC∥BM,∵EA=EF,CE是△ABC的高,∴∠EAF=∠EF A=45°,∵EC∥BM,∴∠ABM=∠AEF=90°,∴∠M=∠MAB=45°,∴AB=MB,∴AB=CF,∵CE是△ABC的高,S△ACF=24,∴CF•AE=24,即AB•AE=24,作FN⊥BM于N,则四边形EFNB是矩形,△FMN是等腰直角三角形,∴BE=FN=FM=×2FD=FD=2,∴AE=AB﹣2,∴AB•AE=AB(AB﹣2)=24,∴AB=6(负数舍去),故答案为6.方法二:解:连接BF,作DM⊥CE于M,∵AD是中线,∴BD=CD,∴S△ABD=S△ACD,S△BFD=S△CFD,∴S△ABF=S△ACF=24,∵AE=EF,CE⊥AB,∴∠AFE=45°,∴∠DFM=∠AFE=45°,∵FD=2,∴DM=FM=,∵DM∥BE,BD=CD,∴BE=2DM=2,设AE=EF=x,则AB=2+x,∴S△ABF=AB•EF=(2+x)•x=24,解得x=4,∴AB=2+x=6.故答案为:6.13.解:由三角形的外角性质得,∠1=∠B+∠F+∠C+∠G,∠2=∠A+∠D,由三角形的内角和定理得,∠1+∠2+∠E=180°,所以,∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.故答案为:180°.14.解:连接CI并延长交AB于P.∵AI平分∠CAP,∴∠1=∠2.∵BI平分∠CBP,∴∠3=∠4,∴∠1+∠3=(∠CAB+∠CBA)=×(180°﹣70°)=55°,∴∠7+∠8=∠1+∠3+∠5+∠6=55°+70°=125°.∵∠AIB=155°,∴∠2+∠4=180°﹣155°=25°,又∵∠CAP、∠CBP的平分线,相交于点I,∴∠CAP+∠CBP=2×25°=50°,∴∠ACB=180°﹣50°=130°.15.解:∵BE平分∠ABC,∴∠ABE=.∵AF平分外角∠BAD,∴∠F AB=.又∵∠BAD=∠C+∠ABC=90°+∠ABC,∴∠F AB=.又∵∠F AB=∠E+∠ABE,∴∠E=∠F AB﹣∠ABE=45°+﹣=45°.故答案为:45°.16.解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.三.解答题17.解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.18.解:(1)由图可知三角形BDE的周长=BE+BD+DE,四边形ACDE的周长=AE+AC+DC+DE,又三角形BDE的周长与四边形ACDE的周长相等,D为BC中点,∴BD=DC,BE+BD+DE=AE+AC+DC+DE,即BE=AE+AC,∵AB=10cm,AC=6cm,∴10﹣AE=AE+6,∴AE=2cm.(2)由三角形ABC的周长被DE分成的两部分的差是2,可得方程①BE=AE+AC+2或②BE=AE+AC﹣2.解①得AE=1cm,解②得AE=3cm.故AE长为1cm或3cm.19.解:(1)中线AD如图所示;(2)△ABD的高BE及△ACD的高CF如图所示.20.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.又∵∠F=25°,∴∠F=∠CEB=25°,∴DF∥BE.21.解:(1)作射线AO,∵∠3是△ABO的外角,∴∠1+∠B=∠3,①∵∠4是△AOC的外角,∴∠2+∠C=∠4,②①+②得,∠1+∠B+∠2+∠C=∠3+∠4,即∠BOC=∠A+∠B+∠C;(2)连接AD,同(1)可得,∠F+∠2+∠3=∠DEF③,∠1+∠4+∠C=∠ABC④,③+④得,∠F+∠2+∠3+∠1+∠4+∠C=∠DEF+∠ABC=130°+100°=230°,即∠BAF+∠C+∠CDE+∠F=230°.22.(1)证明:∵AC∥BD,∴∠DAE=∠BDA,∵∠BDA=∠C,∴∠DAE=∠C,∴AD∥BC;(2)证明:如图2,设CE与BD相交于点G,∠BGA=∠BDA+DAE,∵BD⊥BC,∴∠BGA+∠C=90°,∴∠BDA+∠DAE+∠C=90°,∵∠BDA=∠C,∴∠DAE+2∠C=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,△ABD中,∠BAD=180°﹣45°﹣36°=99°.答:∠BAD的度数是99°.23.解:(1)∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵点P是∠ABC和∠ACB的角平分线的交点,∴∠PBC=ABC,∠PCB=ACB,∴∠PBC+∠PCB=55°,∴∠BPC=180°﹣(∠PBC+∠PCB)=125°;(2)∵∠MBC=∠ACB+∠A,∠NCB=∠ABC+∠A,∴∠MBC+∠NCB=∠ACB+∠A+∠ABC+∠A=180°+∠A,∵点Q是∠MBC和∠NCB的角平分线的交点,∴∠QBC=MBC,∠QCB=NCB,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(180°+∠A)=90°+A,∴∠Q=180°﹣(∠QBC+∠QCB)=180°﹣(90°+A)=90°﹣A;(3)∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠BCF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠BC+2∠E,∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=A,∵∠EBQ=∠EBC+∠CBQ=∠ABC+MBC=(∠ABC+∠A+∠ACB)=90°,如果△BQE中,存在一个内角等于另一个内角的3倍,那么分为四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,∠A=2∠E=45°;④∠E=3∠Q,则∠E=67.5°,∠A=2∠E=135°,综合上述,∠A的度数是45°或60°或120°或135°.。
2022-2023学年人教版八年级数学上册《第11章三角形》期末题型分类复习题(附答案)
2022-2023学年人教版八年级数学上册《第11章三角形》期末题型分类复习题(附答案)一.方向角1.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB的度数.二.三角形的角平分线、中线和高2.如图,AD,AE,AF分别是△ABC的中线,角平分线,高,下列各式中错误的是()A.BC=2CD B.∠BAE=∠BACC.∠AFB=90°D.AE=CE3.下列四个图形中,线段BE是△ABC中AC边上的高的图形是()A.B.C.D.4.下列说法中正确的是()A.三角形的三条中线必交于一点B.直角三角形只有一条高C.三角形的中线可能在三角形的外部D.三角形的高线都在三角形的内部三.三角形的面积5.如图,在△ABC中,AB=2,BC=4,△ABC的高AD与CE的比是多少?(提示:利用三角形的面积公式)四.三角形三边关系(1)6.从长为9,6,5,4的4条线段中任取3条线段,不能..构成三角形的是()A.9,6,5B.9,6,4C.9,5,4D.6,5,47.下列长度的线段中,能组成三角形的是()A.4,6,8B.1,2,4C.5,6,12D.2,3,58.已知三角形的三边长为4,x,6.若x是整数,则x的值不可能是()A.10B.4C.6D.89.如图,为估计池塘岸边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,A、B间的距离不可能是()A.12米B.10米C.20米D.8米10.如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多1,AB 与AC的和为11.(1)求AB、AC的长;(2)求BC边的取值范围.五.三角形三边关系(2)11.已知a,b,c是一个三角形的三边长,(1)填入“>、<或=”号:a﹣b﹣c0,b﹣a﹣c0,c+b﹣a0.(2)化简:|a﹣b﹣c|+|b﹣a﹣c|﹣|c+b﹣a|.六.三角形内角和定理(1)12.如图,在△CEF中,∠E=78°,∠F=47°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.47°C.55°D.78°13.如图,人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做蕴含的道理是()A.三角形具有稳定性B.三角形内角和等于180°C.两点之间线段最短D.同位角相等,两直线平行拉杆14.如图,把△ABC沿EF翻折,叠合后的图形如图,若∠A=60°,∠1=95°,则∠2的度数是()A.15°B.20°C.25°D.35°15.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=122°,则∠1+∠2的度数为()A.116°B.100°C.128°D.120°16.如图,线段AB、CD相交于点O,连接AD、CB,∠DAB和∠BCD的平分线AP和CP 相交于点P,则∠P与∠D、∠B之间存在的数量关系为()A.∠P=2(∠B﹣∠D)B.C.D.17.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=125°,则∠A的度数为()A.60°B.80°C.70°D.45°18.如图,在△ABC中,∠A=52°,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC 和∠A1CD的平分线交于点A2,得∠A2,同理可得∠A3,则∠A3=()度.A.26°B.15°C.10°D.6.5°19.如图,点D、E为ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C'处,若∠C=30°,则∠AEC′=()A.60°B.58°C.45°D.43°20.如图,在△ABC中,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=61°,∠ACD=37°,∠ABE=18°.(1)求∠BDC的度数;(2)求∠BFD的度数.21.如图,在△ABC中,若∠1=∠2,DE∥BC.(1)试说明FG∥BE;(2)若BE为∠ABC的角平分线,∠2=30°,∠C=50°,求∠A的度数.22.如图,在△ABC中,CD是AB边上的高,CE平分∠ACB.若∠ACB=80°,∠A比∠B大20°,求∠DCE的度数.23.如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BAC=50°,∠C=60°,求∠DAC和∠BOA的度数.七.三角形内角和定理(2)24.在△ABC中,(1)如图(1).∠ABC、∠ACB的平分线相交于点P.若∠A=60°,则∠BPC=.若∠A=n°,则∠BPC=.(2)如图(2),在ABC中的外角平分线相交于点Q,∠A=n°.求∠BQC的度数.(3)如图(3),△ABC的∠ABC、∠ACB的平分线相交于点P,它们的外角平分线相交于点Q.直接回答:∠BPC与∠BQC具有怎样的数量关系?(4)如图(4).△ABC中的内角平分线相交于点P,外角平分线相交于点Q,延长线段BP.QC交于点E.△BQE中,存在一个内角等于另一个内角的2倍,请直接写出∠A 的度数.25.在学习并掌握了平行线的性质和判定内容后,数学老师安排了自主探究内容一利用平行线有关知识探究并证明:三角形的内角和等于180°.小颖通过探究发现:可以将三角形的三个内角之和转化为一个平角来解决,也就是可以过三角形的一个顶点作其对边的平行线来证明.请将下面(1)中的证明补充完整:(1)已知:如图1,三角形ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF ∥BC.(2)如图2,线段AB、CD相交于点O,连接AD、CB,我们把形如图2这样的图形称之为“8字形”.请利用小颖探究的结论直接写出∠A、∠B、∠C、∠D之间的数量关系:;(3)在图2的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,得到图3,请判断∠P与∠D、∠B之间存在的数量关系,并说明理由.26.如图,在△ABC中,AB∥DG,∠1+∠2=180°.(1)求证:AD∥EF;(2)若DG平分∠ADC,∠2=140°,求∠EFC的度数.八.三角形的外角性质27.如图,在△ABC中,AD平分∠BAC,∠B=65°,∠C=35°,则∠ADB的度数为()A.55°B.65°C.75°D.85°28.在△ABC中,∠A,∠B,∠C的三个外角度数的比为4:5:6,则∠A=()A.96°B.84°C.48°D.24°29.如图,CE是△ABC的外角∠ACD的平分线,若∠B=30°,∠ACE=60°,则∠A=()A.60°B.100°C.90°D.80°30.如图,在△ABC中,∠B=50°,AE是∠BAC的平分线,外角∠ACD=100°,则∠AEC 的度数为()A.65°B.70°C.75°D.50°31.某零件的形状如图所示,按照要求∠B=20°,∠BCD=110°,∠D=30°,那么∠A 的度数是()A.50°B.60°C.70°D.80°九.直角三角形的性质(1)32.如图,在△ABC中,∠C=90°,顶点B在直线PQ上,顶点A在直线MN上,BC平分∠PBA,AC平分∠MAB.(1)求证:PQ∥MN;(2)求∠QBC+∠NAC的度数.十.直角三角形的性质((2)33.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,AD、BE相交于点F.(1)若∠CAD=36°,求∠AEF的度数;(2)试说明:∠AEF=∠AFE.十一.多边形内角与外角34.如图,∠A+∠B+∠C+∠D+∠E等于()A.90°B.120°C.180°D.360°35.一个正多边形,它的一个内角恰好是一个外角的5倍,则这个正多边形的边数是()A.十二B.十一C.十D.九36.如图,是有一个公共顶点O的两个全等正五边形,若将它们的其中一边都放在直线a 上,则∠AOB的度数为()A.108°B.120°C.135°D.144°37.一个多边形的每个外角都是45°,则这个多边形的边数为()A.八B.九C.十D.七38.为了求n边形内角和,下面是老师与同学们从n边形的一个顶点引出的对角线把n边形划分为若干个三角形,然后得出n边形的内角和公式.这种数学的推理方式是()A.归纳推理B.数形结合C.公理化D.演绎推理39.若一个多边形的一个内角为144°,则这个图形为正()边形.A.十一B.十C.九D.八40.如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°41.如图,在四边形ABCD中,∠C=110°,与∠BAD,∠ABC相邻的外角都是120°,则∠α的值为()A.50°B.55°C.60°D.65°42.如图,五边形ABCDE中,∠B=80°,∠C=110°,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.190°C.210°D.180°43.如图,几条线段首尾顺次连接,∠D=28°,则∠A+∠B+∠C+∠E的度数为()A.180°B.208°C.178°D.152°44.一个多边形边数每增加1条时,其内角和()A.增加180°B.增加360°C.不变D.不能确定45.五边形ABCDE中,∠A+∠B+∠E=300°,如图,DP、CP分别平分∠EDC、∠BCD,则∠P=()A.45°B.60°C.90°D.120°46.一个正多边形的内角和是它的外角和的3倍,则这个多边形的边数是()A.8B.9C.7D.647.一个多边形,它的内角和比外角和的4倍多180°,则这个多边形的边数是()A.9B.10C.11D.1248.如图,五边形ABCDE的各内角都相等,且∠1=∠2,∠3=∠4,求x的值.49.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.(1)若∠ABC=76°,求∠AEB的大小;(2)求证:BE∥DF.50.已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,求这个多边形是几边形?并求出这个多边形的内角和.51.如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连接DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.52.如图,∠MON=90°,点A、B分别在直线OM、ON上,BC是∠ABN的平分线.(1)如图1,若BC所在直线交∠OAB的平分线于点D时,尝试完成①、②两题:①当∠ABO=40°时,∠ADB=°;当∠ABO=70°时,∠ADB=°;②当点A、B分别在射线OM、ON上运动时(不与点O重合),试问:随着点A、B的运动,∠ADB的大小会变吗?如果不会,请求出∠ADB的度数;如果会,请求出∠ADB的度数的变化范围;(2)如图2,若BC所在直线交∠BAM的平分线于点C时,将△ABC沿EF折叠,使点C落在四边形ABEF内点C′的位置、求∠BEC′+∠AFC′的度数.十二.作图53.如图,在△ABC中,∠ABC=∠ACB=2∠A,BD是边AC上的高.(1)依题意补全图形;(2)求∠DBC的度数.参考答案一.方向角1.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.二.三角形的角平分线、中线和高2.解:∵AD,AE,AF分别是△ABC的中线,角平分线,高,∴BC=2BD=2DC,∠BAE=∠CAE=∠BAC,∠AFB=∠AFC=90°,故选项A、B、C正确,选项D错误,故选:D.3.解:A、线段BE不是△ABC中AC边上的高,故本选项不符合题意;B、线段BE不是△ABC中AC边上的高,故本选项不符合题意;C、线段BE是△ABC中AC边上的高,本选项符合题意;D、线段BE不是△ABC中AC边上的高,故本选项不符合题意;故选:C.4.解:A、三角形的三条中线必交于一点,本选项说法正确,符合题意;B、直角三角形有三条高,故本选项说法错误,不符合题意;C、三角形的中线不可能在三角形的外部,故本选项说法错误,不符合题意;D、三角形的高线不一定都在三角形的内部,故本选项说法错误,不符合题意;故选:A.三.三角形的面积5.解:S△ABC=AB•CE=BC•AD,∵AB=2cm,BC=4cm,∴×2•CE=×4•AD,∴=.四.三角形三边关系(1)6.解:从这4条线段中任取3条,总的情况有4种:(9,6,5),(9,6,4),(6,5,4),(9,5,4),其中所取3条线段不能构成一个三角形的情况只有一种:(9,5,4),故选:C.7.解:根据三角形任意两边的和大于第三边,得A.4+6>8,故能组成三角形;B.1+2<4,故不能组成三角形;C.5+6<12,故不能组成三角形;D.2+3=5,故不能组成三角形.故选:A.8.解:∵三角形的三边长分别为4,x,6,∴第三边的取值范围为:2<x<10,∵x为整数,∴x的值不可能是10.故选:A.9.解:∵10﹣8<AB<10+8,∴2<AB<18,∴不可能是20米.故选:C.10.解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=1,即AB﹣AC=2①,又AB+AC=11②,①+②得.2AB=12,解得AB=6,②﹣①得,2AC=10,解得AC=5,∴AB和AC的长分别为:AB=6,AC=5;(2)∵AB=6,AC=5,∴1<BC<11.五.三角形三边关系(2)11.解:(1)∵a,b,c是一个三角形的三边长,∴a﹣b﹣c<0,b﹣a﹣c<0,c+b﹣a>0.故答案为:<,<,>;(2)原式=b+c﹣a+a+c﹣b﹣c﹣b+a=a﹣b+c.六.三角形内角和定理(1)12.解:延长EC交AB于点H,如图所示:∵∠E=78°,∠F=47°,∴∠ECF=180°﹣∠E﹣∠F=55°,∵AB∥CF,AD∥CE,∴∠BHE=∠ECF=55°,∠BHE=∠A,∴∠A=55°.故选:C.13.解:人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做的道理是三角形具有稳定性.故选:A.14.解:∵△ABC沿EF翻折,∴∠BEF=∠B'EF,∠CFE=∠C'FE,∴180°﹣∠AEF=∠1+∠AEF,180°﹣∠AFE=∠2+∠AFE,∵∠1=95°,∴∠AEF=(180°﹣95°)=42.5°,∵∠A+∠AEF+∠AFE=180°,∴∠AFE=180°﹣60°﹣42.5°=77.5°,∴180°﹣77.5°=∠2+77.5°,∴∠2=25°,故选:C.15.解:∵△ABC纸片沿DE折叠,∴△AED≌△A′ED,∴∠ADE=∠EDA′,∠AED=∠DEA′,∴∠1+∠2=180°﹣2∠ADE+180°﹣2∠AED=180°﹣(∠ADE+∠AED)+180°﹣(∠ADE+∠AED)=2∠A,∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=122°,∴∠A'BC=∠ABC,∠A'CB=∠ACB,∴∠A'BC+∠A'CB=180°﹣122°=58°,∴∠ABC+∠ACB=2(∠A'BC+∠A'CB)=2×58°=116°,∴∠A=180°﹣116°=64°,∴∠1+∠2=2∠A=2×64°=128°,故选:C.16.解:∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠P AB,∠DCP=∠PCB,∵∠D+∠DAP=∠P+∠DCP①,∠P AB+∠P=∠B+∠PCB②,∴①﹣②得:∠D﹣∠P=∠P﹣∠B,∴2∠P=∠D+∠B,即∠P=(∠D+∠B).故选:B.17.解:在△FBC中,∠BFC=125°.∴∠FBC+∠FCB=180°﹣∠BFC=55°.∵BF平分∠ABC,CF平分∠ACB.∴∠ABC=2∠FBC,∠ACB=2∠FCB.∴∠ABC+∠ACB=2(∠FBC+∠FCB)=110°.∴在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=70°.故选:C.18.解:∵∠BA1是∠ABC的平分线,CA1是∠ACD和∠ACD的平分线,∴∠ABA1=∠A1BC=∠ABC,∠ACA1=∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∴∠A1=∠A,同理可得,∠A2=∠A1,∠A3=∠A2,∴∠A3=∠A=×52°=6.5°,故选:D.19.解:由折叠的性质知:∠C=∠C′=30°.∴∠AEC′=∠C+∠C′=60°.故选:A.20.解:(1)∵∠BDC=∠A+∠ACD,∴∠BDC=61°+37°=98°;(2)∵∠BFD+∠BDC+∠ABE=180°,∴∠BFD=180°﹣∠BDC﹣∠ABE=180°﹣98°﹣18°=64°.21.解:(1)∵DE∥BC,∴∠2=∠EBC.又∵∠1=∠2,∴∠EBC=∠1.∴FG∥BE.(2)由(1)得,∠EBC=∠2=30°.∵BE为∠ABC的角平分线,∴∠ABC=2∠EBC=60°.∴∠A=180°﹣∠ABC﹣∠C=70°.22.解:∵CE平分∠ACB,∠ACB=80°,∴,∠A+∠B=180°﹣80°=100°.∵∠A比∠B大20°,∴∠A﹣∠B=20°,∴∠A=60°,∠B=40°,∵CD是AB边上的高,∴∠CDA=90°,∴∠ACD=90°﹣∠A=30°,∴∠DCE=∠ACE﹣∠ACD=40°﹣30°=10°.23.解:∵AD⊥BC,∴∠ADC=90°,∵∠C=60°,∴∠DAC=90°﹣60°=30°,∵AE平分∠BAC,∠BAC=50°,∴∠BAO=BAC=25°,∵∠ABC=180°﹣∠BAC﹣∠C=70°,BF平分∠ABC,∴∠ABO=ABC=35°,∴∠BOA=180°﹣∠BAO﹣∠ABO=120°故∠DAC和∠BOA的度数分别为30°和120°.七.三角形内角和定理(2)24.解:(1)如图1,∵BP、CP分别是∠ABC、∠ACB的平分线,∴∠ABP=∠PBC=∠ABC,∠ACP=∠PCB=∠ACB,∴∠BPC=180°﹣∠PBC﹣∠PCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°+∠BAC;当∠A=60°时,∠BPC=90°+×60°=120°;当∠A=n°时,∠BPC=90°+n°;故答案为:120°,90°+n°;(2)如图2,∵BQ、CQ分别是∠ABC、∠ACB的外角平分线,∴∠DBQ=∠QBC=∠DBC,∠FCQ=∠QCB=∠FCB,∴∠BQC=180°﹣∠QBC﹣∠QCB=180°﹣(∠DBC+∠FCB)=180°﹣(∠A+∠ACB+∠A+∠ABC)=180°﹣(180°+∠A)=90°﹣∠A=90°﹣n°;(3)如图3,由(1)得,∠BPC=90°+∠A,由(2)得,∠BQC=90°﹣∠A,∴∠BPC+∠BQC=180°;(4)如图4,∵BQ是∠ABC的外角平分线,BP是∠ABC的平分线,∴∠QBE=×180°=90°,∴∠E=180°﹣∠QBE﹣∠Q=180°﹣90°﹣(90°﹣∠A)=∠A,①当∠QBE=2∠E时,即90°=2∠E,∴∠A=2∠E=90°;②当∠QBE=2∠Q时,即90°=2×(90°﹣∠A),∴∠A=90°;③当∠Q=2∠E时,即90°﹣∠A=2×∠A,∴∠A=60°;④当∠E=2∠Q时,即∠A=2(90°﹣∠A),∴∠A=120°;综上所述,当△BQE的一个内角等于另一个内角的2倍时,∠A的度数为60°,90°,120°.25.(1)证明:过A作EF∥BC,∴∠EAB=∠B,∠F AC=∠C,又∠EAB+∠BAC+∠F AC=180°,∴∠B+∠C+∠BAC=180°;(2)解:根据(1)得∠A+∠D+∠AOD=∠C+∠B+∠COB=180°,又∠AOD=∠BOC,∴∠A+∠D=∠C+∠B;故答案为:∠A+∠D=∠C+∠B;(3)解:2∠P=∠D+∠B.根据(2)∠D+∠DAP=∠P+∠DCP①,∠P AB+∠P=∠B+∠PCB②,∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠P AB,∠DCP=∠PCB,∴①﹣②得:∠D﹣∠P=∠P﹣∠B,∴2∠P=∠D+∠B.26.(1)证明:∵AB∥DG,∴∠1=∠DAE,∵∠1+∠2=180°,∴∠2+∠EAD=180°,∴AD∥EF;(2)解:∵∠1+∠2=180°,∠2=140°,∴∠1=40°,∵DG平分∠ADC,∴∠GDC=∠1=40°,∵AB∥DG,∴∠GDC=∠B=40°,∴∠EFB=140°﹣40°=100°,∴∠EFC=80°.八.三角形的外角性质27.解:在△ABC中,AD平分∠BAC,∠B=65°,∠C=35°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣65°﹣35°=80°,∴∠CAD=,∴∠ADB=∠C+∠CAD=35°+40°=75°,故选:C.28.解:设∠A、∠B、∠C的三个外角度数分别为4x、5x、6x,则4x+5x+6x=360°,解得,x=24°,则∠A的外角为4x=96°,∴∠A=84°,故选:B.29.解:∵CE平分∠ACD,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD是△ABC的外角,∠B=30°,∴∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=90°.故选:C.30.解:∵∠B=50°,∠ACD=100°,∴∠BAC=50°,∵AE是∠BAC的平分线,∴∠EAC=25°,∴∠AEC=∠ACD﹣∠EAC=100°﹣25°=75°,故选:C.31.解:延长DC交AB于E,∵∠BCD=∠B+∠CEB,∠BCD=110°,∠B=20°,∴∠CEB=110°﹣20°=90°,∵∠CEB=∠A+∠D,∠D=30°,∴∠A=90°﹣30°=60°,故选:B.九.直角三角形的性质(1)32.(1)证明:∵∠C=90°,∴∠CBA+∠CAB=90°,∵BC平分∠PBA,AC平分∠MAB,∴∠PBA=2∠CBA,∠MAB=2∠CAB,∴∠PBA+∠MAB=180°,∴PQ∥MN;(2)解:∵∠CBA+∠CAB=90°,∠PBA+∠MAB=180°,∴∠QBC+∠NAC=∠CBA+∠CAB+∠PBA+∠MAB=90°+180°=270°.十.直角三角形的性质(2)33.(1)解:∵AD⊥BC,∴∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAD=90°,∴∠ABD=∠CAD=36°,∵BE平分∠ABC,∴∠ABE=∠ABC=18°,∴∠AEF=90°﹣∠ABE=72°;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,∵∠AFE=∠BFD,∴∠AEF=∠AFE.十一.多边形内角与外角34.解:如图,连接BC,∵∠D+∠E+∠EFD=180°,∠FBC+∠FCB+∠BFC=180°,∠DFE=∠BFC,∴∠D+∠E=∠FBC+∠FCB,∴∠A+∠ABE+∠ACD+∠D+∠E=∠A+∠ABE+∠ACD+∠FBC+∠FCB=∠A+∠ABC+∠ACB=180°,故选:C.35.解:设这个正多边形一个外角是x°,由题意得:5x+x=180,∴x=30,∴这个正多边形的边数是360°÷30°=12.故选:A.36.解:如图.由题意得,∠1=∠2=72°,∠4=∠5=108°.∴∠3=180°﹣∠1﹣∠2=36°.∴∠AOB=360°﹣∠4﹣∠5﹣∠3=108°.故选:A.37.解:∵360÷45=8(边),∴多边形的边数为八,故选:A.38.解:探究多边形内角和公式时,从n边形的一个顶点出发引出(n﹣3)条对角线,将n 边形分割成(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和即为n边形的内角和,这一探究过程运用的数学思想是归纳推理思想,故选:A.39.解:设这个正多边形的边数为n,∴(n﹣2)×180°=144°×n,∴n=10.40.解:∵72÷8=9,∴360°÷9=40°.∴每次旋转的角度α=40°.故选:B.41.解:∵在四边形ABCD中,∠C=110°,∴∠C相邻的外角度数为:180°﹣110°=70°,∴∠α=360°﹣70°﹣120°﹣120°=50°.故选:A.42.解:延长AB,DC,∵∠B=80°,∴∠4=100°,∵∠C=110°,∴∠5=70°,∴∠4+∠5=170°,根据多边形的外角和定理可得∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣170°=190°.故选:B.43.解:∵如图可知∠BGD=∠C+∠B,∠GFE=∠E+∠A,又∵∠BGD=∠D+∠GFD,∴∠B+∠C=∠D+∠GFD,又∵∠GFE+∠GFD=180°,∴∠E+∠A+∠B+∠C﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠E=180°+28°=208°.44.解:∵n边形的内角和=(n﹣2)×180°,∴多边形的边数增加1,其内角和增加180°,故选:A.45.解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=(5﹣2)×180°﹣300°=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故答案为:B.46.解:设这个多边形的边数为x.由题意得,180°(x﹣2)=360°×3.∴x=8.故选:A.47.解:根据题意,得(n﹣2)•180°=360°×4+180°,解得:n=11.则这个多边形的边数是11.故选:C.48.解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=(180°﹣108°)÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.49.(1)解:∵∠ABC=76°,BE平分∠ABC,∴=38°,∴∠AEB=180°﹣∠A﹣∠ABE=180°﹣90°﹣38°=52°;∴∠ABC+∠ADC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠CBE=∠ABC,∠ADF=∠CDF=∠ADC,∴∠ABE+∠ADF=(∠ABC+∠ADC)=×180°=90°,又∠ABE+∠AEB=90°,∴∠ADF=∠AEB,∴BE∥DF.50.解:设外角为x°,由题意得:x+4x+30=180,解得:x=30,360°÷30°=12,∴(12−2)×180=1800°,∴这个多边形的内角和是1800°,是十二边形.51.(1)解:∵∠B+∠ADC=180°,∠A+∠B+∠BCD+∠ADC=360°,∴∠A+∠BCD=180°,∵∠A=50°,∴∠BCD=130°,∵CE平分∠BCD,∴∠BCE=∠BCD=65°,∵∠B=85°,∴∠BEC=180°﹣∠BCE﹣∠B=180°﹣65°﹣85°=30°;(2)证明:∵由(1)知:∠A+∠BCD=180°,∴∠A+∠BCE+∠DCE=180°,∵∠CDE+∠DCE+∠1=180°,∠1=∠A,∴∠BCE=∠CDE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠CDE=∠DCE.∴∠OAB=50°,∠ABN=140°,∵BC是∠ABN的平分线,AD是∠OAB的平分线,∴∠DAB=∠OAB=25°,∠ABC=∠ABN=70°,∴∠ADB=∠ABC﹣∠DAB=45°;∵∠ABO=70°,∴∠OAB=20°,∠ABN=110°,∵BC是∠ABN的平分线,AD是∠OAB的平分线,∴∠DAB=∠OAB=10°,∠ABC=∠ABN=55°,∴∠ADB=∠ABC﹣∠DAB=45°;故答案为:45;45;②随着点A、B的运动,∠ADB的大小不变.设∠ABO=α,∵∠MON=90°,∴∠BAD=45°﹣,∠ABC=90°﹣,∴∠ABD=180°﹣∠ABC=90°+,∴∠ADB=180°﹣∠BAD﹣∠ABD=45°;(2)∵∠MON=90°,∴∠ABO+∠BAO=90°,∴∠CAB+∠CBA=(∠BAM+∠ABN)=135°,∴∠C=45°,∴∠CEC′+∠CFC′=2(180°﹣∠C)=270°,∴∠BEC′+∠AFC′=360°﹣(∠CEC′+∠CFC′)=90°.十二.作图53.解:(1)如图,线段BD即为所求;(2)∵∠ABC=∠ACB=2∠A,又∵∠ABC+∠ACB+∠A=180°,∴5∠A=180°,∴∠A=36°,∴∠C=2∠A=72°,∵BD⊥AC,∴∠BDC=90°,∴∠DBC=90°﹣72°=18°.。
人教版八年级上册数学期末考试试卷带答案
人教版八年级上册数学期末考试试题一、单选题1.下列所述图形中,不是轴对称图形的是()A .矩形B .平行四边形C .正五边形D .正三角形2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为()A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.若一个多边形的内角和是540°,则该多边形的边数为 ()A .4B .5C .6D .74.下面因式分解错误的是()A .22()()x y x y x y -=+-B .22816(4)x x x -+=-C .2222()x xy x x y -=-D .222()x y x y +=+5.以下列各组线段为边,能组成三角形的是()A .1cm ,2cm ,4cmB .4cm ,6cm ,8cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm6.解分式方程22311x x x++=--时,去分母后变形为A .()()2231x x ++=-B .()2231x x -+=-C .()()2231x x -+=-D .()()2231x x -+=-7.下列计算正确的是()A .2a +3b =5abB .x 8÷x 2=x 6C .(ab 3)2=ab 6D .(x +2)2=x 2+48.将0.0000025用科学记数法表示为()A .2.5×10﹣5B .2.5×10﹣6C .25×10﹣7D .1.2×10﹣89.若分式242x x -+的值为0,则x 的值为()A .-2B .0C .2D .±210.如图,△ABC 中,AB=5,AC=8,BD 、CD 分别平分∠ABC ,∠ACB ,过点D 作直线平行于BC ,分别交AB 、AC 于E 、F ,则△AEF 的周长为()A.12B.13C.14D.18二、填空题11.计算:|﹣2|﹣20210+(12)﹣1=______________.12.分解因式:xy―x=_____________.13.如图,AC与BD相交于点O,且AB=CD,请添加一个条件_____________,使得△ABO≌△CDO.14.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是__________.15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC =7,则△BDC的面积是________.16.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.17.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上动点,则CMD △周长的最小值为______.18.如图,将一个边长为3的正方形纸片进行分割,部分①的面积是边长为3的正方形纸片的一半,部分②的面积是部分①的一半,部分③的面积是部分②的一半,以此类推,n 部分的面积是______.(用含n 的式子表示)三、解答题19.计算:()()()222x y x y x y x +++--20.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x =.21.解方程:28124x x x -=--.22.如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.23.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?24.如图,已知ABC 中,10cm AB AC ==,8cm BC =,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BPD △与CQP V 是否全等,请说明理由.②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP V 全等.(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC 三边运动,求经过多长时间点P 与点Q 第一次在ABC 的哪条边上相遇.25.已知:22214816x x x A x x x +-=÷--+,221x m B x -=-(1)化简分式A ;(2)若关于x 的分式方程:1A B +=的解是非负数,求m 的取值范围;(3)当x 取什么整数时,分式A 的值为整数.26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,AB BC CD DA ===,60A ∠=︒,点E ,F 分别为线段AD ,CD 上的动点,且60EBF ∠=︒.(1)当BE AD ⊥时,求证:12AE AD =;(2)连接EF ,判断BEF 的形状,并作证明;(3)当AB 的长度为定值时,四边形BEDF 的面积是否为定值?请说明理由.参考答案1.B【分析】由轴对称图形的定义对选项判断即可.【详解】矩形为轴对称图形,不符合题意,故错误;平行四边形不是轴对称图形,符合题意,故正确;正五边形为轴对称图形,不符合题意,故错误;正三角形为轴对称图形,不符合题意,故错误;故选:B .【点睛】本题考查了轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.识别轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【分析】利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点(3,2)关于x 轴对称的点的坐标为(3,-2),故选:D.【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.3.B【分析】根据多边形的内角和公式可直接求出多边形的边数.【详解】设这个多边形的边数为n,根据多边形内角和定理得(n-2)×180°=540°,解得n=5;故选:B.【点睛】本题考查了多边形的内角和定理,熟记多边形的内角和为(n-2)×180°是解题的关键.4.D【分析】分别利用完全平方公式、平方差公式以及提公因式法分解因式,进而判断得出答案.【详解】解:A、x2﹣y2=(x+y)(x﹣y),正确,不合题意;B、x2﹣8x+16=(x﹣4)2,正确,不合题意;C、2x2﹣2xy=2x(x﹣y),正确,不合题意;D、无法进行因式分解,此选项错误,符合题意.故选:D.【点睛】此题主要考查了公式法以及提取公因式法分解因式,熟练应用乘法公式是解题关键.5.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能够组成三角形;D、2+3=5,不能组成三角形.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6.D【详解】解:方程223 11xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.7.B【分析】由相关运算法则计算判断即可.【详解】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.8.B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可.【详解】解:0.0000025=2.5×10-6.故选:B.【点睛】本题考查用科学记数法表示较小的数,注意掌握其一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C【详解】由题意可知:24020 xx=⎧-⎨+≠⎩,解得:x=2,故选C.10.B【分析】根据平行线的性质得到∠EDB=∠DBC,∠FDC=∠DCB,根据角平分线的性质得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EDB=∠EBD,∠FDC=∠FCD,于是得到ED=EB,FD=FC,即可得到结果.【详解】解:∵EF BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【点睛】此题考查了等腰三角形的判定与性质.此题难度适中,注意证得△BDE与△CDF 是等腰三角形是解此题的关键.11.3【分析】先化简绝对值、零指数幂和负整数指数幂,再算加减即可【详解】解:|﹣2|﹣20210+(12)﹣1=2-1+2=3.故答案为:3.【点睛】本题考查了有理数的意义,熟练掌握绝对值、零指数幂和负整数指数幂的意义是解答本题的关键,非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于1.12.x(y-1)【详解】试题解析:xy―x=x(y-1)13.∠A=∠C(答案不唯一)【分析】根据全等三角形的判定定理得出即可.【详解】∵∠AOB、∠COD是对顶角,∴∠AOB=∠COD,又∵AB=CD,∴要使得△ABO≌△CDO,则只需添加条件:∠A=∠C.故答案为:∠A=∠C(答案不唯一)考点:1.全等三角形的判定;2.开放型.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.14.22cm【分析】分两种情况讨论:当4cm为腰时,而449,+<不合题意,舍去,当9cm为腰时,而4+99,>符合题意,从而可得答案.【详解】解:等腰三角形有两条边长为4cm和9cm,当4cm为腰时,而449,+<不合题意,舍去,当9cm为腰时,而4+99,>符合题意,所以三角形的周长为:49922++=(cm),故答案为:22cm【点睛】本题考查的是三角形三边关系的应用,等腰三角形的定义,掌握“等腰三角形的定义及清晰的分类讨论”是解本题的关键.15.7【分析】过点D作DE⊥BC于E,根据角平分线上的点到角的两边距离相等可得DE=AD,然后利用三角形的面积公式列式计算即可得解.【详解】如图,过点D作DE⊥BC于E,∵∠A=90°,BD是∠ABC的平分线,∴DE=AD=2,∴△BDC的面积=12BC•DE=12×7×2=7.故答案为:7【点睛】本题考查角平分线的性质,熟练掌握角平分线上的点到角的两边距离相等的性质是解题关键.16.3【分析】根据题意依据等腰三角形的性质,即可得到BD=12BC,进而分析计算即可得出结论.【详解】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3.故答案为:3.【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.17.10【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴CM=AM,∴CD+CM+DM=CD+AM+DM,∵AM+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=10.故答案为10.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.92n【分析】根据图形和题意,求出①、②、③、④的面积从而可以推出n 部分的面积;【详解】解:19922=⨯=①面积21199222=⨯⨯=②面积3111992222=⨯⨯⨯=③面积411119922222=⨯⨯⨯⨯=④面积以此类推可知n 部分的面积为92n 故答案为:92n【点睛】本题考查图形的变化规律、有理数的混合运算、列代数式,解答本题的关键是明确题意,求出所求式子的值.19.2xy【分析】先根据完全平方公式计算,再合并同类项即可【详解】解:()()()222x y x y x y x +++--=2222222x xy y x y x +++--=2xy .【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.完全平方公式是(a±b)2=a 2±2ab+b 2;平方差公式是(a+b)(a-b)=a 2-b 2.20.22x +1+.【分析】括号内先进行分式的加减运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可.【详解】原式()()()22121x x x x x x +--=⋅--=2x x+,当x =时,原式1=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.21.无解【分析】根据解分式方程的步骤去解答:去分母将分式方程化为整式方程、解整式方程、检验、回答.【详解】解:原方程可化为:812(2)(2)x x x x -=-+-.方程两边同时乘以(2)(2)x x +-,得(2)(2)(2)8x x x x +-+-=.化简,得248x +=.解得2x =.检验:2x=时(2)(2)0x x +-=,所以2x =不是原分式方程的解,所以原分式方程无解.【点睛】本题考查解分式方程,熟练掌握解分式方程的步骤,尤其是检验是解分式方程的重要步骤.22.75°.【分析】由三角形的内角和定理求出∠DCA=75°,再证明△ABC ≌△ADC ,即可得到答案.【详解】∵25DAC ∠=︒,80D ∠=︒,∴∠DCA=75°,∵AB AD =,25BAC DAC ∠=∠=︒,AC=AC ,∴△ABC ≌△ADC ,∴∠BCA=∠DCA=75°.【点睛】此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题.23.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得:312042009x x=-,解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a+35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.(1)①BPD CQP V V ≌,理由见解析;②15cm /s 4Q v =;(2)经过80s 3点P 与点Q 第一次在边AB 上相遇【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度;(2)根据题意结合图形分析发现:由于点Q 的速度快,且在点P 的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个腰长.【详解】解:(1)①∵1s t =,∴313cm BP CQ ==⨯=,∵10cm AB =,点D 为AB 的中点,∴5cm BD =.又∵PC BC BP =-,8cm BC =,∴835cm PC =-=,∴PC BD =.又∵AB AC =,∴B C ∠=∠,在BPD △和CQP V 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BPD CQP ≌△△.②∵P Q v v ≠,∴BP CQ≠若BPD CPQ △≌△,B C ∠=∠,则4cm BP PC ==,5cm CQ BD ==,∴点P ,点Q 运动的时间4s 33BP t ==,∴515cm /s 443Q CQ v t ===.(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯,解得803x =.∴点P 共运动了80380cm 3⨯=.ABC 周长为:1010828cm ++=,若是运动了三圈即为:28384cm ⨯=,∵84804cm AB -=<的长度,∵点P 、点Q 在AB 边上相遇,∴经过80s 3点P 与点Q 第一次在边AB 上相遇.【点睛】此题主要是运用了路程=速度×时间的公式,解题的关即使熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.25.(1)241x x x --(2)12m ≥-且2m ≠(3)当2x =-时,分式的值为4-;当0x =时,分式的值为0;当2x =时,分式的值为4-;当4x =时,分式的值为0【分析】(1)将分式的分子、分母分解因式,将除法化为乘法,约分计算即可;(2)将A 、B 的值代入解方程,根据解是非负数,得到21055m +≥,计算即可;(3)将A 利用完全平方公式及整式加减法添括号法则变形为331x x ---,由值为整数得到x 的值,代入计算.(1)解:()()()21114(4)x x x x A x x ++-=÷--()()()()214411x x x x x x +-=⋅-+-241x x x -=-;(2)解:由题意:2242111x x x m A B x x--+=+=--2242111x x x m x x ---=--,22421x x x m x --+=-,2155x m =+.∵解是非负数,∴21055m +≥∴12m ≥-.∵10x -≠即1x ≠,∴25511m +≠,解得2m ≠,∴12m ≥-且2m ≠;(3)解:241x x A x -=-()21211x x x ---=-2111x x x +=---()21311x x x -+=---331x x =---.当2x =-时,分式的值为4-;当0x =时,分式的值为0;当2x =时,分式的值为4-;当4x =时,分式的值为0.【点睛】此题考查了分式的除法运算法则,解分式方程,正确掌握分式的分解,运算法则,完全平方公式是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD △和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.【点睛】本题考查了全等三角形的判定和性质,直角三角形两锐角互余,掌握全等三角形的判定是本题的关键.27.(1)见解析(2)等边三角形,见解析(3)是定值,见解析【分析】(1)连接BD ,可证ABD △是等边三角形,再由等边三角形的三线合一即可得证;(2)由ABD △是等边三角形,可得FBD ABE ∠=∠,由BCD △是等边三角形,可得60BDC ∠=︒.由ASA 可证得ABE △和DBF 全等,从而BE BF =,即可证明BEF 是等边三角形;(3)由ABE DBF △△≌,可得面积相等,故ABD BEDF S S = 四边形,当AB 的长度为定值时,ABD △的面积为定值,四边形BEDF 的面积也为定值.(1)证明:连接BD .∵AB AD =,60A ∠=︒,∴ABD △是等边三角形.∵BE AD ⊥,∴12AE AD =.(2)解:BEF是等边三角形,理由如下:∵ABD △是等边三角形,∴AB BD =,60ABD ∠=︒,∴60ABE EBD ∠+∠=︒.∵60EBF ∠=︒,∴60FBD EBD ∠+∠=︒,∴FBD ABE ∠=∠,∵AB BC CD ==,∴BD BC CD ==,∴BCD △是等边三角形,∴60BDC ∠=︒.在ABE △和DBF 中,60ABE DBFAB DB A BDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴ABE DBF △△≌(ASA ).∴BE BF =,∴BEF 是等边三角形.(3)解:四边形BEDF 的面积是定值,理由如下:∵ABE DBF △△≌,∵DBF BED ABE BED ABD BEDF S S S S S S =+=+= 四边形∴当AB 的长度为定值时,ABD △的面积为定值,四边形BEDF 的面积也为定值.。
人教版八年级数学上册第11章第2---3节期末复习题(含答案)
11.2三角形-与三角形有关的角一、选择题1.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()。
A.50°B.60°C.70°D.80°3.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是( )A.1000B.1100C.1150D.12004.在△ABC中,∠ABC和∠ACB平分线交于点O,且∠BOC=110°,则∠A度数是( ).A.70°B.55°C.40°D.35°5.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为( ).A.50°B.60°C.70°D.80°6.如图,下列说法正确的是().A.∠B>∠2B.∠2+∠D<180°C.∠1>∠B+∠DD.∠A>∠17.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于( )A.60°B.70°C. 80°D. 90°8.已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形( ).A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形9.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于( )A.130°B.210°C.230°D.310°10.如图,AD=AB=BC,那么∠1和∠2之间的关系是().A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°二、填空题11.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB=________.12.△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是三角形.13.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.14.△ABC的三个外角的度数之比为2:3:4,此三角形最小的内角等于°.15.如图,∠C、∠l、∠2之间的大小关系是____________16.如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为________三、解答题17.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.18.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.19.如图,已知△ABC中,∠A=70°,∠ABC=48°,BD⊥AC于D,CE是∠ACB的平分线,BD与CE交于点F,求∠CBD、∠EFD的度数.20.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE度数.21.如图,已知∠A=60°,∠B=30°,∠C=20°,求∠BDC的度数.22.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,并证明你的结论.参考答案1.B2.B3.C4.C.5.C6.B7.C8.A.9.C10.D11.答案为:70.12.答案为:直角.13.答案为:90°;50°.14.答案为:20.15.答案为:∠1>∠2>∠C16.答案为:6,与它不相邻的两个内角,360017.解:∵AC⊥DE∴∠APE=90°∵∠1=∠A+∠APE,∠A=20°∴∠1=110°∵∠1+∠B+∠D=180°, ∠B=27°∴∠D=43°18.解:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°,∴∠A=×180°=40°,∠ACB=×180°=80°∵CD是∠ACB平分线,∴∠ACD=0.5∠ACB=40°∴∠CDB=∠A+∠ACD=40°+40°=80°19.∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣70°﹣48°=62°.∵BD⊥AC,∴∠BDC=90°.∴∠CBD=90°﹣∠ACB=90°﹣62°=28°;∵CE是∠ACB的平分线,∴∠ACE=∠ACB=×62°=31°.∴∠EFD=∠ACE+∠BDC=31°+90°=121°.故答案为:∠CBD、∠EFD的度数分别为28°,121°.20.解:21.解:∠BDC=110°;22.11.3 多边形及其内角和一、选择题(本大题共10道小题)1. 若正多边形的内角和是540°,则该正多边形的一个外角为A.45°B.60°C.72°D.90°2. 八边形的内角和等于( )A.360°B.1080°C.1440°D.2160°3. 从九边形的一个顶点出发可以引出的对角线的条数为( )A.3 B.4 C.6 D.94. 如图,足球图片正中的黑色正五边形的内角和是A.180°B.360°C.540°D.720°5. 若一个正多边形的每一个外角都等于40°,则它是( )A.正九边形B.正十边形C.正十一边形D.正十二边形6.若一个多边形的一个顶点处的所有对角线把多边形分成4个三角形,则这个多边形的边数为( )A.3 B.4C.5 D.67. 下列哪一个度数可以作为某一个多边形的内角和 ( )A.240°B.600°C.540°D.2180°8. 一个正多边形的每个外角不可能等于( )A.30°B.50°C.40°D.60°9.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A.7 B.7或8C.8或9 D.7或8或910. 如图,已知长方形ABCD,一条直线将长方形ABCD分割成两个多边形.若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共7道小题)11. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.12. 如图,若A表示四边形,B表示正多边形,则阴影部分表示________.13. 已知一个多边形的内角和是外角和的,则这个多边形的边数是.14.如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.15. 有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A处行走的路程是.16. 模拟某人为机器人编制了一段程序(如图),如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.17. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则∠1=________°.三、解答题(本大题共4道小题)18.如图,△ABC是正三角形,剪去三个边长均不相等的小正三角形(即△ADN,△BEF ,△CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?19. 某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.20. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?21.如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学11.3 多边形及其内角和同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.故选C.2. 【答案】B3. 【答案】 C [解析] 从九边形的一个顶点出发,可以向与这个顶点不相邻的6个顶点引对角线,即能引出6条对角线.4. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180°=540°,故选C.5. 【答案】 A [解析]由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.6. 【答案】D [解析] 设这个多边形的边数为n,则n-2=4,解得n=6.7. 【答案】C [解析] ∵多边形内角和公式为(n-2)×180°,∴多边形内角和一定是180°的倍数.∵540°=3×180°,∴540°可以作为某一个多边形的内角和.8. 【答案】 B [解析] 设正多边形的边数为n,则当30°n=360°时,n=12,故A可能;当50°n=360°时,n=365,不是整数,故B不可能;当40°n=360°时,n=9,故C可能;当60°n=360°时,n=6,故D可能.9. 【答案】 D [解析] 设内角和为1080°的多边形的边数为n,则(n-2)×180°=1080°,解得n=8.则原多边形的边数为7或8或9.故选D.10. 【答案】D[解析] 一条直线将长方形ABCD分割成两个多边形的情况有以下三种:(1)直线不经过原长方形的顶点,如图①②,此时长方形被分割为一个五边形和一个三角形或两个四边形,∴M+N=540°+180°=720°或M+N=360°+360°=720°;(2)直线经过原长方形的一个顶点,如图③,此时长方形被分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;(3)直线经过原长方形的两个顶点,如图④,此时长方形被分割为两个三角形,∴M+N=180°+180°=360°.二、填空题(本大题共7道小题)11. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n ,则(n -2)×180°=135°×n ,解得n =8. 方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.12. 【答案】正方形13. 【答案】 514. 【答案】120 [解析] 由题意得360°÷36°=10,则他第一次回到出发地点A 时,一共走了12×10=120(米).故答案为120.15. 【答案】30米 [解析] 360°÷24°=15,利用多边形的外角和等于360°,可知机器人回到A 处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2=30(米).16. 【答案】16 [解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8,则所走的路程是4×8=32(cm),故所用的时间是32÷2=16(s).17. 【答案】67.5三、解答题(本大题共4道小题)18. 【答案】解:(1)六边形DEFGMN的各个内角都是120°.理由:∵△ADN,△BEF,△CGM都是正三角形,∴它们的每个内角都是60°,即六边形DEFGMN的每个外角都是60°.∴六边形DEFGMN的每个内角都是120°.(2)六边形DEFGMN不是正六边形.理由:∵三个小正三角形(即△ADN,△BEF,△CGM)的边长均不相等,∴DN,EF,GM均不相等.∴六边形DEFGMN不是正六边形.19. 【答案】解:(1)设这个多边形的一个内角的度数是x°,则与其相邻的外角度数是x°+12°.由题意,得x+x+12=180,解得x=140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180°-140°=40°,所以这个正多边形的边数是=9.20. 【答案】解:(1)∵n边形的内角和是(n-2)×180°,∴多边形的内角和一定是180°的整倍数.∵2020÷180=11……40,∴多边形的内角和不可能为2020°.(2)设小华求的是n边形的内角和,这个内角为x°,则0<x<180.根据题意,得(n-2)×180°-x+(180°-x)=2020°,解得n=12+2x+40 180.∵n为正整数,∴2x+40必为180的整倍数.又∵0<x<180,∴40180<2x+40180<400180.∴n=13或14.∴小华求的是十三边形或十四边形的内角和.21. 【答案】解:延长ED,BC相交于点G.在四边形ABGE中,∠G=360°-(∠A+∠B+∠E)=50°,∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=12∠G=12×50°=25°.。
【教材答案】人教版八年级数学上册课本练习题答案()
第11章习题11.1第1题答案图中共6个三角形分别是:△ABD,△ADE,△AEC,△ABE,AADC,△ABC习题11.1第2题答案2种四根木条每三条组成一组可组成四组,分别为:10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形习题11.1第3题答案如下图所示,中线AD、高AE、角平分线AF习题11.1第4题答案(1)EC;BC(2)∠DAC;∠BAC(3)∠AFC(4)1/2BC·AF习题11.1第5题答案C习题11.1第6题答案(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm) 因为6+6>8所以此时另两边的长为6cm,8cm(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm)因为6+7>7所以北时另两边的长分别为7cm,7cm习题11.1第7题答案(1) 当等腰三角形的腰长为5时,三角形的三边为5,5,6因为5+5>6所以三角形周长为5+5+6=16当等腰三角形的腰长为6时,三角形的三边为6,6,5 因为6+5>6所以三角形周长为6+6+5=17所以这个等腰三角形的周长为16或17(2)22习题11.1第8题答案1:2习题11.1第9题答案解:∠1=∠2,理由如下:因为AD平分∠BAC所以∠BAD=∠DAC又DE//AC所以∠DAC=∠1又DF//AB所以∠DAB=∠2所以∠1=∠2习题11.1第10题答案四边形木架钉1根木条五边形木架钉2根木条六边形木架钉3根木条习题11.2第1题答案(1)x=33(2)x=60(3)x=54(4)x=60习题11.2第2题答案(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了习题11.2第3题答案∠A=50°,∠B=60°,∠C=70°习题11.2第4题答案70°习题11.2第5题答案解:∵AB//CD,∠A=40°∴∠1=∠A=40°∵∠D=45°∴∠2=∠1+∠D=40°+45°=85°习题11.2第6题答案解:∵AB//CD,∠A=45°∴∠1=∠A=45°∵∠1=∠C+∠E∴∠C+∠E=45°又∵∠C=∠E∴∠C+∠C=45°∴∠C=22.5°习题11.2第7题答案解:依题意知:∠ABC=80°-45°-35°∠BAC= 45°+15°=60°,∠C =180°-35°-60°=85°,即∠ACB=85°习题11.2第8题答案解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°习题11.2第9题答案解:因为∠A+∠ABC+∠ACB=180°,∠A=100°所以∠ABC+∠ACB=180°-∠A=180°-100°=80°又因为∠1=∠2,∠3=∠4所以∠2=1/2∠ABC,∠4=1/2∠ACB所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x=180°-(∠2+∠4) =180°-40°=140°所以x=140°习题11.2第10题答案180°;90°;90°习题11.2第11题答案证明:因为∠BAC是△ACE的一个外角所以∠BAC=∠ACE+∠E又因为CE平分∠ACD所以∠ACE= ∠DCE所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角所以∠DCE=∠B+∠E所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E习题11.3第1题答案如下图所示,共9条习题11.3第2题答案(1)x=120(2)x=30(3)x=75习题11.3第3题答案多边形的边数 3 4 5 6 8 12 内角和180°360°540°720°1080°1800°外角和360°360°360°360°360°360°习题11.3第4题答案108°;144°习题11.3第5题答案这个多边形是九边形习题11.3第6题答案(1)三角形;(2)解:设这个多边形是n边形,由题意得:(n-2)×180=2×360解得n=6所以这个多边形为六边形习题11.3第7题答案AB//CD,BC//AD(理由略)提示:由四边形的内角和可求得同旁内角互补习题11.3第8题答案(1)是.理由如下:由已知BC⊥CD,可得∠BCD=90°又因为∠1=∠2=∠3所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线所以CO是△BCD的高。
人教版八年级数学上册11.1 ---11.3期末复习题(含答案)
11.1 与三角形有关的线段考点1 三角形的认识及分类1.三角形是指()A.由三条线段所组成的封闭图形B.由不在同一直线上的三条直线首|尾顺次相接组成的图形C.由不在同一直线上的三条线段首|尾顺次相接组成的图形D.由三条线段首|尾顺次相接组成的图形2.如图中三角形的个数是()A.6B.7C.8D.93.在△ABC中,∠B =2∠C,∠A =30° ,那么这个三角形是( ) A.锐角三角形B.直角三角形C.钝角三角形D.无法判断4.三角形按角分类可以分为 ( )A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形D.以上答案都不正确考点2 三角形的稳定性5.以下图形中具有稳定性的是 ( )A .直角三角形B .正方形C .长方形D .平行四边形6.以下图形中 ,不是运用三角形的稳定性的是 ( )A .房屋顶支撑架B .自行车三脚架C .拉闸门D .木门上钉一根木条7.如图 ,工人师傅做了一个长方形窗框ABCD ,E ,F ,G ,H 分别是四条边上的中点 ,为了稳固 ,需要在窗框上钉一根木条 ,这根木条不应钉在( )A .G ,H 两点处B .A ,C 两点处C .E ,G 两点处D .B ,F 两点处考点3 三角形的三边关系8.以下每组数分别表示三根木棒的长度,将它们首|尾连接后,能摆成三角形的一组是( ) A .3 ,3 ,6B .1 ,5 ,5C .1 ,2 ,3D .8 ,3 ,49.如图 ,在△ABC 中 ,AC =5 ,中线AD =7 ,那么AB 边的取值范围是( )A .1AB 29<<B .4AB 24<<C .5AB 19<<D .9AB 19<<10.一个三角形的两边长为4和7 ,第三边长为奇数 ,那么第三边长可能为 ( ) A .5或7B .5、7或9C .7D .1111.三角形的两边长分别为3和5 ,那么周长C 的范围是 ( )A .615C <<B .616C <<C .1113C <<D .1016C <<12.等腰△ABC 的两边长分别为2和3 ,那么等腰△ABC 的周长为()A .7B .8C .6或8D .7或813.a b c 、、是ABC ∆的三边长 ,化简a b c b a c +----的值是 ( )A .2c -B .22b c -C .22a c -D .22a b -考点4 三角形的高线14.下面四个图形中 ,线段BE 是⊿ABC 的高的图是 ( )A .B .C .D .15.如图 ,△ABC 的面积计算方法是 ( )A .AC •BDB .12BC •EC C .12AC •BD D .12AD •BD 16.以下各图中 ,AC 边上的高画正确的选项是 ( )A .B .C .D .考点5 三角形的中线17.如图AD 是△ABC 的中线 ,那么BD = ( )A .ADB .AC C .BCD .CD18.如图 ,AD 是ABC ∆的中线 ,5AB = ,3AC = ,ABD ∆的周长和ACD ∆的周长差为( )A .6B .3C .2D .不确定19.如图 ,在ABC 中 ,点D 、E 分别为BC 、AD 的中点 ,且26ABC S cm =△ ,那么ABE S △的值为 ( )A .20.5cmB .21.5cmC .22cmD .23cm20.如图 ,, , A B C 分别是线段1A B 、1BC 、1C A 的中点 ,假设111A B C △的面积是20 ,那么ABC 的面积是 ( )A .4B .103C .207D .5 考点6 三角形的角平分线21.如图 ,△ABC 中 ,AD 为△ABC 的角平分线 ,BE 为△ABC 的高 ,∠C =70° ,∠ABC =48° ,那么∠3是 ( )A .59°B .60°C .56°D .22°22.如图 ,在ABC 中 ,∠A =60° ,∠ABD 和∠ACE 是ABC 的外角 ,∠ACE =110° ,BF 平分∠ABD ,那么∠FBE = ( )A.105°B.110°C.115°D.120°23.如下图 ,在△ABC中,∠A=36° ,∠C=72° ,∠ABC的平分线交AC于D ,那么图中共有等腰三角形 ( )A.0个B.1个C.2个D.3个答案1.C2.C3.C4.A5.A6.C7.C8.B9.D10.B11.D12.D13.B14.A15.C16.D17.D18.C19.B20.C21.A22.C23.D11.2 与三角形有关的角一、选择题(本大题共10道小题)1. 在一个直角三角形中,有一个锐角等于35° ,那么另一个锐角的度数是() A.75° B.65° C.55° D.45°2. 如图,在⊿ABC中,∠ACB=90° ,CD∥AB ,∠ACD=40° ,那么⊿B的度数为()A. 40°B. 50°C. 60°D. 70°3. 如图,在⊿ABC中,⊿C=90° ,⊿A=30° ,BD平分⊿ABC,那么⊿BDC的度数为()A.30° B.40° C.50° D.60°4. 如图,CE是⊿ABC的外角⊿ACD的平分线,假设⊿B=35° ,∠ACE=60° ,那么∠A=()A. 35°B. 95°C. 85°D. 75°5. 在⊿ABC中,假设⊿C=40° ,⊿B=4⊿A ,那么⊿A的度数是()A.30° B.28° C.26° D.40°6. 在Rt⊿ABC中,⊿C=90° ,⊿A-⊿B=50° ,那么⊿A的度数为()A.80° B.70° C.60° D.50°7. 如图,在⊿ABC中,D是⊿ABC和⊿ACB的平分线的交点,⊿A=80° ,⊿ABD=30° ,那么⊿BDC的度数为()A.100° B.110° C.120° D.130°8. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC =42°,∠A =60°,那么∠BFC的度数为()A.118°B.119°C.120°D.121°9. 如图,在⊿CEF中,⊿E=80° ,⊿F=50° ,AB⊿CF ,AD⊿CE ,连接BC ,CD ,那么⊿A的度数是()A.45° B.50° C.55° D.80°10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.假设∠A减小x°,∠B增加y°,∠C增加z°,那么x,y,z之间的关系是()A.x =y +zB.x =y -zC.x =z -yD.x +y +z =180二、填空题(本大题共6道小题)11. 如图,∠CAE是⊿ABC的外角,AD∥BC ,且AD是⊿EAC的平分线.假设⊿B =71° ,那么⊿BAC=________.12. 如图,在⊿ABC中,⊿ABC ,⊿ACB的平分线相交于点O ,OD⊿OC交BC于点D.假设⊿A=80° ,那么⊿BOD=________°.13. 如图,⊿AOB=50° ,P是OB上的一个动点(不与点O重合) ,当⊿A的度数为________时,⊿AOP为直角三角形.14. 如图,在四边形ABCD中,AB⊿CD ,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.假设⊿1=⊿2=44° ,那么⊿B=________°.15. 如图,在⊿ABC中,BO平分⊿ABC,CO平分⊿ACB.假设⊿A=70° ,那么⊿BOC=________°.16. 定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为"特征三角形〞,其中α称为"特征角〞.如果一个"特征三角形〞的一个内角为48° ,那么"特征角〞α的度数为____________.三、解答题(本大题共4道小题)17. 如图,AD是⊿ABC的角平分线,⊿B=35° ,⊿BAD=30° ,求⊿C的度数.18. 如图,A处在B处的北偏西45°方向,C处在B处的北偏东15°方向,C处在A 处的南偏东80°方向,求⊿ACB的度数.19. 如图,在△ABC中,点E在AC上,∠AEB =∠ABC.(1)如图①,作∠BAC的平分线AD ,与CB ,BE分别交于点D ,F.求证:∠EFD =∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD ,交CB的延长线于点D ,反向延长AD交BE 的延长线于点F ,那么(1)中的结论是否仍然成立?为什么?20. 如图,AD ,AE分别是⊿ABC的角平分线和高.(1)假设⊿B=50° ,⊿C=60° ,求⊿DAE的度数;(2)假设⊿C>⊿B ,猜测⊿DAE与⊿C-⊿B之间的数量关系,并加以证明.人教版八年级|数学11.2 与三角形有关的角培优训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B【解析】∵AB∥CD,∴∠A=∠ACD=40° ,∵∠ACB=90° ,∴∠B =90°-∠A=90°-40°=50°.3. 【答案】D4. 【答案】C【解析】∵CE是△ABC的外角∠ACD的平分线,∠ACE=60° ,∴∠ACD=2∠ACE=120° ,∵∠A+∠B=∠ACD,∠B=35° ,∴∠A=∠ACD-∠B =120°-35°=85°.5. 【答案】B[解析] ⊿⊿A+⊿B+⊿C=180° ,⊿C=40° ,⊿B=4⊿A ,⊿5⊿A+40°=180°.⊿⊿A=28°.6. 【答案】B[解析] ⊿⊿C=90° ,⊿⊿A+⊿B=90°.又⊿⊿A-⊿B=50° ,⊿2⊿A=140°.⊿⊿A=70°.7. 【答案】D[解析] ⊿BD是⊿ABC的平分线,⊿⊿DBC=⊿ABD=30° ,⊿ABC=2⊿ABD=2×30°=60°.⊿⊿ACB=180°-⊿A-⊿ABC=40°.⊿CD平分⊿ACB ,⊿⊿DCB=12⊿ACB=12×40°=20°.⊿⊿BDC=180°-⊿DCB-⊿DBC=130°.8. 【答案】C[解析] ∵∠A =60°,∠ABC =42°,∴∠ACB =180°-∠A -∠ABC =78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC =∠ABC =21°,∠FCB =∠ACB =39°,∴∠BFC =180°-∠FBC -∠FCB =120°.应选C.9. 【答案】B[解析] 如图,连接AC并延长交EF于点M.⊿AB⊿CF ,⊿⊿3=⊿1.⊿AD⊿CE ,⊿⊿2=⊿4.⊿⊿BAD=⊿3+⊿4=⊿1+⊿2=⊿FCE.⊿⊿FCE=180°-⊿E-⊿F=180°-80°-50°=50° ,⊿⊿BAD=⊿FCE=50°.10. 【答案】A[解析] 根据题意,得∠A +∠ABC +∠ACB =180°①,变化后的三角形的三个角的度数分别是∠A -x°,∠ABC +y°,∠ACB +z°,∴∠A -x° +∠ABC +y° +∠ACB +z° =180°②,①②联立整理可得x =y +z.二、填空题(本大题共6道小题)11. 【答案】38°【解析】∵AD∥BC ,∠B=71° ,∴∠EAD=∠B=71°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=142° ,∴∠BAC=180°-∠EAC=180°-142°=38°.12. 【答案】4013. 【答案】90°或40°[解析] 假设⊿AOP为直角三角形,那么分两种情况:⊿当⊿A=90°时,⊿AOP为直角三角形;⊿当⊿APO=90°时,⊿AOP为直角三角形,此时⊿A=40°.14. 【答案】114[解析] 因为AB⊿CD ,所以⊿BAB′=⊿1=44°.由折叠的性质知⊿BAC=12⊿BAB′=22°.在⊿ABC中,⊿B=180°-(⊿BAC+⊿2)=114°.15. 【答案】125[解析] ⊿BO平分⊿ABC ,CO平分⊿ACB ,⊿⊿ABO=⊿CBO ,⊿BCO=⊿ACO.⊿⊿CBO+⊿BCO=12(⊿ABC+⊿ACB)=12(180°-⊿A)=12(180°-70°)=55°.⊿在⊿BOC中,⊿BOC=180°-55°=125°.16. 【答案】48°或96°或88°[解析] 当"特征角〞为48°时,即α=48°;当β=48°时,那么"特征角〞α=2×48°=96°;当第三个角为48°时,α+12α+48°=180° ,解得α=88°.综上所述, "特征角〞α的度数为48°或96°或88°.三、解答题(本大题共4道小题)17. 【答案】解:⊿AD是⊿ABC的角平分线,⊿⊿BAC=2⊿BAD=2×30°=60°.⊿⊿C=180°-⊿B-⊿BAC=180°-35°-60°=85°.18. 【答案】解:由题意知⊿ABN=45° ,⊿CBN=15° ,⊿MAC=80° ,所以⊿ABC=60°.因为AM⊿BN ,所以⊿MAB=⊿ABN=45° ,所以⊿BAC=80°-45°=35°.所以⊿ACB=180°-60°-35°=85°.19. 【答案】解:(1)证明:∵AD平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC仍然成立.理由:∵AD平分∠BAG ,∴∠BAD =∠GAD.∵∠F AE =∠GAD ,∴∠F AE =∠BAD.∵∠EFD =∠AEB -∠F AE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.20. 【答案】解:(1)在⊿ABC中,⊿⊿B=50° ,⊿C=60° ,⊿⊿BAC=70°.⊿AD是⊿ABC的角平分线,⊿⊿BAD=⊿DAC=12⊿BAC=35°.⊿AE是BC上的高,⊿⊿AEB=90°.⊿⊿BAE=90°-⊿B=40°.⊿⊿DAE=⊿BAE-⊿BAD=5°.(2)⊿DAE=12(⊿C-⊿B).证明:⊿AE是⊿ABC的高,⊿⊿AEC=90°.⊿⊿EAC=90°-⊿C.⊿AD是⊿ABC的角平分线,⊿⊿DAC=12⊿BAC.⊿⊿BAC=180°-⊿B-⊿C ,⊿⊿DAC=12(180°-⊿B-⊿C).⊿⊿DAE =⊿DAC -⊿EAC=12(180°-⊿B -⊿C)-(90°-⊿C)=12(⊿C -⊿B).11.3 多边形及其内角和一、选择题 (本大题共10道小题 )1. 假设正多边形的内角和是540° ,那么该正多边形的一个外角为A .45°B .60°C .72°D .90°2. 八边形的内角和等于( )A .360°B .1080°C .1440°D .2160°3. 从九边形的一个顶点出发可以引出的对角线的条数为( )A .3B .4C .6D .94. 如图 ,足球图片正中的黑色正五边形的内角和是A .180°B .360°C .540°D .720°5. 假设一个正多边形的每一个外角都等于40° ,那么它是( )A .正九边形B .正十边形C .正十一边形D .正十二边形6. 假设一个多边形的一个顶点处的所有对角线把多边形分成4个三角形 ,那么这个多边形的边数为( )A .3B .4C .5D .67. 以下哪一个度数可以作为某一个多边形的内角和 ( )A.240° B.600°C.540° D.2180°8. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°9. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080° ,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或910. 如图,长方形ABCD,一条直线将长方形ABCD分割成两个多边形.假设这两个多边形的内角和分别为M和N ,那么M +N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共7道小题)11. 一个正多边形的一个外角为45° ,那么这个正多边形的边数是________.12. 如图,假设A表示四边形,B表示正多边形,那么阴影局部表示________.13. 一个多边形的内角和是外角和的,那么这个多边形的边数是.14. 如图,小明从点A出发,沿直线前进12米后向左转36° ,再沿直线前进12米,又向左转36°……照这样走下去,他第|一次回到出发地点A时,一共走了________米.15. 有一程序,如果机器人在平地上按如下图的步骤行走,那么机器人回到A处行走的路程是.16. 模拟某人为机器人编制了一段程序(如图) ,如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.17. 如图,假设该图案是由8个形状和大小相同的梯形拼成的,那么⊿1=________°.三、解答题(本大题共4道小题)18. 如图,⊿ABC是正三角形,剪去三个边长均不相等的小正三角形(即⊿ADN ,⊿BEF ,⊿CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?19. 某单位修建正多边形花台,正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.20. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:"这个凸多边形的内角和是2021°.〞小明说:"不可能吧!你错把一个外角当作内角了!〞请根据俩人的对话,答复以下问题:(1)凸多边形的内角和为2021° ,小明为什么说不可能?(2)小华求的是几边形的内角和?21. 如图,在五边形ABCDE中,⊿A+⊿B+⊿E=310° ,CF平分⊿DCB ,CF的反向延长线与⊿EDC处的外角的平分线相交于点P ,求⊿P的度数.人教版八年级|数学11.3 多边形及其内角和同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2 =5 , ∵多边形的外角和都是360°, ∴多边形的每个外角 =360÷5 =72°.应选C .2. 【答案】B3. 【答案】C [解析] 从九边形的一个顶点出发 ,可以向与这个顶点不相邻的6个顶点引对角线 ,即能引出6条对角线.4. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180° =540° , 应选C .5. 【答案】A [解析] 由于正多边形的外角和为360° ,且每一个外角都相等 ,因此边数=360°40°=9. 6. 【答案】D[解析] 设这个多边形的边数为n ,那么n -2=4 ,解得n =6. 7. 【答案】C [解析] ⊿多边形内角和公式为(n -2)×180° ,⊿多边形内角和一定是180°的倍数.⊿540°=3×180° ,⊿540°可以作为某一个多边形的内角和.8. 【答案】B [解析] 设正多边形的边数为n ,那么当30°n =360°时 ,n =12 ,故A可能;当50°n =360°时 ,n =365 ,不是整数 ,故B 不可能;当40°n =360°时 ,n =9 ,故C 可能;当60°n =360°时 ,n =6 ,故D 可能.9. 【答案】D [解析] 设内角和为1080°的多边形的边数为n ,那么(n -2)×180°=1080° ,解得n =8.那么原多边形的边数为7或8或9.应选D.10. 【答案】D[解析] 一条直线将长方形ABCD分割成两个多边形的情况有以下三种: (1)直线不经过原长方形的顶点,如图①②,此时长方形被分割为一个五边形和一个三角形或两个四边形,∴M +N =540° +180° =720°或M +N =360° +360° =720°;(2)直线经过原长方形的一个顶点,如图③,此时长方形被分割为一个四边形和一个三角形,∴M +N =360° +180° =540°;(3)直线经过原长方形的两个顶点,如图④,此时长方形被分割为两个三角形,∴M +N =180° +180° =360°.二、填空题(本大题共7道小题)11. 【答案】8【解析】由正多边形的每一个外角都是45° ,其外角和为360° ,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45° ,所以这个正多边形的每一个内角都是180°-45°=135° ,设正多边形的边数为n ,那么(n-2)×180°=135°×n ,解得n=8.方法指导设正多边形的边数为n ,正多边形的外角和为360° ,内角和为(n-2)×180° ,每个内角的度数为180°× (n-2 )n.12. 【答案】正方形13. 【答案】514. 【答案】120[解析] 由题意得360°÷36°=10 ,那么他第|一次回到出发地点A时,一共走了12×10=120(米).故答案为120. 15. 【答案】30米[解析] 360°÷24° =15 ,利用多边形的外角和等于360° ,可知机器人回到A处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2 =30(米).16. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8 ,那么所走的路程是4×8=32(cm) ,故所用的时间是32÷2=16(s).17. 【答案】67.5三、解答题 (本大题共4道小题 )18. 【答案】解:(1)六边形DEFGMN 的各个内角都是120°.理由:⊿⊿ADN ,⊿BEF ,⊿CGM 都是正三角形 ,⊿它们的每个内角都是60° ,即六边形DEFGMN 的每个外角都是60°. ⊿六边形DEFGMN 的每个内角都是120°.(2)六边形DEFGMN 不是正六边形.理由:⊿三个小正三角形(即⊿ADN ,⊿BEF ,⊿CGM)的边长均不相等 , ⊿DN ,EF ,GM 均不相等.⊿六边形DEFGMN 不是正六边形.19. 【答案】解:(1)设这个多边形的一个内角的度数是x ° ,那么与其相邻的外角度数是x ° +12°. 由题意 ,得x +x +12 =180 ,解得x =140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180° -140° =40° ,所以这个正多边形的边数是=9.20. 【答案】解:(1)⊿n 边形的内角和是(n -2)×180° ,⊿多边形的内角和一定是180°的整倍数.⊿2021÷180=11……40 ,⊿多边形的内角和不可能为2021°.(2)设小华求的是n 边形的内角和 ,这个内角为x° ,那么0<x <180.根据题意 ,得(n -2)×180°-x +(180°-x)=2021° ,解得n =12+2x +40180.⊿n 为正整数 ,⊿2x +40必为180的整倍数.又⊿0<x <180 ,⊿40180<2x +40180<400180.⊿n =13或14.⊿小华求的是十三边形或十四边形的内角和.21. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中 ,⊿G =360°-(⊿A +⊿B +⊿E)=50° ,⊿P =⊿FCD -⊿CDP =12(⊿DCB -⊿CDG)=12⊿G =12×50°=25°.。
2021最新人教版 八年级 上册 数学11.1 --11.3基础练习题含答案
人教版八年级上册数学11.1 --11.3基础练习题11.1与三角形有关的线段一、选择题1.下面几个图形不具有稳定性的是()A. B.C. D.2.已知a,b,c是△ABC的三条边长,化简|a+b−c|−|c−a−b|的结果为()A. 2a+2b−2cB. 2a+2bC. 2cD. 03.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A. 4B. 5C. 6D. 94.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A. 1种B. 2种C. 3种D. 4种5.下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,106.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E,F为AB上一点,CF⊥AD于H,下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH是△ACD边AD上的高;④AH是△ACF的角平分线和高.A. 1个B. 2个C. 3个D. 4个7.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A. 5米B. 10米C. 15米D. 20米8.若a、b、c为△ABC的三边长,且满足|a−4|+√b−2=0,则c的值可以为()A. 5B. 6C. 7D. 89.下列说法错误的是()A. 一般锐角三角形的三条高、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高在三角形外部C. 直角三角形只有一条高D. 任意三角形都有三条高、三条中线、三条角平分线10.三角形的高、中线和角平分线都是()A. 直线B. 射线C. 线段D. 以上答案都不对11.如图,在△ABC中,AE是和AF分别是BC边上的中线和高线,AD是∠BAC的平分线.则下列线段中最短的是()A. AEB. ADC. AFD. AC12.如图,图中直角三角形共有()A. 1个B. 2个C. 3个D. 4个二、填空题13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成______ 个三角形.14.如图,在△ABC中,D,E,F分别是BC,AD,CE的中点,且S△ABC=4cm2,则S阴影=________.15.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1−S2的值为__.16.如图,在△ACB中,∠ACB=90°,CD⊥AB,则以∠A为内角的三角形是__________,以BC为边的三角形是___________,∠B所对的边为___________.三、解答题17.如图,回答下列问题:(1)图中有________个三角形,它们分别是______________________;(2)以线段AD为边的三角形是__________________;(3)线段CE所在的三角形是________,CE边所对的角是________.18.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,且AB=13cm,BC=12cm,AC=5cm.求:(1)△ABC的面积;(2)CD的长.19.已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长.(2)若符合上述条件的三角形共有a个,求a的值.20.如图,在△ABC中,D、E分别是BC,AD的中点,S△ABC=4cm2,求S△ABE.答案和解析1.【答案】A【解答】解:根据三角形的稳定性可得,B、C、D都具有稳定性.不具有稳定性的是A选项.故选A.2.【答案】D【解答】解:∵a、b、c为△ABC的三条边长,∴a+b−c>0,c−a−b<0,∴原式=a+b−c+(c−a−b)=a+b−c+c−a−b=0.故选D.3.【答案】C【解答】解:由三角形三边关系定理得7−2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.4.【答案】C【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.5.【答案】C【解析】解:∵5+6<12,∴三角形三边长为5,6,12不可能成为一个三角形,故选:C.6.【答案】B【解答】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选B.7.【答案】A【解答】解:连接AB,根据三角形的三边关系定理得:15−10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.8.【答案】A【解答】解:∵|a−4|+√b−2=0,∴a−4=0,a=4;b−2=0,b=2;则4−2<c<4+2,即2<c<6,∴5符合条件;故选A.9.【答案】C【解答】解:A.锐角三角形的三条高线、三条角平分线分别交于一点,故本选项说法正确;B.钝角三角形有两条高线在三角形的外部,故本选项说法正确;C.直角三角形也有三条高线,故本选项说法错误;D.任意三角形都有三条高线、中线、角平分线,故本选项说法正确;故选C.10.【答案】C【解答】解:三角形的高、中线和角平分线都是线段.故选C.11.【答案】C【解答】解:∵在△ABC中,AF是高,∴AF⊥BC,又∵在△ABC中,AD是∠BAC的平分线,AE是BC边上的中线,∴AF<AD,AF<AE,AF<AC,故最短线段为AF.故选C.12.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,,图中直角三角形有Rt△ADB、Rt△BDC、Rt△ABC,共有3个.故选C.13.【答案】3【解析】解:其中的任意三条组合有3、5、7;3、5、9;3、7、9;5、7、9四种情况.根据三角形的三边关系,则其中的3+5<9,不能组成三角形,应舍去,故可以组成3个三角形.故答案为:3.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.14.【答案】1cm2【解答】解:∵点D,E,F,分别为BC、AD、CE的中点,且S△ABC=4,∴S△ABD=S△ADC=2,S△BDE=S△DEC=1,∴S△BEC=2,∴S阴=12⋅S△BEC=1,故答案为1cm2.15.【答案】1【解答】解:∵BE=CE,∴S△ACE=12S△ABC=12×6=3,∵AD=2BD,∴S△ACD=21+2S△ABC=23×6=4,∴S1−S2=S△ACD−S△ACE=4−3=1.故答案为1.16.【答案】△ABC和△ACD;△BCD和△ABC;CD和AC.【解答】解:以∠A为内角的三角形是△ABC和△ACD,以BC为边的三角形是△BCD和△ABC,∠B所对的边为CD和AC,故答案为△ABC和△ACD;△BCD和△ABC;CD和AC.17.【答案】(1)6;△ABD,△ACE,△ABE,△ABC,△ACD,△ADE;(2)△ACD,△ADE,△ABD;(3)△ACE,∠CAE.【解答】解:(1)图中有6个三角形,它们分别是△ABD,△ACE,△ABE,△ABC,△ACD,△ADE.故答案为6;△ABD,△ACE,△ABE,△ABC,△ACD,△ADE;(2)以线段AD为边的三角形是△ACD,△ADE,△ABD.故答案为△ACD,△ADE,△ABD;(3)线段CE所在的三角形是△ACE,CE边所对的角是∠CAE.故答案为△ACE,∠CAE.18.【答案】解:(1)△ABC的面积=12BC×AC=30cm2;(2)∵△ABC的面积=12AB×CD=30,∴CD=30÷12AB=6013cm.19.【答案】解:两边长分别为9和7,设第三边是a,则9−7<a<7+9,即2<a<16.(1)第三边长是4.(答案不唯一);(2)∵2<a<16,∴a的值为4,6,8,10,12,14共六个,∴a=6;20.【答案】解:∵D、E分别是BC,AD的中点,S△ABC=4cm2,∴S△ABE=12S△ABD=14S△ABC=1cm2.11.2 与三角形有关的角1. 已知在△ABC中,∠A=70°,∠B=60°,则∠C的度数为( ) A.50°B.60°C.70°D.80°2. 在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是( )A.80 B.70 C.65D.603. 在Rt△ABC中,∠C=90°,∠A-∠B=50°,则∠A的度数为( ) A.80°B.70°C.60°D.50°4. 如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°5. 一个三角形三个内角的度数之比为2∶3∶4,这个三角形是( )A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形6. 若三角形的三个内角的度数之比为2∶3∶7,则这个三角形的最大内角是( )A.75°B.90°C.105°D.120°7. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°8. 如图,在△ABC中,D是∠ABC和∠ACB的平分线的交点,∠A=80°,∠ABD=30°,则∠BDC的度数为( )A.100°B.110°C.120°D.130°9. 如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,这个关系是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是()A.x=y+zB.x=y-zC.x=z-yD.x+y+z=180二、填空题11. 如图所示,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD= .12. 有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图所示的方式剪去它的一个角,在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为.13. 如图,折叠一张三角形纸片,把三角形的三个角拼在一起,就可以说明一个几何定理.请你写出这个定理的内容:______________________.14. 如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF= °.15. 定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么“特征角”α的度数为____________.16. 如图,在△ABC中,点E在BC的延长线上,∠ABC的平分线与∠ACE 的平分线相交于点D.(2)若∠A=α,则∠ACE-∠ABC=________,∠D=________.三、解答题17. 如图,用钢筋做支架,要求BA,DC相交所成的锐角为32°,现测得∠BAC=∠DCA=115°,则这个支架符合设计要求吗?为什么?18. 如图,在△ABC中,AD是BC边上的高,E是AB上一点,CE交AD于点M,且∠DCM=∠MAE.求证:△ACE是直角三角形.19. 在△ABC中,∠B=55°,且3∠A=∠B+∠C,求∠A和∠C的度数.20. 如图,在△ABC中,CD,BE分别是AB,AC边上的高,BE,CD相交于点O.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)求证:∠BOC+∠A=180°.人教版八年级数学上册11.2 与三角形有关的角同步培优训练-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】B又∵∠A -∠B =50°,∴2∠A =140°.∴∠A =70°.4. 【答案】B∴∠CFD =∠AFE =55°.∴∠ACB =∠D +∠CFD =15°+55°=70°.5. 【答案】 C6. 【答案】C由题意,得2x +3x +7x =180°,解得x =15°.∴7x =105°.7. 【答案】C ∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC ,∠ACB 的平分线分别为BE ,CD , ∴∠FBC=12∠ABC=21°,∠FCB=12∠ACB=39°, ∴∠BFC=180°-∠FBC-∠FCB=120°.故选C .8. 【答案】D∴∠DBC =∠ABD =30°,∠ABC =2∠ABD =2×30°=60°.∴∠ACB =180°-∠A -∠ABC =40°.∵CD 平分∠ACB ,∴∠DCB =12∠ACB =12×40°=20°.∴∠BDC =180°-∠DCB -∠DBC =130°.9. 【答案】B 10. 【答案】A二、填空题11. 【答案】 105°12. 【答案】105° 所以∠1+∠2=360°-90°=270°.因为∠1=165°, 所以∠2的度数为105°.13. 【答案】三角形三个内角的和等于180°14. 【答案】68 ∴∠CFD=180°-∠AFD=180°-158°=22°.∵FD ⊥BC , ∴∠FDC=90°.∴∠C=180°-∠FDC-∠CFD=180°-90°-22°=68°. ∵∠B=∠C ,DE ⊥AB ,∴∠EDB=180°-∠B-∠DEB=180°-68°-90°=22°. ∴∠EDF=180°-90°-22°=68°.15. 【答案】48°或96°或88°当β=48°时,则“特征角”α=2×48°=96°;当第三个角为48°时,α+12α+48°=180°,解得α=88°.综上所述,“特征角”α的度数为48°或96°或88°.16. 【答案】(1)70 35 (2)α1 2α三、解答题17. 【答案】解:这个支架不符合设计要求.理由:如图,延长BA,DC交于点E.∵∠BAC=∠DCA=115°,∴∠EAC=∠ECA=65°.∴∠E=180°-∠EAC-∠ECA=50°. ∵要求BA,DC相交所成的锐角为32°,∴这个支架不符合设计要求.证明:∵AD是BC边上的高,∴∠ADC=90°.∵∠DCM=∠MAE,∠CMD=∠AME,∴∠AEC=∠ADC=90°.∴△ACE是直角三角形.19. 【答案】解:∵在△ABC中,∠A+∠B+∠C=180°,3∠A=∠B+∠C,∴4∠A=180°,解得∠A=45°.∵∠B=55°,∴∠C=180°-45°-55°=80°.20. 【答案】解:(1)∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∵∠ABC=50°,∠ACB=60°.∴∠BCO=40°,∠CBO=30°.∴∠BOC=180°-40°-30°=110°.(2)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∴∠ABE=90°-∠A.∴∠BOC=∠ABE+∠BDC=90°-∠A+90°=180°-∠A.∴∠BOC+∠A=180°.11.3多边形及其内角和一.选择题1.正多边形的每个内角为135度,则多边形为()A.4 B.6 C.8D.102.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形3.一个四边形的四个内角度数之比为1:2:4:5,则这个四边形中,最小的内角为()A.30°B.40°C.50°D.60°4.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6D.125.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°6.如图,在五边形ABCDE中,AE∥BC,延长DE至点F,连接BE,若∠A=∠C,∠1=∠3,∠AEF=2∠2,则下列结论正确的是()①∠1=∠2 ②AB∥CD ③∠AED=∠A ④CD⊥DEA.1个B.2个C.3个D.4个7.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°<α<90°),若DE⊥B′C′,则∠α为()A.36°B.54°C.60°D.72°8.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°9.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A-∠F=()A.60°B.46°C.26°D.45°10.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°11.如图,在六边形ABCDEF中,若∠A+∠B+∠C+∠D=500°,∠DEF与∠AFE的平分线交于点G,则∠G等于()A.55°B.65°C.70°D.80°12.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是()A.180°B.360°C.540°D.720°二.填空题13.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.14.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.15.如图,已知在四边形ABCD中,∠A+∠C=135°,∠ADE=125°,则∠B= .16.如图所示,若∠DBE=78°,则∠A+∠C+∠D+∠E= °.17.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= °.三.解答题18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的七分之二,求这个多边形的边数.19.如图,在四边形ABCD中,BD⊥CD,EF⊥CD,且∠1=∠2.(1)求证:AD∥BC;(2)若BD平分∠ABC,∠A=130°,求∠C的度数.20.如图,四边形ABCD中,∠BAD=106°,∠BCD=64°,点M,N分别在AB,BC 上,将△BMN沿MN翻折得△FMN,若MF∥AD,FN∥DC.求(1)∠F的度数;(2)∠D的度数.21.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.22.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.(1)如图1,若BE∥DF,求∠C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数.参考答案1-5:CAACD 6-10:CBBBC 11-12:CB13、1080°;六14、2880°15、170°16、10217、72018、:(1)设这个多边形的每个内角是x°,每个外角是y°,则得到一个方程组得而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n-2)180°=360°,解得n=9,答:这个多边形的边数为9.19、:(1)证明:∵BD⊥CD,EF⊥CD(已知),∴BD∥EF(垂直于同一直线的两条直线平行),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AD∥BC(内错角相等,两直线平行).(2)∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=25°.∴∠C=90°-∠3=65°.20、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.21、:(1)如图,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1-∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;31(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.第!异常的公式结尾页,共32页32。
人教版 八年级上册数学 11.1---11.3期末复习检测题(含答案)
11.1 与三角形有关的线段一、选择题(本大题共10道小题)1. 若一个三角形的两边长分别为3和7,则第三边长可能是()A. 6B. 3C. 2D. 112. 若a、b、c为△ABC的三边长,且满足|a-4|+b-2=0,则c的值可以为()A. 5B. 6C. 7D. 83. 至少有两边相等的三角形是()A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形4. 下列各组线段能构成三角形的是()A.2 cm,2 cm,4 cmB.2 cm,3 cm,4 cmC.2 cm,2 cm,5 cmD.2 cm,3 cm,6 cm5. 已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.106. 若三角形的两边长分别为3和6,则它的第三边长可以为()A.3 B.4C.9 D.107. 如图,已知P为直线l外一点,点A,B,C,D在直线l上,且PA>PB>PC >PD,则下列说法正确的是()A.线段PD的长是点P到直线l的距离B.线段PC可能是△PAB的高C.线段PD可能是△PBC的高D.线段PB可能是△PAC的高8. 有长度分别为4 cm,5 cm,9 cm,13 cm的四根木条,以其中三根为边,制作一个三角形框架,那么这个三角形框架的周长可能是()A.18 cm B.26 cm C.27 cm D.28 cm9. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种10. 试通过画图来判断,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形二、填空题(本大题共7道小题)11. 如图,AE是△ABC的中线,已知EC=8,DE=3,则BD=________.12. 已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是.13. 如图所示是一幅电动伸缩门的图片,则电动门能伸缩的几何原理是__________________________.14. 设三角形三边之长分别为3,7,1+a,则a的取值范围为__________.15. 如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为cm.16. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.17. 如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC =4 cm2,则阴影部分的面积为________.三、解答题(本大题共4道小题)18. 如图是一个从侧面看四腿木椅的示意图,椅子容易变形,请你将修复加固的零件画在图中,并用虚线在图中标明位置.19. 如图,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,橡皮筋始终绷直,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?20. 规律探究根据三角形的稳定性,想稳定一个四边形木框至少要钉1根木条(如图①),五边形木框至少要钉2根木条才能稳定(如图②),六边形木框呢?现有一个n(n为大于3的整数)边形木框,则至少要钉几根木条才能稳定?21. 已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c均为整数,求△ABC的三边长.人教版八年级数学11.1 与三角形有关的线段同步训练-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】根据两边之和大于第三边,两边之差小于第三边,则第三边长大于4小于10.2. 【答案】A【解析】∵|a-4|≥0,b-2≥0,∴a=4,b=2,∵三角形的两边之和大于第三边,两边之差小于第三边,故c的取值范围为:2<c<6,故本题选A.3. 【答案】B4. 【答案】B5. 【答案】C[解析] 设第三边的长为x,由三角形三边关系可得,4-1<x<4+1,即3<x<5.由于第三边长为整数,因此x=4,所以该三角形的周长为9.6. 【答案】B7. 【答案】C[解析] 由于PA>PB>PC>PD,因此PD可能是钝角三角形PBC 中BC边上的高.8. 【答案】C9. 【答案】C10. 【答案】D[解析] 等腰直角三角形既是直角三角形,也是等腰三角形,故选项A错误;等边三角形既是等腰三角形,也是锐角三角形,故选项B错误;顶角是120°的等腰三角形,既是钝角三角形,也是等腰三角形,故选项C错误;因为一个等边三角形的三个角都是60°,所以等边三角形是锐角三角形.故选项D正确.二、填空题(本大题共7道小题)11. 【答案】5[解析] ∵AE是△ABC的中线,EC=8,∴BE=EC=8.∵DE=3,∴BD=BE-DE=8-3=5.12. 【答案】15[解析] 若腰长为3,3+3=6,∴3,3,6不能组成三角形;若腰长为6,3+6=9>6,∴3,6,6能组成三角形,该三角形的周长为3+6+6=15.13. 【答案】四边形具有不稳定性14. 【答案】3<a <9[解析] 由题意,得7-3<1+a <7+3,解得3<a <9.15. 【答案】19[解析] ∵AD 是BC 边上的中线,∴BD=CD.∴△ABD 的周长-△ACD 的周长=(AB+BD+AD )-(AC+CD+AD )=AB-AC. ∵△ABD 的周长为25 cm ,AB 比AC 长6 cm , ∴△ACD 的周长为25-6=19(cm).16. 【答案】13【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC+CD +BD =BC +AD +BD =BC +BA =6+7=13.17. 【答案】1 cm 2 [解析] 因为E 为AD 的中点,所以S △BDE =12S △ABD ,S △CDE=12S △ACD .所以S △BCE =12S △ABC .又因为F 为EC 的中点,所以S △BFE =12S △BCE .所以S △BFE =12×12×4=1(cm 2).三、解答题(本大题共4道小题)18. 【答案】解:因为四边形不具有稳定性,所以椅子会变形.利用三角形的稳定性,可用三角形角铁对椅子修复加固,如图:19. 【答案】解:(1)x 的最大值是5+3+11=19,最小值是11-3-5=3. (2)由(1)得x 的取值范围为3<x<19.20. 【答案】解:实际上,所钉木条的最少根数就是从多边形的一个顶点出发连接与其不相邻的各顶点的线段的条数.故六边形木框至少要钉3根木条才能稳定,n(n 为大于3的整数)边形木框至少要钉(n-3)根木条才能稳定.21. 【答案】解:(1)依题意有b≥a,b≥c.又∵a+c>b,∴a+b+c≤3b且a+b+c>2b,则2b<20≤3b,解得≤b<10.(2)∵≤b<10,b为整数,∴b=7,8,9.∵b=3c,且c为整数,∴b=9,c=3.∴a=20-b-c=8.故△ABC的三边长分别为8,9,3.11.2 与三角形有关的角一、选择题1. 在△ABC中,∠A=95°,∠B=40°,则∠C的度数是()A. 35°B. 40°C. 45°D. 50°2. 在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是()A.80 B.70 C.65 D.603. 在Rt△ABC中,∠C=90°,∠A-∠B=50°,则∠A的度数为() A.80°B.70°C.60°D.50°4. 在△ABC中,若∠C=40°,∠B=4∠A,则∠A的度数是()A.30°B.28°C.26°D.40°5. 在△ABC中,若∠B=3∠A,∠C=2∠B,则∠B的度数为()A.18°B.36°C.54°D.90°6. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7. 如图,在△ABC中,D是∠ABC和∠ACB的平分线的交点,∠A=80°,∠ABD =30°,则∠BDC的度数为()A.100°B.110°C.120°D.130°8. 若三角形的三个内角的度数之比为2∶3∶7,则这个三角形的最大内角是()A.75°B.90°C.105°D.120°9. 如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°10. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为() A.70°B.108°C .110°D .125°二、填空题 11. 如图,已知∠CAE 是△ABC 的外角,AD ∥BC ,且AD 是∠EAC 的平分线.若∠B =71°,则∠BAC =________.12. 如图,AC ⊥BC于点C ,DE ⊥BE 于点E ,BC 平分∠ABE ,∠BDE =58°,则∠A =________°.13. (2019•哈尔滨)在ABC △中,50A ∠=︒,30B ∠=︒,点D 在AB 边上,连接CD ,若ACD △为直角三角形,则BCD ∠的度数为__________.14. 在△ABC 中,∠A =50°,∠B =30°,点D 在AB 边上,连接CD.若△ACD为直角三角形,则∠BCD 的度数为________.15. 如图,在四边形ABCD 中,AB ∥CD ,将四边形ABCD 沿对角线AC 折叠,使点B 落在点B ′处.若∠1=∠2=44°,则∠B =________°.三、解答题16. 在△ABC 中,∠B =55°,且3∠A =∠B +∠C ,求∠A 和∠C 的度数.17. 如图,CE是△ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,∠B =25°,∠E =30°,求∠BAC 的度数.18. 如图,将一块三角尺DEF放置在△ABC上,使该三角尺的两条直角边DE,DF恰好分别经过点B,C.(1)∠DBC+∠DCB=________度;(2)过点A作直线MN∥DE,若∠ACD=20°,试求∠CAM的大小.19. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.20. 已知:如图11-Z-12,在△ABC中,∠ABC=∠C,D是AC边上一点,∠A =∠ADB,∠DBC=30°.求∠BDC的度数.人教版八年级数学11.2 与三角形有关的角针对训练-答案一、选择题1. 【答案】C【解析】根据三角形内角和为180°,∠C=180°-∠A-∠B=45°.2. 【答案】B3. 【答案】B[解析] ∵∠C=90°,∴∠A+∠B=90°.又∵∠A-∠B=50°,∴2∠A=140°.∴∠A=70°.4. 【答案】B[解析] ∵∠A+∠B+∠C=180°,∠C=40°,∠B=4∠A,∴5∠A +40°=180°.∴∠A=28°.5. 【答案】C[解析] ∵在△ABC中,∠B=3∠A,∠C=2∠B,∴∠C=6∠A. 设∠A=x,则∠B=3x,∠C=6x.由三角形内角和定理可得x+3x+6x=180°,解得x=18°,∴∠B=3x=54°.6. 【答案】C[解析] ∵∠A=60°,∠ABC=42°,∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.故选C.7. 【答案】D[解析] ∵BD是∠ABC的平分线,∴∠DBC=∠ABD=30°,∠ABC=2∠ABD=2×30°=60°. ∴∠ACB=180°-∠A-∠ABC=40°.∵CD平分∠ACB,∴∠DCB=12∠ACB=12×40°=20°.∴∠BDC=180°-∠DCB-∠DBC=130°.8. 【答案】C[解析] ∵一个三角形三个内角的度数之比为2∶3∶7,∴可设这个三角形的三个内角分别为2x,3x,7x.由题意,得2x+3x+7x=180°,解得x=15°.∴7x=105°.9. 【答案】B[解析] 如图,连接AC并延长交EF于点M.∵AB∥CF,∴∠3=∠1.∵AD∥CE,∴∠2=∠4.∴∠BAD=∠3+∠4=∠1+∠2=∠FCE.∵∠FCE=180°-∠E-∠F=180°-80°-50°=50°,∴∠BAD=∠FCE=50°.10. 【答案】C[解析] ∵在△ABC中,∠ACB=70°,∠1=∠2,∴∠2+∠BCP=∠1+∠BCP=∠ACB=70°.∴∠BPC=180°-∠2-∠BCP=180°-70°=110°.二、填空题11. 【答案】38°【解析】∵AD∥BC,∠B=71°,∴∠EAD=∠B=71°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=142°,∴∠BAC=180°-∠EAC=180°-142°=38°.12. 【答案】5813. 【答案】60︒或10︒【解析】分两种情况:①如图1,当90ADC ∠=︒时,∵30B ∠=︒,∴903060BCD ∠=︒-︒=︒;②如图2,当90ACD ∠=︒时,∵50A ∠=︒,30B ∠=︒,∴1803050100ACB ∠=︒-︒-︒=︒,∴1009010BCD ∠=︒-︒=︒,综上,则BCD ∠的度数为60︒或10︒.故答案为:60︒或10︒.14. 【答案】60°或10° [解析] 分两种情况:(1)如图①,当∠ADC =90°时,∵∠B =30°,∴∠BCD =90°-30°=60°;(2)如图②,当∠ACD =90°时,∵∠A =50°,∠B =30°,∴∠ACB=180°-30°-50°=100°.∴∠BCD=100°-90°=10°.综上,∠BCD的度数为60°或10°.15. 【答案】114[解析] 因为AB∥CD,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC=12∠BAB′=22°.在△ABC中,∠B=180°-(∠BAC+∠2)=114°.三、解答题16. 【答案】解:∵在△ABC中,∠A+∠B+∠C=180°,3∠A=∠B+∠C,∴4∠A=180°,解得∠A=45°.∵∠B=55°,∴∠C=180°-45°-55°=80°.17. 【答案】解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.18. 【答案】解:(1)90(2)在△ABC中,∵∠ABC+∠ACB+∠BAC=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠BAC=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠BAC=90°-∠ACD=70°.∵MN∥DE,∴∠ABD=∠BAN.∵∠BAN+∠BAC+∠CAM=180°,∴∠ABD+∠BAC+∠CAM=180°.∴∠CAM=180°-(∠ABD+∠BAC)=110°.19. 【答案】解:∵∠NBC=60°,∠NBA=∠BAS=45°,∴∠ABC=∠NBC-∠NBA=60°-45°=15°.又∵∠BAC=∠BAS+∠SAC=45°+30°=75°,∴在△ABC中,∠C=180°-(75°+15°)=90°.20. 【答案】解:设∠C=x°,则∠ABC=x°,∠ABD=x°-30°.∵∠ADB是△DBC的外角,∴∠ADB=30°+x°,于是∠A=30°+x°.在△ABD中,2(30+x)+(x-30)=180,解得x=50.故∠BDC=180°-(30°+50°)=100°.11.3 多边形考点1 认识多边形1.下列说法正确的是()A.一个多边形外角的个数与边数相同B.一个多边形外角的个数是边数的二倍C.每个角都相等的多边形是正多边形D.每条边都相等的多边形是正多边形2.一个四边形截去一个角后内角个数是()A.3B.4C.5D.3、4、53.判断下列说法,正确的是()A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补考点2 多边形的对角线4.一个多边形的内角和为720°,那么这个多边形的对角线共有().A.6条B.7条C.8条D.9条5.若一个多边形从一个顶点所作的对角线为5条,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.若一个n边形的每个内角为144°,则这个正n边形的所有对角线的条数是( ) A.7 B.10 C.35 D.707.多边形的每个外角都等于30°,则从此多边形的一个顶点出发可分为()个三角形.A.8 B.9 C.10 D.118.从一个n边形的某个顶点出发,分别连接这个点与其他顶点可以把这个n边形分割成三角形个数是()A.3个B.(n﹣1)个C.5个D.(n﹣2)个考点3 多边形的内角和9.正多边形的每个内角都等于135°,则该多边形是正()边形A.8 B.9 C.10 D.1110.一个多边形的每个外角都是45°,则这个多边形的内角和为()A.360°B.140°C.1080°D.720°11.如图,在平面上将变长相等的正三角形、正方形、正五边形、正六边形的一∠+∠-∠=()边重合并叠放在一起,则312A.30B.24︒C.20︒D.28︒12.当多边形的边数增加1时,它的内角和会()A.增加160B.增加180C.增加270D.增加36013.一个多边形截去一个角后,形成另一个多边形的内角和为900︒,那么原多边形的边数为()A.5 B.5或6 C.6或7或8 D.7或8或9∠、14.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若1∠、2∠、3∠的度数为()∠对应的邻补角和等于225︒,则BOD4A.35︒B.40︒C.45︒D.50︒15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°考点4 多边形的外角和16.一个多边形的每一个内角都等于140°,那么这个多边形的边数为()A.8 B.9 C.10 D.1117.如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是()A.120 B.150 C.240 D.36018.如图,六角螺母的横截面是正六边形,则1∠的度数为()A.60°B.120°C.45°D.75°19.富有灿烂文化的永州,现今保留许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容,图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,∠+∠+∠+∠+∠的度数为()根据绘制的图案,则12345A.72︒B.108︒C.360︒D.540︒20.如图,M是正五边形ABCDE的边CD延长线上一点.连接AD,则ADM∠的度数是()A.108︒B.120︒C.144︒D.150︒∠+∠+∠+∠+∠+∠的和的大小为()21.如图,A B C D E FA.180°B.360°C.540°D.720°考点5 镶嵌问题22.只用一种多边形不能镶嵌整个平面的是()A.正三角形B.正四边形C.正五边形D.正六边形23.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是()A.1、2 B.2、1 C.2、2 D.2、324.我们知道正五边形不能进行平面镶嵌,若将三个全等的正五边形按如图所示拼接在一起,那么图中的∠1的度数是()A.18°B.30°C.36°D.54°25.用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形B.正方形和正八边形C.正五边形和正十边形D.正六边形和正十二边形26.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011答案1.B2.D3.D4.D5.D6.C7.C8.D9.A10.C 11.B 12.B 13.C 14.C 15.C 16.B 17.C 18.A 19.C 20.A 21.B 22.C 23.D 24.C 25.D 26.C。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版 八年级数学上册 第11章 三角形 复习题(含答案)
人教版八年级数学第11章三角形复习题一、选择题(本大题共10道小题)1. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD2. 三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形3. 如图,△A=60°,△B=40°,则△ACD的大小是()A.80° B.90° C.100° D.110°4. 已知在△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A. 11B. 5C. 2D. 15. 一个三角形三个内角的度数之比为2∶3∶4,这个三角形是()A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形6. 如图,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字形通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是()A.75°B.80°C.85°D.90°7. 若三角形的三个内角的度数之比为2△3△7,则这个三角形的最大内角是() A.75° B.90° C.105° D.120°8. 若多边形每一个内角都等于120°,则从此多边形的一个顶点出发的对角线共有()A.2条B.3条C.6条D.9条9. 如图,在△CEF中,△E=80°,△F=50°,AB△CF,AD△CE,连接BC,CD,则△A的度数是()A.45° B.50° C.55° D.80°10. 如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,△A与△1+△2之间有一种数量关系始终保持不变,这个关系是()A.△A=△1+△2 B.2△A=△1+△2C.3△A=2△1+△2 D.3△A=2(△1+△2)二、填空题(本大题共8道小题)11. 如图所示是一幅电动伸缩门的图片,则电动门能伸缩的几何原理是__________________________.12. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.13. 如图,已知直线a△b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则△2=________.14. 如图所示,六边形ABCDEF的内角都相等,AD△BC,则△DAB=________°.15. 如图,在△ABC中,AD△BC,BE△AC,CF△AB,垂足分别是D,E,F.若AC=4,AD=3,BE=2,则BC=________.16. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则△1+△2=________°.17. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则△A3A7A10=________°.18. 在△ABC中,△A=50°,△B=30°,点D在AB边上,连接CD.若△ACD为直角三角形,则△BCD的度数为________.三、解答题(本大题共4道小题)19. 如图,AD是△ABC的角平分线,△B=35°,△BAD=30°,求△C的度数.20. 如图,CE是△ABC的外角△ACD的平分线,且CE交BA的延长线于点E,△B =25°,△E=30°,求△BAC的度数.21. 如图,△ABC是正三角形,剪去三个边长均不相等的小正三角形(即△ADN,△BEF,△CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?22. 如图△所示,在△ABC中,△1=△2,△C>△B,E为AD上一点,且EF△BC 于点F.(1)试探索△DEF与△B,△C之间的数量关系;(2)如图△所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索得到的结论是否还成立?人教版八年级数学第11章三角形复习题-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D3. 【答案】C4. 【答案】B5. 【答案】C6. 【答案】C[解析] ∵∠DBA=130°,∠ECA=135°,∴∠ABC=180°-∠DBA=50°,∠ACB=180°-∠ECA=45°.∴∠A=180°-∠ABC-∠ACB=180°-50°-45°=85°.7. 【答案】C[解析] △一个三角形三个内角的度数之比为2△3△7,△可设这个三角形的三个内角分别为2x,3x,7x.由题意,得2x+3x+7x=180°,解得x=15°.△7x =105°.8. 【答案】B[解析] △每一个内角都等于120°,△每一个外角都是60°.△边数是36060=6.而从六边形的一个顶点出发可以画3条对角线.故选B.9. 【答案】B[解析] 如图,连接AC 并延长交EF 于点M.△AB△CF ,△△3=△1. △AD△CE ,△△2=△4.△△BAD =△3+△4=△1+△2=△FCE.△△FCE =180°-△E -△F =180°-80°-50°=50°,△△BAD =△FCE =50°.10. 【答案】B[解析] 因为△A =180°-(△B +△C)=180°-(△AED +△ADE),所以△B +△C =△AED +△ADE.在四边形BCED 中,△1+△2=360°-△B -△C -△A′ED -△A′DE =360°-(△B +△C)-(△AED +△ADE)=360°-2(180°-△A),化简得△1+△2=2△A.二、填空题(本大题共8道小题)11. 【答案】四边形具有不稳定性12. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n ,则(n -2)×180°=135°×n ,解得n =8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.13. 【答案】54°【解析】如解图,过点C 作直线CE ∥a ,则a ∥b ∥CE ,则∠1=∠ACE ,∠2=∠BCE ,∵∠ACE +∠BCE =90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.14. 【答案】60[解析] △六边形ABCDEF 的内角和为(6-2)×180°=720°且每个内角都相等, △△B =720°6=120°.△AD△BC ,△△DAB =180°-△B =60°.15. 【答案】83 [解析] △S △ABC =12AC·BE =12BC·AD ,△BC =AC·BE AD =4×23=83.16. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以△1+△2=2×135°-90°=180°.17. 【答案】75【解析】△多边形A 1A 2…A 12是正十二边形,作它的外接圆△O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.18. 【答案】60°或10° [解析] 分两种情况:(1)如图△,当△ADC =90°时, △△B =30°,△△BCD =90°-30°=60°;(2)如图△,当△ACD =90°时,△△A =50°,△B =30°, △△ACB =180°-30°-50°=100°. △△BCD =100°-90°=10°. 综上,△BCD 的度数为60°或10°.三、解答题(本大题共4道小题)19. 【答案】解:△AD 是△ABC 的角平分线, △△BAC =2△BAD =2×30°=60°.△△C =180°-△B -△BAC =180°-35°-60°=85°.20. 【答案】解:△△B =25°,△E =30°, △△ECD =△B +△E =55°. △CE 是△ACD 的平分线, △△ACE =△ECD =55°. △△BAC =△ACE +△E =85°.21. 【答案】解:(1)六边形DEFGMN 的各个内角都是120°. 理由:△△ADN ,△BEF ,△CGM 都是正三角形,△它们的每个内角都是60°,即六边形DEFGMN 的每个外角都是60°. △六边形DEFGMN 的每个内角都是120°. (2)六边形DEFGMN 不是正六边形.理由:△三个小正三角形(即△ADN ,△BEF ,△CGM)的边长均不相等, △DN ,EF ,GM 均不相等. △六边形DEFGMN 不是正六边形.22. 【答案】解:(1)△△1=△2,△△1=12△BAC. 又△△BAC =180°-(△B +△C),△△1=12[180°-(△B +△C)]=90°-12(△B +△C).△△EDF =△B +△1=△B +90°-12(△B +△C)=90°+12(△B -△C). △EF△BC ,△△EFD =90°.△△DEF =90°-△EDF =90°-[90°+12(△B -△C)]=12(△C -△B).(2)当点E 在AD 的延长线上时,其余条件都不变,在(1)中探索得到的结论仍成立.。
人教版八年级数学上册期末测试题(附参考答案)
人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.已知长度分别为3 cm,4 cm,x cm的三根小棒可以摆成一个三角形,则x的值不可能是( )A.2.4 B.3C.5 D.8.52.下列图案中,是轴对称图形的为( )3.如图,已知AB=AC,AD=AE,添加一个条件不能得到“△ABD≌△ACE”的是( )A.∠ABD=∠ACE B.BD=CEC.∠BAD=∠CAE D.∠BAC=∠DAE4.下列因式分解正确的是( )A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)25.如图,在△ABC中,∠A=45°,∠B=30°,尺规作图如下:分别以点B、点BC的长为半径作弧,过两弧交点的直线交AB于点D,连接CD,C为圆心,大于12则∠ACD的度数为( )A.45°B.65°C.60°D.75°6.一个多边形的内角和是外角和的4倍,则这个多边形是( )A.八边形B.九边形C.十边形D.十二边形7.若(2x-m)(x+1)的运算结果是关于x的二次二项式,则m的值等于( ) A.-2或0 B.2或0C.-2或2 D.2或-2或08.若x是非负整数,则表示2xx+2−x2−4(x+2)2的值的对应点落在下图数轴上的范围是( )A.①B.②C.③D.①或②9.某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问:原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B.540x+2−540x=3C.540x −540x+2=3 D.540x−540x−2=310.关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A.13 B.15 C.18 D.20二、填空题:本题共6个小题,每小题3分,共18分。
人教版八年级数学上册全部课时小练习(含答案)
第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80°B.90°C.20°D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30°B.40°C.50°D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61°B.39°C.29°D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60°B.36°C.54°D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80°B.90°C.100°D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30°B.40°C.60°D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180°B.360°C.540°D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?第十二章全等三角形12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30°B.60°C.20°D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________. 3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50°B.100°C.150°D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF 的面积相等.求证:AB平分∠CAF.第十三章轴对称13.1轴对称13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25°B.45°C.30°D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A =8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ;(2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是() A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为() A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A 的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为________.2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=________cm.第2题图第3题图3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为() A.35°B.45°C.55°D.60°4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数.6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.第2课时等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=________.3.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,使其可以确定△ABC为等腰三角形,则添加的条件是________.第3题图第4题图4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有________个等腰三角形.5.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF.求证:AB=AC.6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G.求证:△EFG是等腰三角形.13.3.2等边三角形第1课时等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为________.第1题图第3题图2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B.能判定△ABC为等边三角形的有________.3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=________.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD 的度数.5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD.求证:(1)△ABE≌△ACD;(2)△ADE为等边三角形.第2课时含30°角的直角三角形的性质1.如图,在Rt△ABC,∠C=90°,∠A=30°,AB=10,则BC的长度为( ) A.3 B.4 C.5 D.6第1题图第2题图第3题图2.如图,在△ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是( )A.3.5 B.4.2 C.5.8 D.73.如图,△ABC是等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则BE的长为________.4.如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF ⊥AC于点F,求BE+CF的值.5.如图所示是某种帐篷支架屋顶的侧面示意图,它是底角为30°的等腰三角形.已知中柱BD垂直于底边AC,支柱DE垂直于腰AB,测得BE=1米,求AB的长.13.4 课题学习最短路径问题1.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB 的值最小,则下列作法正确的是( )2.如图,已知直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的一个内角第2题图第3题图3.如图,点P是直线l上的一点,线段AB∥l,能使PA+PB取得最小值的点P的位置应满足的条件是( )A.点P为点A到直线l的垂线的垂足B.点P为点B到直线l的垂线的垂足C.PB=PAD.PB=AB4.如图,在直线l的两侧分别有A和B两点,试在直线l上确定一点P,使点P到点A和到点B的距离之和最短,并说明理由.第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.1 同底数幂的乘法1.化简a 2·a 的结果是( )A .a 2B .a 3C .a 4D .a 5 2.下列计算正确的是( )A .x 2·x 2=x 4B .x 3·x ·x 4=x 7C .a 4·a 4=a 16D .a ·a 2=a 2 3.填空:(1)(-a )5·(-a )2=________;(2)(a -b )·(a -b )2=________(结果用幂的形式表示); (3)a 3·a 2·(________)=a 11. 4.计算:(1)a 2·a 5+a ·a 3·a 3; (2)⎝⎛⎭⎫1104×⎝⎛⎭⎫1103.5.(1)若2x =3,2y =5,求2x +y 的值;(2)若32×27=3n ,求n 的值.1.计算(x3)4的结果是()A.x7B.x12C.x81D.x642.下列运算正确的是()A.(x3)2=x5B.(-x)5=-x5C.x3·x2=x6D.3x2+2x3=5x53.已知5y=2,则53y的值为()A.4 B.6 C.8 D.94.计算:(1)a6·(a2)3=________;(2)(-a3)2=________.5.计算:(1)(x3)2·(x2)3; (2)(-x2)3·x5;(3)-(-x2)3·(-x2)2-x·(-x3)3.6.若(27x)2=36,求x的值.1.计算(x 2y )2的结果是( )A .x 6yB .x 4y 2C .x 5yD .x 5y 2 2.计算(-2a 2b )3的结果是( )A .-6a 6b 3B .-8a 6b 3C .8a 6b 3D .-8a 5b 3 3.若m 2·n 2=25,且m ,n 都为正实数,则mn 的值为( )A .4B .5C .6D .7 4.计算:(1)(mn 3)2=________; (2)(2a 3)3=________; (3)(-2x 2y )3=________;(4)⎝⎛⎭⎫-12x 3y 3=________. 5.计算:(1)(ab 2c 4)3; (2)(3a 2)3+(a 2)2·a 2;(3)(x n y 3n )2+(x 2y 6)n; (4)(-2×103)2;(5)4100×0.25100.14.1.4整式的乘法第1课时单项式与单项式、多项式相乘1.计算x3·4x2的结果是()A.4x5B.5x6C.4x6D.5x52.化简x(2-3x)的结果为()A.2x-6x2B.2x+6x2C.2x-3x2D.2x+3x23.下列各式中,计算正确的是()A.3a2·4a3=12a6B.2xy(3x2-4y)=6x3-8y2C.2x3·3x2=6x5D.(3x2+x-1)(-2x)=6x3+2x2-2x4.计算:(1)(6ab)·(3a2b)=__________;(2)(-2a2)2·a=__________;(3)(-2a2)(a-3)=__________.5.若一个长方形的长、宽分别是3x-4、2x,则它的面积为________.6.计算:(1)ab·(-3ab)2; (2)(-2a2)·(3ab2-5ab3).7.已知a=1,求代数式a(a2-a)+a2(5-a)-9的值.第2课时多项式与多项式相乘1.计算(x-1)(x-2)的结果为()A.x2+3x-2 B.x2-3x-2C.x2+3x+2 D.x2-3x+22.若(x+3)(x-5)=x2+mx-15,则实数m的值为()A.-5 B.-2 C.5 D.23.下列各式中,计算结果是x2+7x-18的是()A.(x-2)(x+9) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-1)(x+18)4.计算:(1)(2x+1)(x+3)=________________;(2)(y+3x)(3x-2y)=________________.5.一个长方形相邻的两条边长分别为2a+1和3a-1,则该长方形的面积为____________.6.计算:(1)(a+1)(2-b)-2a;(2)x(x-6)-(x-2)(x+1).7.先化简,再求值:(2a-3b)(a+2b)-a(2a+b),其中a=3,b=1.第3课时 整式的除法1.计算a 6÷a 2的结果为( )A .4a 4B .3a 3C .a 3D .a 4 2.下列计算正确的是( )A .x 8÷x 2=x 4B .(-x )6÷(-x )4=-x 2C .36a 3b 4÷9a 2b =4ab 3D .(2x 3-3x 2-x )÷(-x )=-2x 2+3x 3.计算:(1)20180=________; (2)a 8÷a 5=________; (3)a 6b 2÷(ab )2=________; (4)(14a 3b 2-21ab 2)÷7ab 2=________. 4.当m ________时,(m -2019)0的值等于1. 5.计算:(1)(-6m 4n 5)÷⎝⎛⎭⎫12m 2n 2; (2)(x 4y +6x 3y 2-x 2y 3)÷3x 2y .6.一个等边三角形框架的面积是4a 2-2a 2b +ab 2,一边上的高为2a ,求该三角形框架的边长.14.2 乘法公式14.2.1 平方差公式1.计算(4+x )(4-x )的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +162.下列多项式乘法中可以用平方差公式计算的是( )A .(b -a )(a -b )B .(x +2)(x +2)C.⎝⎛⎭⎫y +x 3⎝⎛⎭⎫y -x 3 D .(x -2)(x +1)3.若m +n =5,m -n =3,则m 2-n 2的值是( )A .2B .8C .15D .164.计算:(1)(a +3)(a -3)=________;(2)(2x -3a )(2x +3a )=________;(3)(a +b )(-a +b )=________;(4)98×102=(100-______)(100+______)=(______)2-(______)2=______.5.计算:(1)⎝⎛⎭⎫16x -y ⎝⎛⎭⎫16x +y ; (2)20182-2019×2017;(3)(x -1)(x +1)(x 2+1).6.先化简,再求值:(2-a )(2+a )+a (a -4),其中a =-12.14.2.2完全平方公式第1课时完全平方公式1.计算(x+2)2正确的是()A.x2+4 B.x2+2 C.x2+4x+4 D.2x+42.下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92163.计算:(1)(3a-2b)2=____________;(2)(-3x+2)2=________;(3)(-x+y)2=____________;(4)x(x+1)-(x-1)2=________.4.计算:(1)(-2m-n)2; (2)(-3x+y)2;(3)(2a+3b)2-(2a-3b)2; (4)99.82.5.已知a+b=3,ab=2.(1)求(a+b)2的值;(2)求a2+b2的值.第2课时添括号法则1.下列添括号正确的是()A.a+b-c=a-(b+c)B.-2x+4y=-2(x-4y)C.a-b-c=(a-b)-cD.2x-y-1=2x-(y-1)2.若运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是() A.[x-(2y+1)]2B.[x+(2y+1)]2C.[x+(2y-1)][x-(2y-1)]D.[(x-2y)+1][(x-2y)-1]3.填空:(1)a+b-c=a+(________);(2)a-b+c-d=(a-d)-(________);(3)(x+y+2z)2=[(________)+2z]2=________________________.4.已知a-3b=3,求代数式8-a+3b的值.5.运用乘法公式计算:(1)(2a+3b-1)(1+2a+3b); (2)(x-y-2z)2.14.3因式分解14.3.1提公因式法1.下列变形,是因式分解的是()A.x(x-1)=x2-x B.x2-x+1=x(x-1)+1C.x2-x=x(x-1) D.2a(b+c)=2ab+2ac2.多项式12ab3c+8a3b中各项的公因式是()A.4ab2B.4abc C.2ab2D.4ab3.把多项式m2-9m分解因式,结果正确的是()A.m(m-9) B.(m+3)(m-3)C.m(m+3)(m-3) D.(m-3)24.分解因式:(1)5a-10ab=____________;(2)x4+x3+x2=________________;(3)m(a-3)+2(3-a)=________________.5.计算:20182-2018×2017.6.分解因式:(1)2mx-6my; (2)3x(x+y)-(x+y)2. 7.先分解因式,再求值:a2b+ab2,其中a+b=3,ab=2.14.3.2公式法第1课时运用平方差公式分解因式1.多项式x2-4分解因式的结果是()A.(x+2)(x-2) B.(x-2)2C.(x+4)(x-4) D.x(x-4)2.下列多项式中能用平方差公式分解因式的是()A.a2+b2B.5m2-20mnC.x2+y2D.x2-93.分解因式3x3-12x,结果正确的是()A.3x(x-2)2B.3x(x+2)2C.3x(x2-4) D.3x(x-2)(x+2)4.因式分解:(1)9-b2=____________;(2)m2-4n2=____________.5.利用因式分解计算:752-252=________.6.若a+b=1,a-b=2007,则a2-b2=________.7.因式分解:(1)4x2-9y2; (2)-16+9a2;(3)9x2-(x+2y)2; (4)5m2a4-5m2b4.第2课时 运用完全平方公式分解因式1.把多项式x 2-8x +16分解因式,结果正确的是( )A .(x -4)2B .(x -8)2C .(x +4)(x -4)D .(x +8)(x -8)2.下列各式中,能用完全平方公式进行因式分解的是( )A .x 2-2x -2B .x 2+1C .x 2-4x +4D .x 2+4x +13.若代数式x 2+kx +49能分解成(x -7)2的形式,则实数k 的值为________.4.若x 2+kx +9是完全平方式,则实数k =________.5.因式分解:(1)x 2-6x +9=________;(2)-2a 2+4a -2=________.6.因式分解:(1)4m 2-2m +14; (2)2a 3-4a 2b +2ab 2;(3)(x +y )2-4(x +y )+4.7.先分解因式,再求值:x 3y +2x 2y 2+xy 3,其中x =1,y =2.第十五章 分 式15.1 分 式15.1.1 从分数到分式1.下列各式不是分式的是( )A.x yB.y π+yC.x 2D.1+x a 2.若分式x +1x -1有意义,则x 的取值范围是( ) A .x ≠1 B .x ≠-1 C .x =1 D .x =-13.如果分式|x |-1x -1的值为零,那么x 的值为( ) A .1 B .-1 C .0 D .±14.某人种了x 公顷的棉花,总产量为y 千克,则棉花的单位面积产量为________千克/公顷.5.当x =________时,分式x 2-9x -3的值为零. 6.x 取何值时,下列分式有意义?(1)x +22x -3; (2)6(x +3)|x |-12;(3)x +6x 2+1; (4)x (x -1)(x +5).15.1.2 分式的基本性质1.下列分式是最简分式的是( )A.x -13x -3B.3(x 2-y 2)x -yC.x -12x +1D.2x 4-2x2.分式x 5y 与3x 2y 2的最简公分母是( ) A .10xy B .10y 2 C .5y 2 D .y 23.根据分式的基本性质填空:(1)a +b ab =( )a 2b; (2)x 2+xy x 2=x +y ( ); (3)a -2a 2-4=1( ). 4.下列式子变形:①b a =b +1a +1;②b a =b -1a -1;③b -2a =2b -42a ;④a 2+a a 2-1=a a -1.其中正确的有________(填序号).5.约分:(1)-4x 2y 6xy 2=________; (2)a 2+2a a 2+4a +4=________. 6.通分:(1)x ac ,y bc ; (2)24-x 2,x x +2; (3)1x 2-6x +9,13x -9.15.2 分式的运算15.2.1 分式的乘除第1课时 分式的乘除1.计算a bc ·c 2a 2的结果是( )A.c 2a 2b B.c ab C.c 2ab D.a 2bc2.计算2x 3÷1x 的结果是( )A .2x 2B .2x 4C .2xD .43.化简:(1)a 2+aba -b ÷aba -b =________;(2)2x +2y 5a 2b ·10ab 2x 2-y 2=________.4.计算:(1)xx 2-1÷1x +1; (2)x 2-9x 2+6x +9·3x 3+9x 2x 2-3x .5.先化简,再求值:x -2x +3·x 2-9x 2-4x +4,其中x =-1.第2课时 分式的乘方1.计算⎝⎛⎭⎫x2y 3的结果是( )A.x 38y 3 B.x 36y 3 C.x 8y 3 D.x 38y2.计算a 2·⎝⎛⎭⎫1a 3的结果是( )A .aB .a 5 C.1a D.1a 53.已知⎝⎛⎭⎫x3y 22·⎝⎛⎭⎫-y3x 2=6,则x 4y 2的值为( )A .6B .36C .12D .34.计算:(1)⎝⎛⎭⎫3b2a 2=________;(2)a 2b ·b2a =________;(3)⎝⎛⎭⎫-y 2ax 2÷y 24x =________.5.计算:(1)⎝⎛⎭⎫-3ac 2b 2; (2)a -b b ·b a 2-b 2; (3)-a 32b ÷⎝⎛⎭⎫-a 2b 3·b 2.6.先化简,再求值:a -a 2a 2-1÷a a -1·⎝ ⎛⎭⎪⎫a +1a -12,其中a =2.15.2.2 分式的加减第1课时 分式的加减1.计算x -1x +1x的结果是( )A.x +2xB.2xC.12 D .12.化简4x x -2-x2-x的结果是( )A.3x x -2B.5x 2-xC.5x x -2D.3x 2-x 3.计算: (1)1a 2-1+aa 2-1=________; (2)1a -1-1a (a -1)=________. 4.计算:(1)5a +3b a 2-b 2-2a a 2-b 2; (2)m m +n +m m -n -m 2m 2-n 2.5.先化简:x 2+x x 2+2x +1+1-xx 2-1,然后从-1≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.第2课时 分式的混合运算1.化简⎝⎛⎭⎫1+1x -2·x 2-2xx -1的结果为( )A .4xB .3xC .2xD .x2.化简:(1)⎝⎛⎭⎪⎫a +1a -1+11-a ÷a 1-a=________;(2)x 2-4x 2-2x +1·x -1x -2-x x -1=________. 3.计算:(1)a 2-16a +64a -8÷⎝⎛⎭⎫1-8a ; (2)⎝ ⎛⎭⎪⎫x 2-1x 2-2x +1+x +1x -1·1-x 1+x ;(3)⎝⎛⎭⎫x -1x ÷⎝⎛⎭⎫2x -1+x 2x ; (4)⎝⎛⎭⎫b 2a 2÷⎝⎛⎭⎫b a -14a ·23b .4.先化简,后求值:⎝⎛⎭⎫1x -1-1x +1÷xx 2-1,其中x =2.15.2.3 整数指数幂第1课时 负整数指数幂1.计算5-2的值是( )A .-125 B.125 C .25 D .-252.计算⎝⎛⎭⎫-12-1的结果是( ) A .-12 B.12 C .2 D .-23.计算a 3·a -5的结果是( )A .a 2B .a -2C .-a 2D .-a -2 4.若b =-3-2,c =⎝⎛⎭⎫13-2,d =⎝⎛⎭⎫-130,则( ) A .b <c <d B .b <d <c C .d <c <b D .c <d <b 5.计算:(1)(-2)0×3-2=________;(2)(x -1)2·x 3=________. 6.计算:(1)⎝⎛⎭⎫23-2×3-1+(π-2018)0÷⎝⎛⎭⎫13-1;(2)(ab -2)-2·(a -2)3;(3)(2xy -1)2·xy ÷(-2x -2y ).第2课时用科学记数法表示绝对值小于1的数1.0.000012用科学记数法表示为()A.120×10-4B.1.2×10-5C.-1.2×10-5D.-1.2×1052.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()A.0.432×10-5B.4.32×10-6C.4.32×10-7D.43.2×10-73.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.若将0.0000025用科学记数法表示为2.5×10n(n为整数),则n 的值为()A.-7 B.-6 C.-5 D.64.用科学记数法把0.000009405表示成a×10-6,则a=________.5.用科学记数法表示下列各数:(1)0.0000314; (2)-0.0000064.6.用小数表示下列各数:(1)2×10-7; (2)2.71×10-5.7.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10-9米.已知某种植物孢子的直径约为45000纳米,用科学记数法表示该孢子的直径约为多少米?15.3 分式方程第1课时 分式方程及其解法1.下列方程是分式方程的是( )A.12-x 3=0B.4x =-2 C .x 2-1=3 D .2x +1=3x2.以下是解分式方程1-x 2-x -3=1x -2时,去分母后的结果,其中正确的是( )A .1-x -3=1B .x -1-3x +6=1C .1-x -3x +6=1D .1-x -3x +6=-1 3.分式方程12x =2x +3的解是________.4.当实数m =________时,方程2m -1x =3的解为x =1.5.若关于x 的方程3x -1=1-k1-x 无解,则k 的值为________.6.解方程:(1)3x =2x +1; (2)3x +5-1x -1=0;(3)1x -2=4x 2-4; (4)1-13x -1=56x -2.第2课时 分式方程的应用1.某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务.设这个工程队原计划每天要铺建x 米管道,则依题意所列方程正确的是( )A.2000x +2=20001.25xB.2000x =20001.25x -2C.2000x +20001.25x =2D.2000x -20001.25x=22.某特快列车在最近一次的铁路大提速后,平均时速提高了30千米/时,则该列车行驶350千米所用的时间比原来少用1小时.若该列车提速前的速度是x 千米/时,下列所列方程正确的是( )A.350x -350x -30=1B.350x -350x +30=1C.350x +30-350x =1D.350x -30-350x=13.学校最近新配备了一批图书需要甲、乙两人进行整理,若甲单独整理完成需要4小时;若甲、乙共同整理2小时后,乙再单独整理2小时才能完工,则乙单独整理完成需要多少小时?4.某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.第十一章 三角形 11.1 与三角形有关的线段11.1.1 三角形的边1.C 2.B 3.C 4.6 ∠B AE ∠AED ∠C5.解:(1)∵|a -3|+(b -2)2=0,∴a -3=0,b -2=0,∴a =3,b =2.由三角形三边关系得3-2<c <3+2,即1<c <5.(2)∵c 为整数,1<c <5,∴c =2或3或4.11.1.2 三角形的高、中线与角平分线11.1.3 三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.2 7.解:(1)S △ABC =12AB ·CE =12×6×4.5=13.5.(2)∵S △ABC =12BC ·AD ,∴BC =2S △ABC AD =2×13.55=5.4.11.2 与三角形有关的角11.2.1 三角形的内角 第1课时 三角形的内角和1.D 2.B 3.30° 4.(1)27 (2)29 (3)595.解:∵∠BAC =65°,∠C =30°,∴∠B =85°.∵DE ∥BC ,∴∠BDE =180°-∠B =180°-85°=95°.第2课时 直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40° 6.解:∵∠A =70°,CE ,BF 是△ABC 的两条高,∴∠EBF =20°,∠ECA =20°.又∵∠BCE =30°,∴∠ACB =50°,∴在Rt △BCF 中,∠FBC =40°. 7.证明:∵∠ACB =90°,∴∠A +∠B =90°.∵∠ACD =∠B ,∴∠A +∠ACD =90°,∴∠ADC=90°,∴CD ⊥AB .11.2.2 三角形的外角1.70° 2.> 3.C 4.A 5.解:∵∠ACE =140°,∴∠ACB =40°.∵∠A =80°,∴∠1=40°+80°=120°.11.3 多边形及其内角和11.3.1 多边形1.A 2.B 3.B 4.B 5.18 6.4 57.解:(1)六边形ABCDEF ,它的内角是∠A ,∠B ,∠C ,∠D ,∠E ,∠F .(2)如图所示.(3)如图,∠DCG 即为点C 处的一个外角(答案不唯一).11.3.2 多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n 边形.由题意可得(n -2)·180°=3×360°,解得n =8.故该多边形为八边形.8.解:根据题意,设四边形ABCD 的四个外角的度数分别为3x ,4x ,5x ,6x ,则3x +4x +5x +6x =360°,解得x =20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C=90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF . (2)∵PE ⊥AB ,PF ⊥AC ,PE =PF ,∴点P 在∠BAC 的平分线上,故AP 平分∠BAC . 5.证明:∵DC =EF ,△DCB 和△EFB 的面积相等,∴点B 到AC ,AF 的距离相等,∴AB平分∠CAF .第十三章 轴对称 13.1 轴对称13.1.1 轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB 与A ′B ′是对应线段,∴AB =A ′B ′=6cm.又∵AC 与A ′C ′是对应线段,∴A ′C ′=AC =8cm.(2)∵∠A ′与∠A 是对应角,∴∠A ′=∠A =90°,∴S △A ′B ′C ′=A ′B ′·A ′C ′÷2=24(cm 2).13.1.2 线段的垂直平分线的性质 第1课时 线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD =BD .∵△ADC 的周长为11cm ,∴AC +CD +AD =AC +CD +BD =AC +BC =11cm.∵AC =4cm ,∴BC =7cm.第2课时 线段垂直平分线的有关作图1.D2.解:如图所示.。
人教版 八年级 上册 数学11.1 --11.3基础练习题含答案
人教版八年级上册数学11.1 --11.3基础练习题11.1与三角形有关的线段一、选择题1.下面几个图形不具有稳定性的是A. B.C. D.2.已知a,b,c是的三条边长,化简的结果为A. B. C. 2c D. 03.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是A. 4B. 5C. 6D. 94.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有A. 1种B. 2种C. 3种D. 4种5.下列各组数中,不可能成为一个三角形三边长的是A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,106.如图,在中,,G为AD的中点,延长BG交AC于E,F为AB上一点,于H,下面判断正确的有是的角平分线;是边AD上的中线;是边AD上的高;是的角平分线和高.A. 1个B. 2个C. 3个D. 4个7.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得米,米,A、B间的距离不可能是A. 5米B. 10米C. 15米D. 20米8.若a、b、c为的三边长,且满足,则c的值可以为A. 5B. 6C. 7D. 89.下列说法错误的是A. 一般锐角三角形的三条高、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高在三角形外部C. 直角三角形只有一条高D. 任意三角形都有三条高、三条中线、三条角平分线10.三角形的高、中线和角平分线都是A. 直线B. 射线C. 线段D. 以上答案都不对11.如图,在中,AE是和AF分别是BC边上的中线和高线,AD是的平分线.则下列线段中最短的是A. AEB. ADC. AFD. AC12.如图,图中直角三角形共有A. 1个B. 2个C. 3个D. 4个二、填空题13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成______ 个三角形.14.如图,在中,D,E,F分别是BC,AD,CE的中点,且,则________.15.如图,D、E分别是边AB、BC上的点,,,设的面积为,的面积为,若,则的值为__.16.如图,在中,,,则以为内角的三角形是__________,以BC为边的三角形是___________,所对的边为___________.三、解答题17.如图,回答下列问题:图中有________个三角形,它们分别是______________________;以线段AD为边的三角形是__________________;线段CE所在的三角形是________,CE边所对的角是________.18.如图,在中,,CD是AB边上的高,且,,.求:的面积;的长.19.已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.请写出一个三角形,符合上述条件的第三边长.若符合上述条件的三角形共有a个,求a的值.20.如图,在中,D、E分别是BC,AD的中点,,求.答案和解析1.【答案】A【解答】解:根据三角形的稳定性可得,B、C、D都具有稳定性.不具有稳定性的是A选项.故选A.2.【答案】D【解答】解:、b、c为的三条边长,,,原式.故选D.3.【答案】C【解答】解:由三角形三边关系定理得,即.因此,本题的第三边应满足,把各项代入不等式符合的即为答案.4,5,9都不符合不等式,只有6符合不等式,故选C.4.【答案】C【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.5.【答案】C【解析】解:,三角形三边长为5,6,12不可能成为一个三角形,故选:C.6.【答案】B【解答】解:根据三角形的角平分线的概念,知AG是的角平分线,故此说法错误;根据三角形的中线的概念,知BG是的边AD上的中线,故此说法错误;根据三角形的高的概念,知CH为的边AD上的高,故此说法正确;根据三角形的角平分线和高的概念,知AH是的角平分线和高线,故此说法正确.故选B.7.【答案】A【解答】解:连接AB,根据三角形的三边关系定理得:,即:,、B间的距离在5和25之间,、B间的距离不可能是5米;故选:A.8.【答案】A【解答】解:,,;,;则,即,符合条件;故选A.9.【答案】C【解答】解:锐角三角形的三条高线、三条角平分线分别交于一点,故本选项说法正确;B.钝角三角形有两条高线在三角形的外部,故本选项说法正确;C.直角三角形也有三条高线,故本选项说法错误;D.任意三角形都有三条高线、中线、角平分线,故本选项说法正确;故选C.10.【答案】C【解答】解:三角形的高、中线和角平分线都是线段.故选C.11.【答案】C【解答】解:在中,AF是高,,又在中,AD是的平分线,AE是BC边上的中线,,,,故最短线段为AF.故选C.12.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,,图中直角三角形有、、,共有3个.故选C.13.【答案】3【解析】解:其中的任意三条组合有3、5、7;3、5、9;3、7、9;5、7、9四种情况.根据三角形的三边关系,则其中的,不能组成三角形,应舍去,故可以组成3个三角形.故答案为:3.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.14.【答案】【解答】解:点D,E,F,分别为BC、AD、CE的中点,且,,,,,故答案为.15.【答案】1【解答】解:,,,,.故答案为1.16.【答案】和;和;CD和AC.【解答】解:以为内角的三角形是和,以BC为边的三角形是和,所对的边为CD和AC,故答案为和;和;CD和AC.17.【答案】;,,,,,;,,;,.【解答】解:图中有6个三角形,它们分别是,,,,,.故答案为6;,,,,,;以线段AD为边的三角形是,,.故答案为,,;线段CE所在的三角形是,CE边所对的角是.故答案为,.18.【答案】解:的面积;的面积,.19.【答案】解:两边长分别为9和7,设第三边是a,则,即.第三边长是答案不唯一;,的值为4,6,8,10,12,14共六个,;20.【答案】解:、E分别是BC,AD的中点,,.11.2 与三角形有关的角一、选择题1. 已知在△ABC中,∠A=70°,∠B=60°,则∠C的度数为( )A.50°B.60°C.70°D.80°2. 在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是( )A.80 B.70 C.65D.603. 在Rt△ABC中,∠C=90°,∠A-∠B=50°,则∠A的度数为( )A.80°B.70°C.60°D.50°4.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°5. 一个三角形三个内角的度数之比为2∶3∶4,这个三角形是()A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形6.若三角形的三个内角的度数之比为2∶3∶7,则这个三角形的最大内角是( )A.75°B.90°C.105°D.120°7. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°8.如图,在△ABC中,D是∠ABC和∠ACB的平分线的交点,∠A=80°,∠A BD=30°,则∠BDC的度数为( )A.100°B.110°C.120°D.130°9.如图,把△ABC沿DE折叠,当点A落在四边形BCED内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,这个关系是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是()A.x=y+zB.x=y-zC.x=z-yD.x+y+z=180二、填空题11. 如图所示,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=.12. 有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图所示的方式剪去它的一个角,在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为.13.如图,折叠一张三角形纸片,把三角形的三个角拼在一起,就可以说明一个几何定理.请你写出这个定理的内容:______________________.14. 如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF=°.15.定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么“特征角”α的度数为____________.16.如图,在△ABC中,点E在BC的延长线上,∠ABC的平分线与∠ACE的平分线相交于点D.(1)若∠A=70°,则∠ACE-∠ABC=________°,∠D=________°;(2)若∠A=α,则∠ACE-∠ABC=________,∠D=________.三、解答题17.如图,用钢筋做支架,要求BA,DC相交所成的锐角为32°,现测得∠BAC=∠DCA=115°,则这个支架符合设计要求吗?为什么?18.如图,在△ABC中,AD是BC边上的高,E是AB上一点,CE交AD于点M,且∠DCM=∠MAE.求证:△ACE是直角三角形.19. 在△ABC中,∠B=55°,且3∠A=∠B+∠C,求∠A和∠C的度数.20.如图,在△ABC中,CD,BE分别是AB,AC边上的高,BE,CD相交于点O .(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)求证:∠BOC+∠A=180°.人教版八年级数学上册11.2 与三角形有关的角同步培优训练-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】B 又∵∠A-∠B=50°,∴2∠A=140°.∴∠A=70°.4. 【答案】B ∴∠CFD=∠AFE=55°.∴∠ACB=∠D+∠CFD=15°+55°=70°.5. 【答案】C6. 【答案】C 由题意,得2x+3x+7x=180°,解得x=15°.∴7x=105°.7. 【答案】C∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.故选C.8. 【答案】D ∴∠DBC=∠ABD=30°,∠ABC=2∠ABD=2×30°=60°. ∴∠ACB=180°-∠A-∠ABC=40°.∵CD平分∠ACB,∴∠DCB=12∠ACB=12×40°=20°.∴∠BDC=180°-∠DCB-∠DBC=130°.9. 【答案】B10. 【答案】A二、填空题11. 【答案】105°12. 【答案】105°所以∠1+∠2=360°-90°=270°. 因为∠1=165°,所以∠2的度数为105°.13. 【答案】三角形三个内角的和等于180°14. 【答案】68∴∠CFD=180°-∠AFD=180°-158°=22°.∵FD⊥BC,∴∠FDC=90°.∴∠C=180°-∠FDC-∠CFD=180°-90°-22°=68°.∵∠B=∠C,DE⊥AB,∴∠EDB=180°-∠B-∠DEB=180°-68°-90°=22°.∴∠EDF=180°-90°-22°=68°.15. 【答案】48°或96°或88°当β=48°时,则“特征角”α=2×48°=96°;当第三个角为48°时,α+12α+48°=180°,解得α=88°.综上所述,“特征角”α的度数为48°或96°或88°.16. 【答案】(1)70 35 (2)α1 2α三、解答题17. 【答案】解:这个支架不符合设计要求.理由:如图,延长BA,DC交于点E.∵∠BAC=∠DCA=115°,∴∠EAC=∠ECA=65°.∴∠E=180°-∠EAC-∠ECA=50°. ∵要求BA,DC相交所成的锐角为32°,∴这个支架不符合设计要求.18. 【答案】证明:∵AD是BC边上的高,∴∠ADC=90°.∵∠DCM=∠MAE,∠CMD=∠AME,∴∠AEC=∠ADC=90°.∴△ACE是直角三角形.19. 【答案】解:∵在△ABC中,∠A+∠B+∠C=180°,3∠A=∠B+∠C,∴4∠A=180°,解得∠A=45°.∵∠B=55°,∴∠C=180°-45°-55°=80°.20. 【答案】解:(1)∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∵∠ABC=50°,∠ACB=60°.∴∠BCO=40°,∠CBO=30°.∴∠BOC=180°-40°-30°=110°.(2)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠BEC=90°.∴∠ABE=90°-∠A.∴∠BOC=∠ABE+∠BDC=90°-∠A+90°=180°-∠A.∴∠BOC+∠A=180°.11.3多边形及其内角和一.选择题1.正多边形的每个内角为135度,则多边形为()A.4 B.6 C.8D.102.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形3.一个四边形的四个内角度数之比为1:2:4:5,则这个四边形中,最小的内角为()A.30°B.40°C.50°D.60°4.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6D.125.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°6.如图,在五边形ABCDE中,AE∥BC,延长DE至点F,连接BE,若∠A=∠C,∠1 =∠3,∠AEF=2∠2,则下列结论正确的是()①∠1=∠2 ②AB∥CD ③∠AED=∠A ④CD⊥DEA.1个B.2个C.3个D.4个7.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°<α<90°),若DE⊥B′C′,则∠α为()A.36°B.54°D.72°8.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°9.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A-∠F=()A.60°B.46°C.26°D.45°10.如图,已知四边形ABCD中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°11.如图,在六边形ABCDEF中,若∠A+∠B+∠C+∠D=500°,∠DEF与∠AFE的平分线交于点G,则∠G等于()A.55°C.70°D.80°12.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°二.填空题13.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.14.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.15.如图,已知在四边形ABCD中,∠A+∠C=135°,∠ADE=125°,则∠B= .16.如图所示,若∠DBE=78°,则∠A+∠C+∠D+∠E= °.17.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= °.三.解答题18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的七分之二,求这个多边形的边数.19.如图,在四边形ABCD中,BD⊥CD,EF⊥CD,且∠1=∠2.(1)求证:AD∥BC;(2)若BD平分∠ABC,∠A=130°,求∠C的度数.20.如图,四边形ABCD中,∠BAD=106°,∠BCD=64°,点M,N分别在AB,BC上,将△BMN沿MN翻折得△FMN,若MF∥AD,FN∥DC.求(1)∠F的度数;(2)∠D的度数.21.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.22.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.(1)如图1,若BE∥DF,求∠C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数.参考答案1-5:CAACD 6-10:CBBBC 11-12:CB13、1080°;六14、2880°15、170°16、10217、72018、:(1)设这个多边形的每个内角是x°,每个外角是y°,则得到一个方程组得而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n-2)180°=360°,解得n=9,答:这个多边形的边数为9.19、:(1)证明:∵BD⊥CD,EF⊥CD(已知),∴BD∥EF(垂直于同一直线的两条直线平行),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AD∥BC(内错角相等,两直线平行).(2)∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=25°.∴∠C=90°-∠3=65°.20、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.21、:(1)如图,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1-∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.。
人教版八年级上册 数学11.1--11.3同步基础检测题含答案
人教版八年级上册数学11.1--11.3基础检测题含答案《11.1 与三角形有关的线段》一.选择题1.一个三角形的两边长分别为3和8,则它的第三边长可能是()A.5 B.12 C.10 D.无法确定2.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.两点确定一条直线D.三角形的稳定性3.如图,在△ABC中,AC边上的高是()A.BE B.AD C.CF D.AF4.已知n是正整数,若一个三角形的三边长分别是n+2、n+4、n+8,则n的取值范围是()A.n>﹣1 B.n>0 C.n>2 D.n>35.如图所示,△ABC中,BC边上的中线是()A.线段AD B.线段AE C.线段AF D.线段AG6.下列说法中,正确的个数有()①三角形具有稳定性;②如果两个角相等,那么这两个角是对顶角;③三角形的角平分线是射线;④直线外一点到这条直线的垂线段叫做这点到直线的距离;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内;A.2 B.3 C.4 D.5二.填空题7.三角形一边长为4cm,另一边长为3cm,且第三边长为偶数,则第三边的长为cm.8.如果三角形的两边长为1和5,第三边长为整数,那么三角形的周长为.9.若△ABC的边AB、BC的长是方程组的解,设边AC的长为m,则m的取值范围是.10.已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=.11.如图,木匠在做门框时防止门框变形,用一根木条斜着钉好,这样门框就固定了,所运用的数学道理是.12.如图,图中以BC为边的三角形的个数为.三.解答题13.如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长.(2)求BC边的取值范围.14.若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|.15.若一个三角形的三边长分别是a,b,c,其中a和b满足方程,若这个三角形的周长为整数,求这个三角形的周长.16.如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.参考答案一.选择题1.解:∵此三角形的两边长分别为3和8,∴第三边长的取值范围是:8﹣3<第三边<8+3.即5<第三边<11,观察选项,只有选项C符合题意.故选:C.2.解:根据三角形的稳定性可固定窗户.故选:D.3.解:在△ABC中,AC边上的高是线段BE,故选:A.4.解:∵三角形的三边长分别是n+2、n+4、n+8,∴n+2+n+4>n+8,解得n>2.故选:C.5.解:用尺规作图得出中点E,△ABC中,BC边上的中线是线段AE,故选:B.6.解:①三角形具有稳定性,正确;②如果两个角相等,那么这两个角不一定是对顶角,故原说法错误;③三角形的角平分线是射线,错误;④直线外一点到这条直线的垂线段长度叫做这点到直线的距离,故此选项错误;⑤任何一个三角形都有三条高、三条中线、三条角平分线,正确;⑥三角形的三条角平分线交于一点,且这点在三角形内,正确;故选:B.二.填空题(共6小题)7.解:设第三边长为x,则4﹣3<x<4+3,即1<x<7.又x为偶数,因此x=2或4或6.故答案为:2或4或6.8.解:设第三边为a,根据三角形的三边关系,得:5﹣1<a<5+1,即4<a<6,∵a为整数,∴a的值为5,则三角形的周长为1+5+5=11.故答案为:11.9.解:解得:,∵△ABC的边AB、BC的长是方程组的解,边AC的长为m,∴m的取值范围是:3<m<9,故答案为:3<m<9.10.解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.11.解:结合图形,为防止变形钉上一根木条,构成了三角形,所以这样做根据的数学道理是三角形的稳定性.故答案为:三角形的稳定性.12.解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,∴以BC为公共边的三角形的个数是4个.故答案为:4.三.解答题(共4小题)13.解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=2,即AB﹣AC=2①,又AB+AC=10②,①+②得.2AB=12,解得AB=6,②﹣①得,2AC=8,解得AC=4,∴AB和AC的长分别为:AB=6,AC=4;(2)∵AB=6,AC=4,∴2<BC<10.14.解:∵a、b、c是△ABC的三边的长,∴a+b﹣c>0,b﹣a﹣c<0,c﹣a﹣b<0,∴原式=a+b﹣c﹣b+a+c+c﹣a﹣b=a﹣b+c.15.解:由,解得,∴3<c<5,∵周长为整数,∴c=4,∴周长=4+4+1=9.16.解:(1)∵AB=4,AC=5,∴5﹣4<BC<4+5,即1<BC<9,故答案为:1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵DE∥AC,∴∠BDE=∠ACB=55°.∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.11.2三角形有关的角一、选择题1.若一个三角形的三个内角的度数之比为,则这个三角形是.A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形2.在不等边三角形中,最小的角可以是.A. B. C. D.3.在锐角三角形中,最大角的取值范围是.A. B. C.D.4.如图,CE是的外角的平分线,若,,则等于.A. B. C. D.5.下列说法正确的是A. 三角形的内角中最多有一个锐角B. 三角形的内角中最多有两个锐角C. 三角形的内角中最多有一个直角D. 三角形的三个内角都大于6.如图,在中,,沿图中虚线截去,则的度数为A. B. C. D.7.如图,,,,则等于A. B. C. D.8.如图,中,,,则等于A. B. C. D.9.在三角形的三个外角中,钝角的个数最少有.A. 1个B. 2个C. 3个D. 4个10.如图,在中,点D在AB上,点E在AC上,若,,则的大小为A. B. C. D.11.在中,,,的度数之比为,则的度数为A. B. C. D.二、填空题12.如图,在中,,BD是AC边上的高,则_________.13.在中,AE为边BC上的高线,若,,则_________.14.如果一个三角形的两个不同的外角之和为,那么这个三角形是________三角形填“锐角”“直角”或“钝角”.15.根据如图所示的图形直接写出的度数.如图,________;如图,________;如图,________.三、解答题16.如图,已知,,求:的度数.的度数.17.如图,在中,AD是BC边上的高,AE平分,,,求与的度数.答案和解析1.C解:设其三个内角度数分别是2k,8k,5k.根据三角形的内角和定理,得:,解得:,,这个三角形是钝角三角形.2.D解:在不等边三角形中,最小的角要小于,否则三内角的和大于.3.D解:三角形中最大的角不能小于,如果小于,则三角形的内角和将小于,又该三角形是锐角三角形,则最大角必须小于,故最大角的取值范围是.4.C解:是的外角的平分线,,,又,.故选C.5.C解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D 、若三角形的内角都大于,则三个内角的和大于,这样的三角形不存在,故本选项错误.6C解:作、如上图,,,.7.C解:,,,8.B解:由三角形内角和定理得,,9.B解:三角形的外角与它相邻的内角互补,在一个三角形中最多有一个钝角,它的外角至少有两个钝角.故选B.10.C解:,,,,故选:C.11.C解:中:::3:4,设,,,,解得,故选C.12.解:,,解得,,是AC边上的高,.故答案为.13.或解:,,,当为锐角时,如图1,在中,,,当为钝角时,如图2,,则.故答案为或14.直角解:一个三角形的两个不同的外角之和为,第三个外角是,与的外角相邻的内角是,这个三角形一定是直角三角形.故答案为直角.15.;;.解:如图,,,.故答案为.如图,,,又,.故答案为.如图,,,又,.故答案为.16.解:在中,,,,;在中,,,,.17.解:,,,,平分,,是BC上的高,,,,在中,.11.3多边形及其内角和一、选择题18.在四边形中,如果有一组对角都是直角,那么另一组对角可能.A. 都是钝角B. 都是锐角C. 是一个锐角、一个钝角D. 是一个锐角、一个直角19.一个多边形的边数增加1,则它的内角和与外角和增加的度数之和是.A. B. C. D.20.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是A. B. C. D.21.已知一个正多边形的一个外角为,则这个正多边形的边数是A. 8B. 9C. 10D. 1122.一个多边形从一个顶点最多能引出三条对角线,这个多边形是A. 三角形B. 四边形C. 五边形D. 六边形23.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为,则n等于A. 11B. 12C. 13D. 1424.一个多边形除了一个内角外,其余各内角的和为,则这个内角的度数为A. B. C. D.25.下列可能是n边形内角和的是A. B. C. D.26.如图,四边形ABCD中,,与、相邻的两外角平分线交于点E,若,则的度数为A. B. C. D.27.从十二边形的一个顶点出发,可引出对角线条.A. 9条B. 10条C. 11条D. 12条28.一个n边形的每一个外角都是,则n等于A. 3B. 4C. 5D. 6二、填空题29.如图,在六边形ABCDEF中,,,,,分别是,,,的外角,则_________.30.如果一个多边形的边数增加一倍,它的内角和是,则原来那个多边形是_________边形.31.多边形的每个内角都等于,则从这个多边形一个顶点发出的对角线有_________条.32.十二边形的内角和是______ ,外角和是______ .33.正八边形的每个外角的度数为________;若正多边形的一个外角是,则这个正多边形的边数是________.三、解答题(本大题共2小题,共16.0分)34.李明在计算某个多边形的内角和时得到,老师说他算错了,于是李明认真地检查了一遍.若他检查时发现其中一个内角多算了一次,求这个多边形的边数是多少?若他检查时发现漏算了一个内角,求漏算的那个内角是多少度?这个多边形是几边形?35.已知一个多边形的内角和与外角和相加为,求这个多边形的对角线的条数.答案和解析1.C解:如图:四边形ABCD的内角和等于,即,,.只有C答案才满足.2.C解:由多边形的内角和公式可知:一个多边形边数增加1,则这个多边形内角增加;由任意多边形的外角和是可知,外角和增加,则内角和与外角和增加的度数之和是.3.B解:四边形的内角和等于a,.五边形的外角和等于b,,.5.D解:,所以这个正多边形是正十边形.解:设多边形有n条边,则,解得.故多边形的边数为6.6.C解:n边形内角和为,并且每一个内角的度数都小于.,,,.7.B解:设这个内角度数为x,边数为n,则,整理得,则.为正整数,.这个内角度数为.8.C解:不能被180整除,故A错误;B.550不能被180整除,故B错误;C.720能被180整除,故C正确;D.960不能被180整除,故D错误;解:,,,、相邻的两外角平分线交于点E,,10.A解:,十二边形从一个顶点出发可引出9条对角线.11.C解:多边形的每一个外角都是,此多边形是正多边形,,所以,它的边数是5.故选:C.12.解:,,与的外角和为,六边形ABCDEF的外角和为,.故答案为.13.七解:设多边形原有边数为x,则,,解得,所以此图形为七边形.故答案为七.14.9解:多边形的每一个内角都等于,每个外角是,多边形边数是,则此多边形从一个顶点出发的对角线共有条.15.;解:十二边形的内角和是,外角和,故答案为,.根据n边形的内角和是,代入求值即可得出内角和,再根据多边形的外角和为即可得出答案.16.;.解:解:设该正多边形的边数为n,根据多边形的外角和定理可得,,解得.故答案为9.17.解:设这个多边形的边数是n,重复计算的内角的度数是x,则,又,,解得.故这个多边形的边数是12;设这个多边形的边数是n,没有计算在内的内角的度数是x,则,又,,解得.故,,故漏算的那个内角是140度,这个多边形是十三边形18.解:设这是n边形,则,,.这个多边形的对角线的条数.。
人教版八年级数学上册第11章 三角形 期末复习试题及答案解析
八年级数学提优练习题一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有( )个. A.①②③B.①②④C.①③④D.①②③④2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足( ) A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是( ) A.①②③B.①②③④C.②③④D.①②④4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是( ) A.①②③B.①②④C.①③④D.①②③④5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有( ) A.①②③B.①②④C.①③④D.②③④6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有( ) A.1个B.2个C.3个D.4个7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①B E=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是( ) A.①②③B.①④C.①②③④D.①②二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC 于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN 交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为 _________ ;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD 上一动点,则BP+AP的最小值为 _________ .(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD 和AB上的动点,求BE+EF的最小值,并写出解答过程.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为 _________ .(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为 _________ .(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是 _________ ;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.八年级数学提优练习题参考答案与试题解析一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有( )个. A.①②③B.①②④C.①③④D.①②③④考点:等腰三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质.4387773分析:①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;③首先证明∴△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.④过点C作CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.解答:解:连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故②正确;在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE ,∵OP=CP ,在△OPA 和△CPE 中,,∴△OPA ≌△CPE (SAS ),∴AO=CE ,∴AC=AE+CE=AO+AP ;故③正确;过点C 作CH ⊥AB 于H ,∵∠PAC=∠DAC=60°,AD ⊥BC ,∴CH=CD ,∴S △ABC =AB •CH ,S 四边形AOCP =S △ACP +S △AOC =AP •CH+OA •CD=AP •CH+OA •CH=CH •(AP+OA )=CH •AC , ∴S △ABC =S 四边形AOCP ;故④正确.故选D .点评: 本题考查了等腰 三角形的判定与性质,关键是正确作出辅助线.2.如图,四边形ABCD 是直角梯形,AB ∥CD ,AD ⊥AB ,点P 是腰AD 上的一个动点,要使PC+PB 最小,则点P 应该满足( ) A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC考点:轴对称-最短路线问题;直角梯形.专题:压轴题;动点型.分析:首先根据轴对称的知识,可知P点的位置是连接点B和点C关于AD的对称点E与AD的交点,利用轴对称和对顶角相等的性质可得.解答:解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.点评:此题的关键是应知点P是怎样确定的.要找直线上一个点和直线同侧的两个点的距离之和最小,则需要利用轴对称的性质进行确定.3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是( ) A.①②③B.①②③④C.②③④D.①②④考点:旋转的性质;全等三角形的判定与性质.4387773专题:开放型.分析:连DA,由△ABC是等腰直角三角形,D点为BC的中点,根据等腰直角三角形的性质得AD⊥BC,AD=DC,∠ACD=∠CAD=45°,得到∠GAD=∠ECD=135°,由∠EDF=90°,根据同角的余角相等得到∠1=∠2,所以△DAG≌△DCE,AG=E C,DG=DE,由此可分别判断.解答:解:连DA,如图,∵△ABC是等腰直角三角形,D点为BC的中点,∴AD⊥BC,AD=DC,∠ACD=∠CAD=45°,∴∠GAD=∠ECD=135°,又∵△DEF是一个含30°角的直角三角形,∴∠EDF=90°,∴∠1=∠2,∴△DAG≌△DCE,∴AG=EC,DG=DE,所以①②正确;∵AB=AC,∴BG﹣AC=BG﹣AB=AG=EC,所以③正确;∵S△BDG﹣S△CDE=S△BDG﹣S△ADG=S△ADB=S△ABC.所以④正确.故选B.点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直三角形的性质,特别是斜边上的中线垂直斜边并且等于斜边的一半.4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是( ) A.①②③B.①②④C.①③④D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.4387773分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=CM=AC=BC,从而得出CN=BN.然后即可得出结论.解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°∴①正确;②∵CE⊥CD,∠ECA=165°(已证),∴∠BAE=∠ECA﹣∠ACB=165﹣90=75°,∴△ACD≌△BCE(SAS),∴BE=BC,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ACB=45°∴∠BAD=∠BAC﹣∠CAD=45﹣30=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD⊥BE.④证明:如图,过D作DM⊥AC于M,过D作DN⊥B C于N.∵∠CAD=30°,且DM=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC﹣∠ACD=15°,∴△CMD≌△CND,∴CN=CM=AC=BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确.所以4个结论都正确.故选D.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有( ) A.①②③B.①②④C.①③④D.②③④考点:直角梯形;等边三角形的性质;含30度角的直角三角形;等腰直角三角形.4387773分析:由BC∥AM得∠CDA=105°,根据等边三角形的性质得∠CDE=60°,则∠EDA=105°﹣60°=45°;过C作CG⊥AM,则四边形ABCG为矩形,于是∠DCG=90°﹣∠BCD=15°,而∠BCE=75°﹣60°=15°,易证得Rt△CBE≌Rt△CGD,则BC=CG,得到AB=BC;由于AG=BC,而AG≠MD,则CF:FD=BC:MD≠1,不能得到F点是CD的中点,根据等边三角形的性质则不能得到EF⊥CD;若∠AMB=30°,则∠CBF=30°,在Rt△AMB中根据含30度的直角三角形三边的关系得到BM=2AB,则BM=2BC,易得∠BFC=75°,所以BF=BC,得MF=BF,由CB∥AM得CF:FD=BF:MF=1,即可有CF=DF.解答:解:∵BC∥AM,∴∠BCD+∠CDA=180°,∵∠BCD=75°,∴∠CDA=105°,∵△CDE为等边三角形,∴∠CDE=60°,∴∠EDA=105°﹣60°=45°,所以①正确;过C作CG⊥AM,如图,∵∠A=90°,∴四边形ABCG为矩形,∴∠DCG=90°﹣∠BCD=15°,而△CDE为等边三角形,∴∠DCE=60°,CE=CD,∴∠BCE=75°﹣60°=15°,∴Rt△CBE≌Rt△CGD,∴BC=CG,∴AB=BC,所以②正确;∵AG=BC,而AG≠MD,∴CF:FD=BC:MD≠1,∴F点不是CD的中点,∴EF不垂直CD,所以③错误;若∠AMB=30°,则∠CBF=30°,∴在Rt△AMB中,BM=2AB,∴BM=2BC,∵∠BCD=75°,∴∠BFC=180°﹣30°﹣75°=75°,∴BF=BC,∴MF=BF,而CB∥AM,∴CF:FD=BF:MF=1,∴CF=FD,所以④正确.故选B.点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角.也考查了矩形和等边三角形的性质、含30度的直角三角形三边的关系以及相似三角形的判定与性质. 6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有( ) A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;等腰直角三角形.4387773分析:根据等腰直角三角形的性质得:AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确.解答:解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA).∴①AE=CF;③EP=PF,即△EPF是等腰直角三角形;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、③、④,共三个.因此选C.点评:此题考查全等三角形的判定和性质,综合性较强.7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①BE=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是( ) A.①②③B.①④C.①②③④D.①②考点:全等三角形的判定与性质;等腰三角形的判定与性质.4387773分析:根据角平分线定义求出∠ABE=∠EBC=∠C,根据等角对等边求出BE=CE,即可判断①;证△ABE∽△ACB,推出AB2=AE×AC,求出AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式即可求出BF=AE+EF,即可判断②;延长AB到N,使BN=BM,连接MN,证△AMC≌△AMN,△AFB≌△BLF,推出AB=BL,即可判断③;设∠LAC=x°,∠LAM=y°,则∠BAM=∠MAC=(x+y)°,证△AFB≌△BLF推出∠BAF=∠BLF,∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,得出方程x°+y°+y°=∠C+x°,求出∠C=2y°,∠ABC=4y°,即可判断④.解答:解:∵BE是∠ABC的角平分线,∴∠EBC=∠ABE=∠ABC,∵∠ABC=2∠C,∴∠ABE=∠EBC=∠C,∴BE=EC,∴①正确;∵∠ABE=∠ACB,∠BAC=∠EAB∴=,∴AB2=AE×AC,在Rt△AFB与Rt△AFE中,由勾股定理得:AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式得:AE×AC﹣BF2=AE2﹣EF2,则BF2=AC×AE﹣AE2+EF2=AE×(AC﹣AE)+EF2=AE×EC+EF2=AE×BE+EF2,即(BE﹣EF)2=AE×BE+EF2,∴BE2﹣2BE×EF+EF2=AE×BE+EF2,∴BE2﹣2BE×EF=AE×BE,∴BE﹣2EF=AE,BE﹣EF=AE+EF,即BF=AE+EF,∴②正确;延长AB到N′,使BN=BM,连接MN′,则△BMN′为等腰三角形,∴∠BN′M=∠BMN′,△BN′M的一个外角∠ABC=∠BN′M+∠BM′N=2∠BN′M,则∠BN′M=∠ACB,在△AMC与△AMN′中,∴△AMC≌△AMN′(AAS),∴AN′=AC=AB+BN′=AB+BM,又∵AL⊥BE,∴∠AFB=∠LFB=90°,在△AFB与△LFB中,,∴△AFB≌△BLF(ASA),∴AB=BL,则AN′=AC=AB+BN′=AB+BM=BM+BL,即AC=BM+BL,∴③正确;设∠LAC=x°,∠LAM=y°,∵AM平分∠BAC,∴∠BAM=∠MAC=(x+y)°.∴∠BAF=∠BLF,∵∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,∴x°+y°+y°=∠C+x°,∴∠C=2y°,∵∠ABC=2∠C,∴∠ABC=4y°,即∠MAL=∠ABC,∴④正确.故选C.点评:本题考查了勾股定理,相似三角形的性质和判定,角平分线性质,相似三角形的性质和判定等知识点的综合运用.二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC 于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.考点:等腰三角形的性质;全等三角形的判定与性质.4387773专题:证明题.分析:(1)根据等腰三角形两底角相等求出∠C,再根据直角三角形两锐角互余求出∠CEG,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CEF,然后计算即可得解;(2)过点E作EH∥AB交BC于H,根据两直线平行,同位角相等可得∠ABC=∠EHC,内错角相等可得∠D=∠FEH,然后求出∠EHC=∠C,再根据等角对等边可得EC=EH,然后求出BD=EH,再利用“角角边”证明△BDF和△HEF全等,根据全等三角形对应边相等可得BF=FH,根据等腰三角形三线合一的性质可得CG=HG,即可得证.解答:(1)解:∵∠A=50°,∴∠C=(180°﹣∠A)=(180°﹣50°)=65°,∵EG⊥BC,∴∠CEG=90°﹣∠C=90°﹣65°=25°,∵∠A=50°,∠D=30°,∴∠CEF=∠A+∠D=50°+30°=80°,∴∠GEF=∠CEF﹣∠CEG=80°﹣25°=55°;(2)证明:过点E作EH∥AB交BC于H,则∠ABC=∠EHC,∠D=∠FEH,∵AB=AC,∴∠ABC=∠C,∴∠EHC=∠C,∴EC=EH,∵BD=CE,∴BD=EH,在△BDF和△HEF中,,∴△BDF≌△HEF(AAS),∴BF=FH,又∵EC=EH,EG⊥BC,∴CG=HG,∴FG=FH+HG=BF+CG.点评:本题考查了等腰三角形的性质,全等三角形的判定与性质,主要利用了等腰三角形两底角相等的性质,等角对等边的性质,(2)作辅助线构造出全等三角形是解题的关键.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.考点:全等三角形的判定与性质;非负数的性质:绝对值;非负数的性质:偶次方;坐标与图形性质;等腰直角三角形.4387773分析:(1)根据a=t,b=t,推出a=b即可;(2)延长AF至T,使TF=AF,连接TC,TO,证△TCF≌△AEF,推出CT=AE,∠TCF=∠AEF,再证△TCO≌△ABO,推出TO=AO,∠TOC=∠AOB,求出△TAO为等腰直角三角形即可;(3)连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,证△NTB′≌△MTH,推出TN=MT,证△NQB′≌△MQB,推出∠NB′Q=∠CBQ,求出△BQB′是等腰直角三角形即可.解答:(1)解:∵a,b满足(a﹣t)2+|b﹣t|=0(t>0).∴a﹣t=0,b﹣t=0,∴a=t,b=t,∴a=b,∵B(t,0),点C(0,t)∴OB=OC;(2)证明:延长AF至T,使TF=AF,连接TC,TO,∵F为CE中点,∴CF=EF,在△TCF和△AEF中∴△TCF≌△AEF(SAS),∴CT=AE,∠TCF=∠AEF,∴TC∥AD,∴∠TCD=∠CDA,∵AB=AE,∴TC=AB,∵AD⊥AB,OB⊥OC,∴∠COB=∠BAD=90°,∴∠ABO+∠ADO=180°,∵∠ADO+∠ADC=180°,∴∠ADC=∠ABC,∵∠TCD=∠CDA,∴∠TCD=∠ABO,在△TCO和△ABO中∴△TCO≌△ABO(SAS),∴TO=AO,∠TOC=∠AOB,∵∠AOB+∠AOC=90°,∴∠TOC+∠AOC=90°,∴△TAO为等腰直角三角形,∴∠OAF=45°;(3)解:连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,∵B和B′关于关于y轴对称,C在y轴上,∴CB=CB′,∴∠CBB′=∠CB′B,∵MH∥CN,∴∠MHB=∠CB′B,∴∠MHB=∠CBB′,∴MH=BM,∵BM=B′N,∴MH=B′N,∵MH∥CN,∴∠NB′T=∠MHT,在△NTB′和△MTH中∴△NTB′≌△MTH,∴TN=MT,又TQ⊥MN,∴MQ=NQ,∵CQ垂直平分BB′,∴BQ=B′Q,∵在∴△NQB′和△MQB中∴△NQB′≌△MQB (SSS),∴∠NB′Q=∠CBQ,而∠NB′Q+∠CB′Q=180°∴∠CBQ+∠CB′Q=180°∴∠B′CB+∠B′QB=180°,又∠B′CB=90°,∴∠B′QB=90°∴△BQB′是等腰直角三角形,∴OQ=OB=t,∴Q(0,﹣t).点评:本题考查了全等三角形的性质和判定,坐标与图形性质,等腰三角形的性质,等腰直角三角形的性质和判定,相等垂直平分线,偶次方,绝对值等知识点的综合运用.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为 45° ;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.考点:全等三角形的判定与性质;坐标与图形性质.4387773分析:(1)过A作AN⊥OC于N,AM⊥OB于M,得出正方形NOMA,根据正方形性质求出∠COA=∠COB,代入求出即可;(2)求出CN=BM,证△ANC≌△AMB,推出∠NAC=∠MAB,求出∠CAB=∠NAM,即可求出答案;(3)求出∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,求出∠HON=∠NMO=∠LMN,求出OL=ML,证△OLP≌△MLN,推出MN=OP,即可得出答案.解答:解:(1)过A作AN⊥OC于N,AM⊥OB于M,则∠ANO=∠AMO=∠COB=90°,∵A(4,4),∴AN=AM=4,∴四边形NOMA是正方形,∴∠COA=∠COB=×90°=45°.故答案为:45°;(2)∵四边形NOMA是正方形,∴AM=AN=4,OM=ON=4,∴OC×AN+OB×AM=16,∴OC+OB=8=ON+OM,即ON﹣OC=OB﹣OM,∴CN=BM,在△ANC和△AMB中,,∴△ANC≌△AMB(SAS),∴∠NAC=∠MAB,∴∠CAB=∠CAM+∠MAB=∠NAM=360°﹣90°﹣90°﹣90°=90°,即∠CAB=90°;(3)MN=2OH,证明:在Rt△OMH中,∠HON+∠NMO+∠NOM=90°,又∵∠NOM=45°,∠HON=∠NMO,∴∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,∴OM=MP,∠OMP=2∠OMN=45°,∴∠HON=∠NMO=∠LMN,∴∠OLM=90°=∠PLO,∴OL=ML,在△OLP和△MLN中,∴△OLP≌△MLN(ASA),∴MN=OP,∵OP=2HO,∴MN=2HO.点评:本题考查了坐标与图形性质,等腰三角形的性质和判定,正方形的性质和判定,全等三角形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.考点:全等三角形的判定与性质;非负数的性质:偶次方;非负数的性质:算术平方根;坐标与图形性质;等边三角形的性质.4387773专题:探究型.分析:(1)根据二次根式以及偶次方都是非负数,两个非负数的和是0,则每个数一定同时等于0,即可求解;(2)连接OC,只要证明OC是∠AOD的角平分线即可判断AC=CD,求出∠ACD的度数即可判断位置关系;(3)延长GA至点M,使AM=OF,连接BM,由全等三角形的判定定理得出△BAM≌△BOF,△FBG≌△MBG,故可得出FG=GM=AG+OF,由此即可得出结论.解答:解:(1)根据题意得:a﹣2=0且b﹣2=0,解得:a=2,b=2,则A的坐标是(2,2);(2)AC=CD,且AC⊥CD.如图1,连接OC,CD,∵A的坐标是(2,2),∴AB=OB=2,∵△ABC是等边三角形,∴∠OBC=30°,OB=BC,∴∠BOC=∠BCO=75°,∵在直角△ABO中,∠BOA=45°,∴∠AOC=∠BOC﹣∠BOA=75°﹣45°=30°,∵△OAD是等边三角形,∴∠DOC=∠AOC=30°,即OC是∠AOD的角平分线,∴OC⊥AD,且OC平分AD,∴AC=DC,∴∠ACO=∠DCO=60°+75°=135°,∴∠ACD=360°﹣135°﹣135°=90°,∴AC⊥CD,故AC=CD,且AC⊥CD.(3)不变.延长GA至点M,使AM=OF,连接BM,∵在△BAM与△BOF中,,∴△BAM≌△BOF(SAS),∴∠ABM=∠OBF,BF=BM,∵∠OBF+∠ABG=90°﹣∠FBG=45°,∴∠MBG=45°,∵在△FBG与△MBG中,,∴△FBG≌△MBG(SAS),∴FG=GM=AG+OF,∴=1.点评:本题考查的是全等三角形的判定与性质,涉及到非负数的性质及等边三角形的性质等知识,难度适中.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD 上一动点,则BP+AP的最小值为 2 .(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD 和AB上的动点,求BE+EF的最小值,并写出解答过程.考点:轴对称-最短路线问题.4387773分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P 就是所求作的位置.根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值;(2)首先在斜边AC上截取AB′=AB,连结BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.解答:解:(1)作点B关于CD的对称点E,连接AE交CD于点P此时PA+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2,即AP+BP的最小值是2.故答案为:2;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×=5,∴BE+EF的最小值为.点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P位置是解题关键.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为 .(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为 .(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.考点:圆的综合题;轴对称-最短路线问题.4387773专题:压轴题.分析:(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.解答:解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为;(3)拓展延伸如图(4).点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是 DE=BC ;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.4387773分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.考点:全等三角形的判定与性质;等边三角形的判定.4387773专题:压轴题.分析:(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)与前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.解答:证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。
人教版八年级数学上册期末综合复习测试题(含答案)
八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。
人教版八年级上册数学11.1--11.3分节测试题含答案。
人教版八年级数学上册11.1--11.3分节测试题(含答案)11.1 与三角形有关的线段一、选择题1、下列命题是假命题的是()A.三角形的三条角平分线相交于一点,并且这一点到三边距离相等B.等腰三角形底边的中点到两腰的距离相等C.面积相等的两个三角形全等D.一个三角形中至少有两个锐角2、以长度为5 cm,7 cm,9 cm,13 cm的线段中的三条为边,能组成三角形的情况有()A.2种 B.3种C.4种 D.5种3、下列图形不具有稳定性的是()A.正方形 B.等腰三角形 C.直角三角形 D.钝角三角形4、已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.135、如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的()A.高B.角平分线C.中线 D.无法确定6、如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC 三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57、三角形一边上的中线把原三角形分成两个()A.形状相同的三角形 B.面积相等的三角形C.直角三角形 D.周长相等的三角形8、一个三角形任意一边上的高都是这边上的中线,则对这个三角形的形状最准确的判断是()三角形.A.等腰B.直角C.等边 D.等腰直角9、△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB <19 D.9<AB<1910、已知一个三角形的两边长分别是2和7,第三边为偶数,则此三角形的周长是()A.15 B.16 C.17 D.15或1711、现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个 D.4个12、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根 B.1根 C.2根 D.3根13、如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25mD.30m14、a,b,c为三角形的三边长,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c15、AD是△ABC的中线,设△ABD的面积为S1,△ACD的面积为S2,那么()A.S1>S2 B.S1=S2 C.S1<S2 D.S1≠S216、如图,在四边形ABCD中,AC平分∠BAD,AB>AD,下列结论正确的是()A.AB-AD>CB-CD B.AB-AD=CB-CD C.AB-CD<CB-CD D.AB-AD与CB-CD的大小关系不确定.二、填空题1、(1)如果将一个三角形的三边的长确定,那么这个三角形的形状和大小就不会改变了,三角形的这个性质叫做________________________.(2)四边形是否具有这种性质?2、如图,在⊿ABC中,BC边上有n个点(包括B,C两点),则图中共有_______个三角形.3、已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.4、如图所示的图形中x的值是__ ____.5、如图,如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE 的中点,且△ABC的面积为4,则阴影部分的面积为_________ .6、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC 的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1+S2=_______7、在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为_______.8、如图,在锐角三角形ABC中,CD和BE分别是AB和AC边上的高,且CD和BE交于点P,若∠A=40º,则∠BPC的度数是_______.三、解答题1、(画图)把△ABC分成面积相等的两部分,把△DEF分成面积相等的四部分。
人教版八年级数学上册 第十一章三角形 期末复习卷(含答案)
人教版八年级数学上册第十一章三角形期末复习卷一、选择题(每题3分,共30分)1.下列长度的三条线段,能组成三角形的是()A.3,7,2 B.4,9,6C.21,13,6 D.9,15,52.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个3.在△ABC中,能说明△ABC是直角三角形的是()A.∠A∶∠B∶∠C=1∶2∶2B.∠A∶∠B∶∠C=3∶4∶5C.∠A∶∠B∶∠C=1∶2∶3D.∠A∶∠B∶∠C=2∶3∶44.如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155°D.160°5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A等于() A.35°B.95°C.85°D.75°6.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形7.小明把一副三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°8.如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折得到△FMN,若MF∥AD,FN∥DC,则∠D的度数为()A.115°B.105°C.95°D.85°9.如图,在四边形ABCD中,∠1=∠2,∠A=60°,则∠ADC=()A.65°B.60°C.110°D.120°10.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°二、填空题(每题3分,共30分)11.一个起重架的结构如图所示,如果∠1=155°,那么∠2=__ __.12.起重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做是利用了__________________.13.已知△ABC的两条边的长度分别为3 cm,6 cm,若△ABC的周长为偶数,则第三边的长度是_________cm.14.如图,在Rt△ABC中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD是AC边上的高,则BD的长为________cm.15.在活动课上,小红有两根长为4 cm,8 cm的小棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒的长度是__ __cm.16.如果一个多边形的内角和为其外角和的4倍,那么从这个多边形的一个顶点出发共有________条对角线.17.一个三角形的两边长为8和10,则它的最短边a的取值范围是__________,它的最长边b的取值范围是_____________.18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.19.已知a,b,c为△ABC的三边长,则|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|=________.20.如图,D,E,F分别是△ABC的边AB,BC,AC的中点,连接AE,BF,CD交于点G,=,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=________.三、解答题(共60分)21.(6分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,求∠ECD的度数.22.(6分)如图,B处在A处的南偏西45°方向,C处在A处的南偏东30°方向,C处在B 处的北偏东60°方向,求∠ACB的度数.23.(8分)如图.(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2 cm,AE=3 cm,求△AEC的面积及CE的长.24.(8分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.25.(10分)如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)若CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.26.(10分)已知等腰三角形的三边长分别为a,2a-1,5a-3,求这个等腰三角形的周长.27.(12分)已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图①,若AB∥ON,则①∠ABO的度数是________;②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图②,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.参考答案一、1.B 2.C 3.C 4.B 5.C 6.D 7.B 8.C 9.D 10.B 二、11.65° 12.三角形的稳定性 13.5或7 14.601315.8 16.717. 2<a≤8,10≤b<18 18.360° 19.0 20.2三、21.解:∵∠A =60°,∠B =40°, ∴∠ACD =∠A +∠B =100°. ∵CE 平分∠ACD , ∴∠ECD =12∠ACD =50°.22.解:∵AE ∥BD , ∴∠EAB =45°=∠DBA.∵∠DBC =60°,∴∠ABC =15°, ∴∠ACB =180°-∠ABC -∠BAC =180°-15°-45°-30° =90°.23.解:(1)AB (2)CD (3)∵AE =3 cm ,CD =2 cm ,∴S △AEC =12AE·CD =12×3×2=3(cm 2).∴S △AEC =12CE·AB =3 cm 2,又∵AB =2 cm ,∴CE =3 cm.24.(1)解:∵六边形ABCDEF 的内角都相等,内角和为(6-2)×180°=720°, ∴∠B =∠A =∠BCD =720°÷6=120°. ∵CF ∥AB ,∴∠B +∠BCF =180°,∴∠BCF =60°,∴∠FCD =∠BCD -∠BCF =60°. (2)证明:∵CF ∥AB , ∴∠A +∠AFC =180°, ∴∠AFC =180°-120°=60°, ∴∠AFC =∠FCD , ∴AF ∥CD.25.解:(1)在△ABC 中, ∵BD 是AC 边上的高, ∴∠ADB =∠BDC =90°. 又∵∠A =70°,∴∠ABD =180°-∠ADB -∠A =20°. (2)∵∠BEC =∠BDC +∠DCE , ∠BEC =118°,∠BDC =90°, ∴∠DCE =28°. 又∵CE 平分∠ACB , ∴∠DCB =2∠DCE =56°,∴∠DBC =180°-∠BDC -∠DCB =34°, ∴∠ABC =∠ABD +∠DBC =54°.26.解:当底边长为a 时,2a -1=5a -3,即a =23,则三边长为23,13,13,不满足三角形三边关系,不能构成三角形;当底边长为2a -1时,a =5a -3,即a =34,则三边长为12,34,34,满足三角形三边关系,能构成三角形,此时三角形的周长为12+34+34=2;当底边长为5a -3时,2a -1=a ,即a =1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2. 27.解:(1)①20° ②120;60(2)①当点D 在线段OB 上时,若∠BAD =∠ABD ,则x =20.若∠BAD =∠BDA ,则x =35.若∠ADB =∠ABD ,则x =50.②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD =∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1 与三角形有关的线段
考点1 三角形的认识及分类
1.三角形是指()
A.由三条线段所组成的封闭图形
B.由不在同一直线上的三条直线首尾顺次相接组成的图形
C.由不在同一直线上的三条线段首尾顺次相接组成的图形
D.由三条线段首尾顺次相接组成的图形
2.如图中三角形的个数是()
A.6B.7C.8D.9
3.在△ABC中,已知∠B=2∠C,∠A=30°,则这个三角形是( )
A.锐角三角形B.直角三角形C.钝角三角形D.无法判断4.三角形按角分类可以分为()
A.锐角三角形、直角三角形、钝角三角形
B.等腰三角形、等边三角形、不等边三角形
C.直角三角形、等边直角三角形
D.以上答案都不正确
考点2 三角形的稳定性
5.下列图形中具有稳定性的是()
A.直角三角形B.正方形
C.长方形D.平行四边形
6.下列图形中,不是运用三角形的稳定性的是()
A.房屋顶支撑架B.自行车三脚架
C.拉闸门D.木门上钉一根木条
7.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了稳固,需要在窗框上钉一根木条,这根木条不应钉在( )
A.G,H两点处B.A,C两点处C.E,G两点处D.B,F两点处
考点3 三角形的三边关系
8.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )
A .3,3,6
B .1,5,5
C .1,2,3
D .8,3,4
9.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )
A .1A
B 29<< B .4AB 24<<
C .5AB 19<<
D .9AB 19<<
10.一个三角形的两边长为4和7,第三边长为奇数,则第三边长可能为( )
A .5或7
B .5、7或9
C .7
D .11
11.三角形的两边长分别为3和5,则周长C 的范围是( )
A .615C <<
B .616
C << C .1113C <<
D .1016C <<
12.已知等腰△ABC 的两边长分别为2和3,则等腰△ABC 的周长为( )
A .7
B .8
C .6或8
D .7或8
13.已知a b c 、、是ABC ∆的三边长,化简a b c b a c +----的值是( )
A .2c -
B .22b c -
C .22a c -
D .22a b -
考点4 三角形的高线
14.下面四个图形中,线段BE 是⊿ABC 的高的图是( )
A .
B .
C .
D .
15.如图,△ABC 的面积计算方法是( )
A .AC •BD
B .
1
2
BC •EC C .
1
2
AC •BD D .
1
2
AD •BD 16.下列各图中,AC 边上的高画正确的是( )
A .
B .
C .
D .
考点5 三角形的中线
17.如图AD 是△ABC 的中线,那么BD=( )
A .AD
B .A
C C .BC
D .CD
18.如图,AD 是ABC ∆的中线,5AB =,3AC =,ABD ∆的周长和ACD ∆的周长差
为( )
A .6
B .3
C .2
D .不确定
19.如图,已知在ABC 中,点D 、E 分别为BC 、AD 的中点,且2
6ABC S cm △,则ABE
S △的值为( )
A .20.5cm
B .21.5cm
C .22cm
D .23cm
20.如图,, , A B C 分别是线段1A B 、1B C 、1C A 的中点,若111A B C △的面积是20,那么
ABC 的面积是( )
A .4
B .
10
3
C .
207
D .5
考点6 三角形的角平分线
21.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()
A.59°B.60°C.56°D.22°
22.如图,在ABC中,∠A=60°,∠ABD和∠ACE是ABC的外角,∠ACE=110°,BF 平分∠ABD,则∠FBE=()
A.105°B.110°C.115°D.120°
23.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()
A.0个B.1个C.2个D.3个
答案1.C 2.C 3.C 4.A 5.A 6.C 7.C 8.B 9.D 10.B 11.D 12.D 13.B 14.A 15.C 16.D 17.D
18.C
19.B
20.C
21.A
22.C
23.D
11.2 与三角形有关的角
一、选择题(本大题共10道小题)
1. 在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是() A.75° B.65° C.55° D.45°
2. 如图,在⊿ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则⊿B的度数为()
A. 40°
B. 50°
C. 60°
D. 70°
3. 如图,在⊿ABC中,⊿C=90°,⊿A=30°,BD平分⊿ABC,则⊿BDC的度数为()
A.30° B.40° C.50° D.60°
4. 如图,CE是⊿ABC的外角⊿ACD的平分线,若⊿B=35°,∠ACE=60°,则∠A=()
A. 35°
B. 95°
C. 85°
D. 75°
5. 在⊿ABC中,若⊿C=40°,⊿B=4⊿A,则⊿A的度数是()
A.30° B.28° C.26° D.40°
6. 在Rt⊿ABC中,⊿C=90°,⊿A-⊿B=50°,则⊿A的度数为()
A.80° B.70° C.60° D.50°
7. 如图,在⊿ABC中,D是⊿ABC和⊿ACB的平分线的交点,⊿A=80°,⊿ABD =30°,则⊿BDC的度数为()
A.100° B.110° C.120° D.130°
8. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()
A.118°
B.119°
C.120°
D.121°
9. 如图,在⊿CEF中,⊿E=80°,⊿F=50°,AB⊿CF,AD⊿CE,连接BC,CD,则⊿A的度数是()
A.45° B.50° C.55° D.80°
10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A 减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是()
A.x=y+z
B.x=y-z
C.x=z-y
D.x+y+z=180
二、填空题(本大题共6道小题)
11. 如图,已知∠CAE是⊿ABC的外角,AD∥BC,且AD是⊿EAC的平分线.若⊿B=71°,则⊿BAC=________.
12. 如图,在⊿ABC中,⊿ABC,⊿ACB的平分线相交于点O,OD⊿OC交BC 于点D.若⊿A=80°,则⊿BOD=________°.
13. 如图,⊿AOB=50°,P是OB上的一个动点(不与点O重合),当⊿A的度数为________时,⊿AOP为直角三角形.
14. 如图,在四边形ABCD中,AB⊿CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若⊿1=⊿2=44°,则⊿B=________°.
15. 如图,在⊿ABC中,BO平分⊿ABC,CO平分⊿ACB.若⊿A=70°,则⊿BOC=________°.
16. 定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么“特征角”α的度数为____________.。