初中数学 相似三角形的性质及应用练习卷

合集下载

浙教新版九年级上册《4.5 相似三角形的性质及其应用》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《4.5 相似三角形的性质及其应用》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《4.5相似三角形的性质及其应用》2024年同步练习卷(3)一、选择题:本题共4小题,每小题3分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图所示的网格由边长相同的小正方形组成,点A,B,C,D,E,F,G均在小正方形的顶点上,则的重心是()A.点GB.点DC.点ED.点F2.如图,在中,E,G分别是AB,AC上的点,,的平分线AD交EG于点F,若,则()A.B.C.D.3.如图,的两条中线AD和BE相交于点G,过点E作交AD于点F,则FG:AG是()A.1:4B.1:3C.1:2D.2:34.如图,正方形ABCD中,E为CD的中点,,交BC于点F,则与的大小关系为()A.B.C.D.无法确定二、填空题:本题共6小题,每小题3分,共18分。

5.如图,在中,点D,E分别是BC,AC的中点,AD与BE相交于点若,则EF的长是______.6.如图,AD是的高,AE是的外接圆的直径,且,,,则的直径______.7.点G是的重心,,如果,那么AB的长是______.8.如图,E,F分别为AC,BC的中点,D是EC上一点,且若,,则BE的长为______.9.如图,在等腰中,,,点E在边CB上,,点D在边AB上,,垂足为F,则AD的长为______.10.如图,点D在的边BC上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离EF的长等于______.三、解答题:本题共3小题,共24分。

解答应写出文字说明,证明过程或演算步骤。

11.本小题8分已知,如图,在中,CD是斜边上的中线,交BC于点F,交AC的延长线于点∽吗?为什么?你能推出结论吗?请试一试.12.本小题8分已知:如图,在中,点D、E分别在边BC、AB上,,AD与CE相交于点F,求证:;求证:13.本小题8分如图,在中,,,动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒,连接若与相似,求t的值;连接AN,CM,若,求t的值.答案和解析1.【答案】B【解析】解:取BC的中点N,取AC的中点M,连接AN,BM,如图所示,则AN与BM的交点为D,故点D是的重心,故选:取BC的中点N,取AC的中点M,连接AN,BM,然后根据图形可知AN与BM的交点为D,即可得到点D 为的重心.本题考查三角形的重心,解答本题的关键是明确三角形的重心是三角形中线的交点.2.【答案】C【解析】解:,,,,∽,故选:根据两组对应角相等可判断∽,可得,则可得出结论.本题考查了相似三角形的判定与性质,灵活运用定理是关键.3.【答案】A【解析】【分析】本题考查的是三角形的重心的概念和性质、平行线分线段成比例定理的应用,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍,根据重心的性质得到,,根据平行线分线段成比例定理计算即可.【解答】解:的两条中线AD和BE相交于点G,点G是的重心,,,,,::4,故选:4.【答案】C【解析】解:,,,,∽,且相似比为2,,,又,∽,易证∽,求得CF的长,可得根据勾股定理即可求得AE、EF的长,即可判定∽,即可解题.本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证∽是解题的关键.5.【答案】3【解析】解:点D,E分别是BC,AC的中点,,且,,,,故答案为:由题意可知,DE是的中线,则,且,可得,代入BF的长,可求出EF的长,进而求出BE的长.本题主要考查三角形中位线,平行线分线段成比例等知识,熟练掌握相关知识是解题的关键.6.【答案】【解析】【分析】本题考查了圆周角定理,相似三角形的性质和判定的应用,解此题的关键是求出∽首先根据两个对应角相等可以证明三角形相似,再根据相似三角形的性质得出关于AE的比例式,计算即可.【解答】解:由圆周角定理可知,,,,∽::AC,,,,::5,,故答案为:7.【答案】6【解析】解:如图,AD为AB边上的中线,点G是的重心,,,,故答案为先根据三角形重心的性质得到,则,然后根据直角三角形斜边上的中线性质得到AB的长.本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:也考查了直角三角形斜边上的中线性质.8.【答案】【解析】解:,,,∽,,,,E,F分别为AC,BC的中点,,,解得:故答案为:由可得:,结合公共角,可证得∽,从而利用相似三角形的对应中线之比等于相似比即可求BE的长.本题主要考查相似三角形的判定与性质,解答的关键是明确相似三角形的对应中线的之等于相似比.9.【答案】【解析】解:过D作于H,在等腰中,,,,,,,,,,∽,,,,,,,故答案为:过D作于H,根据等腰三角形的性质得到,,求得,得到,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.10.【答案】【解析】解:如图,连接AE并延长交BD于G,连接AF并延长交CD于H,点E、F分别是和的重心,,,,,,,,,,∽,,,故答案为:连接AE并延长交BD于G,连接AF并延长交CD于H,根据三角形的重心的概念、相似三角形的性质解答.本题考查了三角形重心的概念和性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.11.【答案】证明:,,,,,∽;为的中线,,,又,,又是公共角,∽,,即【解析】根据题意,得,,则,易证∽;由中,CD是斜边上的中线,得,则,又,所以,又是公共角,所以∽,即可得出;本题主要考查了直角三角形和相似三角形的判定与性质,掌握直角三角形斜边上的中线等于斜边的一半,是解答本题的关键.12.【答案】证明:,,,,,,∽,,;∽,,即,,,∽,,,,【解析】根据等腰三角形的性质得到,,推出∽,根据相似三角形的性质得到,于是得到;根据相似三角形的性质得到,即,推出∽,根据相似三角形的性质得到,于是得到,等量代换即可得到结论.本题考查了相似三角形的判定和性质,等腰三角形的性质,三角形的外角的性质,证得∽是解题的关键.13.【答案】解:,,,,由题意得,,当∽时,,即,解得:;当∽时,,即,解得:,综上所述,与相似时,t的值为或;如图,过点M作于点D,,,∽,,,,,,,,,,,,,,,∽,,即,解得:【解析】根据勾股定理求出AB,分∽、∽两种情况,根据相似三角形的性质列出比例式,计算即可;过点M作于点D,分别证明∽,∽,根据相似三角形的性质列出比例式,计算即可.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

相似三角形的性质及应用练习题1

相似三角形的性质及应用练习题1

相似三角形的性质及应用练习卷一、填空题1.已知两个相似三角形的相似比为3, 则它们的周长比为;2.若△ABC∽△A′B′C′, 且, △ABC的周长为12cm, 则△A′B′C′的周长为;3、如图1, 在△ABC中, 中线BE、CD相交于点G, 则= ;S△GED: S△GBC= ;4.如图2, 在△ABC中, ∠B=∠AED, AB=5, AD=3, CE=6, 则AE= ;5.如图3, △ABC中, M是AB的中点, N在BC上, BC=2AB, ∠BMN=∠C, 则△∽△ ,相似比为 , = ;6、如图4, 在梯形ABCD中, AD∥BC, S△ADE: S△BCE=4: 9, 则S△ABD: S△ABC= ;7、如图5, 在△ABC中, BC=12cm, 点D、F是AB的三等分点, 点E、G是AC的三等分点, 则DE+FG+BC= ;8、两个相似三角形的周长分别为5cm和16cm, 则它们的对应角的平分线的比为;9、两个三角形的面积之比为2: 3, 则它们对应角平分线的比为 , 对应边的高的比为;对应边的中线的比周长的比10、已知有两个三角形相似, 一个边长分别为2、3、4, 另一个三角形最长边长为12, 则x、y的值为;二、选择题11.下列多边形一定相似的为()A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形12、在△ABC中, BC=15cm, CA=45cm, AB=63cm, 另一个和它相似的三角形的最短边是5cm, 则最长边是()A.18cmB.21cmC.24cmD.19.5cm13、如图, 在△ABC中, 高BD.CE交于点O, 下列结论错误的是()A.CO·CE=CD·CA B、OE·OC=OD·OBC.AD·AC=AE·AB D、CO·DO=BO·EO14.已知, 在△ABC 中, ∠ACB=900, CD ⊥AB 于D, 若BC=5, CD=3, 则AD 的长为( )A.2.25B.2.5C.2.75D.315.如图, 正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上,其余两个顶点A.D 在PQ 、PR 上, 则PA :PQ 等于( )A.1:B.1: 2C.1: 3D.2: 316.如图, D 、E 分别是△ABC 的边AB 、AC 上的点, = =3,且∠AED=∠B, 则△AED 与△ABC 的面积比是( )A 、1: 2B 、1: 3C 、1: 4D 、4: 9三、解答题17、如图, 已知在△ABC 中, CD=CE, ∠A=∠ECB, 试说明CD2=AD ·BE 。

初中数学相似三角形专题练习题-相似三角形的判定和应用

初中数学相似三角形专题练习题-相似三角形的判定和应用

相似三角形的判定【知识梳理】1.相似三角形的概念:如果两个三角形的三个角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形2.相似比:相似三角形对应边的比叫相似比,如果两个三角形的相似比为1,则这两个三角形是全等三角形3.相似三角形的预备定理:平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。

4.相似三角形判定定理1:两角对应相等的两个三角形相似5.相似三角形判定定理2:两边对应成比例且夹角相等的两个三角形相似6.相似三角形判定定理3:三边对应成比例的两个三角形相似7.直角三角形相似的判定定理:斜边和一直角边对应成比例的两个直角三角形相似【例题剖析】【例1】在ABC ∆和'''C B A ∆中,有下列条件(1)''''C B BC B A AB =,(2) ''''C B BCC A AC =, (3) '∠=∠A A ,(4) 'C C ∠∠=,如果从中任取两个条件组成一组,那么能判断ABC ∆∽'''C B A ∆的共有几组( )A. 5组B. 4组C. 3组D. 2组【例2】下列命题:(1)三边对应边成比例的两个三角形相似;(2)两边对应成比例且一个角对应相等的两个三角形相似;(3)一个锐角对应相等的两个直角三角形相似;(4)一个角对应相等的两个等腰三角形相似.其中正确的是( )A. (1)(3)B. (1)(4)C. (1)(2)(4)D. (1)(3)(4)【例3】如图,矩形ABCD 是由三个正方形ABEG ,GEFH ,HFCD 组成的, 证明:AEF ∆∽AEC ∆笔记 思考【例4】 已知:如图,在ABC ∆中,CE BD ,分别是AB AC ,边上的高.求证:ABD ∆∽ACE ∆【例5】如图,已知AEACDE BC AD AB ==,试说明CAE BAD ∠=∠【经典习题】(A )组1.下列各组条件中,不能判定△ABC 和△A 1B 1C 1相似的是( )A.11B A AB =11C B BC ,∠A =∠A 1 B. 11B A AB =11C B BC =11C A ACC. ∠C =∠C 1,11C B BC =11C A ACD. ∠B =∠B 1,∠C =∠C 12.下列命题中,正确的是( )A. 所有的矩形都相似B. 所有的直角三角形都相似C. 有一个角是100°的所有等腰三角形都相似D. 有一个角是50°的所有等腰三角形都相似 3.下列命题中,真命题是( )A. 所有直角三角形都相似B. 所有等腰三角形都相似C.所有等腰直角三角形都相似D. 所有菱形都相似笔记 思考4.如图,点D 是ABC ∆边AC 上一点,满足∠CBD =∠A ,则( )A. △CBD ∽△BADB. △CBD ∽△CABC.△ABD ∽△ACBD. 图中没有相似三角形 5.下列命题一定正确的是( )A. 两个等腰三角形一定相似B. 两个等边三角形一定相似C.两个直角三角形一定相似D. 两个含有30°角的三角形一定相似 6.下列说法正确的是()A. 相似三角形是全等三角形B.不相似的三角形可能是全等三角形C.不全等的三角形不是相似三角形 D .全等三角形是相似三角形的特例. 7. 如图,在ABC ∆中,90BAC °∠=,AD BC ⊥,垂足为点D ,ABC ∠的平分线分别交AD .AC 于点E .F ,连结DF ,下列结论中错误的是( )A. ABD ∆∽ADC ∆B.BDF ∆∽DFA ∆C.BDE ∆∽BAF ∆D.ABE ∆∽CBF ∆8. 下列两个三角形不一定相似的是( )A. 有一个角为60°的两个等腰三角形B. 有一个角为80°的两个等腰三角形C.有一个角为90°的两个等腰三角形D. 有一个角为100°的两个等腰三角形9. 如图,已知△ABC 是直角三角形,∠C=90°,DA ⊥AB .欲使△ABC 与△DBA 相似,除了添加角上的条件如∠ABC=∠DBA 外,还可添加一个边上的条件是 .(只需填写一个你认为符合要求的条件)(B ) 组10. 已知:如图,在△ABC 中,∠ACB =90°,CM 是斜边AB 上的中线.过点M 作CM 的垂线与AC 和CB 的延长线分别交于点D 和点E ,求证:△CDM ∽△ABCCBAD笔记 思考11. 已知:如图,△ABC 为等腰直角三角形,∠ACB =90°,点E.F 是AB 边所在直线上的两点,且∠ECF =135° (1)求证:△ECA ∽△CFB(2)若AE =3,设AB =x ,BF =y ,求 y 与x 之间的函数关系式,并写出定义域12.如图,在ABC ∆中,90CAB °∠=,CFG B ∠=∠,过点C 作CE AB ∥,交CAB ∠的平分线AD 于点E(1)不添加字母,找出图中所有相似的三角形,并证明(2)证明:FC ADCG ED=(C)组13.已知:如图,AD 是△ABC 的角平分线,以点B 为圆心,BD 长为半径画弧,交AD 于点E .求证:AB AD AC AE ⋅=⋅ABCDE 笔记 思考14.已知:如图,在△ABC 中,D 为AB 边上一点,∠A=36º,AC=BC ,AC 2=AB·AD .求证:(1)△ABC ∽△CAD ;(2)△BCD 是等腰三角形.15.如图,在直角坐标系内,A (0,6),B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P.Q 移动的时间为t 秒。

初中数学相似三角形的性质含答案

初中数学相似三角形的性质含答案

相似三角形的性质--巩固练习【巩固练习】一、选择题1.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个 B.可以有2个C.有2个以上,但有限 D.有无数个2. 若平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF 的长为().A.1.8 B.5 C.6或4 D.8或23. 如图,已知D、E 分别是的AB、 AC 边上的点,且那么等于()A.1:9 B.1:3 C.1:8 D.1:2B C4.如图G是△ABC的重心,直线过A点与BC 平行.若直线CG分别与AB、交于D、E两点,直线BG与AC交于 F点,则△AED的面积:四边形ADGF的面积=( )A.1:2 B.2:1 C.2:3 D.3:25.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A.=B.=C.=D.=6.如图,在□ABCD 中,E 为CD 上一点,DE :CE=2:3,连结AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF 等于( )A.4:10:25B.4:9:25C.2:3:5D.2:5:25二、填空题7.将一副三角板按图叠放,则△AOB 与△DOC 的面积之比等于 .8.如图,△ABC 中,点D 在边AB 上,满足∠ADC=∠ACB,若AC=2,AD=1,则DB=_________.B9.如图,在△PAB 中,M 、N 是AB 上两点,且△PMN 是等边三角形,△BPM ∽△PAN ,则∠APB 的度数是_______________.10.如图,△ABC 中,DE ∥BC 、BE,CD 交于点F ,且S △EFC =3S △EFD ,则S △ADE :S △ABC =______________.11.如图,锐角△ABC 中,AD,CE 分别为BC,AB 边上的高,△ABC 和△BDE 的面积分别等于18和2,DE=2,则AC 边上的高为______________.12. 如图,点M 是△ABC 内﹣点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC 的面积是 .三、解答题13.如图所示,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作AF∥BC 交ED 的延长线于点F ,连接AE ,CF .求证:(1)四边形AFCE 是平行四边形;(2)FG•BE=CE•AE.14.(1)阅读下列材料,补全证明过程:已知:如图,矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连结DE交OC于点F,作FG⊥BC于G.求证:点G是线段BC的一个三等分点.证明:在矩形ABCD中,OE⊥BC,DC⊥BC,∴OE∥DC.∵=,∴==.∴=.……(2)请你仿照(1)的画法,在原图上画出BC的一个四等分点(要求保留画图痕迹,可不写画法及证明过程).15. 已知如图,在矩形ABCD中,AB=12cm,BC=6cm,点E自A点出发,以每秒1cm的速度向D点前进,同时点F从D点以每秒2cm的速度向C点前进,若移动的时间为t,且0≤t≤6.(1)当t为多少时,DE=2DF;(2)四边形DEBF的面积是否为定值?若是定值,请求出定值;若不是定值,请说明理由.(3)以点D、E、F为顶点的三角形能否与△BCD相似?若能,请求出所有可能的t的值;若不能,请说明理由.【答案与解析】一.选择题1.【答案】B.【解析】x 可能是斜边,也可能是直角边.2.【答案】A.3.【答案】B.4.【答案】D.5.【答案】C.【解析】∵四边形ABCD 是平行四边形,∴AD∥BF,BE∥DC,AD=BC ,∴,,,故选C .6.【答案】 A.【解析】 □ABCD 中,AB ∥DC ,△DEF ∽△ABF ,(△DEF 与△EBF 等高,面积比等于对应底边的比),所以答案选A.二、填空题7.【答案】1:3.【解析】∵∠ABC=90°,∠DCB=90°∴AB∥CD,∴∠OCD=∠A,∠D=∠ABO,∴△AOB∽△COD;又∵AB:CD=BC :CD= 1:∴△AOB 与△DOC 的面积之比等于1:3.8.【答案】3.【解析】 ∵∠ADC=∠ACB ,∠DAC=∠BAC,∴△ACD ∽△ABC, ∴,AC AD AB AC =AB=22241AC AD ==, ∴BD=AB-AD=4-1=3.9. 【答案】120°.【解析】∵ △BPM ∽△PAN ,∴ ∠BPM =∠A ,∵ △PMN 是等边三角形,∴ ∠A+∠APN =60°,即∠APN+∠BPM =60°,∴ ∠APB =∠BPM+∠MPN+∠APN =60°+60°=120°.10.【答案】1:9【解析】∵EFC S △=3EFD S △,∴FC:DF=3:1,又∵DE ∥BC,∴△BFC ∽△EFD,即BC :DE=FC:FD=3:1,由△ADE ∽△ABC ,即ADE S △:ABC S △=1:9.11.【答案】 6.【解析】∵AD,CE 分别为BC,AB 边上的高,12.【答案】36.【解析】因为△1、△2、△3的面积比为1:4:9,所以他们对应边边长的比为1:2:3,又因为四边形BDMG与四边形CEMH为平行四边形,所以DM=BG,EM=CH,设DM为x,则ME=2x,GH=3x,所以BC=BG+GH+CH=DM+GH+ME=x+2x+3x=6x,所以BC:DM=6x:x=6:1,由面积比等于相似比的平方故可得出:S△ABC:S△FDM=36:1,所以S△ABC=36×S△FDM=36×1=36.三、解答题13.【解析】(1)证明:∵AF∥BC,∴∠AFD=∠DEC,∵∠FDA=∠CDE,D是AC的中点,∴△ADF≌△EDC,∴AF=CE,∵AF∥BC,∴四边形AFCE是平行四边形;(2)证明:∵四边形AFCE是平行四边形,∴∠AFC=∠AEC,AF=CE,∵AF∥BC,∴∠FAB=∠ABE,∴△AFG∽△BEA,∴,∴FG•BE=AF•AE,∴FG•BE=CE•AE.14.【解析】(1)补全证明过程:∵FG⊥BC,DC⊥BC,∴FG∥DC.∴==.∵AB=DC,∴=.又FG∥AB,∴==.∴点G是BC的一个三等分点.(2)如图,连结DG交AC于点H,作HI⊥BC于I,则点I是线段BC的一个四等分点.15.【解析】故当t=3或1.2时,以点D、E、F为顶点的三角形与△BCD相似.。

相似三角形练习题及答案

相似三角形练习题及答案

相似三角形练习题及答案在初中数学中,相似三角形是一个很重要的概念。

相似三角形具有相同的形状,但是尺寸不同。

理解相似三角形的性质对于解决几何问题和计算三角形的边长和角度非常有帮助。

下面是一些相似三角形的练习题,帮助你巩固对该概念的理解,并附有答案供参考。

练习题一:已知△ABC和△DEF相似,且AB = 6cm,AC = 8cm,BC = 12cm。

若DE = 9cm,求DF和EF的长度。

练习题二:△ABC和△PQR中,∠B = ∠Q,AB = 5cm,BC = 8cm,PQ = 6cm,若AC = 10cm,求PR的长度。

练习题三:已知△ABC和△DEF相似,DE = 4.5cm,EF = 6cm,BC = 12cm,若AC = 8cm,求△ABC和△DEF的周长比。

练习题四:在△ABC中,∠B = 90°,AB = 9cm,BC = 12cm。

点D是BC的中点,于BC上作DE ⊥ BC,DE = 3cm。

求△ADE和△ABC的周长比。

练习题五:已知△ABC和△DEF相似,AB = 10cm,BC = 12cm,AC = 15cm,EF = 6cm,若△DEF的面积为18平方厘米,求△ABC的面积。

答案及解析如下:练习题一:由相似三角形的性质可知,相似三角形的边长之比相等。

设DF = x,EF = y。

根据题意可写出比例:AB/DE = AC/EF = BC/DF代入已知值,得到:6/9 = 8/y = 12/x解得:x = 16cm,y = 12cm因此,DF = 16cm,EF = 12cm。

练习题二:由相似三角形的性质可知,相似三角形的边长之比相等。

设PR = x。

根据题意可写出比例:AB/PQ = AC/PR = BC/QR代入已知值,得到:5/6 = 10/x = 8/(6 + x)解得:x = 15cm因此,PR = 15cm。

练习题三:由相似三角形的性质可知,相似三角形的边长之比相等。

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)

经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠A BC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。

证明:=。

当GC⊥BC时,证明:∠BAC=90°。

2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。

证明:AC^2=AF•AD。

联结EF,证明:AE•DB=AD•EF。

3.在三角形ABC中,PC平分∠ACB,PB=PC。

证明:△APC∽△ACB。

若AP=2,PC=6,求AC的长。

4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。

证明:△ABF∽△EAD。

若AB=4,∠BAE=30°,求AE的长。

5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。

证明:AB•BC=AC•CD。

6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。

说明AF•BE=2S的理由。

7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。

若AE=CF,证明:AF=BE,并求∠APB的度数。

若AE=2,试求AP•AF的值。

若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。

8.在钝角三角形ABC中,AD,BE是边BC上的高。

证明。

9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。

证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。

10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。

12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,说明AF•BE=2S 的理由.7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H 两点,BC=2,问E在何处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE 交于点E.(1)求证:∠BAD=∠FDE;(2)设DE与AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED 交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC中,CD平分∠ACB,BE∥BC交AC于点E.(1)求证:AE•BC=AC•CE;(2)若S△ADE:S△CDE=4:3.5,BC=15,求CE的长.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.30.如图,在Rt△ABC中,∠C=90°,且AC=CD=,又E,D为CB的三等分点.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=180°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,∵∠A=∠A,∴△APC∽△ACB.(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∵∠A=∠B,∴△ACF∽△BEC.∴,∴AC•BC=BE•AF,∴S△ABC=AC•BC=BE•AF,∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P 的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴△OAD∽△OCB,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正方形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正方形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,∴△BEF∽△ACB,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,∴△CED∽△ACD;(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD=S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=180°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(180°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的范围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC,∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE,∴=,即AE•BC=AC•CE;(2)∵S△ADE:S△CDE=4:3.5,∴AE:CE=4:3.5,∴=,∵由(1)知=,∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.25.(1)证明:如图1,连接PN,∵N、P分别为△ABC边BC、CA的中点,∴PN∥AB,且.∴△ABF∽△NPF,∴.∴BF=2FP.(2)解:如图2,取AF的中点G,连接MG,∴MG∥EF,AG=GF=FN.∴△NEF∽△NMG,∴S△NEF=S△MNG=×S△AMN=××S△ABC=S.26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠A=∠DCE=60°,∴∠ECH=180°﹣∠ACB﹣∠DCE=180°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.。

浙教版数学九年级上册4.5 相似三角形的性质及其应用(3)

浙教版数学九年级上册4.5 相似三角形的性质及其应用(3)

4.5 相似三角形的性质及其应用(3)1.在一张由复印机复印出来的纸上,一个多边形的一条边由原来的1 cm变成了4 cm,那么这次复印的多边形的面积变为原来的(D)A.不变B.2倍C.4倍D.16倍(第2题)2.如图,为估计某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB等于(B)A.60 m B.40 m C.30 m D.20 m3.小明在测量楼高时,先测出楼房落在地面上的影长BA为15 m(如图),然后在A处树立一根高2 m的标杆,测得标杆的影长AC为3 m,则楼高为(A)A.10 m B.12 m C.15 m D.22.5 m,(第3题)),(第4题))4. 如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20 m,镜子与小华的距离ED=2 m,小华刚好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度CD=1.5 m,则铁塔AB的高度是__15__m.5.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高__8__m.,(第5题)),(第6题))6. 如图,为了测量一池塘的宽DE,在岸边找到一点C,测得CD=30 m,在DC的延长线上找一点A,测得AC=5 m,过点A作AB∥DE交EC的延长线于点B,测出AB=6 m,则池塘的宽DE为__36__m.7.如图,小明想利用标杆BE测量建筑物的高度,(第7题)如果标杆BE的长为1.2m,测得AB=1.6m,BC=8.4m,那么楼高CD是多少?【解】∵BE∥CD,∴△ABE∽△ACD,∴ABAC=BECD,即1.61.6+8.4=1.2CD,解得CD=7.5.∴楼高CD是7.5m.(第8题)8. 如图,已知零件的外径为a,要求它的厚度为x,需先求出内孔的直径AB,但不能直接量出AB.现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA∶OC=OB∶OD=n,且量得CD =b ,求零件的厚度x.【解】 在△OCD 与△OAB 中, ∵OA OC =OB OD=n , 且∠COD =∠AOB , ∴△OAB ∽△OCD , ∴ABCD =n ,即ABb =n , ∴AB =nb.又∵AB +2x =nb +2x =a , ∴x =a -nb 2.(第9题)9. 如图,晚上,小亮走在大街上,他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3 m,左边的影子长为1.5 m.小亮身高1.80 m,两盏路灯的高相同,两盏路灯之间的距离为12 m,则路灯的高为__6.6__ m.(第10题)10.小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量步骤如下:小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠(如图所示),且高度恰好相同.此时,测得小明落在墙上的影子高度CD =1.2 m ,CE =0.8 m ,CA =30 m(点A ,E ,C 在同一直线上).已知小明的身高EF 是1.7 m ,请你帮小明求出楼高AB (结果精确到0.1 m).【解】 过点D 作DG ⊥AB ,分别交AB ,EF 于点G ,H ,则EH =AG =CD =1.2,DH =CE =0.8,DG =CA =30.∵EF ∥AB ,∴△DFH ∽△DBG , ∴FH BG =DHDG.由题意,得FH =EF -EH =1.7-1.2=0.5. ∴0.5BG =0.830,解得BG =18.75. ∴AB =BG +AG =18.75+1.2=19.95≈20.0, 即楼高AB 约为20.0 m.(第11题)11.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,连结BC ,过点C 作CD ⊥AB 于点D.点E 是AB 上一点,CE 交⊙O 于点F ,连结BF ,与CD 的延长线交于点G.求证:BC 2=BG ·BF.【解】 连结AC.∵AB 是⊙O 的直径,∴∠ACB =90°. ∵CD ⊥AB ,∴∠BCD +∠ABC =∠A +∠ABC =90°, ∴∠BCD =∠A .∵∠A =∠F ,∴∠F =∠BCD =∠BCG . 又∵∠GBC =∠CBF , ∴△BCG ∽△BFC , ∴BC BF=BG BC,即BC 2=BG ·BF .12.如图是夹文件用的铁夹子在常态下的侧面示意图(单位:mm).AC ,BC 表示铁夹子的两个面,点O是轴,OD⊥AC于点D,AD=15 mm,DC=24 mm,OD=10 mm.已知铁夹子是轴对称图形,试利用图4-5-8②(CE为对称轴),求图4-5-8①中A,B两点间的距离.,①),②),(第12题)) 【解】∵铁夹子是轴对称图形,对称轴是CE,点A,B为一组对称点,∴CE⊥AB,AE=BE.在Rt△AEC和Rt△ODC中,∵∠ACE=∠OCD,∠AEC=∠ODC=90°,∴△AEC ∽△ODC ,∴AE AC =OD OC .∵OC =OD 2+DC 2=102+242=26, ∴AE =AC ·OD OC =(15+24)×1026=15, ∴AB =2AE =30 mm.初中数学试卷。

浙教版九年级数学上册:4.5 相似三角形的性质及应用 同步练习(含答案)

浙教版九年级数学上册:4.5 相似三角形的性质及应用 同步练习(含答案)

4.5 相似三角形的性质及其应用一.填空题1.(2019•奉贤区一模)联结三角形各边中点,所得的三角形的周长与原三角形周长的比是.2.(2019•南关区一模)利用标杆CD测量建筑物的高度的示意图如图所示,若标杆CD的高为1.5米,测得DE=2米,BD=18米,则建筑物的高AB为米.3.(2019•曲阜市二模)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,BD 足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为.4.(2019春•广陵区校级期末)如图,∠ACB=90°,CD是Rt△ABC斜边上的高,已知AB=25cm,BC=15cm,则BD=.5.(2019春•滨湖区期末)如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于6,△BEF的面积等于4,则四边形CDFE的面积等于.二.选择题(共10小题)6.(2019春•海州区校级月考)若P是Rt△ABC斜边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.1 B.2 C.3 D.47.(2018秋•嘉兴期末)如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.mm C.20mm D.mm8.(2019•新乐市二模)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=()A.1.2 里B.1.5 里C.1.05 里D.1.02 里9.(2018春•南票区期末)如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AF:DF等于()A.19:2 B.9:1 C.8:1 D.7:110.(2018秋•秀洲区期末)如图,点G是△ABC的重心,下列结论中正确的个数有()①=;②=;③△EDG∽△CBG;④=.A.1个B.2个C.3个D.4个11.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为()A.3:4 B.4:3 C.:2 D.2:12.(2018秋•道里区期末)如图,△ABC∽△ADE,且BC=2DE,则的值为()A.B.C.D.13.(2018秋•南岗区校级月考)两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这两个三角形的周长分别为()A.75,115 B.60,100 C.85,125 D.45,8514.(2019•毕节市)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm215.(2018秋•襄州区期末)如图是小明设计用手电筒来测量某古城墙高度的示意图.在地面上点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=18米,那么该古城墙的高度是()A.6米B.8米C.12米D.24米三.解答题16.(2019•余杭区二模)如图,在△ABC中,AD、BE是中线,它们相交于点F,EG∥BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求的值.17.(2018秋•梁溪区校级期中)(1)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,点P是边AB上一点,若△PAD∽△CBP,请利用没有刻度的直尺和圆规,画出满足条件的所有点P;(2)在(1)的条件下,若AB=8,AD=3,BC=4,则AP的长是.18.(2018秋•德清县期末)如图,点C,D在线段AB上,CD2=AC•DB,且△PCD是等边三角形.(1)证明:△ACP∽△PDB;(2)求∠APB的度数.19.(2018秋•昌图县期末)如图,路灯(点P)距地面6m,身高1.5m的学生小明从路灯的底部点O处,沿射线OH走到距路灯底部9m的点B处,此时小明的身影为BN,接着小明走到点N处,此时的身影为AM.求学生小明的身影长度变长了多少米.(小明如图中BD、AC所示)20.(2018秋•番禺区期末)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=xmm,EF=ymm.(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.参考答案一.填空题1.(2019•奉贤区一模)联结三角形各边中点,所得的三角形的周长与原三角形周长的比是1:2.【思路点拨】根据D、E、F分别是AB、BC、AC的中点,求证△DEF∽△ABC,然后利用相似三角形周长比等于相似比,可得出答案.【答案】解:如图,∵D、E、F分别是AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴DE+DF+EF=AC+BC+AB,∵△DEF∽△ABC,∴所得到的△DEF与△ABC的周长之比是:1:2.故答案为:1:2.【点睛】此题考查了相似三角形的判定与性质和三角形中位线定理的理解和掌握,解答此题的关键是利用了相似三角形周长比等于相似比.2.(2019•南关区一模)利用标杆CD测量建筑物的高度的示意图如图所示,若标杆CD的高为1.5米,测得DE=2米,BD=18米,则建筑物的高AB为15米.【思路点拨】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【答案】解:∵AB∥CD,∴△EBA∽△ECD,∴=,即=,∴AB=15(米).故答案为:15.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出直角三角形,难度不大.3.(2019•曲阜市二模)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,BD 足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为0.4m.【思路点拨】由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.【答案】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,∴栏杆C端应下降的垂直距离CD为0.4m.故答案为:0.4.【点睛】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.4.(2019春•广陵区校级期末)如图,∠ACB=90°,CD是Rt△ABC斜边上的高,已知AB=25cm,BC=15cm,则BD=9cm.【思路点拨】根据相似三角形的判定和性质即可得到结论.【答案】解:∵CD⊥AB,∴∠CDB=∠ACB=90°,∵∠B=∠B,∴△ACB∽△CDB,∴,∴,解得:BD=9cm,故答案为:9cm.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.5.(2019春•滨湖区期末)如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于6,△BEF的面积等于4,则四边形CDFE的面积等于11.【思路点拨】利用三角形面积公式得到AF:FE=3:2,再根据平行四边形的性质得到AD∥BE,S△ABD=S△CBD,则可判断△AFD∽△EFB,利用相似的性质可计算出S△AFD=9,所以S△ABD=S△CBD=15,然后用△BCD的面积减去△BEF的面积得到四边形CDFE的面积.【答案】解:∵△ABF的面积等于6,△BEF的面积等于4,即S△ABF:S△BEF=6:4=3:2,∴AF:FE=3:2,∵四边形ABCD为平行四边形,∴AD∥BE,S△ABD=S△CBD,∴△AFD∽△EFB,∴=()2=()2=,∴S△AFD=×4=9,∴S△ABD=S△CBD=6+9=15,∴四边形CDFE的面积=15﹣4=11.故答案为11.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.二.选择题6.(2019春•海州区校级月考)若P是Rt△ABC斜边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.1 B.2 C.3 D.4【思路点拨】过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【答案】解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:C.【点睛】本题主要考查三角形相似判定定理及其运用.解题时运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.7.(2018秋•嘉兴期末)如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.mm C.20mm D.mm【思路点拨】利用相似三角形的性质构建方程即可解决问题.【答案】解:如图,设AD交PN于点K.∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k.∵四边形PQNM是矩形,∴PM∥BC,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PN,∴=,∴=,解得k=20mm,∴PM=3k=60mm,故选:A.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.8.(2019•新乐市二模)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=()A.1.2 里B.1.5 里C.1.05 里D.1.02 里【思路点拨】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【答案】解:如图所示:∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴=,解得:FH=1.05里.故选:C.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形.9.(2018春•南票区期末)如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AF:DF等于()A.19:2 B.9:1 C.8:1 D.7:1【思路点拨】根据题意,易得△BO3E∽△DO3F和△BO1E∽△DO1A,利用相似的性质得出DF:BE的值,再求出BE:AD的值,进而求出AF:DF.【答案】解:根题意,在平行四边形ABCD中,易得△BO3E∽△DO3F∴BE:FD=3:1∵△BO1E∽△DO1A∴BE:AD=1:3∴AD:DF=9:1∴AF:DF=(AD﹣FD):DF=(9﹣1):1=8:1故选:C.【点睛】考查了平行四边形的性质,对边相等.利用相似三角形三边成比例列式,求解即可.10.(2018秋•秀洲区期末)如图,点G是△ABC的重心,下列结论中正确的个数有()①=;②=;③△EDG∽△CBG;④=.A.1个B.2个C.3个D.4个【思路点拨】根据三角形的重心的概念和性质得到AE,CD是△ABC的中线,根据三角形中位线定理得到DE∥BC,DE=BC,根据相似三角形的性质定理判断即可.【答案】解:∵点G是△ABC的重心,∴AE,CD是△ABC的中线,∴DE∥BC,DE=BC,∴△DGE∽△BGC,∴=,①正确;=,②正确;△EDG∽△CBG,③正确;=()2=,④正确,故选:D.【点睛】本题考查的是三角形的重心的概念和性质,相似三角形的判定和性质,三角形中位线定理,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.11.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为()A.3:4 B.4:3 C.:2 D.2:【思路点拨】由△ABC∽△DEF,S△ABC:S△DEF=3:4,根据相似三角形的面积比等于相似比的平方,即可求得答案.【答案】解:∵△ABC∽△DEF,S△ABC:S△DEF=3:4,∴△ABC与△DEF的相似比为::2,∴△ABC与△DEF的周长比为::2.故选:C.【点睛】此题考查了相似三角形的性质.注意相似三角形面积的比等于相似比的平方.12.(2018秋•道里区期末)如图,△ABC∽△ADE,且BC=2DE,则的值为()A.B.C.D.【思路点拨】根据相似三角形的性质解答即可.【答案】解:∵△ABC∽△ADE,且BC=2DE,∴,∴,故选:B.【点睛】此题考查相似三角形的性质,关键是根据相似三角形的面积之比等于相似比的平方解答.13.(2018秋•南岗区校级月考)两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这两个三角形的周长分别为()A.75,115 B.60,100 C.85,125 D.45,85【思路点拨】根据两个相似三角形的对应边的长,可求出它们的相似比,也就求出了它们的周长比,再根据它们的周长差为40,即可求出两三角形的周长.【答案】解:∵两相似三角形的一组对应边为15和23,∴两相似三角形的周长比为15:23,设较小的三角形的周长为15a,则较大三角形的周长为23a,依题意,有:23a﹣15a=40,a=5,∴15a=75,23a=115,因此这两个三角形的周长分别为75,115.故选:A.【点睛】本题考查对相似三角形性质的理解:相似三角形周长的比等于相似比.14.(2019•毕节市)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm2【思路点拨】设AF=x,根据正方形的性质用x表示出EF、CF,证明△AEF∽△ABC,根据相似三角形的性质求出BC,根据勾股定理列式求出x,根据三角形的面积公式、正方形的面积公式计算即可.【答案】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=2,∴AC=6,BC=12,∴剩余部分的面积=×12×6﹣4×4=100(cm2),故选:A.【点睛】本题考查的是相似三角形的应用、正方形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.15.(2018秋•襄州区期末)如图是小明设计用手电筒来测量某古城墙高度的示意图.在地面上点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=18米,那么该古城墙的高度是()A.6米B.8米C.12米D.24米【思路点拨】因为小明和古城墙均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.【答案】解:由题意知:∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴=,∴CD==12(米).故选:C.【点睛】本题考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问.三.解答题16.(2019•余杭区二模)如图,在△ABC中,AD、BE是中线,它们相交于点F,EG∥BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求的值.【思路点拨】(1)由GE∥BC,可得出∠GEF=∠DBF,再结合对顶角相等即可得出△FGE∽△FDB;(2)根据三角形中位线定理以及中线的定义得出GE=BD、AG=DG,再利用相似三角形的性质得出DF=DG,进而即可得出=.【答案】(1)证明:∵GE∥BC,∴∠GEF=∠DBF.又∵∠GFE=∠DFB,∴△FGE∽△FDB;(2)∵AD、BE是中线,EG∥BC,∴GE为△ADC的中位线,BD=DC,∴GE=DC=BD,AG=DG.∵△FGE∽△FDB,∴==,∴DF=DG,∴==.【点睛】本题考查了相似三角形的判定与性质、三角形中线的定义以及中位线定理,解题的关键是:(1)由GE(2)根据相似三角形的性质结合中位线定理得出DF=DG、∥BC利用相似三角形的判定定理证出△EGF∽△BDF;AG=DG.17.(2018秋•梁溪区校级期中)(1)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,点P是边AB上一点,若△PAD∽△CBP,请利用没有刻度的直尺和圆规,画出满足条件的所有点P;(2)在(1)的条件下,若AB=8,AD=3,BC=4,则AP的长是2或6.【思路点拨】(1)先作CD中垂线得出CD的中点,再以中点为圆心,CD为半径作圆,与AB的交点即为所求;(2)证△APD∽△BPC得=,即=,解之可得.【答案】解:(1)如图所示,点P1和点P2即为所求.(2)∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.∴∠ADP+∠APD=90°,由(1)知,∠CPD=90°,∴∠APD+∠BPC=90°,∴∠ADP=∠BPC,∴△APD∽△BPC,∴=,即=,解得:AP=2或AP=6.故答案为:2或6.【点睛】本题主要考查作图﹣相似变换,解题的关键是掌握线段中垂线的尺规作图及圆周角定理,相似三角形的判定与性质等知识点.18.(2018秋•德清县期末)如图,点C,D在线段AB上,CD2=AC•DB,且△PCD是等边三角形.(1)证明:△ACP∽△PDB;(2)求∠APB的度数.【思路点拨】(1)根据PC=PD=CD,以及CD2=AC•DB,可得,又∠ACP=∠PDB,则△ACP∽△PDB;(2)根据(1)的结论求出∠APC+∠BPD度数,最后加上∠CPD度数即可.【答案】(本小题8分)解:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,∵CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即,∴△ACP∽△PDB;(2)∵△ACP∽△PDB,∴∠APC=∠PBD.∵∠PDB=120°,∴∠DPB+∠DBP=60°,∴∠APC+∠BPD=60°.∴∠APB=∠CPD+∠APC+∠BPD=120°.【点睛】本题主要考查了相似三角形的判定和性质、等边三角形的判定和性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.19.(2018秋•昌图县期末)如图,路灯(点P)距地面6m,身高1.5m的学生小明从路灯的底部点O处,沿射线OH走到距路灯底部9m的点B处,此时小明的身影为BN,接着小明走到点N处,此时的身影为AM.求学生小明的身影长度变长了多少米.(小明如图中BD、AC所示)【思路点拨】根据相似三角形的性质解答即可.【答案】解:由题意知,∠PON=∠DBN=90°,△PON∽△DBN∴又∵OB=9∴BN=3,OA=12由题意知,∠POM=∠CAM=90°,△POM∽△CAM∴又∵OA=12∴AM=4,OM=16∴身影长BN=3,AM=4,AM﹣BN=4﹣3=1∴小明的身影长度变长了1米.【点睛】此题考查相似三角形的应用,关键是根据相似三角形的性质解答.20.(2018秋•番禺区期末)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=xmm,EF=ymm.(1)写出x与y的关系式;(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.【思路点拨】(1)证明△AEF∽△ABC,利用相似比得到=,从而得到y与x的关系式;(2)计算矩形的面积S=xy=﹣x2+120x,则S=﹣(x﹣40)2+2400,根据二次函数的性质得到当x=40时,S有最大值2400,由于y=60,此时矩形不为正方形,所以这个同学的说法错误.【答案】解:(1)易得四边形EGDK为矩形,则KD=EG=x,∴AK=AD﹣DK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∴=,即=,∴y=﹣x+120(0<x<80);(2)这个同学的说法错误.理由如下:S=xy=﹣x2+120x=﹣(x﹣40)2+2400,当x=40时,S有最大值2400,此时y=﹣×40+120=60,即矩形EGHF的长为60mm,宽为40mm时,矩形EGHF的面积最大,最大值为2400mm2,此时矩形不为正方形,所以这个同学的说法错误.【点睛】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,用相似三角形对应边的比相等的性质求相应线段的长.也考查了二次函数的性质和矩形的性质.。

九年级数学相似三角形的性质及其应用3

九年级数学相似三角形的性质及其应用3

B
C
3、相似三角形的周长之比等于相似比; 4、相似三角形的面积之比等于相似比的平方。
讲解新课
校园里有一棵大铁树,要测量树的高度,你有什么方法?
A
C B
D
E
把一小镜子放在离树(AB)8米的点E处,然后 沿着直线BE后退到点D,这时恰好在镜子里看到树梢 顶点A,再用皮尺量得DE=2.8m,观察者目高 CD=1.6m。这时树高多少?你能解决这个问题吗?
A
C D B
把长为2.40m的标杆CD直立在地面上,量出树的 影长为2.80m,标杆的影长为1.47m。这时树高多少? 你能解决这个问题吗?
例2
如图,屋架跨度的一半OP=5m,高度OQ=2. 25 m。现要在屋顶上开一个天窗,天窗高度 AC=1. 20 m ,AB在水平位置。求AB的长度。(结果保留3个 有效数字) Q A B C P O
CF
A
E
F
B D C
• 已知:如图, △ABC∽ △A’B’C’, △ABC与 △A’B’C’ 的相似比是k,AD、 A’D’是对应高。求
S△ABC ———— S△A’B’C’
A
B
D
C A’
=?
B’ D’ C’
解:
S△ABC ———— S△A’B’C’
k2
1 / 2· BC · AD BC AD · ' k· k ' ' ' ' ' 1 / 2· BC · A D B' C A' D
根据相似三角形的定义我们可 以知道哪些性质?
对应角相等,对应边成比例。
• 我们来研究其它性质
J我们把对应边的比值称为相似比 猜想EQ相似三角形对应高的比是 否等于相似比

相似三角形性质和判定的应用练习题(含答案)

相似三角形性质和判定的应用练习题(含答案)

专题8:相似三角形性质和判定的应用【典例引领】例:如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.的值;①求SΔED′MSΔEMN②连接BE,△D'MH与△CBE是否相似?请说明理由.【强化训练】1.如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,的值;①如图2,若∠ADC=60°,求DGBH的值.(用含α的三角函数表示)②如图3,若∠ADC=α(0°<α<90°),直接写出DGBH2.已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它多件不变时,∠BDE的度数是(用含α的代数式表示)(3)若△ABC是等边三角形,AB=3√3,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.3.如图,△ABC中,∠BAC为钝角,∠B=45°,点P是边BC延长线上一点,以点C为顶点,CP为边,在射线BP下方作∠PCF=∠B.(1)在射线CF上取点E,连接AE交线段BC于点D.①如图1,若AD=DE,请直接写出线段AB与CE的数量关系和位置关系;②如图2,若AD DE,判断线段AB与CE的数量关系和位置关系,并说明理由;(2)如图3,反向延长射线CF,交射线BA于点C′,将∠PCF沿CC′方向平移,使顶点C落在点C′处,记平移后的∠PCF为∠P′C′F′,将∠P′C′F′绕点C′顺时针旋转角α(0°<α<45°),C′F′交线段BC于点M,C′P′交射线BP于点N,请直接写出线段BM,MN与CN之间的数量关系.4.(2016辽宁省大连市)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:B C=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是A AS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC 中,AB =AC ,∠BAC =90°,D 为BC 的中点,E 为DC 的中点,点F 在AC 的延长线上,且∠CDF =∠EAC ,若CF =2,求AB 的长;(3)如图4,△ABC 中,AB =AC ,∠BAC =120°,点D 、E 分别在AB 、AC 边上,且AD =kDB (其中0<k <√33),∠AED =∠BCD ,求AE EC的值(用含k 的式子表示).5.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF ,BE 是△ABC 的中线,AF ⊥BE ,垂足为P ,像△ABC 这样的三角形均为“中垂三角形”.设BC =a ,AC =b ,AB =c . 特例探索(1)如图1,当∠ABE =45°,c =2√2时,a = ,b = ; 如图2,当∠ABE =30°,c =4时,a = ,b = ;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=2√5,AB=3.求AF的长.专题8:相似三角形性质和判定的应用【典例引领】例:如图,在矩形ABCD 中,AB=3,BC=5,E 是AD 上的一个动点.(1)如图1,连接BD ,O 是对角线BD 的中点,连接OE .当OE=DE 时,求AE 的长;(2)如图2,连接BE ,EC ,过点E 作EF ⊥EC 交AB 于点F ,连接CF ,与BE 交于点G .当BE 平分∠ABC 时,求BG 的长;(3)如图3,连接EC ,点H 在CD 上,将矩形ABCD 沿直线EH 折叠,折叠后点D 落在EC 上的点D'处,过点D′作D′N ⊥AD 于点N ,与EH 交于点M ,且AE=1. ①求SΔED ′M S ΔEMN的值;②连接BE ,△D'MH 与△CBE 是否相似?请说明理由.【答案】(1)AE=3310;(2)BG=5√26;(3)①54;②相似,理由见解析. 【分析】(1)先求出BD ,进而求出OD=OB=OA ,再判断出△ODE ∽△ADO ,即可得出结论;(2)先判断出△AEF ≌△DCE ,进而求出BF=1,再判断出△CHG ∽△CBF ,进而求出BK=GK=56,最后用勾股定理即可得出结论;(3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=43,CH=53,再判断出△EMN ∽△EHD ,得出MNHD=EM EH ,△ED'M ∽△ECH ,得出D′M CH =EM EH ,进而得出D′M MN =CH HD =54,即可得出结论;②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB ,即可得出D′M CB=D′H CE,即可.【解答】(1)如图1,连接OA ,在矩形ABCD 中,CD=AB=3,AD=BC=5,∠BAD=90° 在Rt △ABD 中,根据勾股定理得,BD=√34, ∵O 是BD 中点,∴OD=OB=OA=√342,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴DOAD =DEDO,∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴(√342)2=5(5﹣x),∴x=3310,即:AE=3310;(2)如图2,在矩形ABCD中,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AE=CD=3,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∵∠A=90°,∴∠AEF+∠AFE=90°,∴∠CED=∠AFE,∴△AEF ≌△DCE , ∴AF=DE=2, ∴BF=AB ﹣AF=1, 过点G 作GK ⊥BC 于K , ∴∠EBC=∠BGK=45°,∴BK=GK ,∠ABC=∠GKC=90°, ∵∠KCG=∠BCF , ∴△CHG ∽△CBF , ∴GK FB=CK CB,设BK=GK=y , ∴CK=5﹣y , ∴y=56, ∴BK=GK=56,在Rt △GKB 中,BG=5√26; (3)①在矩形ABCD 中,∠D=90°, ∵AE=1,AD=5, ∴DE=4, ∵DC=3, ∴EC=5,由折叠知,ED'=ED=4,D'H=DH ,∠ED'H=∠D=90°, ∴D'C=1, 设D'H=DH=z , ∴HC=3﹣z ,根据勾股定理得,(3﹣z )2=1+z 2, ∴z=43,∴DH=43,CH=53,∵D'N ⊥AD , ∴∠AND'=∠D=90°, ∴D'N ∥DC , ∴△EMN ∽△EHD , ∴MNHD =EMEH , ∵D'N ∥DC ,∵∠MED'=∠HEC,∴△ED'M∽△ECH,∴D′MCH =EMEH,∴MNHD =D′MCH,∴D′MMN =CHHD=54,∴S△ED′MS△EMN =54;②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,∴∠MD'H+∠ED'N=90°,∵∠END'=90°,∴∠ED'N+∠NED'=90°,∴∠MD'H=∠NED',∵D'N∥DC,∴∠EHD=∠D'MH,∴∠EHD'=∠D'MH,∴D'M=D'H,∵AD∥BC,∴∠NED'=∠ECB,∴∠MD'H=∠ECB,∵CE=CB=5,∴D′MCB =D′HCE∴△D'MH∽△CBE.【强化训练】1.如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求DGBH的值;②如图3,若∠ADC=α(0°<α<90°),直接写出DGBH的值.(用含α的三角函数表示)【答案】(1)BG=EG,理由见解析;(2)12;(3)cosα.【分析】(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得GMBH =GEBE=12,再证明ΔMGD是等边三角形,可得DG=MG,由此可得DGBH =MGBH=12;方法二:延长ED,BC交于点M,证明ΔHBM为等边三角形,再证明ΔEDG∽ΔEMB,即可得结论;②如图3,连接EC交DF于O根据三角函数定义得cosα=OEEF,则OF=bcosα,DG=a+2bcosα,同理表示AH的长,代入DGBH计算即可.【解答】(1)BG=EG,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵四边形CDEF是菱形,∴CD∥EF,CD=EF.∴AB∥EF,AB=EF.∴∠ABG=∠FEG.又∵∠AGB=∠FGE,∴ΔABG≌ΔFEG(AAS).∴BG=EG.(2)方法1:过点G作GM∥BH,交DH于点M,∴∠EMG=∠EHA.∵∠GEM=∠BEH,∴ΔGME∽ΔBHE.∴GMBH =GEBE.由(1)结论知BG=EG.∴EG=12BE.∴GMBH =GEBE=12.∵四边形CDEF为菱形,∴∠ADC=∠EDF=60°.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠CDF=∠HAD=60°.∵GM∥AH,∴∠MGD=∠HAD=60°.∴∠GMD=180°−∠MGD−∠MDG=60°,即∠GMD=∠MGD=∠MGD=60°.∴ΔMGD是等边三角形。

华师大版初中数学九年级上册《23.3.3 相似三角形的性质》同步练习卷(含答案解析

华师大版初中数学九年级上册《23.3.3 相似三角形的性质》同步练习卷(含答案解析

华师大新版九年级上学期《23.3.3 相似三角形的性质》同步练习卷一.解答题(共50小题)1.在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).2.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交AB于点E,连接BP并延长交AD于点F,交CD延长线于点G.(1)求证:PB=PD.(2)若DF:FA=1:2①请写出线段PF与线段PD之间满足的数量关系,并说明理由;②当△DGP是等腰三角形时,求tan∠DAB的值.3.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.4.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.6.如图,在△ABC中,∠ACB=90°,AB=5,AC=4,过点C作直线MC使得∠BCM=∠BAC,求点B到直线MC的距离.7.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)求证:△CDE∽△CAB;(2)求证:DE=BD;(2)如果BC=6,AB=5,求BE的长.8.如图1,已知矩形ABCD的对角线相交于点O,EF过点O分别交AB、CD于点E、F.(1)求证:△AOE≌△COF;(2)若AB=3,AD=4,点M在线段BC上运动,连接MO.①当MO⊥AC时,求BM的值;②当BM为多少时,△BMO是等腰三角形?(只写出结论,不要求写过程)9.已知两个以O为顶点且不全等的直角三角形△AOB和△COD,其中∠ABO=∠DCO=30°.(1)如图1,设∠BOD=α(0°<α<60°),点E、F、M分别是AC、CD、DB的中点.连接FM、EM.请问:随着α的变化,试判断的值是否发生变化?若不变,请求出的值;若变化,请说明理由;(2)如图2,若BO=3,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O旋转的过程中,线段PN长度的最大值是;最小值是.10.两个全等的Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,M、N分别是BD、CE的中点,连接MN,(1)若AB=ED,且B、A、D 三点在一条直线上(如图1),猜想MN与BD的关系,并加以证明;(2)若AB=AD,sin∠BAC=,且B、A、D 三点不在一条直线上(如图2),求的值.11.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.12.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.13.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=x cm(x>0),四边形BCDP的面积为y cm2.求y关于x的函数关系式.14.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE ∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.15.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O 于D、C两点.(1)求证:PA•PB=PD•PC;(2)若PA=,AB=,PD=DC+2,求点O到PC的距离.16.已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.17.腰长为6的等腰直角△ABC中,D是BC上的一动点(不与BC重合),过点D作AB,AC的垂线,垂足为E,F.(1)证明:△BDE∽△CDF;(2)设BD=x,四边形AEDF的面积为y,请写出y与x之间的函数关系式,并求出当x为何值时y最大?y的最大值是多少?18.已知:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1,延长CD交AE于K(1)求证:AE=CD,AE⊥CD.(2)类比:如图2所示,将(1)中的Rt△DBE绕点B逆时针旋转一个锐角,问(1)中线段AE,CD之间数量关系和位置关系还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展:在图2中,将“AB=BC,DB=EB”改为“BC=kAB,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系怎样?请直接写出线段AE,CD间的数量关系和位置关系.19.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:AP=PD;(2)若⊙O的半径为5,AF=7,求的值.20.如图,点D为线段AB延长线上一点,△ABC和△BDE分别是以AB,BD为斜边的等腰直角三角形.连接CE并延长,交AD的延长线于F,△ABC的外接圆圆O交CF与点M.若AB=6,BD=2.(1)求CE长度;(2)证明:AC2=CM•CF;(3)求CM长度.21.如图,在△ABC中,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.(1)求证:△ABD∽△AHG.(2)若4AB=5AC,且点H是AC的中点,求的值.22.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5,(1)如图(1),若点P是弧AB的中点,求PB的长;(2)如图(2),过点P作PD⊥BC于点E,交AB于点D,若=,求PC的长.23.如图,△ABC为一锐角三角形,BC=12,BC边上的高AD=8.点Q,M在边BC上,P,N分别在边AB,AC上,且PNMQ为矩形.(1)设MN=x,用x表示PN的长度;(2)当MN长度为多少时,矩形PNMQ的面积最大,最大面积是多少?(3)当MN长度为多少时,△APN的面积等于△BPQ与△CMN之和?24.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s 的速度向点C移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.(1)t为何值时,△CPQ的面积等于△ABC面积的?(2)运动几秒时,△CPQ与△CBA相似?(3)在运动过程中,PQ的长度能否为1cm?试说明理由.25.如图,分别延长平行四边形ABCD的边CD、AB到E、F,使DE=BF=CD,连接EF,分别交AD,BC于G,H,连接CG,AH(1)求证:四边形AGCH为平行四边形;(2)求△DEG和△CGH的面积比.26.如图,△ABC中,D,E分别为BC,AB中点,连接EC,AD,且AD与EC交于点F,延长AD至点G使GD=AD,连结CG.(1)请在图中找出一对全等三角形,并证明.(2)若AB=x,EB:DF=3:2,试用含x的代数式表示线段AG的长.27.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F是线段AD上的三等分点,连接BE、CE、BF、CF,若,且BC=4a.(1)求四边形ABEC的面积;(2)写出与△CEF相似但不全等的三角形,并证明其中的一对.28.阅读下面材料:小军遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:AD的取值范围是.参考小军思考问题的方法,解决问题:如图3,△ABC中,E为AB中点,P是CA延长线上一点,连接PE并延长交BC 于点D.求证:PA•CD=PC•BD.29.如图,△ABC中,BC=2AB,点D、E分别是BC、AC的中点,过点A作AF∥BC交线段DE的延长线于点F,取AF的中点G,联结DG,GD与AE交于点H.(1)求证:四边形ABDF是菱形;(2)求证:DH2=HE•HC.30.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?31.如本题图①,在△ABC中,已知∠ABC=∠ACB=α.过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.(1)求∠ACD的大小;(2)在线段CD的延长线上取一点F,以FD为角的一边作∠DFE=α,另一边交BD延长线于点E,若FD﹣kAD(如本题图②所示),试求的值(用含k 的代数式表示).32.如图,四边形ABCD是平行四边形,点E为DC延长线上一点,联结AE,交BC边于点F,联结BE.(1)求证:AB•AD=BF•ED;(2)若CD=CA,且∠DAE=90°,求证:四边形ABEC是菱形.33.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4.(1)判断△ABE与△ADB是否相似,并说明理由;(2)求∠C的度数.34.如图,AD是△ABC的高,点Q、M在BC边上,点N在AC边上,点P在AB 边上,AD=60cm,BC=40cm,四边形PQMN是矩形.(1)求证:△APN∽△ABC;(2)若PQ:PN=3:2,求矩形PQMN的长和宽.35.如图,在直角三角形ABC中,∠C=90°,矩形DEFG的四个顶点都在△ABC 的边上,已知:AC=8,BC=6.(1)当四边形DEFG为正方形时,求EF的长;(2)△BEF与△FCG能全等吗?若能,请你求出EF的长;若不能,请说明理由;(3)△BEF与△ADG能全等吗?若能,请你求出EF的长;若不能,请说明理由.36.在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交BD于点F.(1)如图1,若四边形ABCD是正方形,判断AF与BE的数量关系;明明发现,AF与BE分别在△AOF和△BOE中,可以通过证明△AOF和△BOE全等,得到AF与BE的数量关系;请回答:AF与BE的数量关系是.(2)如图2,若四边形ABCD是菱形,∠ABC=120°,请参考明明思考问题的方法,求的值.37.如图所示,D是以AB为直径的半圆O上的一点,C是弧AD的中点,点M 在AB上,AD与CM交于点N,CN=AN.(1)求证:CM⊥AB;(2)若AC=;,BD=2,求半圆的直径.38.在△ABC中,BC=2,BC边上的高AD=1,P是BC上任一点,PE∥AB交AC 于E,PF∥AC交AB于F.用x表示;(1)设BP=x,将S△PEF(2)当P在BC边上什么位置时,S值最大.39.如图,已知在梯形ABCD中,AD∥BC,∠A=90°,AB=AD,点E在边AB上,且DE⊥CD,DF平分∠EDC,交BC于点F,联结CE、EF.(1)求证:DE=DC;(2)如果BE2=BF•BC,求证:∠BEF=∠CEF.40.如图,在Rt△ABC中,∠B=90°,AB=9cm,BC=2cm,点M,N分别从A,B 同时出发,M在AB边上沿AB方向以每秒2cm的速度匀速运动,N在BC边上沿BC方向以每秒1cm的速度匀速运动(当点N运动到点C时,两点同时停止运动).设运动时间为x秒,△MBN的面积为ycm2.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)求△MBN的面积的最大值.41.如图,在等腰三角形ABC中,AD⊥BC于点D,AD=3,DC=4,点M在线段AC上运动,ME⊥AD于点E,连结BE并延长交AC于点F,连结BM.设=m (0<m<1),△BEM的面积为S.(1)当m=时,求的值.(2)求S关于m(0<m<1)的函数解析式并求出S的最大值.(3)设=k,猜想k与m的数量关系并证明.42.以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:(1)如图1,当点E与点O重合时,连接OC,试判断△COB的形状,并证明你的结论;(2)如图2,当DE=8时,求线段EF的长.43.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB 的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(s)(0<t<4).根据上面的信息,解答下面的问题:(1)当t为何值时,PQ⊥AB?(2)当点Q在BE之间运动时,设五边形PQBCD的面积为y(cm2),求y与t 之间的函数表达式.44.如图,已知AB是⊙O的直径,点E在线段AB上,CD⊥AB于G,连接DE 交⊙O于F,连接CF交AB延长线于P.求证:OF2=OE•OP.45.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小明发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:∠ACE的度数为,AC的长为.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求AC的长.46.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),连接DE,作CF⊥DE,CF与边AB、线段DE分别交于点F,G;(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.47.如图,在△ABC中,点D、E分别在边BC、AC上,BE、AD相交于点G,EF ∥AD交BC于点F,且BF2=BD•BC,联结FG.(1)求证:FG∥CE;(2)设∠BAD=∠C,求证:四边形AGFE是菱形.48.在▱ABCD中,点E在BC边上,点F在BC边的延长线上,且BE=CF.(1)求证:MA=MF;(2)连接AF,分别交DE、CD于M、N,若∠B=∠AME,求证:ND•ME=AD•MN.49.如图,在梯形ABCD中,AB∥CD,AD=BC,E是CD的中点,BE交AC于F,过点F作FG∥AB,交AE于点G.(1)求证:AG=BF;(2)当AD2=CA•CF时,求证:AB•AD=AG•AC.50.已知:如图,在四边形ABCD中,AB∥CD,点E是对角线AC上一点,∠DEC=∠ABC,且CD2=CE•CA.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.华师大新版九年级上学期《23.3.3 相似三角形的性质》同步练习卷参考答案与试题解析一.解答题(共50小题)1.在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).(1)如图1,连结AE.先由DE=DF,得出∠DEF=∠DFE,由∠ADF+∠DEC=180°,【分析】得出∠ADF=∠DEB.由∠AFE=∠BDE,得出∠AFE+∠ADE=180°,那么A、D、E、F四点共圆,根据圆周角定理得出∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.再由∠ADF=∠DEB=∠AEF,得出∠AEF+∠AED=∠DEB+∠AED,则∠AEB=∠DEF=∠BAE,根据等角对等边得出AB=BE;(2)如图2,连结AE.由A、D、E、F四点共圆,得出∠ADF=∠AEF,由∠DAF=90°,得出∠DEF=90°,再证明∠DEB=∠AEF.又∠AFE=∠BDE,根据两角对应相等的两三角形相似得出△BDE∽△AFE,利用相似三角形对应边成比例得到=.在直角△DEF中,利用勾股定理求出EF==DF,然后将AF=m,DE=kDF代入,计算即可求解.【解答】解:(1)如图1,连结AE.∵DE=DF,∴∠DEF=∠DFE,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.∵∠ADF=∠DEB=∠AEF,∴∠AEF+∠AED=∠DEB+∠AED,∴∠AEB=∠DEF=∠DFE=∠BAE,∴AB=BE;(2)如图2,连结AE.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠ADF=∠AEF,∵∠DAF=90°,∴∠DEF=90°,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB.∵∠ADF=∠AEF,∴∠DEB=∠AEF.在△BDE与△AFE中,,∴△BDE∽△AFE,∴=.在直角△DEF中,∵∠DEF=90°,DE=kDF,∴EF==DF,∴==,∴BD=.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定与性质,四点共圆,圆周角定理,勾股定理等知识,有一定难度.连结AE,证明A、D、E、F四点共圆是解题的关键.2.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交AB于点E,连接BP并延长交AD于点F,交CD延长线于点G.(1)求证:PB=PD.(2)若DF:FA=1:2①请写出线段PF与线段PD之间满足的数量关系,并说明理由;②当△DGP是等腰三角形时,求tan∠DAB的值.【分析】(1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD;(2)①首先证明△DFP≌△BEP,进而得出,,进而得出即,即可得出答案;②由(1)证得△APB≌△APD,得到∠ABP=∠ADP,根据平行线的性质,得到∠G=∠ABP,(Ⅰ)若DG=PG根据△DGP∽△EBP,得DG=a,由勾股定理得到FH=,于是得到结论;(Ⅱ)若DG=DP,设DG=DP=3m,则PB=3m,PE=BE=PF=2m,AB=AD=2DG=6m,AF=4m,BF=5m,设AH=x,求得FH=,得到tan∠DAB= =.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠DAB,∴∠DAP=∠BAP,在△APB和△APD中,,∴△APB≌△APD,∴PB=PD;(2)解:①∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∴△AFP∽△CBP,∴,∵,∴,∴,由(1)知PB=PD,∴,∴PF=PD.②由(1)证得△APB≌△APD,∴∠ABP=∠ADP,∵GC∥AB,∴∠G=∠ABP,∴∠ADP=∠G,∴∠GDP>∠G,∴PD≠PG.(Ⅰ),若DG=PG,∵DG∥AB,∴△DGP∽△EBP,∴PB=EB,由(2)知,设PF=2a,则PB=BE=PD=3a,PE=PF=2a,BF=5a,由△DGP∽△EBP,得DG=a,∴AB=AD=2DG=9a,∴AF=6a,如图1,作FH⊥AB于H,设AH=x,则(6a)2﹣x2=(5a)2﹣(9a﹣x)2,解得x=a,∴FH=,∴tan∠DAB=;(Ⅱ)若DG=DP,如图2,设DG=DP=3m,则PB=3m,PE=BE=PF=2m,AB=AD=2DG=6m,AF=4m,BF=5m,∴(4m)2﹣x2=(5m)2﹣(6m﹣x)2,解得x=m,∴FH=,∴tan∠DAB==.【点评】此题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,锐角三角函数,平行线的性质,菱形的性质,正确的作出辅助线是解题的关键.3.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.【分析】(1)根据圆周角定理求得AD⊥BC,根据等腰三角形三线合一的性质即可证得结论;(2)先求得∠E=∠C,根据等角对等边求得BD=DC=DE=3,进而求得AD=1,然后根据勾股定理求得AB,即可求得圆的半径;(3)根据题意得到AC=,BC=6,DC=3,然后根据割线定理即可求得EC,进而求得AE.【解答】(1)证明:∵AB是圆O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)解:∵AB=AC,∵∠B=∠E,∴∠E=∠C,∴BD=DC=DE=3,∵BD﹣AD=2,∴AD=1,在RT△ABD中,AB==,∴⊙O的半径为;(3)解:∵AB=AC=,BD=DC=3,∴BC=6,∵∠B=∠E,∠C=∠C,∴△EDC∽△BAC,∵AC•EC=DC•BC,∴•EC=3×6,∴EC=,∴AE=EC﹣AC=﹣=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理的应用以及割线定理的应用,熟练掌握性质定理是解题的关键.4.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.【分析】(1)易证DE∥BC,由平行线分线段成比例定理列比例式即可求解;(2)分三种情况讨论:①若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线;②若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线;③当CD 为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【解答】解:(1)∵∠ACB=90°,DE⊥AC,∴DE∥BC,∴,∵,AE=2,∴EC=6;(2)①如图1,若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.证明:∵∠CFG+∠CGF=90°,∠ECD+∠PCG=90°,又∵∠CFG=∠ECD,∴∠CGF=∠PCG,∴CP=PG,∵∠CFG=∠ECD,∴CP=FP,∴PF=PG=CP,∴线段CP是△CFG的FG边上的中线;②如图2,若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.证明:∵DE⊥AC,∴∠EDC+∠ECD=90°,∵∠CFG=∠EDC,∴∠CFG+∠ECD=90°,∴∠CPF=90°,∴线段CP为△CFG的FG边上的高线.③如图3,当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【点评】本题主要考查了平行线分线段成比例定理、等腰三角形的判定、三角形的有关概念,分类讨论,能全面的思考问题是解决问题的关键.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,【分析】由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.【解答】(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.【点评】本题考查了旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.6.如图,在△ABC中,∠ACB=90°,AB=5,AC=4,过点C作直线MC使得∠BCM=∠BAC,求点B到直线MC的距离.【分析】利用勾股定理求出BC,过B向MC作垂线,利用三角形相似求BE.【解答】解:如图:在Rt△ABC中,BC==3,作BE⊥MC,垂足是E,∵∠ACB=∠BEC=90°,∴△ACB∽△BCE,∴,∴,∴BE=,∴点B到直线MC的距离.【点评】本题考查了相似三角形的判定和性质,勾股定理作辅助线构造相似三角形是解题的关键.7.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)求证:△CDE∽△CAB;(2)求证:DE=BD;(2)如果BC=6,AB=5,求BE的长.【分析】(1)由圆内接四边形的性质得出∠CED=∠CBA,再由公共角相等,即可证出△CDE∽△CAB;(2)由等腰三角形的性质得出∠C=∠CBA,证出∠C=∠CED,得出DE=CD,再由圆周角定理和三线合一性质得出CD=BD,即可得出DE=BD;(3)由割线定理求出CE,由圆周角定理得出∠AEB=∠BEC=90°,根据勾股定理即可求出BE的长.【解答】(1)证明:连接AD,如图所示:∵四边形ABDE是⊙O的内接四边形,∴∠CED=∠CBA,又∵∠C=∠C,∴△CDE∽△CAB;(2)证明:∵AB=AC,∴∠C=∠CBA,∴∠C=∠CED,∴DE=CD,∵AB为⊙O的直径,∴∠ADB=90°,∴CD=BD,∴DE=BD;(3)解:由割线定理得:CE•AC=CD•BC,∵CD=BD=BC=3,AC=AB=5,∴CE===,∵AB为⊙O的直径,∴∠AEB=90°,∴∠BEC=90°,∴BE===.【点评】本题考查了圆内接四边形的性质、相似三角形的判定、等腰三角形的性质、圆周角定理、割线定理、勾股定理;本题有一定难度,特别是(2)(3)中,需要运用圆周角定理、割线定理和勾股定理才能得出结果.8.如图1,已知矩形ABCD的对角线相交于点O,EF过点O分别交AB、CD于点E、F.(1)求证:△AOE≌△COF;(2)若AB=3,AD=4,点M在线段BC上运动,连接MO.①当MO⊥AC时,求BM的值;②当BM为多少时,△BMO是等腰三角形?(只写出结论,不要求写过程)【分析】(1)根据矩形的性质易证,OA=OC,AB∥CD,根据AB∥CD,得到∠EAO=∠FCO,满足ASA可证;(2)①先证△MOC∽△ACB,得MC:AC=OC:BC,计算MC,即可求出BM;②若△BMO是等腰三角形,则可能BM=OM,OB=BM,OB=OM,分类讨论即可.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(AAS);(2)①解:如图1,∵MO⊥AC,∴∠MOC=90°,∵∠ABC=90°,∴∠MOC=∠ABC,又∵∠MCO=∠MCO,∴△MOC∽△ACB,∴MC:AC=OC:BC,∵AB=3,BC=4,∴AC=5,∴OC=2.5,∴MC:5=2.5:4,∴MC=,∴BM=;②如图2,△BMO是等腰三角形时,有三种情况:(Ⅰ)OB=OM,此时M与C重合,BM=4;(Ⅱ)OB=BM,BM=OB=BD=2.5;(Ⅲ)BM=OM,作MN⊥BD,∴BN=B0=;∵△BMN∽△BDC∴,∴BM===,∴BM=2.5或4或.【点评】本题主要考查了三角形全等的判定、相似三角形的判定与性质、等腰三角形的判定与性质,第3小题考查学生思维的全面性,恰当分类讨论是解决问题的关键.9.已知两个以O为顶点且不全等的直角三角形△AOB和△COD,其中∠ABO=∠DCO=30°.(1)如图1,设∠BOD=α(0°<α<60°),点E、F、M分别是AC、CD、DB的中点.连接FM、EM.请问:随着α的变化,试判断的值是否发生变化?若不变,请求出的值;若变化,请说明理由;(2)如图2,若BO=3,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O旋转的过程中,线段PN长度的最大值是4;最小值是.【分析】(1)连接AD、BC,由∠AOB=∠COD=90°∠ABO=∠DCO=30°,得到,∠AOD=∠BOC,推出△AOD∽△BOC,求得∠OAD=∠CBO,,证得AD⊥BC由于点E、F、M分别是AC、CD、DB的中点,根据三角形的中位线的性质得到EF∥AD,EF=AD,于是得到MF∥AD,MF=AD,在Rt△EFM中,=;(2)过O作OE⊥AB于E,由已知条件求出当P在点E处时,点P到O点的距离最近为,当旋转到OE与OD重合是,NP取最小值为:OP﹣ON=;当点P在点B处时,且当旋转到OB在DO的延长线时,NP取最大值OB+ON=4.【解答】解:(1)不变;=,如图1,连接AD、BC交于一点Q,AD交BO于P,∵∠AOB=∠COD=90°,∠ABO=∠DCO=30°,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴∠OAD=∠CBO,,∵∠APO=∠BPQ,∴∠BQP=∠AOB=90°,∴AD⊥BC,∵点E、F、M分别是AC、CD、DB的中点,∴EF∥AD,EF=AD,∴MF∥BC,MF=BC,在Rt△EFM中,=;(2)如图2,过O作OE⊥AB于E,∵BO=3,∠ABO=30°,∴AO=,AB=,∴AB•OE=OA•OB,∴OE=,∴当P在点E处时,点P到O点的距离最近为,这时当旋转到OE与OD重合是,NP取最小值为:OP﹣ON=;如图4,当点P在点B处时,且当旋转到OB在DO的延长线时,NP取最大值OB+ON=3+1=4,∴线段PN长度的最小值为,最大值为4.故答案为:4,.【点评】此题考查了旋转的性质、相似三角形的判定与性质、直角三角形的判定和性质三角形的中位线的判定和性质、三角函数的应用.此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系.10.两个全等的Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,M、N分别是BD、CE的中点,连接MN,(1)若AB=ED,且B、A、D 三点在一条直线上(如图1),猜想MN与BD的关系,并加以证明;(2)若AB=AD,sin∠BAC=,且B、A、D 三点不在一条直线上(如图2),求的值.【分析】(1)如图1,连接BN并延长,与DE的延长线相交于点F,由∠ABC+∠ADE=180°,得到BC∥DE,得到∠CBN=∠EFN,∠BCN=∠FEN,证出△CBN ≌△EFN,得到BN=FN,EF=CB=AD,于是得到DF=DE+EF=AB+BC=AB+AD=BD,根据三角形的中位线的性质即可得到结论;(2)过点E做BC的平行线,与BN的延长线相交于点F,连接DF,由(1)可知,△CBN≌△EFN,MN=DF,证得△DEF∽△DAB,得到.由sin∠BAC=,得到tan∠BAC=,即DF=BD,得到MN=DF=BD即可得到结论.【解答】解:(1)MN⊥BD,MN=BD;如图1,连接BN并延长,与DE的延长线相交于点F,∵∠ABC+∠ADE=180°,∴BC∥DE,∴∠CBN=∠EFN,∠BCN=∠FEN,∵CN=EN,在△CBN与△EFN中,,∴△CBN≌△EFN,∴BN=FN,EF=CB=AD,∴DF=DE+EF=AB+BC=AB+AD=BD,又∵BM=MD,∴MN=DF=BD,MN∥DF,∴∠BMN=∠BDE=90°,∴MN⊥BD;(2)过点E做BC的平行线,与BN的延长线相交于点F,连接DF,由(1)可知,△CBN≌△EFN,MN=DF,∴EF=CB=DE,∠BCE=∠CEF,∵∠ABC+∠ADE=180°,∴∠BAD+∠BCE+∠CED=540°﹣180°=360°,∵∠DEF+∠CEF+∠CED=360°,∴∠BAD=∠DEF,∵,∴△DEF∽△DAB,∴.∵sin∠BAC=,∴tan∠BAC=,即DF=BD,∴MN=DF=BD.即.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,梯形的中位线的性质,正确的作出辅助线是解题的关键.11.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.【分析】(1)由三角形ABC与三角形CDE都为等边三角形,利用等边三角形的性质得到两对边相等,一对角相等,利用等式的性质得到夹角相等,利用SAS 即可得证;(2)由(1)得出的三角形全等得到对应角相等,再由一对角相等,且夹边相等,利用ASA得到三角形GCD与三角形FCE全等,利用全等三角形对应边相等得到CG=CF,进而确定出三角形CFG为等边三角形,确定出一对内错角相等,进而得到GF与CE平行,利用平行线等分线段成比例即可得证.【解答】证明:(1)∵△ABC与△CDE都为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),(2)∵△ACE≌△BCD,∴∠BDC=∠AEC,在△GCD和△FCE中,,∴△GCD≌△FCE(ASA),∴CG=CF,∴△CFG为等边三角形,∴∠CGF=∠ACB=60°,∴GF∥CE,∴=.【点评】此题考查了全等三角形的判定与性质,相似三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.12.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,【分析】然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.13.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm ,BC=9cm ,P 是射线DE 上的动点.设DP=x cm (x >0),四边形BCDP 的面积为y cm 2.求y 关于x 的函数关系式.【分析】(1)先利用等角的余角相等得到∠B=∠DAC ,则可判断Rt △DFA ∽Rt △ACB ,根据相似三角形的性质得AB•AF=BC•AD ,然后利用AD=CD 代换即可得到结论;(2)连结PC ,如图,先在Rt △ACB 中利用勾股定理计算出AC=12,再利用等腰三角形的性质AF=FC=AC=6,接着证明DE ∥BC ,则P 点到BC 的距离等于CF ,然后根据三角形面积公式和y=S △CPD +S △BCP 即可得到y 与x 的函数解析式.【解答】(1)证明:∵∠DAB=∠ACB=90°,∴∠DAC +∠BAC=90°,∠BAC +∠B=90°,∴∠B=∠DAC ,∵DF ⊥AC ,∴∠DFC=90°,∴Rt △DFA ∽Rt △ACB ,∴=,即AB•AF=BC•AD ,而AD=CD ,∴AB•AF=CB•CD ;(2)解:连结PC ,如图,在Rt △ACB 中,∵AB=15,BC=9,∴AC==12,∵DF ⊥AC ,DA=DC ,∴AF=FC=AC=6,∵∠DFC=∠ACB=90°,∴DE ∥BC ,∴P 点到BC 的距离等于CF ,∴y=S △CPD +S △BCP=•x•6+•9•6=3x +27(x >0).【点评】本题考查了相似三角形的判断与性质:在判定两个三角形相似时,合理利用直角的作用.也考查了利用三角形面积公式列函数关系式.把四边形的面积化为两三角形面积的和是求函数关系式的关键.14.如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点.过点B 作BE ∥AD ,交⊙O 于点E ,连接ED(1)求证:ED ∥AC ;(2)若BD=2CD ,设△EBD 的面积为S 1,△ADC 的面积为S 2,且S 12﹣16S 2+4=0,求△ABC 的面积.【分析】(1)由AD 是△ABC 的角平分线,得到∠BAD=∠DAC ,由于∠E=∠BAD ,等量代换得到∠E=∠DAC ,根据平行线的性质和判定即可得到结果;(2)由BE ∥AD ,得到∠EBD=∠ADC ,由于∠E=∠DAC ,得到△EBD ∽△ADC ,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.【解答】(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD=∠DAC ,∵∠E=∠BAD ,。

【练习】4.5 相似三角形的性质及其应用 第2课时 相似三角形的周长比、面积比

【练习】4.5 相似三角形的性质及其应用 第2课时 相似三角形的周长比、面积比

11.(6分)如图,直角三角形纸片ACB的两直角边BC,AC的长分别为6,8,将∠A沿直线DE折叠,使点A
与点B重合,折痕为DE,则S△BCE∶S△BDE的值为( B )
A.2∶5 B.14∶25 C.16∶25 D.4∶21
12. (6分)如图,将正方形ABCD绕点A逆时针旋转得到正方形AEFG,点E落在AC上,CD与EF交于点H,延 2∶. 1 长CD与FG交于点K,则S△KFH∶S△CEH=____
13.(10分)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点
E是AB的中点,连结EF.
(1)求证:EF∥BC; (2)若△ABD的面积是6,求四边形BDFE的面积.
解: (1)证明: ∵DC=AC, ∴△ACD 为等腰三角形. ∵CF 平分∠ACD, ∴F 为 AD 的中点. 又 ∵E 为 AB 的中点,∴EF 为△ABD 的中位线,∴EF∥BC. EF 1 (2)由(1)得 EF∥BC,且 = ,∴△AEF∽△ ABD,∴S△AEF∶S△ABD=1∶4,∴S 四边形 BDFE∶S △ BD 2 9 = 3 ∶ 4. ∵ S = 6 ,∴ S = . ABD △ABD 四边形 BDFE 2
14.
(10分)(原创题)如图,已知AC是⊙O的直径,点B在⊙O上,∠ACB=30°,∠ABC的平分线交⊙O
于点D,交AC于点E.
(1)若BC=2 3 ,求CD的长; (2)求S△ABE∶S△DCE的值.
解: 连结 AD.∵AC 是⊙O 的直径, ∴∠ABC=∠ADC=90°.∵在 Rt△ABC 中, ∠ACB=30°, ∴易得 AC=2AB,BC= 3AB.∵BD 平分∠ABC,∴∠ABD=∠CBD,∴AD=CD,∴易得 AD=CD 2 = AC= 2AB. 2 (1)若 BC=2 3,则 AB=2,∴CD=2 2. S△ABE AB 2 AB 2 1 (2)∵∠ABD=∠ACD,∠AEB=∠CED,∴△ABE∽△DCE.∴ =( ) =( ) = ,故 S△DCE CD 2 2AB S△ABE∶S△DCE=1∶2.

4.5 相似三角形的性质及其应用 第2课时 相似三角形的性质2(周长、面积的比)练习题

4.5 相似三角形的性质及其应用   第2课时 相似三角形的性质2(周长、面积的比)练习题

4.5相似三角形的性质及其应用第2课时相似三角形的性质2(周长、面积的比)【基础练习】知识点1相似三角形的周长比1.如图1,AB∥CD,AOOD =23,则△AOB的周长与△DOC的周长比是.图12.已知△ABC∽△A'B'C',相似比为34,△ABC的周长为6,则△A'B'C'的周长为.3.如图2,在△ABC中,D,E分别是边AB,AC上的点,且DE∥BC.若△ADE与△ABC的周长之比为2∶3,AD=4,则DB=.图24.已知两个相似三角形的一对对应边长分别是35 cm和14 cm,且它们的周长相差60 cm,求这两个三角形的周长.5.如图3,在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,点P在AC上(与点A,C不重合),点Q在BC上.当△CPQ的边PQ上的高为35时,求△CPQ的周长.图3知识点2相似三角形的面积比6.已知△ABC∽△DEF,且相似比为12,则△ABC与△DEF的面积比是.7.若两个相似三角形的周长比为23,则它们的面积比是.8.已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为.9.如图4,△ADE∽△ACB,且ADAC =23,若△ADE的面积是8,则四边形BCED的面积是.图410.如图5,在▱ABCD中,E是边BC上的一点,且BE∶EC=1∶2,连结AE交对角线BD于点F,若S△BFE=12 cm2,求S△DF A.图5【能力提升】11.两个相似三角形的对应角平分线的比是√2∶1,其中一个三角形的面积为16,则另一个三角形的面积为()A.8√2或16√2B.8或32C.8√3D.812.[2020·南通]如图6,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点的值等于.都在网格线的交点上,设△ABC的周长为C1,△DEF的周长为C2,则C1C2图613.如图7,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB,AD∶BD=5∶3,△ABC 的面积为64,则四边形BFED的面积为.图714.如图8,在△ABC中,中线BE,CD相交于点O,连结DE,下列结论中正确的有(填序号).①DEBC =12;②S△DOES△COB=12;③ADAB =OEOB;④S△DOES△ADE=13.图815.[2019·宁波镇海区一模]在图9所示的6×6的网格中,已知格点三角形ABC(顶点A,B,C都在格点上).(1)在图ⓐ中,画出一个与△ABC面积相等的格点三角形ABD(不与△ABC全等).(2)在图ⓑ中,画出一个与△ABC相似的格点三角形A1B1C1,使得①S△ABC∶S△A1B1C1=1∶4;②两个三角形的对应边分别互相垂直.图916.[问题背景](1)如图10①所示,在△ABC中,DE∥BC,与AB,AC分别交于D,E两点,过点E作EF∥AB交BC 于点F.请按图示数据填空:四边形DBFE的面积S=,△EFC的面积S1=,△ADE的面积S2=.[探究发现](2)在(1)中,若BF=a,FC=b,DE与BC间的距离为h,请证明S2=4S1S2.[拓展迁移](3)如图10②,▱DEFG的四个顶点在△ABC的三边上,若△ADG,△DBE,△GFC的面积分别为2,5,3,试利用(2)中的结论求△ABC的面积.图10答案1.23 2.8 3.24.解:∵两个相似三角形的一对对应边长分别是35 cm 和14 cm, ∴这两个相似三角形的相似比为5∶2, ∴这两个相似三角形的周长比为5∶2.设较大的三角形的周长为5x cm,则较小的三角形的周长为2x cm . ∵它们的周长相差60 cm, ∴5x -2x=60,解得x=20, ∴5x=5×20=100,2x=2×20=40,∴较大的三角形的周长为100 cm,较小的三角形的周长为40 cm . 5.解:∵AB=5,BC=3,AC=4, ∴AB 2=AC 2+BC 2,∴△ABC 为直角三角形,其斜边AB 上的高为AC ·BC AB=125.∵PQ ∥AB ,∴△CPQ ∽△CAB ,相似比=35125=14,∴△CPQ 的周长△CAB 的周长=14.∵△CAB 的周长=3+4+5=12, ∴△CPQ 的周长=14×12=3.6.147.498.4 [解析] ∵△ABC ∽△DEF ,相似比为2, ∴△ABC 和△DEF 的面积比为4.∵△ABC 的面积为16,∴△DEF 的面积为4. 9.10 [解析] ∵△ADE ∽△ACB ,且AD AC =23, ∴S △ADE S △ABC=49,即8S△ABC=49,解得S △ABC =18, ∴S 四边形BCED =18-8=10.10.解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC. ∵BE ∶EC=1∶2,∴BE ∶BC=1∶3,即BE ∶AD=1∶3. ∵AD ∥BC ,∴△BFE ∽△DF A , ∴S △BFE ∶S △DF A =(BE ∶AD )2=1∶9. ∵S △BFE =12 cm 2,∴S △DF A =108 cm 2.11.B [解析] 设两个三角形的面积分别是S 1,S 2,令S 1=16. ①若S1S 2=√212,有16S 2=21,∴S 2=8; ②若S1S 2=1√22,有16S 2=12,∴S2=32.故选B . 12.√22 13.3014.①③④ [解析] ①∵DE 是△ABC 的中位线, ∴DE=12BC ,即DE BC =12,故①正确;②∵DE 是△ABC 的中位线,∴DE ∥BC , ∴△DOE ∽△COB , ∴S △DOE S △COB=(DE BC )2=(12)2=14, 故②错误; ③∵DE ∥BC ,∴△ADE ∽△ABC ,△DOE ∽△COB , ∴AD AB=DE BC ,OE OB =DEBC ,∴AD AB =OE OB,故③正确;④∵△ABC 的中线BE 与CD 相交于点O , ∴点O 是△ABC 的重心,根据重心性质,可得BO=2OE ,△ABC 的高=3△COB 的高,且△ABC 与△COB 同底(BC ), ∴S △ABC =3S △OBC . 由②和③知,S △DOE =14S △COB ,S △ADE =14S △ABC ,∴S △ADE =34S △COB ,∴S △DOE S △ADE=13,故④正确. 综上,①③④正确.15.解:(1)如图①,△ABD 为所作.(答案不唯一)(2)如图②,△A 1B 1C 1为所作. 16.解:(1)6 9 1(2)证明:∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 为平行四边形,∠AED=∠C ,∠A=∠CEF , ∴DE=BF=a ,△ADE ∽△EFC , ∴S 2S 1=DE FC 2=a 2b2. ∵S 1=12bh , ∴S 2=a 2b 2·S 1=a 2ℎ2b , ∴4S 1S 2=4·12bh ·a 2ℎ2b =(ah )2. 而S=ah ,∴S 2=4S 1S 2.(3)过点G 作GH ∥AB 交BC 于点H ,则四边形DBHG 为平行四边形, ∴∠GHC=∠B ,BD=GH ,DG=BH. ∵四边形DEFG 为平行四边形, ∴DG=EF ,∴BH=EF , ∴BE=HF ,∴△DBE ≌△GHF , ∴△GHC 的面积为5+3=8.由(2)得▱DBHG 的面积为√4×8×2=8, ∴△ABC 的面积为2+8+8=18.。

初中数学相似三角形的判定与性质专题练习

初中数学相似三角形的判定与性质专题练习

初中数学相似三角形的判定与性质专题练习1.定义各角对应相等,各边对应成比例的两个三角形叫做相似三角形.当相似比为1时,两个三角形就称为全等.2.判定(1)平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;3.性质(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.4.相似三角形中常见的基本图形:条件:DE∥BC,∠1=∠B,∠1=∠B条件:AB∥DE ∠A=∠D CD是斜边AB上的高如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)【答案】∠ADE=∠ACB,答案不唯一【名师指南】此类问题是开放型问题,考查了相似三角形的判定,答案不唯一,熟练掌握相似三角形的判定方法是解题的关键.【例1】如图,在大小为4×4的正方形网格中,是相似三角形的是( )①② ③ ④A.①和②B.②和③C.①和③D.②和④【答案】C【解析】试题分析:本题主要应用两三角形相似的判定定理,有两个对应角相等的三角形相似,即可完成题目.:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;210由勾股定理求出③的各边长分别为2、2、2,25∴,,22222=225210=即,22222=5210=∴两三角形的三边对应边成比例,∴①③相似.故选C .考点: 相似三角形的判定.【例2】在直角坐标系中,已知点A (-2,0)、B (0,4)、C (0,3),过点C 作直线交x 轴于点D ,使得以D 、O 、C 为顶点的三角形与△AOB 相似,这样的直线最多可以作()A .2条B .3条C .4条D .6条【答案】C .考点:1.坐标与图形性质;2.相似三角形的判定.【名师指南】此类问题实际上考查了相似三角形的判定,学生容易错误选2条或3条,一般三角形满足条件的直线最多可以作4条,直角三角形满足条件的直线最多可以作3条.【例3】如图,下列条件中不能判定的是()A .B.C .D.【答案】A考点:三角形相似的判定.【例4】如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且,(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△ACD是否相似?并说明理由.【答案】(1)∠1=∠2;(2)△ABE∽△ACD.【解析】试题分析:(1)由,得到△ABC∽△AED,推出∠BAC=∠EAD,即可得到∠1=∠2;(2)由,得,根据两边对应成比例且夹角相等得到△ABE∽△ACD.试题解析:(1)∠1与∠2相等.在△ABC和△AED中,∵,∴△ABC∽△AED,∴∠BAC=∠EAD,∴∠1=∠2.(2)△ABE与△ACD相似.由,得,在△ABE和△ACD中,∵,∠1=∠2,∴△ABE∽△ACD.考点:相似三角形的判定与性质.【例5】如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=________.【答案】8.5【解析】试题分析:因为△ADE∽△ABC,所以, 又因为AD=3,DC=4,AE=2,所以,解得BE=8.5.考点:相似三角形的性质.【例6】如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°.(1)求证:△ABD∽△DCE;(2)若BD=3,CE=2,求△ABC的边长.【答案】(1)证明见试题解析;(2)9.考点:1.等边三角形的性质;2.相似三角形的判定与性质.【名师指南】备考兵法:1.证明三角形相似的方法常用的有三个,到底用哪个要根据具体情况而定, 要注意基本图形的应用,如“A型”“X型”“母子型”等.2.用相似三角形的知识解决现实生活中实际问题, 关键是要先把实际问题转化为数学问题,识别或作出相似三角形,再利用相似三角形的性质求解,并回答实际问题,注意题目的解一定要符合题意.3.用直角坐标系中的点描述物体的位置, 用坐标的方法来研究图形的运动变换,是较为常见的考法,要注意训练.注意问题:1.在探索三角形是否相似时,我可以参照学习全等的方法(全等是相似的一种特殊情况):(1)寻找:缺什么找什么,例如已经知道有两边对应成比例,证明其夹角相等,则必定是证第三边也成比例;已知一组角相等,要证明夹这个角的两边成比例,则必定是再找一组角相等;等等.(2)构造:对于在题目中不能直截找到相似三角形的问题,我们还可以通过作辅助线的方法构造相似三角形,实现线段或角的转化将问题解决.当然这种情况要有一定的想象力与比较扎实的基础.(3)学会灵活转化:角的替换、比例式的替换、相等线段的替换,可以让我们更快捷地寻找证明相似的条件.2.在利用相似三角形的性质解题时注意下面几点常见的转化方法与解题的思路:(1)比例式的转化,利用不同的相似三角形所得到的比例式相互替代(或比例式中的相等的线段的替换),实现比例式的变更从而产生新的比例式.(2)利用比例式来求出线段之间的函数关系,用方程来求解.(3)应当根据求解的问题的形式,灵活把所得到比例式进行加减乘除运算,实现问题的转化.(4)在图形中注意添加辅助线的方法构造相似三角形或相似三角形的对应量.相似三角形中有关证(解)题规律与辅助线作法1、证明四条线段成比例的常用方法: (1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系2、证明题常用方法归纳:(1)总体思路:“等积”变“比例”,“比例”找“相似” (2)找相似:通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.即:找相似找不到,找中间比。

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)初中数学经典相似三角形练习题(附参考答案)一、题目描述在初中数学中,相似三角形是一个非常重要的概念。

本文为您提供一些经典的相似三角形练习题,通过解答这些练习题可以提高学生的解题能力和对相似三角形的理解。

本文附有详细的参考答案,供学生进行自我检测和复习。

二、练习题1. 已知△ABC和△DEF相似,AB = 6cm,BC = 8cm,AC = 10cm,DE = 9cm,计算EF的长度。

2. △ABC与△DEF相似,AB = 2cm,BC =3.5cm,AC = 4cm,EF= 7cm,求DE的长度。

3. 在△ABC中,角A的度数为50°,角B的度数为70°,BC = 8cm。

若与△ABC相似的三角形的边长分别为10cm和12cm,求与△ABC相似的三角形的第三边的长度。

4. 在△ABC中,∠B = 90°,AC = 10cm,BC = 12cm。

若与△ABC相似的三角形的第二边为16cm,求与△ABC相似的三角形的第三边的长度。

5. 已知△ABC与△DEF相似,AB = 6cm,AC = 8cm,DE = 12cm,若EF = 18cm,求BC的长度。

6. 高度为5cm的小树和高度为12cm的大树的影子长度之比为2:3。

如果小树的影子长度为10cm,求大树的影子长度。

7. 一个航拍无人机垂直飞行,发现自己离地面的垂直距离与航拍无人机的长度(包括机身和旋翼)的比例为3:2。

如果航拍无人机的长度为120cm,求离地面的垂直距离。

8. 在一个旅游小组中,由5名成年人和7名儿童组成,其平均年龄为30岁。

如果另一个旅游小组由2名成年人和3名儿童组成,其平均年龄为24岁。

求这两个旅游小组的总年龄之比。

三、参考答案1. 根据相似三角形的性质可知,EF与AC的比例应与DE与BC的比例相等。

即 EF/AC = DE/BC。

代入已知值,得 EF/10 = 9/8。

初中数学几何练习(18)相似三角形的性质

初中数学几何练习(18)相似三角形的性质

初中数学几何练习十八:相似三角形的性质相似三角形的性质1、相似三角形的对应角相等,对应边成比例2、相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比3、相似三角形的周长比等于相似比4、相似三角形的面积比等于相似比的平方一、选择题1、若ABC ∆∽'''C B A ∆,则相似比k 等于( )A 、''B A :AB B 、A ∠:'A ∠C 、ABC S ∆:'''C B A S ∆D 、ABC C ∆:'''C B A C ∆ 2、如果两个等腰直角三角形斜边比是1:2,那么它们的面积比是( )A 、1:1B 、1:2C 、1:2D 、1:43、如图,在ABC ∆中,D 为AC 边上一点,A DBC ∠=∠,BC=6,AC=3,则CD 的长为( )A 、1B 、23 C 、2 D 、25 4、如图,O 是ABC ∆内任意一点,CO CF BO BE AO AD 31,31,31===,则ABC ∆与DEF ∆的周长比是( )A 、1:3B 、3:2C 、3:1D 、2:35、如图,DE//FG//BC ,且DE 、FG 把ABC ∆的面积三等分,若BC=12,则FG 的长是( )A 、8B 、6C 、64D 、346、如图,正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上,其余两个顶点A 、D 在PQ 、PR 上,则PA :AQ 等于( )A 、1:2B 、1:2C 、1:3D 、2:37、如图,矩形ABCD ,AB=8厘米,AD=6厘米,EF 是对角线BD 的垂直平分线,则EF 的长为( )A 、415 厘米B 、315厘米C 、215厘米D 、8厘米 8、如图,ABC ∆中,DE//BC ,面积DBCE ABC S S 梯形=∆,则DE :BC 为( )A 、21B 、22 C 、41 D 、32 二、填空题9、两个相似三角形的面积之比为4:9,则这两个三角形的周长之比为________10、两个相似三角形的相似比为1:3,则它们对应高比为______11、已知ABC ∆∽'''C B A ∆,且BC : ''C B =3:2, ABC ∆的周长为24,则'''C B A ∆的周长为_________12、一个三角形周长为a,三边中点连线所组成的三角形的周长是__________13、已知ABC ∆的三边之比为3:4:6,且ABC ∆∽'''C B A ∆,若'''C B A ∆中最长边为10厘米,则它的最短边为_________厘米14、如果两个相似三角形的对应边的比是4:5,周长的和为18厘米,那么这两个三角形的周长分别是_______________15、ABC ∆中,BC=54厘米,CA=45厘米,AB=63厘米,另一个与它相似的三角形的最短边为15,则周长为____________16、已知,如图,D 是ABC ∆的边AB 上的一点,过D 作DE//BC 交AC 于E,AD:BD=3:2,则_______________:=∆BCED AD E S S 四边形三、简答题17、已知正方形ABCD,过C 的直线分别交AD 、AB 的延长线于E 、F ,且AE=15,AF=10 求(1)正方形ABCD 的边长;(2)若BE 交CD 于G ,则CG 的长为多少?18、已知矩形ABCD 中,AB=4,BC=12,点F 在AD 边上,AF :FD=1:3,BF CE ⊥于点E ,交AD 于点G ,求BCE ∆的周长19、如图,在ABC ∆中,,900=∠C D 是AC 上一点,AB DE ⊥于E ,若AB=10,BC=6,DE=2,求四边形DEBC 的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2页 共2页
相似三角形的性质及应用练习卷
班级 姓名 座号 评分
一、填空题
1、已知两个相似三角形的相似比为3,则它们的周长比为 ;
2、若△ABC ∽△A ′B ′C ′,且
4
3
=''B A AB ,
△ABC 的周长为12cm ,则△A ′B ′C ′的周长为 ; 3、如图1,在△ABC 中,中线BE 、CD 相交于点G ,则BC
DE
= ;S △GED :S △GBC = ;
4、如图2,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= ;
5、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB ,∠BMN=∠C ,则△ ∽△ ,相似比为 ,
NC
BN
= ; 6、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则S △ABD :S △ABC = ; 7、两个相似三角形的周长分别为5cm 和16cm ,则它们的对应角的平分线的比为 ; 8、如图5,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ;
9、两个三角形的面积之比为2:3,则它们对应角的比为 ,对应边的高的比为 ; 10、已知有两个三角形相似,一个边长分别为2、3、4,另一个边长分别为x 、y 、12,则x 、y 的
值分别为 ; 二、选择题
11、下列多边形一定相似的为( )
A 、两个矩形
B 、两个菱形
C 、两个正方形
D 、两个平行四边形 12、在△ABC 中,BC=15cm ,CA=45cm ,AB=63cm ,另一个和它相似的三角形的最短边是5cm ,
则最长边是( )
A 、18cm
B 、21cm
C 、24cm
D 、19.5cm 13、如图,在△ABC 中,高BD 、C
E 交于点O ,下列结论错误的是( ) A 、CO ·CE=CD ·CA B 、OE ·OC=OD ·OB
C 、A
D ·AC=A
E ·AB D 、CO ·DO=BO ·EO
14、已知,在△ABC 中,∠ACB=900,CD ⊥AB 于D ,若BC=5,CD=3,则AD 的长为( ) A 、2.25 B 、2.5 C 、2.75 D 、3 15、如图,正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上,
其余两个顶点A 、D 在PQ 、PR 上,则PA :PQ 等于( ) A 、1:3 B 、1:2 C 、1:3 D 、2:3
A B C
D E G 图1
A
B C
D E
图2
A
B C M N
图3
A
B
C
D
E 图4
A B
C
D F
图5
G E A E B
C D
O
A P
B C
D Q R
第2页 共2页
16、如图,D 、E 分别是△ABC 的边AB 、AC 上的点,
AD BD =CE
AE
=3, 且∠AED=∠B ,则△AED 与△ABC 的面积比是( ) A 、1:2 B 、1:3 C 、1:4 D 、4:9 三、解答题
17、如图,已知在△ABC 中,CD=CE ,∠A=∠ECB ,试说明CD 2=AD ·BE 。

18、已知,如图, 在△ABC 中,DE ∥BC ,AD=5,BD=3,求S △ADE :S △ABC 的值。

19、已知正方形ABCD ,过C 的直线分别交AD 、AB 的延长线于点E 、F ,且AE=15,AF=10,求
正方形ABCD 的边长。

20、已知,如图,在等边△CDE 中,A 、B 分别是ED 、DE 的延长线上的点,且DE 2=AD ·EB ,求
∠ACB 的度数。

21、已知,如图,在△ABC 中,∠C=600,AD ⊥BC 于D ,BE ⊥AC 于E ,试说明△CDE ∽△CBA 。

22、已知,如图,F 为 ABCD 边DC 延长线上一点,连结AF ,交BC 于G ,交BD 于E ,试说明
AE 2=EG ·EF
A B
C D
E A
B
C F
G
E D
C
A
B
D
E A
B C
D
E C
A
B
D
E
A
B
C D
E。

相关文档
最新文档