初中几何专练—三角形!
八年级数学三角形专题训练
八年级数学三角形专题训练一、三角形的基本概念1. 三角形的定义题目:下列图形中,属于三角形的是()选项:A. 由三条线段首尾顺次相接组成的封闭图形;B. 由三条线段组成的图形;C. 由不在同一直线上的三条直线组成的图形。
解析:三角形的定义是由不在同一条直线上的三条线段首尾顺次相接所组成的封闭图形。
选项B中只说三条线段组成的图形,没有强调首尾顺次相接和封闭,选项C中说三条直线是错误的,所以答案是A。
2. 三角形的分类题目:三角形按角分类可分为()选项:A. 锐角三角形、直角三角形、钝角三角形;B. 等腰三角形、等边三角形、不等边三角形;C. 直角三角形、等腰三角形、锐角三角形。
解析:三角形按角分类分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。
选项B是按边分类,选项C分类混乱,所以答案是A。
二、三角形的三边关系1. 定理内容题目:已知三角形的两边长分别为3和5,则第三边的取值范围是()解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。
设第三边为x,则5 3<x<5+3,即2<x<8。
2. 应用解析:对于①,3+4 = 7<8,不满足两边之和大于第三边,所以不能组成三角形。
对于②,5+6 = 11>10,6 + 10=16>5,5+10 = 15>6,且10 5 = 5<6,10 6=4<5,6 5 = 1<10,满足三边关系,可以组成三角形。
对于③,5+5 = 10<11,不满足两边之和大于第三边,所以不能组成三角形。
三、三角形的内角和定理1. 定理内容题目:三角形的内角和等于()选项:A. 90°;B. 180°;C. 360°。
解析:三角形内角和定理表明三角形的内角和等于180°,所以答案是B。
2. 应用题目:在△ABC中,∠A = 50°,∠B = 60°,求∠C的度数。
(完整版)初中几何题练习
初中几何练习题一. 三角形1.三角形的有关概念 一、填空题:1、三角形的三边为1,a 1,9,则a 的取值范围是 。
2、已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为 。
3、在△ABC 中,若∠C =2(∠A +∠B ),则∠C = 度。
4、如果△ABC 的一个外角等于1500,且∠B =∠C ,则∠A = 。
5、如果△ABC 中,∠ACB =900,CD 是AB 边上的高,则与∠A 相等的角是 。
6、如图,在△ABC 中,∠A =800,∠ABC 和∠ACB 的外角平分线相交于点D ,那么∠BDC = 。
7、如图,CE 平分∠ACB ,且CE ⊥DB ,∠DAB =∠DBA ,AC =18cm ,△CBD 的周长为28 cm ,则DB = 。
8、纸片△ABC 中,∠A =650,∠B =750,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=200,则∠2的度数为 。
9、在△ABC 中,∠A =500,高BE 、CF 交于点O ,则∠BOC = 。
第6题图FEDC BA第7题图EDC BA第8题图A二、选择题:1、若△ABC 的三边之长都是整数,周长小于10,则这样的三角形共有( )A 、6个B 、7个C 、8个D 、9个 2、在△ABC 中,AB =AC ,D 在AC 上,且BD =BC =AD ,则∠A 的度数为( )A 、300B 、360C 、450D 、720 3、等腰三角形一腰上的中线分周长为15和12两部分,则此三角形底边之长为( )A 、7B 、11C 、7或11D 、不能确定 4、在△ABC 中,∠B =500,AB >AC ,则∠A 的取值范围是( ) A 、00<∠A <1800 B 、00<∠A <800 C 、500<∠A <1300 D 、800<∠A <13005、如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、正三角形 三、解答题:1、有5根木条,其长度分别为4,8,8,10,12,用其中三根可以组成几种不同形状的三角形?2、长为2,3,5的线段,分别延伸相同长度的线段后,能否组成三角形?若能,它能构成直角三角形吗?为什么?3、如图,在△ABC 中,∠A =960,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A ,∠1A BC 与∠1A CD 的平分线相交于2A ,依此类推,∠4A BC 与∠4A CD 的平分线相交于5A ,则∠5A 的大小是多少?2A 1A 第3题图DC B A4、如图,已知OA =a ,P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =600,填空:(1)当OP = 时,△AOP 为等边三角形; (2)当OP = 时,△AOP 为直角三角形; (3)当OP 满足 时,△AOP 为锐角三角形; (4)当OP 满足 时,△AOP 为钝角三角形。
经典初中数学三角形专题训练及例题解析
经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)3(-n n 条对角线。
9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。
②多边形的外角和等于360°。
三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。
②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。
初一几何三角形练习题及答案
初一几何三角形练习题及答案1. 求下列三角形的内角和:a) 直角三角形b) 等边三角形c) 钝角三角形解答:a) 直角三角形的内角和为180度。
其中一个角为90度(直角),剩余两个角之和为90度。
b) 等边三角形的内角和为180度。
由于等边三角形的三条边长度相等,所以三个角也必定相等,每个角为60度,三个角之和为180度。
c) 钝角三角形的内角和为180度。
钝角三角形有一个角大于90度,其它两个角的和小于90度,但三个角之和仍然等于180度。
2. 给定一个三角形,如果已知两个角的度数,如何求出第三个角的度数?解答:三角形的内角和为180度。
已知两个角的度数后,可以用180度减去这两个角的度数,得到第三个角的度数。
例如,如果一个三角形的两个角分别为40度和60度,那么第三个角的度数为180度 - 40度 - 60度 = 80度。
3. 求下列三角形的周长:a) 边长分别为3 cm, 4 cm和 5 cm的三角形b) 边长分别为6 cm, 8 cm和 10 cm的三角形解答:a) 边长分别为3 cm, 4 cm和 5 cm的三角形的周长为3 cm + 4 cm + 5 cm = 12 cm。
b) 边长分别为6 cm, 8 cm和 10 cm的三角形的周长为6 cm + 8 cm +10 cm = 24 cm。
4. 求下列三角形的面积:a) 底边长为4 cm,高为3 cm的三角形b) 边长分别为5 cm, 7 cm和 8 cm的三角形解答:a) 底边长为4 cm,高为3 cm的三角形的面积为(4 cm * 3 cm) / 2 = 6 cm²。
b) 边长分别为5 cm, 7 cm和 8 cm的三角形的面积可以用海伦公式计算。
首先计算半周长:(5 cm + 7 cm + 8 cm) / 2 = 10 cm。
然后使用海伦公式:√(10 cm * (10 cm - 5 cm) * (10 cm - 7 cm) * (10 cm - 8 cm)) ≈ 17.32 cm²。
八年级上册三角形专题训练
八年级上册三角形专题训练一、三角形的基本概念1. 题目已知三角形的三边长分别为3,4,x,求x的取值范围。
解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。
所以公式,即公式。
2. 题目一个三角形的三个内角的度数之比为2:3:4,求这个三角形的最大内角的度数。
解析:设三个内角分别为公式,公式,公式。
因为三角形内角和为公式,所以公式,公式,解得公式。
最大内角为公式。
二、三角形的分类1. 题目一个三角形的一个外角为公式,且它有一个内角为公式,这个三角形是哪种三角形(按角分类)?解析:已知一个外角为公式,则与这个外角相邻的内角为公式。
又已知三角形有一个内角为公式,如果这个公式角就是与外角相邻的角,那么另一个角为公式,这个三角形是锐角三角形;如果这个公式角不是与外角相邻的角,那么另一个角为公式,这个三角形也是锐角三角形。
2. 题目等腰三角形的两边长分别为3和6,求这个等腰三角形的周长。
解析:当腰长为3时,公式,不满足三角形三边关系(两边之和大于第三边),所以腰长不能为3。
当腰长为6时,周长为公式。
三、三角形的全等1. 题目如图,在公式和公式中,公式,公式,公式,求证:公式。
解析:在公式和公式中,已知公式,公式,公式,根据三角形全等判定定理中的“边角边”(SAS),可以得出公式。
2. 题目已知公式中,公式是公式边上的中线,公式是公式上一点,且公式,延长公式交公式于公式,求证:公式。
解析:延长公式到公式,使公式,连接公式。
因为公式是公式边上的中线,所以公式。
在公式和公式中,公式,根据“边角边”(SAS)可得公式,所以公式,公式。
又因为公式,所以公式,则公式。
因为公式,所以公式,所以公式。
四、等腰三角形与等边三角形1. 题目等腰三角形的顶角为公式,底边长为公式,求这个等腰三角形的腰长。
解析:过等腰三角形的顶点作底边的垂线,因为等腰三角形三线合一,所以这条垂线也是底边的中线。
已知顶角为公式,则底角为公式。
中考数学专项练习三角形(含解析)
中考数学专项练习三角形(含解析)一、单选题1.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△AB C绕点C按顺时针方向旋转n度后得到△EDC,现在点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2B.60,2C.60,D.60,2.如图所示,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB、AC作垂线段,则能够说明△BDE≌△CDF的理由是()A.SSSB.SASC.ASAD.AAS3.如图,已知在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A,D为圆心,大于AD的长为半径在AD两侧作弧,交于M,N两点;第二步,连结MN,分别交AB,AC于点E,F;第三步,连结D E,DF.若BD=6,AF=5,CD=3,则BE的长是()A.7B.8C.9D.104.如图,过正方形ABCD的顶点B作直线l,过A、C作直线L的垂线,垂足分别为E、F,若AE=1,CF=2,则AB的长为()A.B.2C.3D.5.如图,工人师傅为了固定六边形木架ABCDEF,通常在AC,AD,D F处加三根木条,使其不变形,这种做法的依照是()A.长方形的四个角差不多上直角B.长方形的对称性C.三角形的稳固性D.两点之间线段最短6.如图,AB∥EF,C是EF上一个动点,当点C的位置变化时,△ABC的面积将()A.变大B.变小 C.不变 D.变大变小要看点C 向左依旧向右移动7.如图,、分别是、的中点,则()2B.1∶3C.1∶4D.2∶38.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.49.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且ÐADE=60°,BD=3,CE=2,则△ABC的边长为A.9B.12C.15D.1810.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()个B.6个C.8个D.10个二、填空题11.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△A PB绕点B顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=________.12.已知实数x,y满足|x﹣8|+=0,则以x,y的值为两边长的等腰三角形的周长是________13.已知是关于x的方程的一个根,同时等腰三角形ABC的腰和底边长恰好是那个方程的两个根,则△ABC的周长为_____ ___.14.如图,P是正△ABC内一点,若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是________.15.已知:如图,BD为△ABC的内角平分线,CE为△ABC的外角平分线,AD⊥BD于D,AE⊥CE于E,延长AD交BC的延长线于F,连接DE,设BC=a,AC=b,AB=c,(a<b<c)给出以下结论正确的有_____ ___①CF=c﹣a;②AE=(a+b);③DE=(a+b﹣c);④DF=(b+c﹣a)16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么那个直角三角形斜边上的高为________cm.17.如图,等腰△ABC中,AB=AC=13,BC=10,D是BC边上任意一点,DE⊥AB于E,DF⊥AC于点F,则DE+DF=________.18.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,AD⊥BC于点D,则△ACD与△ABC的面积比为________三、运算题19.依照问题进行运算:(1)运算:×﹣4××(1﹣)0;(2)已知三角形两边长为3,5,要使那个三角形是直角三角形,求出第三边的长.20.如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.21.在△ABC中,∠A=38°,∠B=70°,CD⊥AB于点D,CE平分∠ACB,DP⊥CE于点P,求∠CDP的度数.四、解答题22.如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东7 5°方向上,在海岛上的观看所A测得B在A的南偏西30°方向上,C在A的南偏东25°方向.若轮船行驶到C处,那么从C处看A,B两处的视角∠ACB是多少度?23.如图,ABCD为平行四边形,DFEC和BCGH为正方形.求证:AC ⊥EG.五、综合题24.请在方格内画△ABC,使它的顶点都在格点上,且三边长分别为2,2 ,4 ,求:(1)画出△ABC并求出它的面积;(2)求出最长边上高.25.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判定直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.答案解析部分一、单选题1.【答案】C【考点】含30度角的直角三角形,专门角的三角函数值,解直角三角形,旋转的性质【解析】【解答】解:∵△ABC是直角三角形,∠ACB=90°,∠A=3 0°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2 ,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD= AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD= AB=2,∴DF是△ABC的中位线,∴DF= BC= ×2=1,CF= AC= ×2 = ,∴S阴影= DF×CF= ×= .故答案为:C.【分析】先依照已知条件求出AC的长及∠B的度数,再依照图形旋转的性质及等边三角形的判定定理判定出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判定出DF是△ABC的中位线,由三角形的面积公式即可得出结论。