轴对称图形练习题(带答案)
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
以下是一些轴对称图形的练习题及答案。
练习题1:判断下列图形是否为轴对称图形,并找出对称轴。
1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。
2. 等边三角形是轴对称图形,有3条对称轴。
3. 矩形是轴对称图形,有2条对称轴。
4. 等腰梯形是轴对称图形,有1条对称轴。
5. 五角星是轴对称图形,有5条对称轴。
练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。
请找出下列图形的对称轴数量。
1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。
2. 菱形有2条对称轴。
3. 正六边形有6条对称轴。
4. 半圆形有1条对称轴。
5. 等腰三角形有1条对称轴。
练习题3:在下列图形中,找出不是轴对称图形的图形。
1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。
练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。
根据这个定义,判断下列点是否在对称轴上。
1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。
2. 点B不在对称轴上。
3. 点C在对称轴上。
4. 点D不在对称轴上。
练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。
这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。
通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。
轴对称习题卷含答案
图形的对称一.选择题1. 将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到(C )A.B.C.D.2.下列说法正确的是(D)A.如果图形甲和图形乙关于直线MN对称,则图形甲是轴对称图形B.任何一个图形都有对称轴,有的图形不止一条对称轴C.平面上两个大小、形状完全一样的图形一定关于某直线对称D.如果△ABC和△EFG成轴对称,那么它们的面积一定相等3.下列各图中,为轴对称图形的是(C)A.B.C.D.4.小王在镜子里看到他背后墙上的电子钟示数为12:01,则此时实际时刻为(D)A.21:01 B.10:21 C.10:15 D.10:515.等腰三角形的两边长为3和6,则此等腰三角形的周长为(C)A.12或15 B.12 C.15 D.186. 坐标平面上有一个轴对称图形,A(3,5 2-)、B(3,11 2-)两点在此图形上且互为对称点.若此图形上有一点C(-2,-9),则C的对称点坐标为何(A)A.(-2,1)B.(-2,32-) C.(32-,-9) D.(8,-9)7.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去小扇形,把纸片展开,得到的图形是(A)A.B.C.D.8.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为(D)A.1 B.2 C.3 D.4解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=6,BC=8,点E是BC中点,∴BE=CE=CE′=4,∵AB⊥BC,CD⊥BC,∴CE′BE′=CF AB ,即4 8+4 =CF 6 ,解得CF=2,∴DF=CD-CF=6-2=4.故选D.备选题.*在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成三角形,又能拼成平行四边形和梯形的可能是(C)A.B.C.D.*将一圆形纸片对折后再对折得图,然后沿着图中的虚线剪开,得①、②两部分,将②展开后的平面图形可以是图中的(C)A.B.C.D.*墙上有一块镜子,镜子对面的墙上有一个钟,小强从镜子中看到如图所示的时间,则这时的实际时间为(B)A.3:35 B.8:25 C.9:05 D.8:35A.15°B.20°C.25°D.30°* 如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔果一个球按图中所示的方向被击出(球可以经过多反射),那么该球最后将落入的球袋是(B)A.1号袋B.2号袋C.3号袋D.4号袋二.填空题9.等边三角形是轴对称图形,对称轴的条数是三条..10.如果等腰三角形的底角等于30°,腰长为5cm,则底边上的高等于.5cm11.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为2π.12.如图,两平面镜OA与OB之间的夹角为110°,光线经平面镜OA反射到平面镜OB上,再反射出去,其中∠1=∠2,则∠1的度数为35 度.13.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD得周长为13cm,则△ABC的周长是19cm.14.已知点A(a,-3),B(4,b)关于y轴对称,则a-b= -115.如图所示,∠BAC=105°,若MP和NQ分别垂直平分AB和AC.∠PAQ=30°.16.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为20 度.11题12题13题15题16题备选题。
轴对称练习题(含答案)
轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。
轴对称练习题(含答案)
轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。
轴对称练习题及答案
轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。
2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。
3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。
三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。
2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。
3. 已知点C(1,-1),求点C关于原点的对称点的坐标。
四、判断题1. 所有矩形都是轴对称图形。
()2. 所有等腰三角形都是轴对称图形。
()3. 所有等边三角形都是轴对称图形。
()4. 所有平行四边形都是轴对称图形。
()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。
2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。
3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。
答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。
典型的轴对称图形练习习题(带答案
精心整理一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂2)3对称,B.顶. 4与BE 相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°5.等腰梯形两底长为4cm和10cm,面积为21cm2,则这个梯形较小的底角是()度.A.45°B.30°C.60°D.90°6.已知点P在线段AB的中垂线上,点Q在线段AB的中垂线外,则A.D.7.CD8PC(A.4B.3C.2D.19.∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5B.PQ≥5C.PQ<5D.PQ≤510.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A.3cm或5cm B.3cm或7cm C.3cm D.5cm111213CD=4,1415AB=6,的周1610且有一底角为60°,则它的两底长分别为____________.17.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC=____________.18.△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=115°,则∠EAF=___________.三.解答题19.如图:已知∠AOB和C、D两点,求作两边20C,2122AC于E、23ABP=结论.参考答案第一章 轴对称图形 1.A 2.B 3.C 4.C 5.A 6.D 7.C 8.C 9.B 10.C1116.4、6 19202123=AQ ,。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形是一种在几何学中常见的图形,它具有对称轴,使得图形的任何一部分都可以沿着这条轴对折,与另一部分完全重合。
下面是一些轴对称图形的练习题及答案,供学生练习和理解轴对称图形的概念。
练习题1:在下列图形中,哪一个是轴对称图形?A. 正方形B. 圆形C. 五角星D. 所有选项答案:D. 所有选项解析:轴对称图形的定义是:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
正方形、圆形和五角星都满足这个条件,因此它们都是轴对称图形。
练习题2:如果一个轴对称图形的对称轴是垂直于地面的直线,那么这个图形的对称轴与地面的夹角是多少度?答案:90度解析:垂直于地面的直线与地面的夹角是90度,这是根据垂直的定义得出的。
练习题3:在平面直角坐标系中,如果点A(2,3)关于x轴对称的点是B,求点B的坐标。
答案:点B的坐标是(2,-3)解析:在平面直角坐标系中,如果一个点关于x轴对称,那么这个点的x坐标保持不变,而y坐标的值变为其相反数。
因此,点A(2,3)关于x轴对称的点B的坐标是(2,-3)。
练习题4:给定一个轴对称图形,如果图形的对称轴是y=x,那么这个图形的中心点是什么?答案:图形的中心点是(0,0)解析:如果一个图形的对称轴是y=x,这意味着图形关于这条直线对称。
对于任何点(x,y)在图形上,其对称点是(y,x)。
因此,图形的中心点是对称轴与原点的交点,即(0,0)。
练习题5:在一个轴对称图形中,如果图形的对称轴是一条斜线y=mx+b,那么这个图形的中心点坐标是什么?答案:图形的中心点坐标是(-b/m, b)解析:对于斜线y=mx+b,这条直线与x轴的交点是(-b/m, 0),与y轴的交点是(0, b)。
由于图形是轴对称的,图形的中心点将位于这两个交点的中点,即(-b/m, b)。
通过这些练习题,学生可以加深对轴对称图形的理解,并掌握如何识别和应用对称轴。
轴对称图形基础10题(含答案)
轴对称图形1.下列标志中,可以看作是轴对称图形的是()A. B. C. D.2.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A. B.C. D.4.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.下列图形中,既是中心对称,又是轴对称的是()A. B. C. D.6.在下列图案中,既是轴对称又是中心对称图形的是()A. B. C. D.7.下列说法中错误的是()A. 两个成轴对称的图形对应点连线被对称轴垂直平分B. 关于某直线对称的两个图形形状、大小完全相同C. 面积相等的两个四边形对称D. 轴对称指的是两个图形沿着某一条直线对折后能完全重合8.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.如图,在正方形网格上的一个△ .(其中点均在网格上)(1)作△ABC关于直线MN的轴对称图形△;(2)以点为一个顶点作一个与△ 全等的△ (规定点与点对应,另两顶点都在图中网格交点处).(3)在上画出点,使得最小.10.已知:如图所示,(1)作出△ABC关于y轴对称的△A'B'C',并写出△A'B'C'三个顶点的坐标.(2)直接写出△ABC的面积为____________.(3)在x轴上找一点P,使PA+PC的和最小.(不写作法,但保留作图痕迹)答案和解析1.【答案】C2.【答案】B3.【答案】B4.【答案】B5.【答案】C6.【答案】C7.【答案】C8.【答案】A9.【答案】解:(1)如右图所示,△A B C 即为所求;(2)如右图所示,△EPF即为所求;(3)如右图所示,线段AC 于MN的交点Q即为所求.10.【答案】解:(1)如图所示,由图可以知道,A'(-1,2) ,B'(-3,1) ,C'(-4,3);(2) S△ABC=2×3- ×2×1- ×2×1- ×1×3=6-1-1-1.5=2.5(3)如图,点P即为所求点.。
初二数学上册:画轴对称图形经典例题(含答案)
初二数学上册:画轴对称图形经典例题(含答案)一、单选题1.下列剪纸图案中,能通过轴对称变换得到的有(C)2.下列说法错误的是(B)A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形3.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是(B)A.1号袋B.2号袋C.3号袋D.4号袋4.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有(C)A.3种B.4种C.5种D.6种解析:试题分析:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处故选C.考点:利用轴对称设计图案点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.在如上图由5个小正方形组成的图形中,再补上一个小正方形,使它成为轴对称图形,你有几种不同的方法(C)A.2种B.3种C.4种D.5种6.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是(B)7.如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上)。
小明用下面的方法作P的对称点:先以l1为对称轴作点P 关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,……,如此继续,得到一系列点P1,P2,P3,…,。
若与P重合,则n的最小值是(B)A.5B.6C.7D.8二、填空题8.轴对称变换不改图形的形状和大小解析:试题分析:根据轴对称图形的性质即可得到结果。
轴对称26道经典题+答案
A. 【解析】 D
B.
C.
D.
A.1; 【解析】 B 【
B.2;
B.3;
D.4
【例 3】 如图,它们都是对称图形,请观察并指出哪些是轴对称图形,哪些图形成轴对称.
【例 7】 (上海)正六边形是轴对称图形,它有 条对称轴. 【解析】 6 .点拨:可以画出例图进行分析,明确正 n 边形有 n 条对称轴.
AB 33 32 3 2 km
A1 (1)
(2)
A1
∴ A ,B 两村的距离为 3 2 km . ⑵ 作图正确,痕迹清晰.
L A'
【例11】 (2003 长沙)如图,请根据小文在镜中的像写出他的运动衣上的实际号码:_______.
A
B C' C
B'
【解析】 108
【解析】 ∵ ABC 和 A ' B ' C ' 关于直线 l 成轴对称 ∴ B B ' , AB A ' B ' ;又 ∵ B 90 , A ' B ' 6cm ∴ B ' 90 , AB 6cm .
【例12】 (2004 河南 ) 如图,直线 l 是四边形 ABCD 的对称轴,若 AB CD ,有下面的结论:① AB ∥CD ②
AC BD ③ AO OC ④ AB BC ,其中正确的结论有_______.
D
C A M
B
【解析】 ①②③
【解析】 因为是两边所在的直线,所以有两个答案. 答案一: ABC 内角平分线与线段 MN 的垂直平分线的交点
B
C
B
C
【解析】 找点 D 关于 AC 的对称点, 由正方形的性质可知, B 就是点 D 关于 AC 的对称点, 连接 BN 、 BM ,由 DN MN BN MN BM 可知, 当且仅当 B 、 N 、 M 三点共线时, DN MN 的值最小,该最小值为 62 82 10 . 当点 N 在 AC 上移动时,有三个特殊的位置我们要考察: BM 与 AC 的交点,即 DN MN 取最小值时; 当点 N 位于点 A 时, DN MN AD AM 8 2 17 ; 当点 N 位于点 C 时, DN MN CD CM 8 6 14 .故 DN MN 的最大值为 8 2 17 .
轴对称图形专题练习含答案
轴对称图形专题练习练习一一、填空题1、如果一个图形沿着一条直线折叠,直线两旁的部分(),这个图形就叫做(),这条直线就是它的()2、把一个图形沿着某一条直线折叠,如果它能够与()重合,那么就说这两个图形关于这条直线对称,这条直线叫做()3、经过线段中点并且()这条线段的直线,叫做这条线段的()二、选择题1、下面所示的交通标志,是轴对称图形的是()A、B、C、D、2、正方形,长方形,三角形,梯形,平行四边形中,一定是轴对称图形的有()A、5个B、4个C、3个D、2个3、下列说法中,不正确的是()A、等边三角形是轴对称图形B、若两个图形的对应点的连线都被同一条直线垂直平分,则这两个图形关于这条直线对称C、直线MN是线段AB的垂直平分线,若点P使PA=PB,则点P在MN上,若PA≠PB,则P不在MN上D、等腰三角形的对称轴是它的中线三、解决问题如图,BD垂直平分线段AC,AE⊥BC,垂足为E,AE交BD于P,PE=3cm,求点P 到AB的距离练习二一、选择题1、下列说法错误的是()A、关于某直线对称的两个图形一定能完全重合B、全等的两个三角形一定关于某直线对称C、轴对称图形的对称轴至少有一条D、线段是轴对称图形2、轴对称图形的对称轴是()A、直线B、线段C、射线D、以上都有可能3、下面各组点关于y轴对称的是()A、(0,10)与(0,-10)B、(-3,-2)与(3,-2)C、(-3,-2)与(3,2)D、(-3,-2)与(-3,2)二、作图题1、如图所示,作出△ABC关于直线l的对称△A'B'C'。
2、如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等AMN参考答案练习一一、填空题1、能够互相重合,轴对称图形,对称轴2、另一个图形,对称轴3、垂直于,垂直平分线二、选择题1、D2、D3、D三、解决问题∵BD垂直平分线段AC∴BD为AC的中垂线∴AB=AC过点P做PF⊥AB,垂足为F。
八年级数学:画轴对称图形练习(含答案)
八年级数学:画轴对称图形练习(含答案)一、选择题1、作已知点关于某直线的对称点的第一步是()A. 过已知点作一条直线与已知直线相交B. 过已知点作一条:直线与已知直线垂直C. 过已知点作一条直线与已知直线平行D. 不确定【答案】B【解析】试题分析:根据对称轴是对称点所连的线段的垂直平分线进行解答.解:作已知点关于某直线的对称点的第一步是,过已知点作一条:直线与已知直线垂直。
故应选B考点:轴对称图形2、若在△ABC所在平面上求作一点P,使P到∠A的两边的距离相等,且PA=PB,那么下列确定P点的方法正确的是()A. P是∠A与∠B两角平分线的交点B. P为AC、AB两边上的高的交点C. P为∠A的角平分线与AB的垂直平分线的交点D. P为∠A的角平分线与AB边上的中线的交点【答案】C【解析】试题分析:点P到∠A的两边的距离相等,则点P在∠A的平分线上,PA=PB,则点P 在线段AB的垂直平分线上.所以点P是∠A的角平分线与AB的垂直平分线的交点.解:∵点P到∠A的两边的距离相等,∴点P在∠A的平分线上,∵PA=PB,∴点P在线段AB的垂直平分线上.∴点P是∠A的角平分线与AB的垂直平分线的交点.故应选C考点:1.轴对称的性质;2.角平分线的性质3、下列图形:其中所有轴对称图形的对称轴条数之和为()A.13B.11C.10D.8【答案】B【解析】试题分析:分别数出四个图形的对称轴的条数,然后再相加.解:第一个图形有1条对称轴,第二个图形有2条对称轴,第三个图形有2条对称轴,第四个图形有6条对称轴,∴共有11条对称轴.故应选B考点:轴对称4、小华将一张如图所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是轴对称图形的是()A. B. C. D.【答案】A【解析】试题分析:根据轴对称图形的定义进行判断.解:A选项中的图形不是轴对称图形;B、C、D选项中的图形都是轴对称图形.故应选A考点:轴对称图形5、如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC 的周长为()A.7B.14C.17D.20【答案】C【解析】试题分析:根据轴对称的性质求出AC、CB的长度之和,再根据AB的长度求出△ABC 的周长.解:∵MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长=10,∴AC+AD+CD=10,∴AC+CD+BD=AC+BC=10,∵AB=7,∴△ABC的周长=AC+BC+AB=17.故应选C。
轴对称图形及性质专项练习30题(有答案)ok
25.如图,点P在∠AOB内,点M,N分别是点P关于AO,BO的对称点,若△PEF的周长是30cm,求MN的长.
26.如图,△ABC和△A′B′C′关于直线m对称.
轴对称图形及性质专项练习30题(有答案)
1.下列四个图形:
其中是轴对称图形,且对称轴的条数为2的图形的个数是( )
A.
1
B.
2
C.
3
D.
4
2.如本题图所示,这是我国四所著名大学的校微图案,如果忽略各个图案中的文字、字母和数字,只关注图形.其中不是轴对称图形的是( )
A.
B.
C.
D.
3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是( )
∴对称轴的条数为2的图形的个数是3;
故选:C
2.解:根据轴对称图形的概念可得:A、B和C选项中的图案是轴对称图形,D选项中的图案不是轴对称图形,
故选D
3.解:根据镜面对称的性质,题中所显示的时刻与10:51成轴对称,
所以此时实际时刻为10:51.
故选C
4.解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.
A.
2种
B.
3种
C.
4种
D.
5种
13.下列说法错误的是( )
A.
线段是轴对称图形,它的对称轴是线段的垂直平分线
八年级数学:轴对称图形与轴对称练习(含答案)
八年级数学:轴对称图形与轴对称练习(含答案)八年级数学:轴对称图形与轴对称练习(含答案)一、选择题(共8小题)1.下列各图,不是轴对称图形的是()A.B.] C.D.2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竞成C.清水池里池水清D.蜜蜂酿蜂蜜3.下列说法错误的是()A.等边三角形有3条对称轴B.正方形有4条对称轴C.角的对称轴有2条D.圆有无数条对称轴4.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.观察图形…并判断照此规律从左到右第四个图形是( )A .B .C.D.6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行第5题图第6题图第7题图7.如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数,则x的度数是()A.55°B.60°C.65°D.70°8.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.二、填空题(共10小题)9.2011年11月2日,即20111102,正好前后对称,因而被称为“完美对称日”,请你写出本世纪的一个“完美对称日”:_________ .10.写出一个至少具有2条对称轴的图形名称_________ .11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是_________ (填出所有符合要求的小正方形的标号)12.在轴对称图形中,对应点的连线段被_________ 垂直平分.13.下列图形中,一定是轴对称图形的有_________ ;(填序号)(1)线段(2)三角形(3)圆(4)正方形(5)梯形.14.如图是汽车牌照在水中的倒影,则该车牌照上的数字是_________ .15.请同学们写出两个具有轴对称性的汉字_________ .16.如图,国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如图所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形(下简称“2”)经过平移能与“6”重合,2又与_________ 成轴对称.(请把能成轴对称的曲边四边形标号都填上)第11题图第14题图第16题图17.如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH和四边形ECGF都是正方形.当a、b满足的等量关系是_________ 时,图形是一个轴对称图形.18.请利用轴对称性,在下面这组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形:三、解答题(共5小题)19.判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.20.如图,五边形ABCDE是轴对称图形,线段AF所在直线为对称轴,找出图中所有相等的线段和相等的角.21.如图,l是该轴对称图形的对称轴.(1)试写出图中二组对应相等的线段:;(2)试写出二组对应相等的角:;(3)线段AB、CD都被直线l .22.如图是由两个等边三角形(不全等)组成的图形.请你移动其中的一个三角形,使它与另一个三角形组成轴对称图形,并且所构成的图形有尽可能多的对称轴.画出你所构成的图形,它有几条对称轴?23.有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:22,131,1991,123321,…,像这样的数,我们叫它“回文数”.回文数实际上是由左右排列对称的自然数构成的,有趣的是,当你遇到一个普通的数(两位以上),经过一定的计算,可以变成“回文数”,办法很简单:只要将这个数加上它的逆序数就可以了,若一次不成功,反复进行下去,一定能得到一个回文数,比如:①132+231=363②7299+9927=17226,17226+62271=79497,成功了!(1)你能用上述方法,将下列各数“变”成回文数吗?①237 ②362(2)请写出一个四位数,并用上述方法将它变成回文数.参考答案一、选择题(共8小题)1.A 2.B 3.C 4.A 5.D 6.B 7.B 8.D二.填空题(共10小题)9.20011002,20100102(答案不唯一);10.矩形;11.2,3,4,5,712.对称轴;13.(1)(3)(4);14.21678 .;15.甲、由、中、田、日等.;16.1,3,7 ;17.;18.三.解答题(共5小题)19.解:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.则(1)(3)(5)(6)(9)不是轴对称图形;(2)(4)有1条对称轴;(7)有4条对称轴;(8)有1条对称轴;(10)有2条对称轴.20.解:相等的线段:AB=AE,CB=DE,CF=DF;相等的角:∠B=∠E,∠C=∠D,∠BAF=∠EAF,∠AFD=∠AFC.21.(1)AC=BD,AE=BE,CF=DF,AO=BO ;(2)∠BAC=∠ABD,∠ACD=∠BDC;(3)垂直平分.22.解:如图,小正三角形再大正三角形的内部,该图形有3条对称轴.23.解:(1)①237+732=969,②362+263=625,(2)1151+1511=2662;。
八年级轴对称练习题及答案
一、单选题1、已知直角三角形中30°角所对的直角边为2 cm,则斜边的长为()A. 2 cmB. 4 cmC. 6 cmD. 8 cm参考答案: B【思路分析】根据直角三角形的性质,结合题意,斜边为所给边的二倍【解题过程】解:∵直角三角形中30°角所对的直角边为2 cm,∴斜边的长为2×2=4 cm。
故选B。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A. 1种B. 2种C. 3种D. 4种参考答案: C【思路分析】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角。
任意多边形能进行镶嵌,说明它的内角和应能整除360°。
【解题过程】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④;故选:C。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、在平面直角坐标系中,点M(-1,3)关于x轴对称的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案: C【思路分析】本题考查的是已知一个点的坐标求其关于某坐标轴对称的点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个 2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个 B .2个 C .3个 D .4个 3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( )
A .含30°角的直角三角形;
B .顶角是30的等腰三角形;
C .等边三角形
D .等腰直角三角形.
4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75° 5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小
的底角是( )度. A .45° B .30° C .60° D .90° 6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定
7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对 8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD=( ) A .4 B .3 C .2 D .1
9.∠AOB 的平分线上一点P 到OA 的距离
为5,Q 是OB 上任一点,则 ( )
A .PQ >5
B .PQ≥5
C .PQ <5
D .PQ≤5
10.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题
11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.
13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距
离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC
A
P A E
C
B
D
的周长是____________.
16.等腰梯形的腰长为2,上、下底之和为10且有一底角为
60°,则它的两底长分别为____________.
17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________. 18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则 ∠EAF=___________. 三.解答题
19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.
20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说
明:CD=AB+BD .
21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm , ∠BEG=60°,求折痕EF 的长.
22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、
AC 于E 、D ,
① 若△BCD 的周长为8,求BC 的长;
② 若BC=4,求△BCD 的周长.
23.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问 △APQ 是什么形状的三角形?试说明你的结论.
B
E
C
D
A A
C ·
·D
A
C
D
B
B C
D E
A A
C
B
P
Q
参考答案
第一章轴对称图形
1.A 2.B 3.C 4.C5.A6.D7.C8.C9.B10.C 11.212.30°、75°、120°13.414.515.1516.4、617.72°18.50°19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;
20.提示:在CD上取一点E使DE=BD,连结AE;
21.EF=20㎝;22.①BC=3,②9;
23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.。