最大公因数 最小公倍数 通分 约分

合集下载

约分和通分的概念

约分和通分的概念

约分和通分的概念①互质数: 最大公因数是11.最大公因数的几种情况 ②存在倍数关系:最大公因数是较小数 ③一般情况: 短除法2.把一个分数化成和它相等,但分子和分母都比较小的分数叫约分。

约分的理论依据是分数的基本性质(除法); 约分的最后结果是最简分数。

3.分子和分母只有公因数1,像这样的分数叫最简分数。

也就是分子和分母是互质数的分数是最简分数。

4.约分的方法:①逐次约分(用分子和分母的公因数去约,可能约两次也可能约三次)②一次约分(用分子和分母的最大公因数去一次性约分)5.几个数公有的倍数,叫它们的公倍数,其中最小的倍数叫它们的最小公倍数。

公倍数的个数是无限的因此没有最大公倍数。

公倍数和最小公倍数的关系:公倍数是最小公倍数的倍数,最小公倍数是公倍数的因数。

6. 求最小公倍数的方法:①列举法 ②筛选法 ③集合圈 ④分解质因数 ⑤短除法①互质数: 最小公倍数是它们的乘积7.最小公倍数的几种情况 ②存在倍数关系: 最小公倍数是较大数③一般情况: 短除法8.比较大小:①分母相同(即分数单位相同),分子大则分数就大。

②分子相同(即取的份数相同,不同分数单位的个数相同)分母小则分数反而大。

9.把异分母分数分别化成和原来分数相等的同分母分数叫通分。

通分的理论依据是分数的基本性质(乘法) 通分的关键:找出几个分母的公分母(最小公倍数);求最小公分母的方法和求最小公倍数的方法相同。

10.小数化成分数的方法:①一位小数写成10几 ②两位小数写成100几③三位小数写成1000几…… 再约分化简,结果必须是最简分数。

11. 分数化小数的方法 ①一般情况:分子÷分母(除不尽的保留两位小数)②特殊情况:分母是2、5、20、25、50等(同时乘一个数)化为分母是10、100、1000再化为相应的小数。

12.怎么样的最简分数能化为有限小数? 能:分母中除了含有2和5以外,不含有其他质因数不能 :分母中含有2和5以外的质因数,不能化为有限小数。

五年级数学下册最大公因数和最小公倍数知识点

五年级数学下册最大公因数和最小公倍数知识点

五年级数学下册最大公因数和最小公倍数知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(没有教不会的学生,只有不会教的老师)1、因数和倍数在整数除法中,(第一个条件)如果商是整数而没有余数,(第二个条件)结论是:我们就说被除数是除数的倍数,除数是被除数的因数。

2、一个数的倍数的求法:依次乘以非0自然数。

加省略号。

3、一个数的因数的求法:成对地按顺序找。

(除数和商)。

4、2的倍数特征(能被2整除):个位上是0,2,4,6,8的数都是2的倍数。

5、3的倍数特征(能被3整除):一个数各位上的数字之和是3的倍数,这个数就是3的倍数。

6、5的倍数特征(能被5整除):个位上是0或5的数,是5的倍数。

7、2的倍数特征(能被2整除):奇数、偶数。

因数个数质数、合数。

质合判断看因数,奇偶判断被2除,质2和3应记住,奇单偶双分清楚。

8、20以内质数:口诀2、3、5、7、11(一十一)13、19和179、分数:①整体:一个物体、一些物体、一个单位都可以看作一个整体。

②单位“1”:把一个整体用自然数1来表示。

③分数:把单位“1”平均分成若干份,表示其中一份或几份的数。

④分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

⑤分数与除法关系分数的基本性质。

⑥分数的分类:真分数、假分数、带分数。

10、因数和倍数、公因数、最大公因数、公倍数最小公倍数理解:公因数、最大公因数;公倍数、最小公倍数的意义。

11、求最大公因数方法:(约分)求12和16的最大公因数①列举法②圈画法③短除法2④分解质因数法(甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是().)⑤辗转相除法最大公因数不难算,三种类型最常见。

倍数关系是小数,互质是1不用算。

以上两种都不是,短除法来最简便。

1、找出下列各数的最大公因数。

5和13 6和7 5和8 4和686和12 9和3 25和102、用短除法求下列各组数的最大公因数.56和42 225和15 84和10554、72和90 60、90和12012、求最小公倍数方法:(通分)求6、8最小公倍数①列举法②圈画法③短除法④分解质因数法⑤翻番法最大公因数不难算,三种类型最常见。

五下数学 约分和通分 知识点总结+题型训练 后面带非常详细答案

五下数学  约分和通分 知识点总结+题型训练 后面带非常详细答案

约分和通分板块一:知识点归纳:1、公因数与最大公因数:几个数共有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。

2、求两个数的最大公因数的方法:(1)短除法如:求18和27的最大公因数(用短除法)(2)分解质因数的方法:先将这两个数分解质因数,再从分解的质因数中找出这两个数共有的质因数,共有的质因数相乘就是这两个数的最大公因数。

如:27=3×3×3 36=3×3×4 ,则27和36的最大公因数是()。

3、互质数的意义和判断方法:公因数只有1的两个数叫做互质数。

注意:并不是两个质数才叫互质数,合数和合数也可能成为互质数,判断两个数是否是互质数,就要看他们是不是公因数只有1。

4、互质数的特殊情况:(1)1和任何非0的自然数都是互质数(2)2和任何奇数都是互质数(3)相邻的另个自然数是互质数(4)相邻的两个奇数都是互质数(5)不相同的两个质数都是互质数5、求两个数的最大公因数都特殊情况当两个数成倍数关系时,较小数就是两个数的最大公因数当公因数只有1的两个数(互质数)的最大公因数是1。

6、约分:把一个分数化成和他相等,但是分子和分母都比较小的分数叫做约分。

7、最简分数:分子和分母只有公因数1的分数叫做最简分数。

8、公倍数与最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

9、求最小公倍数的方法:(1)分解质因数法:A=2×3×7,B=2×5×3,则A和B的最小公倍数是( 210 )。

(2)短除法10、两个数的最小公倍数的特殊情况:(1)如果两个数种较大的数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如求13和52的最小公倍数。

(2)如果两个数都是质数,那么这两个数的积就是这两个数的最小公倍数。

如:求11和12的最小公倍数。

11、分母相同及分子相同的分数大小比较方法:(1)分母相同的两个分数大小比较方法:分母相同,分子越大,分数越大(2)分子相同的两个分数大小比较方法:分子相同,分母越小,分数越大。

最大公因数与最小公倍数的比较约分和通分的比较

最大公因数与最小公倍数的比较约分和通分的比较

把下面的分数化成最简分数。
16 2 24 = 3
15 5 36 = 12
28 2 42 = 3
15 1 45 = 3
10 2 25 = 5
48 4 60 = 5
33 = 3 22 2
16 28 34 2 24 = 42 = 51 = 3
34 51 =
2 3
什么是通分?怎么通分?
通分:把异分母分数化成和原来相等的同分母 分数,这个过程叫通分。
3和6
3 最大公因数: 6 最小公倍数:
10和8
2 40
9和4
1 36
两数是 倍数关系
两数互质
最大公因数
较小的数
1
短除法:
一般情况
除数相乘
最小公倍数较大的数Fra bibliotek两个数的乘积
短除法: 除数、商相

很快地说出每组数的最大公因数和最小公倍数。
2和8
7 和8
24 和 12
28
12 和 9
3 36
1 56
4 和5
1 20
12 24
3 和8
1 24
两数的积与它们的最大公因数、最 小公倍数的关系:
两数的积=它们的最大公因数×最小公倍数
什么是约分?
什么是最简分母?
怎样约分?
约分:把分数的分子和分母同时除以它们的公 因数,分数值不变,这个过程叫约分。 最简分数:分子和分母只有公因数1的分数叫 最简分数。 约分方法:分子和分母同时除以最大公因数
找“最大公因数”找“最小公倍数”
分子、分母都比 分子、分母一般
原来小
都比原来大
以上有不当之处,请大家给与批评指正, 谢谢大家!
11

第9讲 通分和约分

第9讲   通分和约分

) ()() (35) (143514=÷÷=) () () (40) (304030=÷÷=)() () (15) (501550=÷÷=) () () (60) (186018=÷÷=41531和)(185612和)(12594653和、)(第九讲 通分和约分【教学目标】1.掌握最大公约数和最小公倍数的定义和性质,能准确、熟练地进行计算。

2.掌握通分和约分的计算方法,能准确地解决相关问题。

【基本计算】直接写出得数。

3.2÷0.8= 51÷0.01= 5.06+3.4=4.8÷0.08= 0.48÷0.4=1.4×0.5= 5.4÷0.06= 1÷0.02= 22.1-3.11= 0.7÷0.5=【方法讨论】1.求出下面各组数的最大公因数与最小公倍数。

(3, 5)= (12, 36) = (110, 15) = (2, 3, 4) =[3, 5] = [12, 36] = [110, 15] = [2, 3, 4] =2.填空题。

(1)在括号里填上合适的最简分数。

80分钟=( )小时 1500立方分米=( )立方米0.18米=( )米 750毫升=( )升(2)一种长12cm,宽8cm 的长方形瓷砖,如果把这种瓷砖拼成一个大正方形,这个大正方形的边长最短是( )cm 。

(3)36个苹果,24个雪梨,将这些水果平均分袋,要求每袋水果尽可能多而且两种水果不能混合装。

那么每袋最多能装( )个,苹果装了( )袋。

(4)把下面各分数化成最简分数。

(5)先通分下面各组分数,再比较他们的杰小173143O 432 8O 9611967O 10785O 3253545325840129126【综合练习】1.填空题。

(1)约分的依据是( ),约分的目的是把分数化成( )。

分数的约分与通分

分数的约分与通分

分数的约分与通分在数学中,我们经常会遇到分数的运算,而分数的约分与通分是分数运算中的基础概念。

本文将详细介绍分数的约分与通分的概念、方法和意义。

一、分数的约分分数的约分是指将分数的分子和分母同时除以一个相同的数,使得分子和分母之间没有公因数,也就是没有可以继续约分的数。

以一个简单的例子来说明约分的概念。

假设有一个分数3/9,我们观察到3和9都可以被3整除,即它们有一个公因数3。

为了约分这个分数,我们将分子和分母同时除以3,得到的结果是1/3。

这个新的分数已经是约分后的形式,它的分子和分母之间没有公因数了。

对于一个分数的约分,可以按照以下的步骤进行:1.找到分子和分母的所有公因数;2.找到这些公因数中的最大公因数;3.分子和分母同时除以最大公因数,得到约分后的分数。

通过约分,我们可以得到最简形式的分数,这在计算和比较分数时非常方便。

二、分数的通分分数的通分是指将两个或多个分母不同的分数转化为具有相同分母的分数。

通分的目的是为了方便对分数进行加减运算。

如果分数的分母不同,直接进行运算可能会变得非常复杂。

而通过通分,将分数的分母转化为相同的值,就可以直接进行运算了。

接下来,我们来看一个例子说明通分的概念。

假设有两个分数,分别为1/4和1/6。

这两个分数的分母不同,无法直接进行加法运算。

为了通分这两个分数,我们可以找到它们的最小公倍数,即12。

将1/4转化为3/12,将1/6转化为2/12,这样两个分数的分母就相同了。

现在,我们就可以对这两个分数进行加法运算,结果是5/12。

通分的步骤可以按照以下进行:1.找到需要通分的分数的所有分母;2.找到这些分母中的最小公倍数;3.将每个分数的分子乘以最小公倍数除以原来的分母,得到通分后的分数。

通过通分,我们可以得到具有相同分母的分数,使得分数的加减运算变得简单明了。

三、约分与通分的意义约分与通分是分数运算中不可或缺的两个概念,它们的意义和作用如下:1.约分可以将一个分数转化为最简形式,方便计算和比较。

快速约分与通分的技巧

快速约分与通分的技巧

快速约分与通分的技巧嘿,朋友们!今天咱就来聊聊快速约分与通分的那些奇妙小技巧,这可真是数学世界里的宝贝呀!你说约分,不就像是给一个数字“瘦身”嘛!把它变得更简洁、更清爽。

想象一下,一个大大的数字,经过约分,就像一个胖嘟嘟的人成功减肥,变得精神又利落。

比如说,12/18,咱一看,嘿,3 能整除它们呀,分子分母同时除以 3,这不就变成 4/6 啦,还能再约,除以 2,就成了 2/3,多干脆!约分就是这么神奇,能让复杂的分数瞬间变得好懂。

那通分呢,就像是给不同的数字找一个共同的“家”。

比如说,1/2 和1/3,它们分母不一样呀,不好比较大小,也不好做加减法。

那咱就给它们找个一样的分母,把 2 和 3 相乘,得到 6,那 1/2 就变成 3/6,1/3 就变成2/6,这下它们就在同一个“家”里啦,可以愉快地玩耍啦!约分和通分可是有很多小窍门的哟!就像你找东西,知道了窍门就能一下子找到。

比如约分的时候,先找最大公因数呀,那就是打开简洁之门的钥匙。

通分的时候,要找最小公倍数,这就是进入共同家园的密码。

你可别小瞧这些技巧,它们在数学里用处可大啦!做分数的加减乘除,都少不了它们。

就好像你去打仗,这些技巧就是你的武器,有了它们,你就能在数学的战场上勇往直前!咱再来说说约分里的一些小细节。

有时候你得仔细观察,那些数字里隐藏的小秘密。

比如说,有些数字看起来不咋起眼,但其实它们能被很多数整除呢。

这就需要你有一双敏锐的眼睛,去发现它们。

通分的时候也是一样,找最小公倍数可不能马虎。

你得认真思考,仔细推算。

这可不是随随便便就能搞定的事儿。

哎呀呀,快速约分与通分的技巧真的是太有趣啦!它们就像数学王国里的小精灵,总是能给你带来惊喜。

掌握了它们,你就像是拥有了魔法,能把那些复杂的分数变得乖乖听话。

朋友们,别再害怕分数啦,用这些小技巧去征服它们吧!让我们在数学的海洋里畅游,享受约分与通分带来的乐趣。

相信我,一旦你掌握了这些技巧,你会发现数学原来可以这么好玩,这么有趣!还等什么呢?赶紧去试试吧!。

分数的约分与通分

分数的约分与通分

分数的约分与通分分数是数学中常见的表示比例关系的形式,其中约分和通分是分数运算中的重要概念。

约分是指将一个分数化简为最简形式,即分子和分母没有公因数;通分是指将两个或多个分数的分母改为相同的分母,以便进行比较和运算。

本文将详细介绍分数的约分和通分的概念、方法和运算规则。

一、分数的约分1.1 约分的概念约分是指将一个分数化简为最简形式的过程。

最简分数是指分子和分母没有公因数的分数,也就是不能再进一步约分的分数。

1.2 约分的方法约分的方法是通过分子和分母的最大公因数来实现的。

最大公因数是指能够同时整除两个或多个数的最大正整数。

将分子和分母同时除以它们的最大公因数,即可得到一个最简分数。

1.3 约分的运算规则(1)如果一个分数的分子和分母都可以整除同一个数,那么可以同时约去这个数。

例如,分数4/8可以约分为1/2,因为4和8都可以被2整除。

(2)如果一个分数的分子和分母是互质的(没有公因数),则这个分数是最简分数,无法再进行约分。

二、分数的通分2.1 通分的概念通分是指将两个或多个分数的分母改为相同的数的过程,以便进行比较和运算。

通分后的分数具有相同的分母,方便进行加、减、乘、除等运算。

2.2 通分的方法通分的方法主要有两种:公倍数法和辗转相除法。

(1)公倍数法:分别找出两个或多个分数的分母,然后求它们的公倍数作为最小公分母,再将分子按比例乘以相应的倍数,得到通分后的分数。

(2)辗转相除法:将两个或多个分数的分母进行因式分解,然后找出它们的公因数和不同的因数,将这些因数相乘作为最小公分母,再将分子按比例乘以相应的倍数,得到通分后的分数。

2.3 通分的运算规则(1)通分后,加法和减法的运算规则是:保持分子不变,分母取通分后的分母。

(2)通分后,乘法的运算规则是:分子相乘得到新的分子,分母相乘得到新的分母。

(3)通分后,除法的运算规则是:将除数的分子和被除数的分母相乘得到新的分子,将被除数的分子和除数的分母相乘得到新的分母。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

找最大公因数
1、几个数相同的因数叫作这个数的公因数;其中最大的一个叫作它们的最大公因数。

2、列举法求两个数的公因数和最大公因数的方法:先分别找出两个数各自所有的因数,再从中找出两个数的公因数,其中最大的一个就是这两个数的最大公因数。

3、短除法求两个数的最大公因数:如用短除法求18和27的最大公因数,用18和27的最小质因数3去除这两个数,看这两个数的商是不是互质;若不是互质,再接着往下除,一直除到商是互质为止,然后把所有的除数相乘,所得的积就是18和27的最大公因数。

18和27的最大公因数是3×3=9。

一、约分
1、把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫作约分。

2、分子、分母只含有公因数1的分数,叫作最简分数。

3、约分的方法:(1)逐次约分法:用分子和分母的公因数(1除外)逐次去除分子和分母,直到得出一个最简分数;(2)一次约分法:用分子和分母的最大公因数去除分子和分母。

二、最小公倍数
1、几个数公有的倍数,叫作这几个数的公倍数。

其中最小的一个,叫作它们的最小公倍数。

2、求两个数的最小公倍数的方法:(1)列举法:先分别写出两个数各自的倍数,再从中找出公倍数和最小公倍数;(2)试除法:先写出两个数中较大数的倍数,再用这些数按从小到大的顺序依次除以较小数,第一个能被较小数整除的数就是它们的最小公倍数。

短除法求最小公倍数:如用短除法求18和27的最小公倍数,用18和27的最小质因数3去除这两个数,看这两个数的商是不是互质;若不是互质,再接着往下
除,一直除到商是互质为止,然后把所有的除数和商相乘,所得的积就是18和27的最小公倍数。

18和27的最小公倍数是3×3×2×3=54。

三、分数的大小
1、比较分数大小的方法:画图比较法,通分比较法。

2、通分的含义:把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫做通分。

3、通分的方法:用原来几个分数分母的公倍数作公分母,为了计算简便,通常选用最小公倍数作公分母,再把每个分数都化成用这个最小公倍数作分母的分数。

相关文档
最新文档