小学数学奥数方法讲义40讲(四)

合集下载

四年级奥数讲义

四年级奥数讲义

四年级奥数讲义本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第一讲和倍问题知识点:已知两个量的和与这两个量的倍数关系,要我们求这两个量分别是几。

和÷(倍数+1)= 较小数;较小数 × 倍数= 较大数;和-较小数= 较大数例1:甲、乙两个仓库共存货物960吨,已知甲仓库所存货物是乙仓库的2倍,问甲、乙两个仓库各存货物多少吨?例2:果园里有梨树,苹果树和桃树共1800棵,其中梨树的棵数是苹果树的2倍,桃树的棵数是苹果树的2倍,问三种树各多少棵例3:学校里的足球只数是排球的3倍,篮球的只数是排球的5倍,足球和篮球共72只,问三种球各多少只?例4:三块钢板共重207千克,第一块的重量是第二块的3倍,第二块的重量是第三块的2倍,第三块钢板重多少千克?例5:某小学购进红粉笔和白粉笔共244盒,购进的白粉笔比红粉笔的7倍少12盒,问购进红粉笔、白粉笔各多少盒?例6:两箱茶叶共重88千克,如果从甲箱取15千克放入乙箱,那么乙箱的重量是甲箱的3倍,问两箱原有茶叶各多少千克?例7:甲水池有水1500升,乙水池有水1200升,每分钟从甲水池流入乙水池25升水,问多少分钟后乙水池的水是甲水池的2倍?自我检测:填空。

小红和妈妈的年龄加在一起是40岁,妈妈的年龄是小红年龄的4倍。

妈妈岁,小红岁。

生产队养公鸡、母鸡共404只,其中公鸡是母鸡的3倍。

公鸡有只,母鸡有只。

小明买语文本和数学本共25本,其中语文本比数学本的2倍多4本,语文练习本买了本,数学练习本买了本。

师傅和徒弟一共生产零件190个,师傅生产的个数比徒弟的3倍少10个。

徒弟生产零件个,师傅生产零件个。

A、B两人同时从学校出发相背而行,2小时共行48千米,A的速度是B的2倍,求A的速度是,B的速度是。

一块长方形木板,长是宽的2倍,周长是54厘米。

这块长方形木板的长是厘米,宽是厘米,面积是平方厘米。

奥数讲义计数专题:4 包含与排除

奥数讲义计数专题:4 包含与排除

华杯赛计数专题:4包含与排除基础知识:1.包含与排除的思想,是为了解决计数分类的过程中,出现重复计数的情况.2.基本的想法:减去重复计算的,多算了几次,就减几次,常用工具文氏图.3.两个对象及三个对象的容斥原理,利用文氏图帮助理解.4.容斥原理中的最值问题,可以利用线段图.引子:从7本不同的数学书和8本不同的语文书中,选出6本书,不能全是同一种的书,那么有多少种不同的选法?用前面学的知识能解决吗?还有别的方法吗?总结:当正面计数比较繁琐、困难时,可以从反面考虑,即从总的数量减去不符合要求的数量.例1.学生要从八门课中选学三门,如果数学课与钢琴课时间冲突,不能同时学,那么共有几种选课的方法?【答案】50(种)【解答】所有的选课方法一共有种,数学课和钢琴课都选学的方法有种,其中代表数学课和钢琴课都选学,其中代表从剩余的课程中再选学1门.所以符合题意的选课方法一共有种.例2.从4台不同型号的TCL电视机和5台不同型号的Haier电视机中任意取出3台,其中至少要有TCL与Haier电视机各1台,不同的取法共有多少种?【答案】70(种)【解答】9台不同的电视,随意选取3台,一共有种方法.其中包括只选取Haier的方法一共种,还包括只选取TCL的方法一共种.所以符合题意的方法一共有84-10-4=70种.例3.7个同学站成一排,要求其中的甲不排头,乙不排尾,有多少种排法?思考:答案是吗?为什么【答案】3720(种)【解答】7个同学随意排列,共有种排法,若甲排在头,则剩下的6个同学全排列,一共有种排法,同理,若乙排在尾,一共有种排法,若同时满足甲在排头、乙在排尾,共有种排法,根据容斥原理,符合题意的排法共有种.例4.板报组有10名同学,每个人至少擅长绘画或写文章中的一种,已知其中7个人擅长绘画,5个人擅长写文章,要从中选出两个人担任组长,要求其中既有擅长绘画的也有擅长写文章的,那么有多少种选组长的方法?如果要从中选出两名同学去参赛,分别参加绘画比赛和作文比赛,那么有多少种参赛方法?【答案】32(种)【解答】因为10名同学中7个人擅长绘画,5个人擅长写文章,所以既擅长绘画又擅长写文章的有5+7-10=2个人,所以只擅长绘画的有5个人,只擅长写文章的有3个人, 选组长可以分为三类:第一类:先从擅长绘画的人中选1个,再从剩下的人中选1个,共有5×5=25种选法;第二类:从既擅长绘画又擅长写文章的2个人选1个,再从擅长写文章的3个人中选1个,共有2×3=6种选法;第三类:选2个既擅长绘画又擅长写文章的,共有1种选法;综合共有25+6++1=32种.例5.一次考试共有A、B、C三道题,一共有100个人参加了这次考试.其中,答对A 题的有50人,答对B题的有60人,答对C题的有20人.已知答对C题的人在A、B两道题中至少还答对了一道题,且只答对A题的有24人,只答对A题和B题的有10人,还有10个人A、B均未答对.那么有________个人只答对了B题.【答案】36(人)【解答】因为100人中有10人A、B两题均未答对,所以有90人至少答对A,B中的一道.又因为50人答对A题,60人答对B题,所以至少答对A、B两题的有50+60-90=20人.即答对AB两题或答对ABC三题的人合起来有20个.而只答对AB两题的人有10个,所以ABC三个题全答对的人有20-10=10个.由于有24人只答对A题,所以还有50-24=26人答对A题和至少另外一道题.这26人答对的题目只有3种可能:AB、AC和ABC.由上面的结论知只答对AC两题的应该有26-20=6个人.由于答对C的人在A、B两题中至少答对一道,所以答对C的20个人答对的题目也只有三种可能:AC、BC和ABC.那么只答对BC两题的有20-6-10=4人.现在已知答对AB两题的有10人,答对BC两题的有4人,答对ABC的有10人,而至少答对B一个题目的一共有60人,所以只答对B一个题的有60-10-4-10=36人.例6.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有种.【答案】14(种)【解答】6个人中选4个,共有种选法,选4个男生,共有种选法,所以符合题意的选法共有种.例7.从6双手套中取出4只,则至少取出一双的方法有种.【答案】255(只)【解答】有6双手套,即12只,从12只中任选4只,共有种,若选出的4只均不同双,则分步进行,第一步,从6双中选出4双,共有种;第二步,在选出的4双中分别选出左手或右手,共有,根据乘法原理:若选出的4只均不同双的选法共有种,所以符合题意的选法共有种.例8.在4×4的方格表里写上两个A和两个B(每个方格里至多写一个字母),那么相同字母既不同行也不同列的写法有多少种?【答案】3960(种)【解答】写入两个A既不同行也不同列的写法共有种,同理写入两个B既不同行也不同列的写法共有种,依次写入A、B,共有种写法.若A、B写入同一个方格中,可以分为两类考虑,第一类:A、B有两个格子均重合,共有72种写法;第二类,A、B中有一个格子重合,共有种写法;所以若A、B写入同一个方格中共有种写法,综上符合题意的共有种写法。

小学三年级奥数精品讲义(1-34讲全集)

小学三年级奥数精品讲义(1-34讲全集)

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

你可以试一试。

”小熊照着小白兔说的去做,果然既快又对。

小学四年级奥数讲义

小学四年级奥数讲义

小学四年级奥数讲义需要牢背的基本概念1、加法中的巧算:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)减法和加、减混合运算中的巧算:(1)一个数连续减去几个数,等于减去这几个数的和。

相反,一个数减去几个数的和,等于连续减去这几个数。

即 a-b-c=a-(b+c) a-(b+c) =a-b-c(2)在加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。

如: a-b+c=a+c-b(3)加、减混合运算中去括号(或添括号)时,如果括号前面是“—”号,那么括号里“—”变“+”,“+”变“-”;如果括号前面是“+”号,那么括号里的符号不变。

如a-(b-c)=a-b+c,a+(b-c)=a+b-c如果两个数的和恰好可以凑成整十、整百、整千……的数,那么其中一个数叫做另一个数的“互补数”。

2、乘法中的巧算:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律: (a+b)×c=a×c+b×c、 (a-b)×c=a×c-b×c 3、除法中的巧算:(1)除法交换律:a÷b÷c=a÷c÷b(2)根据“被除数和除数同时扩大或缩小相同的倍数,商不变”的规律,进行巧算。

公式:如果a÷b=c 则 (a×n)÷(b×n)=c(a÷n)÷(b÷n)=c n≠0(3)根据“一个数除以两个因数的积等于一个数连续除以这两个因数”的规律,进行巧算。

公式:a÷(b×c)= a÷b÷c(4)根据“一个数除以两个因数的商等于一个数除以第一个因数乘以第二个因数”公式:a÷(b÷c)= a÷b×c(5)除法分配律:(a + b)÷c = a÷c + b÷c a÷c +b÷c=(a + b)÷c4、你知道巧算中有几对好朋友吗?请写出来: 2×5=104×25=100 8×125=1000 16×625=10000 3×37=111 7×11×13=100137037×3=101015、“头同尾合十”:头×(头+1)×100+尾×尾“尾同头合十”:(头×头+尾)×100+尾×尾6、平方差公式: a2-b2=(a+b)×(a-b)7、配对求和,也就是等差数列求和。

小学数学奥数解题方法讲义40讲

小学数学奥数解题方法讲义40讲

第十一讲份数法————————————————姚老师数学乐园广安岳池姚文国把应用题中的数量关系转化为份数关系,并确定某一个已知数或未知数为1份数,然后先求出这个1份数,再以1份数为基础,求出所要求的未知数的解题方法,叫做份数法。

(一)以份数法解和倍应用题已知两个数的和及两个数的倍数关系,求这两个数的应用题叫做和倍应用题。

例1某林厂有杨树和槐树共320棵,其中杨树的棵数是槐树棵数的3倍。

求杨树、槐树各有多少棵?(适于四年级程度)解:把槐树的棵数看作1份数,则杨树的棵数就是3份数,320棵树就是(3 +1)份数。

因此,得:320÷(3+1)=80(棵)…………………槐树80×3=240(棵)…………………杨树答略。

例2 甲、乙两个煤场共存煤490吨,已知甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。

甲、乙两个煤场各存煤多少吨?(适于四年级程度)解:题中已经给出两个未知数之间的倍数关系:甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。

因此可将乙煤场的存煤数量看作1份数,甲煤场的存煤数量就相当于乙煤场存煤数量的4倍(份)数少10吨,两个煤场所存的煤490吨就是(1+4)份数少10吨,(490+10)吨就正好是(1+4)份数。

所以乙场存煤:(490+10)÷(1+4)=500÷5=100(吨)甲场存煤:490-100=390(吨)答略。

例3 妈妈给了李平元钱,正好可买4瓶啤酒,3瓶香槟酒。

李平错买成3瓶啤酒,4瓶香槟酒,剩下元。

求每瓶啤酒、香槟酒各是多少钱?(适于五年级程度)解:因为李平用买一瓶啤酒的钱买了一瓶香槟酒,结果剩下元,这说明每瓶啤酒比每瓶香槟酒贵元。

把每瓶香槟酒的价钱看作1份数,则4瓶啤酒、3瓶香槟酒的元钱就是(4+3)份数多(×4)元,()元就正好是(4+3)份数。

每瓶香槟酒的价钱是:()÷(4+3)=÷7=(元)每瓶啤酒的价钱是:+=(元)答略。

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

四年级数学奥数举一反三课程第1讲至第40讲全(精品)

四年级数学奥数举一反三课程第1讲至第40讲全(精品)

四年级数学奥数举一反三课程第1讲至第40讲全(精品)四年级奥数举一反三课程精品目录第1讲找规律简单推理应用题算式谜最优化问题巧妙求和第10讲变化规律错中求解简单列举和倍问题植树问题图形问题巧妙求和数数图形应用题第20讲速算与巧算速算与巧算平均数问题定义新运算差倍问题和差问题巧算年龄周期问题行程问题用假设法解题还原问题逻辑推理速算与巧算容斥原理二进制盈亏问题数学开放题四年级数学奥数培训资料姓名:__________________小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)- 1 -四年级奥数举一反三课程精品目录第1讲找规律简单推理应用题算式谜最优化问题巧妙求和第10讲变化规律错中求解简单列举和倍问题植树问题图形问题巧妙求和数数图形应用题第20讲速算与巧算速算与巧算平均数问题定义新运算差倍问题和差问题巧算年龄周期问题行程问题用假设法解题还原问题逻辑推理速算与巧算容斥原理二进制盈亏问题数学开放题第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

四年级数学奥数第40讲: 数学开放题

四年级数学奥数第40讲: 数学开放题

第40周数学开放题专题简析数学开放题是相对于传统的封闭题而言的一种题型。

由于客观世界复杂多变,数学问题也必然复杂多变,往往不可能得到唯一答案。

一般而言,数学开放题具有以下三个特征:1.条件不足或多余;2.没有确定的结论或结论不惟一;3.解题的策略,思路多种多样。

解答数学开放题,需要我们从不同角度分析和思考问题,紧密联系实际,具体问题具体分析。

我们一般可以从以下几方面考虑:1.以问题为指向,对现有条件进行筛选、补充和组合,促进问题的顺利解决。

2.根据知识之间的不同联系途径对给定的条件进行不同的组合,采用不同的方法求解。

3.避免“答案惟一”的僵化思维模式,联系实际考虑可能出现多各情况,得出不同的答案王牌例题1A、B都是自然数,且A+B=10,那么A×B的积可能是多少?疯狂操练1(1)甲]乙两数都是自然数,且甲+乙=32,那么,甲×乙积的最大值是多少?(2)A和B两个自然数的积是24,当A和B各等于多少时,它们的和最小?、(3)A、B、C、三个数都是自然数,且A+B+C=18,那么,A×B×C积的最大值是多少?王牌例题2把1~6六个数分别填入图中的六个圆圈中,使每条边上三个数的和等于9。

疯狂操练2(1)把1~6六个数分别填入图中的六个圆圈中,使每条边上三个数的和等于12。

(2)把1~8八个数分别填入图中的八个圆圈中,使每个圆圈上五个数的和都等于21。

(3)把1~9这九个数分别填入图中的九个圆圈中,使每条边上四个数的和相等而且最小。

王牌例题3在一次羽毛球比赛中,8名运动埚进行淘汰赛,最后决出冠军,共打了多少场球?(两名运动员之间比赛1次,称为1场)疯狂操练3(1)在一次乒乓球比赛中,32名运动员进行淘汰赛,最后决出冠军,共打了多少场球?(2)在一次足球比赛中,条取淘汰制,共打了11场球,最后决出冠军,问有多少支足球队参加了这次足球比赛?(3)有13个队参加篮球赛,比赛分两个组。

小学数学奥数方法讲义40讲(全)

小学数学奥数方法讲义40讲(全)

第一讲观察法在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

*例6 1966、1976、1986、1996、2006这五个数的总和是多少?(适于三年级程度)1966+1976+1986+1996+2006=1966×5+10×(1+2+3+4)=9830+100=99301966+1976+1986+1996+2006=1986×5=9930例7你能从400÷25=(400×4)÷(25×4)=400×4÷100=16中得到启发,很快算出(1)600÷25(2)900÷25(3)1400÷25(4)1800÷25(5)7250÷25的得数吗?(适于四年级程度)*例8把1~1000的数字如图1-11那样排列,再如图中那样用一个长方形框框出六个数,这六个数的和是87。

如果用同样的方法(横着三个数,竖着两个数)框出的六个数的和是837,这六个数都是多少?(适于五年级程度)解:(1)观察框内的六个数可知:第二个数比第一个数大1,第三个数比第一个数大2,第四个数比第一个数大7,第五个数比第一个数大8,第六个数比第一个数大9。

因为用同样的方法框出的六个数之和是837,这六个数之中后面的五个数也一定分别比第一个数大1、2、7、8、9,所以,这六个数中的第一个数是:=135二136三137四142五143六144(2)观察框内的六个数可知:①上、下两数之差都是7;②方框中间坚行的11和18,分别是上横行与下横行三个数的中间数。

*例9有一个长方体木块,锯去一个顶点后还有几个顶点?(适于五年级程度)解:(1)锯去一个顶点(图1-12),因为正方体原来有8个顶点,锯去一个顶点后,增加了三个顶点,所以,8-1+3=10 即锯去一个顶点后还有10个顶点。

小学数学奥数方法讲义40讲(四)

小学数学奥数方法讲义40讲(四)

第三十一讲分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。

分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。

分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。

例1 一块正方体木块,体积是1331立方厘米。

这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。

例2 一个数的平方等于324,求这个数。

(适于六年级程度)解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。

例3 相邻两个自然数的最小公倍数是462,求这两个数。

(适于六年级程度)解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。

*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC 是一个三位数。

求ABC代表什么数?(适于六年级程度)解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。

1673=239×7答:ABC代表239。

例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。

2304=2×2×2×2×2×2×2×2×3×3=(2×2×2×2×3)×(2×2×2×2×3)=48×48正方形的边长是48米。

小学奥数数论讲义 4-整数分拆之最值与应用强化篇

小学奥数数论讲义 4-整数分拆之最值与应用强化篇

一、拆分的基础知识 整数的拆分问题常常以计数问题、最值问题等形式出现,因此除了掌握有关的等差数列、数的整除、平均数等基本知识外,还要求掌握加法原理、乘法原理、枚举法、筛选法等基本的记数原理和方法。

二、拆分基本方法1.题目要求拆质数且乘积最大——若可以拆相同的数字就按照“多拆3,少拆2,不拆1——拆分后乘积最大”原则。

2.若题目要求拆成若干个互不相同的自然数之和——要求这些自然数的乘积尽量大应将数列拆分成:a =2+3+4+…的形式,但是实际计算的时候会发现一般不能拆成恰好相同,则:⑴当多0时,将a 拆成a =2+3+4+…+ (n -1) +n ;⑵当多1时,将a 拆成a =3+4+5+…+ (n -1) +( n -1);⑶当多2,3,…,n -1中的数时,就将该数从2,3,…,n -1,n 中删除,其余数即为所拆之数。

例如:将30拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,应怎样拆?2+3+4+5+6+7+8=35比30大5,故将5去掉30被拆成2+3+4+6+7+8【例1】将15拆分成2个数的和,并且使这2个数的乘积最大,应该怎样拆分?最大值是多少?【巩固1】把11拆分成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何拆分?【巩固2】试把14拆分为两个自然数之和,使它们的乘积最大。

【例2】试把14拆分为3个自然数之和,使它们的乘积最大。

【巩固】试把19拆分为3个自然数之和,使它们的乘积最大。

【例3】试把1999拆分为8个自然数的和,使其乘积最大。

整数分拆之最值与应用【巩固】试把1553拆分为6个自然数的和,使其乘积最大。

【例4】将一根长144厘米的铁丝,做成长和宽都是整数的长方形,共有种不同的做法,其中面积最大的是哪一种长方形?【巩固】有长方形和正方形三块地。

它们的周长是100米,它们的一条边长分别是30米,28米和25米。

这三块中哪一块地最大?面积是多少?【例5】把14拆分成若干个自然数的和,再求出这些数的积,要使得到的积最大,应该把14如何拆分?这个最大的乘积是多少?【巩固】分别拆分2001、1994、1993三个数,使拆分后的积最大。

小学数学奥数方法讲义40讲含详细分析解答(21-30讲)

小学数学奥数方法讲义40讲含详细分析解答(21-30讲)

第二十一讲守恒法小学奥数方法讲义、每道题都含有详细的分析和解答、以及适合的年级,一共40讲,适合学生、家长、辅导教师。

是小学一套难得的奥数资料。

应用题中的数量有的是变化的,有的是始终不变的。

解应用题时,抓住始终不变的数量,分析不变的数量与其他数量的关系,从而找到解题的突破口,把应用题解答出来的解题方法,叫做守恒法,也叫抓不变量法。

(一)总数量守恒有些应用题中不变的数量是总数量,用守恒法解题时要抓住这个不变的总数量。

例1晶晶要看一本书,计划每天看15页,24天看完。

如果要12天看完,每天要看多少页?如果改为每天看18页,几天可以看完?(适于三年级程度)解:无论每天看多少页,总是看这一本书,只要抓住这本书的“总页数不变”这个关键,问题就好办了。

这本书的总页数是:15×24=360(页)如果要12天看完,每天要看的页数是:360÷12=30(页)如果改为每天看18页,看完这本书的天数是:360÷18=20(天)答略。

此题由于第一步是用乘法求出总数,因此也叫做“归总”应用题。

*例2用一根铁丝围成一个长26厘米,宽16厘米的长方形。

用同样长的铁丝围成一个正方形,正方形所围成的面积是多少?(适于三年级程度)解:这根铁丝的长是不变的量,铁丝围成的长方形的周长和正方形的周长相同。

即:26×2+16×2=52+32=84(厘米)正方形的边长是:84÷4=21(厘米)正方形所围成的面积是:21×21=441(平方厘米)答略。

解:书架上书总的本数是不变的数量,设它为单位1。

从“上层书的本书总的本数分成5份,上层的书占总本数的因此,书总的本数是:原来书架的上层有书:原来书架的下层有书:90-18=72(本)(二)部分数量守恒当应用题中不变的数量是题中的一部分数量时,要抓住这个不变的部分数量解题。

例1一辆汽车,从甲站到乙站,要经过20千米的平路,45千米的上坡路,15千米的下坡路。

小学四年级奥数讲义

小学四年级奥数讲义

小学四年级奥数讲义第一部分:数学基础知识1.1 自然数和整数- 自然数是指从1开始的正整数,用符号$N$表示。

- 整数是自然数和其相反数的集合,用符号$Z$表示。

1.2 加法和减法- 加法是将两个数合并在一起,得到它们的总数。

- 例如:$2 + 3 = 5$。

- 减法是从一个数中减去另一个数,得到它们的差。

- 例如:$5 - 2 = 3$。

1.3 乘法和除法- 乘法是将两个数相乘,得到它们的积。

- 例如:$2 × 3 = 6$。

- 除法是将一个数分割成若干等份,得到它们的商。

- 例如:$6 ÷ 3 = 2$。

第二部分:奥数技巧和练2.1 快速计算- 利用9的乘法法则,可以快速计算一个数乘以9的结果。

- 例如:$4 × 9 = 36$。

- 利用倍数关系,可以快速计算一个数的倍数。

- 例如:$3 × 4 = 12$。

2.2 算式变换- 利用算式的性质,可以将复杂的算式转化为简单的算式。

- 例如:$(3 + 4) × 5 = 7 × 5 = 35$。

- 利用分配律,可以将一个数拆分成两个数的和或差。

- 例如:$8 × 7 = (5 + 3) × 7 = 5 × 7 + 3 × 7 = 35 + 21 = 56$。

2.3 枚举法和猜想法- 枚举法是一种通过列举所有可能情况来解决问题的方法。

- 例如:求两个数的最大公约数,可以列举出所有可能的公约数,然后找出其中最大的一个。

- 猜想法是一种根据已有规律猜测答案的方法,然后通过严谨的推理来证明猜想是否正确。

- 例如:猜测一个数是偶数时,它一定能被2整除,然后通过证明偶数定义来证明猜想的正确性。

第三部分:练题1. 计算:$2 + 3 × 4 - 5 = ?$2. 计算:$7 - (4 × 2 + 1) = ?$3. 快速计算:$6 × 9 = ?$4. 快速计算:$5 × 7 = ?$5. 利用枚举法找出10以内的所有偶数。

小学数学奥数方法讲义40讲大全集(附解题思路和).doc

小学数学奥数方法讲义40讲大全集(附解题思路和).doc

第一讲观察法在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。

书中除图1-1的图形外没有文字说明。

这道题旨在引导儿童观察、思考,初步培养他们的观察能力。

这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。

实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。

从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。

图1-5是填完数字后的幻方。

例2看每一行的前三个数,想一想接下去应该填什么数。

(适于二年级程度)6、16、26、____、____、____、____。

小升初奥数第4节:数字及算式的处理技巧讲义

小升初奥数第4节:数字及算式的处理技巧讲义

数字及算式的处理技巧
教学目的
归纳和总结这一部分的技巧和方法;培养学生的观察力、判断及推理能力。

教学内容
知识点
重点中学选拔考试的试卷,考察学生的计算能力是必不可少的,近几年来又以考察:
1.速算巧算;
2.分数的计算技巧为明显趋势。

本讲我们将系统地归纳和总结这一部分的技巧和方法。

1.回顾提取公因数(式)和凑整的应用;
2.精讲公式应用、小数化分数、分数的拆分。

专题回顾 (1)、983782783137856⨯+⨯+⨯+⨯ (2)、147.754.11443.3-⨯+⨯
(3)、889999333333⨯+⨯ (4)、66666666666666⨯+⨯
(5)、15.72825.1185.215.7⨯⨯-⨯⨯ (6)、 035.106048.439487.5694⨯+⨯+⨯
例题与巩固
经典精讲
常用公式
下面这些公式是小学奥数中常见的计算公式,同学们一定要熟练掌握,这可是小升初考试中计算的好帮手。

同时也希望同学们在做题时能够对一些规律性比较强的数字的计算自己进行归纳。

四年级学而思奥数讲义

四年级学而思奥数讲义

四年级学而思奥数讲义
目录
1. 引言
2. 第一章: 基本数学运算
3. 第二章: 数字与数的关系
4. 第三章: 分数和小数
5. 第四章: 几何形状
1. 引言
学而思奥数讲义是为四年级学生设计的数学研究材料。

本讲义旨在帮助学生掌握奥数中的基础概念和解题技巧,以提升他们在数学领域的能力。

2. 第一章: 基本数学运算
这一章节将介绍四则运算,包括加法、减法、乘法和除法。

学生将研究如何进行这些运算,并通过练题加深理解。

3. 第二章: 数字与数的关系
在这一章节中,学生将研究数字的分类和排序,以及数字之间的关系。

他们将掌握如何使用大于、小于和等于符号来比较数字,并通过实例练加强掌握。

4. 第三章: 分数和小数
分数和小数是四年级数学中的重要概念。

本章将介绍如何读写分数和小数,并涵盖分数和小数之间的转换。

学生将通过实例练巩固所学知识。

5. 第四章: 几何形状
在这一章中,学生将探索不同的几何形状,包括正方形、长方形、圆形和三角形。

他们将研究如何计算这些形状的周长和面积,并通过练题应用所学知识。

本文档将作为四年级学生研究学而思奥数的参考资料。

学生可以根据讲义中的例题和练题进行实际操作和巩固知识。

希望这份讲义能够帮助学生提高数学能力,并享受数学研究的乐趣。

以上是《四年级学而思奥数讲义》的简要目录和介绍。

祝学生们研究愉快!。

小学奥数系统讲义完整版

小学奥数系统讲义完整版

小学奥数系统复习讲义(完整版)小学奥数大约80个知识点,可分成5大类,数论和行程是重点也是难点第一部分计算能力万丈高楼平地起,计算能力任何时候都是学好数学的根基,必须高度重视! 基本公式1 .运算顺序第一级:括号:()T T{ }第二级:X+:同一级别可以交换运算次序第三级:+ —: 同一级别可以交换运算次序2. 去括号①a+(b+ c)=a + b + c a+ (b —c)=a + b— c②a—(b+ c)=a — b — c a— (b —c)=a—b+ c③a>(b疋)=a花比a>(b -c)=a以弋④a—b >0)=a —a—b 弋)=a —xc3 .分配律/结合律乘法:a (b + c) = a b+ a>ca>b+ a>c = a (b + c)除法:(a+ b) —= a —+ b—ca—:+ b—c = (a + b)—4 .两个必须掌握的性质两个数的和一定,则两数越相近,积越大5 .几个计算公式__ 2 2 2完全平方和(差)公式:( a±b) = a ±ab+b2 2平方差公式: a -b = (a+b)(a-b)求和公式一:1+2+3+ ....... +n =两个数的积一定,则两数越分散,和越大求和公式二:1 +1 22 +3 2+……n =3 3 3 3求和公式三:1 +2 +3 +……n = __________________________6. 速算巧算基本方法凑整法、改变运算次序法、连续数求和、基准法、分组法、拆分法7. 等差数列,等比数列,【拆分与裂项】,【换元法】,【错位相消法】,【构造法】等较难的计算方法。

拆分裂项公式:等差数列公式:简单等比公式:例题分析1. 393+404+397+398+405+401+400+399+391+4022. 比较下面A,B 两数的大小:A=2009X 2009,B=2008X 20103. 99讣9创x 99 —99 4 199—99结果末尾有多少个零?訐胆,.p “站-1 ?4. 100 + 99+ 98 —97 —96 —95+ ……+ 10+ 9 + 8—7 —6—5+ 4 + 3+ 2 —1巩固练习5. 376 + 385 + 391 + 380 + 377 + 389 + 383 + 374 + 366 + 3786. 1 —50+2 —50+3 —50+50 - 50 2010二二呦10第二部分基础知识基础知识点列表7. 9999999 >2009 7777 >333 出1118. 99*.**.+ 9 乂gg.*・*.*9 + -99*—..* 9 =99Ti9. 比较下面A,B两数的大小:归一问题A =987654321 >23456789;B =987654322 >2345678810. 1996 + 1994 —1992 —1990 + 1988 + 1986 —1984 —1982 + 1980 + 1978—1976 —1974 + 1972 + 1970…… + 4 + 2【含义】在解题时,先求岀一份是多少(即单一量),然后以单一量为标准,求岀所要求的数量。

小学数学奥数方法讲义40讲(一)

小学数学奥数方法讲义40讲(一)

小学数学奥数方法讲义40讲(一)第一讲观察法在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,就是通过观察题目中数字的变化规律及边线特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而辨认出题目中的数量关系,把题目答疑出的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。

书中除图1-1的图形外没文字说明。

这道题旨在鼓励儿童观测、思索,初步培育他们的观测能力。

这时儿童已经研习过20以内的加减法,基于他们尚无的科学知识,能推论本题的意思就是:在右边小正方形内的小方格中插入数字后,并使小正方形中的每一民不聊生,每一竖列,以及两条对角线上三个数字的和,都等同于左边大正方形中的数字18。

实质上,这就是一种幻方,或者说就是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。

从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)可以想起,18-7-2=9,在斜右列下面的小方格中应当插入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横下行3+□+7=18(图1-4)可以想起,18-3-7=8,在横下行中间的小方格中应当插入8(图1-5)。

又从横上行5+□+9=18(图1-4)可以想起,18-5-9=4,在横上行中间的小方格中应当插入4(图1-5)。

图1-5就是填好数字后的幻方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学奥数方法讲义40讲(四)一块正方体木块,体积是1331立方厘米。

这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=111111答:这块正方体木块的棱长是11厘米。

例2 一个数的平方等于324,求这个数。

(适于六年级程度)解:把324分解质因数:324=223333=(233)(233)=1818答:这个数是18。

例3 相邻两个自然数的最小公倍数是462,求这两个数。

(适于六年级程度)解:把462分解质因数:462=23711=(37)(211)=2122答:这两个数是21和22。

*例4 ABCD=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。

求ABC代表什么数?(适于六年级程度)解:因为ABCD=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。

1673=2397答:ABC代表239。

例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。

2304=2222222233=(22223)(22223)=4848正方形的边长是48米。

这块田地的周长是:484=192(米)答略。

*例6 有3250个桔子,平均分给一个幼儿园的小朋友,剩下10个。

已知每一名小朋友分得的桔子数接近40个。

求这个幼儿园有多少名小朋友?(适于六年级程度)解:3250-10=3240(个)把3240分解质因数:3240=23345接近40的数有36、37、38、39这些数中36=2232,所以只有36是3240的约数。

23345(2232)=2325=90答:这个幼儿园有90名小朋友。

*例7105的约数共有几个?(适于六年级程度)解:求一个给定的自然数的约数的个数,可先将这个数分解质因数,然后按一个质数、两个质数、三个质数的乘积……逐一由小到大写出,再求出它的个数即可。

因为,105=357,所以,含有一个质数的约数有1、3、5、7共4个;含有两个质数的乘积的约数有35、37、57共3个;含有三个质数的乘积的约数有357共1个。

所以,105的约数共有4+3+1=8个。

答略。

*例8 把15、22、30、35、39、44、52、77、91这九个数平均分成三组,使每组三个数的乘积都相等。

这三组数分别是多少?(适于六年级程度)解:将这九个数分别分解质因数:15=3522=21130=23535=5739=31344=221152=221377=71191=713观察上面九个数的质因数,不难看出,九个数的质因数中共有六个2,三个3,三个5,三个7,三个11,三个13,这样每组中三个数应包括的质因数有两个2,一个3,一个5,一个7,一个11和一个13。

由以上观察分析可得这三组数分别是:15、52和77;22、30和91;35、39和44。

答略。

*例9 有四个学生,他们的年龄恰好一个比一个大一岁,他们的年龄数相乘的积是5040。

四个学生的年龄分别是几岁?(适于六年级程度)解:把5040分解质因数:5040=22223357由于四个学生的年龄一个比一个大1岁,所以他们的年龄数就是四个连续自然数。

用八个质因数表示四个连续自然数是:7,222,33,25即四个学生的年龄分别是7岁、8岁、9岁、10岁。

答略。

*例10 在等式35()8127=718()162的两个括号中,填上适当的最小的数。

(适于六年级程度)解:将已知等式的两边分解质因数,得:5377()=22367()把上面的等式化简,得:15()=4()所以,在左边的括号内填4,在右边的括号内填15。

15(4)=4(15)答略。

*例11 把84名学生分成人数相等的小组(每组最少2人),一共有几种分法?(适于六年级程度)解:把84分解质因数:84=2237除了1和84外,84的约数有:2,3,7,22=4,23=6,27=14,37=21,223=12,227=28,237=42。

下面可根据不同的约数进行分组。

842=42(组),843=28(组),844=21(组),846=14(组),847=12(组),8412=7(组),8414=6(组),8421=4(组),8428=3(组),8442=2(组)。

因此每组2人分42组;每组3人分28组;每组4人分21组;每组6人分14组;每组7人分12组;每组12人分7组;每组14人分6组;每组21人分4组;每组28人分3组;每组42人分2组。

一共有10种分法。

答略。

*例12 把14、30、33、75、143、169、4445、4953这八个数分成两组,每组四个数,要使各组数中四个数的乘积相等。

求这两组数。

(适于六年级程度)解:要使两组数的乘积相等,这两组乘积中的每个因数不必相同,但这些因数经分解质因数,它们所含有的质因数一定相同。

因此,首先应把八个数分解质因数。

14=27143=111330=235169=131333=3114445=5712775=3554953=313 127在上面的质因式中,质因数2、7、11、127各有2个,质因数3、5、13各有4个。

在把题中的八个数分为两组时,应使每一组中的质因数2、7、11、127各有1个,质因数3、5、13各有2个。

按这个要求每一组四个数的积应是:271112733551313因为,(27)(355)(1113)(313127)=14751434953,根据接下来为“14、75、143、4953”正符合题意,因此,要求的一组数是14、75、143、4953,另一组的四个数是:30、33、169、4445。

答略。

*例13 一个长方形的面积是315平方厘米,长比宽多6厘米。

求这个长方形的长和宽。

(适于五年级程度)解:设长方形的宽为x厘米,则长为(x+6)厘米。

根据题意列方程,得:x(x+6)=315x(x+6)=3357=(35)(37)x(x+6)=1521x(x+6)=15(15+6)x=15x+6=21答:这个长方形的长是21厘米,宽是15厘米。

*例14 已知三个连续自然数的积为210,求这三个自然数各是多少?(适于五年级程度)解:设这三个连续自然数分别是x-1,x,x+1,根据题意列方程,得:(x-1)x(x+1)=210=2110=3725=567比较方程两边的因数,得:x=6,x-1=5,x+1=7。

答:这三个连续自然数分别是5、6、7。

*例15 将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数的3倍多12,求甲、乙、丙各是几?(适于六年级程度)解:把1440分解质因数:1440=121210=22322325=(222)(33)(225)=8920如果甲、乙二数分别是8、9,丙数是20,则:89=72,203+12=72正符合题中条件。

答:甲、乙、丙三个数分别是8、9、20。

*例16 一个星期天的早晨,母亲对孩子们说:“你们是否发现在你们中间,大哥的年龄等于两个弟弟年龄之和?”儿子们齐声回答说:“是的,我们的年龄和您年龄的乘积,等于您儿子人数的立方乘以1000加上您儿子人数的平方乘以10。

”从这次谈话中,你能否确定母亲在多大时,才生下第二个儿子?(适于六年级程度)解:由题意可知,母亲有三个儿子。

母亲的年龄与三个儿子年龄的乘积等于:331000+3210=27090把27090分解质因数:27090=4375322根据“大哥的年龄等于两个弟弟年龄之和”,重新组合上面的质因式得:431495这个质因式中14就是9与5之和。

所以母亲43岁,大儿子14岁,二儿子9岁,小儿子5岁。

43-9=34(岁)答:母亲在34岁时生下第二个儿子。

第三二讲最大公约数法通过计算出几个数的最大公约数来解题的方法,叫做最大公约数法。

例1 甲班有42名学生,乙班有48名学生,现在要把这两个班的学生平均分成若干个小组,并且使每个小组都是同一个班的学生。

每个小组最多有多少名学生?(适于六年级程度)解:要使每个小组都是同一个班的学生,并且要使每个小组的人数尽可能多,就要求出42和48的最大公约数:23=642和48的最大公约数是6。

答:每个小组最多能有6名学生。

例2 有一张长150厘米、宽60厘米的长方形纸板,要把它分割成若干个面积最大,井已面积相等的正方形。

能分割成多少个正方形?(适于六年级程度)解:因为分割成的正方形的面积最大,并且面积相等,所以正方形的边长应是150和60的最大公约数。

求出150和60的最大公约数:235=30150和60的最大公约数是30,即正方形的边长是30厘米。

看上面的短除式中,150、60除以2之后,再除以3、5,最后的商是5和2。

这说明,当正方形的边长是30厘米时,长方形的长150厘米中含有5个30厘米,宽60厘米中含有2个30厘米。

所以,这个长方形能分割成正方形:52=10(个)答:能分割成10个正方形。

例3 有一个长方体的方木,长是3、25米,宽是1、75米,厚是0、75米。

如果将这块方木截成体积相等的小正方体木块,并使每个小正方体木块尽可能大。

小木块的棱长是多少?可以截成多少块这样的小木块?(适于六年级程度)解:3、25米=325厘米,1、75米=175厘米,0、75米=75厘米,此题实际是求325、175和75的最大公约数。

55=25325、175和75的最大公约数是25,即小正方体木块的棱长是25厘米。

因为75、175、325除以5得商15、35、65,15、35、65再除以5,最后的商是3、7、13,而小正方体木块的棱长是25厘米,所以,在75厘米中包含3个25厘米,在175厘米中包含7个25厘米,在325厘米中包含13个25厘米。

可以截成棱长是25厘米的小木块:3713=273(块)答:小正方体木块的棱长是25厘米,可以截成这样大的正方体273块。

例4 有三根绳子,第一根长45米,第二根长60米,第三根长75米。

现在要把三根长绳截成长度相等的小段。

每段最长是多少米?一共可以截成多少段?(适于六年级程度)解:此题实际是求三条绳子长度的最大公约数。

35=1545、60和75的最大公约数是15,即每一小段绳子最长15米。

因为短除式中最后的商是3、4、5,所以在把绳子截成15米这么长时,45米长的绳子可以截成3段,60米长的绳子可以截成4段,75米长的绳子可以截成5段。

所以有:3+4+5=12(段)答:每段最长15米,一共可以截成12段。

例5 某校有男生234人,女生146人,把男、女生分别分成人数相等的若干组后,男、女生各剩3人。

相关文档
最新文档