小学数学奥数方法讲义40讲(二)之欧阳光明创编
三年级全册奥数教程之欧阳音创编
三年级全册奥数培训教材适合年级:小学三年级目录第一讲找规律填数(一)- 5 -第二讲找规律填数(二)- 8 -第三讲找规律填数(三)- 10 -第四讲从数表中找规律- 13 -第五讲数线段- 15 -第六讲数三角形- 17 -第七讲数长方形和正方形- 18 -第八讲加法的渐变运算-----凑整- 20 -第九讲减法简便运算-----凑整- 22 -第十讲加减法的速算与巧算- 23 -第十一讲添加运算符号(一)- 25 -第十二讲添加运算符号(二)- 28 -第十三讲横式算式谜(一)- 31 -第十四讲横式算式谜(二)- 34 -第十五讲竖式加减算式谜- 37 -第十六讲竖式乘除算式谜- 39 -第十七讲文字算式谜- 41 -第十八讲填数阵图(一)- 43 -第十九讲填数阵图(二)- 44 -第二十讲不封闭路线上植树- 47 -第二十一讲封闭路线上植树- 50 -第二十二讲与植树相关的问题(一)- 53 -第二十三讲数三角形- 56 -第二十四讲等量代换- 58 -第二十五讲用等量代换解应用题- 60 -第二十六讲等差数列- 62 -第二十七讲配对求和- 64 -第二十八讲乘法的简便运算-------凑整- 66 -第二十九讲乘法的速算与巧算- 68 -第三十讲除法中的巧算- 70 -第三十一讲乘除法的简便运算- 72 -第三十二讲数的整除- 74 -第三十三讲有余数的除法- 77 -第三十四讲周期问题- 79 -第三十五讲个位数字是几- 81 -第三十六讲时间与日期- 83 -第三十七讲试商技巧- 86 -第三十八讲包含与排除- 89 -第三十九讲盈亏问题- 92 -第四十讲鸡兔同笼- 95 -第四十一讲平均数(一)- 97 -第四十二讲平均数(二)- 99 -第四十三讲和倍问题(一)- 101 -第四十四讲和倍问题(二)- 103 -第四十五讲差倍问题(一)- 105 -第四十六讲差倍问题(二)- 108 -第四十七讲和差问题(一)- 111 -第四十八讲和差问题(二)- 113 -第四十九讲逆推问题- 115 -第五十讲行程问题- 117 -第五十一讲归一问题- 120 -第五十二讲巧求周长- 122 -第五十三讲长方形和正方形的周长- 124 -第五十四讲长方形和正方形的面积- 126 -第五十五讲年龄问题(一)- 128 -第五十六讲年龄问题(二)- 130 -第五十七讲定义新运算- 132 -第五十八讲最大和最小- 134 -第一讲找规律填数(一)【专题精析】按一定规律排列起来的一列数叫做数列。
小学数学奥数方法讲义40讲
小学数学奥数方法讲义40讲(总84页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一讲观察法————————————————姚老师数学乐园广安岳池姚文国在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
四年级奥数教材之欧阳体创编
四年级奥数目录(一)(二)找规律★★(观察力和计算能力的一个结合)①数列中的规律②图形中的规律(二)数字谜★★★(运用简单的数字组成不同或相同的位数,使式子合理)①横式字谜②竖式字谜(三)定义新运算★★★(它的符号不同于课本上明确定义或已经约定的符号,先求出表示定义规则的一般表达式,方可进行运算。
)(四)鸡兔同笼★★★(根据现实的例子,进行推理和计算)(五)行程问题★★★★(求路程的问题,公式的运用)①追及问题与相遇问题②火车过桥(六)植树问题★★★(植树问题,一般又可分为封闭型的和不封闭型的,每种方法不一)(七)有趣的数阵图★★★(把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图)(八)枚举法★★(通过推测将所有的可能写下来)(九)推理逻辑★★(根据已知的条件,推出合理的答案)(十)倒推法的妙用★★★(加的倒推成减,减的倒推成加,以此更简单快速地计算出答案)(十一)火柴棍游戏★★★(通过移动火柴变成另一个数字或图形)(十二)巧求周长(一)★★★★(一些不规则的比较复杂的几何图形,求周长,可以运用平移的方法,把它转化为标准的长方形或正方形,然后利用周长公式进行计算)(十三)面积计算★★★★(解答比较复杂的长方形、正方形的面积计算的问题时,可以添加辅助线或运用割补、转化等解题技巧)(十四)移多补少平均数★★★(将多的一方分出一部分给少的,使多的和少的同样多)(十五)一笔画★★(类似于走迷宫)(一)找规律观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
①数列中的规律一、例题与方法指导例1:先找出下列数排列的规律,并根据规律在括号里填上适当的数。
小学数学奥数方法讲义40讲.pdf
第一讲观察法————————————————姚老师数学乐园广安岳池姚文国在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
四年级奥数教材之欧阳物创编
四年级奥数目录(一)(二)找规律★★(观察力和计算能力的一个结合)①数列中的规律②图形中的规律(二)数字谜★★★(运用简单的数字组成不同或相同的位数,使式子合理)①横式字谜②竖式字谜(三)定义新运算★★★(它的符号不同于课本上明确定义或已经约定的符号,先求出表示定义规则的一般表达式,方可进行运算。
)(四)鸡兔同笼★★★(根据现实的例子,进行推理和计算)(五)行程问题★★★★(求路程的问题,公式的运用)①追及问题与相遇问题②火车过桥(六)植树问题★★★(植树问题,一般又可分为封闭型的和不封闭型的,每种方法不一)(七)有趣的数阵图★★★(把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图)(八)枚举法★★(通过推测将所有的可能写下来)(九)推理逻辑★★(根据已知的条件,推出合理的答案)(十)倒推法的妙用★★★(加的倒推成减,减的倒推成加,以此更简单快速地计算出答案)(十一)火柴棍游戏★★★(通过移动火柴变成另一个数字或图形)(十二)巧求周长(一)★★★★(一些不规则的比较复杂的几何图形,求周长,可以运用平移的方法,把它转化为标准的长方形或正方形,然后利用周长公式进行计算)(十三)面积计算★★★★(解答比较复杂的长方形、正方形的面积计算的问题时,可以添加辅助线或运用割补、转化等解题技巧)(十四)移多补少平均数★★★(将多的一方分出一部分给少的,使多的和少的同样多)(十五)一笔画★★(类似于走迷宫)(一)找规律观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
①数列中的规律一、例题与方法指导例1:先找出下列数排列的规律,并根据规律在括号里填上适当的数。
小学数学奥数方法讲义40讲
第一讲观察法————————————————姚老师数学乐园广安岳池姚文国在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
小学奥数年龄问题之欧阳光明创编
小学奥数《年龄问题》欧阳光明(2021.03.07)年龄问题是日常生活中一种常见的问题。
例如:已知两个人或若干人的年龄,求他们年龄之间的某种数量关系等等。
要正确解答这类题,首先要明白:两个不同年龄的人,年龄之差始终不变。
所以我们要抓住“年龄差不变”这个特点,运用“和差”、“差倍”等知识来分析解答有关年龄方面的问题。
年龄问题的三大规律:1、两人的年龄差是不变的;2、两人年龄的倍数关系是变化的量;3、随着时间的推移,两人的年龄都是增加相等的量.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差.典型例题例[1] 爸爸、妈妈今年的年龄和是82岁。
5年后爸爸比妈妈大6岁。
今年爸爸、妈妈两人各多少岁?分析 5年后,爸爸比妈妈大6岁,即爸爸、妈妈的年龄差是6岁,它是一个不变量。
因此,爸爸、妈妈现在的年龄差仍然是6岁。
这样原问题就归结为“已知爸爸、妈妈的年龄和是82岁,他们的年龄差是6岁,求两人各是几岁”的和差问题。
解爸爸年龄:(82+6)÷2=44(岁)妈妈年龄:44-6=38(岁)答:爸爸的年龄是44岁,妈妈的年龄是38岁。
例[2]小红今年7岁,妈妈今年35岁。
小红几岁时,妈妈的年龄正好是小红的3倍?分析无论小红多少岁时,妈妈的年龄都比小红大(35-7)岁。
所以当妈妈的年龄是小红的3倍时,也就是妈妈年龄比小红大(3-1)倍时,妈妈仍比小红大(35-7)岁,这个差是不变的。
由这个(35-7)岁的差和对应的这个(3-1)倍,就可以算出小红的年龄,即差倍问题中的差÷(倍数-1)=较小数。
解妈妈现在比小红大的岁数:35-7=28(岁)妈妈年龄是小红的3倍时,比小红大的倍数是:3-1=2(倍)妈妈年龄是小红的3倍时,小红的年龄是:28÷2=14(岁)答:小红14岁时,妈妈年龄正好是小红的3倍。
例[3] 6年前,母亲的年龄是儿子的5倍。
三年级全册奥数教程之欧阳体创编
三年级全册奥数培训教材适合年级:小学三年级目录第一讲找规律填数(一)- 4 -第二讲找规律填数(二)- 7 -第三讲找规律填数(三)- 9 -第四讲从数表中找规律- 11 -第五讲数线段- 13 -第六讲数三角形- 14 -第七讲数长方形和正方形- 15 -第八讲加法的渐变运算-----凑整- 16 -第九讲减法简便运算-----凑整- 18 -第十讲加减法的速算与巧算- 19 -第十一讲添加运算符号(一)- 20 -第十二讲添加运算符号(二)- 23 -第十三讲横式算式谜(一)- 25 -第十四讲横式算式谜(二)- 27 -第十五讲竖式加减算式谜- 29 -第十六讲竖式乘除算式谜- 31 -第十七讲文字算式谜- 33 -第十八讲填数阵图(一)- 35 -第十九讲填数阵图(二)- 36 -第二十讲不封闭路线上植树- 38 -第二十一讲封闭路线上植树- 40 -第二十二讲与植树相关的问题(一)- 42 -第二十三讲数三角形- 44 -第二十四讲等量代换- 46 -第二十五讲用等量代换解应用题- 48 -第二十六讲等差数列- 50 -第二十七讲配对求和- 52 -第二十八讲乘法的简便运算-------凑整- 54 -第二十九讲乘法的速算与巧算- 56 -第三十讲除法中的巧算- 57 -第三十一讲乘除法的简便运算- 59 -第三十二讲数的整除- 60 -第三十三讲有余数的除法- 62 -第三十四讲周期问题- 64 -第三十五讲个位数字是几- 66 -第三十六讲时间与日期- 68 -第三十七讲试商技巧- 70 -第三十八讲包含与排除- 72 -第三十九讲盈亏问题- 74 -第四十讲鸡兔同笼- 76 -第四十一讲平均数(一)- 78 -第四十二讲平均数(二)- 80 -第四十三讲和倍问题(一)- 82 -第四十四讲和倍问题(二)- 84 -第四十五讲差倍问题(一)- 86 -第四十六讲差倍问题(二)- 88 -第四十七讲和差问题(一)- 90 -第四十八讲和差问题(二)- 92 -第四十九讲逆推问题- 94 -第五十讲行程问题- 96 -第五十一讲归一问题- 98 -第五十二讲巧求周长- 100 -第五十三讲长方形和正方形的周长- 102 -第五十四讲长方形和正方形的面积- 104 -第五十五讲年龄问题(一)- 106 -第五十六讲年龄问题(二)- 108 -第五十七讲定义新运算- 110 -第五十八讲最大和最小- 112 -第一讲找规律填数(一)【专题精析】按一定规律排列起来的一列数叫做数列。
小学数学奥数方法讲义40讲(全)
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
*例6 1966、1976、1986、1996、2006这五个数的总和是多少?(适于三年级程度)1966+1976+1986+1996+2006=1966×5+10×(1+2+3+4)=9830+100=99301966+1976+1986+1996+2006=1986×5=9930例7你能从400÷25=(400×4)÷(25×4)=400×4÷100=16中得到启发,很快算出(1)600÷25(2)900÷25(3)1400÷25(4)1800÷25(5)7250÷25的得数吗?(适于四年级程度)*例8把1~1000的数字如图1-11那样排列,再如图中那样用一个长方形框框出六个数,这六个数的和是87。
如果用同样的方法(横着三个数,竖着两个数)框出的六个数的和是837,这六个数都是多少?(适于五年级程度)解:(1)观察框内的六个数可知:第二个数比第一个数大1,第三个数比第一个数大2,第四个数比第一个数大7,第五个数比第一个数大8,第六个数比第一个数大9。
因为用同样的方法框出的六个数之和是837,这六个数之中后面的五个数也一定分别比第一个数大1、2、7、8、9,所以,这六个数中的第一个数是:=135二136三137四142五143六144(2)观察框内的六个数可知:①上、下两数之差都是7;②方框中间坚行的11和18,分别是上横行与下横行三个数的中间数。
*例9有一个长方体木块,锯去一个顶点后还有几个顶点?(适于五年级程度)解:(1)锯去一个顶点(图1-12),因为正方体原来有8个顶点,锯去一个顶点后,增加了三个顶点,所以,8-1+3=10 即锯去一个顶点后还有10个顶点。
小学数学奥数方法讲义40讲
第一讲观察法————————————在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
小学数学奥数方法讲义40讲(全)
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大形的小方格中填入数字后,使大形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大形左上角的小方格中应填入3(图1-4)。
从形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
小学奥数教材举一反三六年级课程40讲全整理之欧阳光明创编
*欧阳光明*创编 2021.03.07修改整理加入目录,方便查用,六年级奥数举一反三欧阳光明(2021.03.07)目录第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a2+2b ,那么求10*6和5*(2*8)。
3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
3△(4△6)=3△【4×6-(4+6)÷2】 =3△19=4×19-(3+19)÷2 =76-11 =6513*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
(完整版)小学数学奥数方法讲义40讲(全)
第一讲观察法
在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学
第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思
是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
小学数学奥数方法讲义40讲大全集(附解题思路和).doc
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
小学数学奥数方法讲义40讲(编辑整理下载)(推荐)
第一讲观察法在解答数学题时,第一步是观察。
观察是基础,是发现问题、解决问题的首要步骤。
小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。
观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。
观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。
*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。
书中除图1-1的图形外没有文字说明。
这道题旨在引导儿童观察、思考,初步培养他们的观察能力。
这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。
实质上,这是一种幻方,或者说是一种方阵。
解:现在通过观察、思考,看小方格中应填入什么数字。
从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。
从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。
从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。
从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。
从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。
又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。
图1-5是填完数字后的幻方。
例2看每一行的前三个数,想一想接下去应该填什么数。
(适于二年级程度)6、16、26、____、____、____、____。
三年级全册奥数教程之欧阳学创编
三年级全册奥数培训教材适合年级:小学三年级目录第一讲找规律填数(一)- 4 -第二讲找规律填数(二)- 7 -第三讲找规律填数(三)- 9 -第四讲从数表中找规律- 11 -第五讲数线段- 13 -第六讲数三角形- 14 -第七讲数长方形和正方形- 15 -第八讲加法的渐变运算-----凑整- 16 -第九讲减法简便运算-----凑整- 18 -第十讲加减法的速算与巧算- 19 -第十一讲添加运算符号(一)- 20 -第十二讲添加运算符号(二)- 23 -第十三讲横式算式谜(一)- 25 -第十四讲横式算式谜(二)- 27 -第十五讲竖式加减算式谜- 29 -第十六讲竖式乘除算式谜- 31 -第十七讲文字算式谜- 33 -第十八讲填数阵图(一)- 35 -第十九讲填数阵图(二)- 36 -第二十讲不封闭路线上植树- 39 -第二十一讲封闭路线上植树- 41 -第二十二讲与植树相关的问题(一)- 43 -第二十三讲数三角形- 45 -第二十四讲等量代换- 47 -第二十五讲用等量代换解应用题- 49 -第二十六讲等差数列- 51 -第二十七讲配对求和- 53 -第二十八讲乘法的简便运算-------凑整- 55 -第二十九讲乘法的速算与巧算- 57 -第三十讲除法中的巧算- 58 -第三十一讲乘除法的简便运算- 60 -第三十二讲数的整除- 62 -第三十三讲有余数的除法- 64 -第三十四讲周期问题- 66 -第三十五讲个位数字是几- 68 -第三十六讲时间与日期- 70 -第三十七讲试商技巧- 72 -第三十八讲包含与排除- 74 -第三十九讲盈亏问题- 77 -第四十讲鸡兔同笼- 79 -第四十一讲平均数(一)- 81 -第四十二讲平均数(二)- 83 -第四十三讲和倍问题(一)- 85 -第四十四讲和倍问题(二)- 87 -第四十五讲差倍问题(一)- 89 -第四十六讲差倍问题(二)- 91 -第四十七讲和差问题(一)- 93 -第四十八讲和差问题(二)- 95 -第四十九讲逆推问题- 97 -第五十讲行程问题- 99 -第五十一讲归一问题- 102 -第五十二讲巧求周长- 104 -第五十三讲长方形和正方形的周长- 106 -第五十四讲长方形和正方形的面积- 108 -第五十五讲年龄问题(一)- 110 -第五十六讲年龄问题(二)- 112 -第五十七讲定义新运算- 114 -第五十八讲最大和最小- 116 -第一讲找规律填数(一)【专题精析】按一定规律排列起来的一列数叫做数列。
小学数学奥数方法讲义40讲(二)之欧阳治创编
第十一讲份数法————————————————姚老师数学乐园广安岳池姚文国把应用题中的数量关系转化为份数关系,并确定某一个已知数或未知数为1份数,然后先求出这个1份数,再以1份数为基础,求出所要求的未知数的解题方法,叫做份数法。
(一)以份数法解和倍应用题已知两个数的和及两个数的倍数关系,求这两个数的应用题叫做和倍应用题。
例1某林厂有杨树和槐树共320棵,其中杨树的棵数是槐树棵数的3倍。
求杨树、槐树各有多少棵?(适于四年级程度)解:把槐树的棵数看作1份数,则杨树的棵数就是3份数,320棵树就是(3+1)份数。
因此,得:320÷(3+1)=80(棵)…………………槐树80×3=240(棵)…………………杨树答略。
例2 甲、乙两个煤场共存煤490吨,已知甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。
甲、乙两个煤场各存煤多少吨?(适于四年级程度)解:题中已经给出两个未知数之间的倍数关系:甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。
因此可将乙煤场的存煤数量看作1份数,甲煤场的存煤数量就相当于乙煤场存煤数量的4倍(份)数少10吨,两个煤场所存的煤490吨就是(1+4)份数少10吨,(490+10)吨就正好是(1+4)份数。
所以乙场存煤:(490+10)÷(1+4)=500÷5=100(吨)甲场存煤:490-100=390(吨)答略。
例3 妈妈给了李平10.80元钱,正好可买4瓶啤酒,3瓶香槟酒。
李平错买成3瓶啤酒,4瓶香槟酒,剩下0.60元。
求每瓶啤酒、香槟酒各是多少钱?(适于五年级程度)解:因为李平用买一瓶啤酒的钱买了一瓶香槟酒,结果剩下0.60元,这说明每瓶啤酒比每瓶香槟酒贵0.60元。
把每瓶香槟酒的价钱看作1份数,则4瓶啤酒、3瓶香槟酒的10.80元钱就是(4+3)份数多(0.60×4)元,(10.80-0.60×4)元就正好是(4+3)份数。
二年级奥数教材之欧阳科创编
二年级奥数目录第一章:算一算第一讲巧填竖式★★★★(通过分析算式的特点,运用加、减的运算法则算出每一个数字)第二讲简便运算(一)★★★(通过把数字整十整百地加减,快速地算出结果。
多加了再减、少加了要补;多减了要补,少减了要减。
口算很重要,一定要过关)第三讲简便运算(二)★★★★(可以把运算后能得到整百、整十的先算较简便。
求几个连续数的和,可以取一个数为基准数进行计算较简便先乘除,后加减,有括号的先算括号里面的。
)第四讲简单数的分解★★(读懂题意,根据题意把数字进行拆分成对应的份数。
)第五讲数的读写★★(将两个数进行比较,比较数的大小时先看数位是否相同,相同时从高位依次进行比较)第二章:实践与应用(一)应用题★★★★(弄清要求,找出题目中的已知条件和未知条件,然后再进行列式计算,应用题的单位和答都不能遗忘)第三章:合理推算★★★★(根据已知的条件,一个一个地推理,推出一个再推下一个。
推理时逻辑很重要)第四章:趣味数学与游戏第一讲巧填数★★★★ (有利于开发思维,运用推理,根据已知条件从数字多的一方着手)第二讲数学游戏★★(一个关于求和的游戏,运用简单的除数和余数的关系)第五章:实践与应用(二)第一讲余数的妙用(二)★★★(总数除以重复的数的个数得出的结果有余数,那么余数是几,就是这组中的第几个)第二讲年龄问题★★★★(每过一年,每人都要长大一岁。
今年两个差几岁,再过几年,两人还相差几岁。
这是小朋友易错的题型,一定要注意)第三讲间隔趣谈(三)★★★(为三年级奥数打基础,明白什么是间隔,并根据间隔求问题)第四讲画画凑凑★★★(求动物的腿,每种动物腿的只数不一样)第五讲排队问题★★★(以一个人为标准,前后左右数他排在第几,然后求出所有的人数)第六章:认识时间★★★★(这是一个重点也是一个难点,分清时针、分针、秒针,并弄清它们之间的关系以及每一根针走一格表示的含义)第一章算一算第一讲巧填竖式【专题导引】“算式谜”是一种常见的猜谜游戏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲份数法欧阳光明(2021.03.07)————————————————姚老师数学乐园广安岳池姚文国把应用题中的数量关系转化为份数关系,并确定某一个已知数或未知数为1份数,然后先求出这个1份数,再以1份数为基础,求出所要求的未知数的解题方法,叫做份数法。
(一)以份数法解和倍应用题已知两个数的和及两个数的倍数关系,求这两个数的应用题叫做和倍应用题。
例1某林厂有杨树和槐树共320棵,其中杨树的棵数是槐树棵数的3倍。
求杨树、槐树各有多少棵?(适于四年级程度)解:把槐树的棵数看作1份数,则杨树的棵数就是3份数,320棵树就是(3+1)份数。
因此,得:320÷(3+1)=80(棵)…………………槐树80×3=240(棵)…………………杨树答略。
例2 甲、乙两个煤场共存煤490吨,已知甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。
甲、乙两个煤场各存煤多少吨?(适于四年级程度)解:题中已经给出两个未知数之间的倍数关系:甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。
因此可将乙煤场的存煤数量看作1份数,甲煤场的存煤数量就相当于乙煤场存煤数量的4倍(份)数少10吨,两个煤场所存的煤490吨就是(1+4)份数少10吨,(490+10)吨就正好是(1+4)份数。
所以乙场存煤:(490+10)÷(1+4)=500÷5=100(吨)甲场存煤:490-100=390(吨)答略。
例3 妈妈给了李平10.80元钱,正好可买4瓶啤酒,3瓶香槟酒。
李平错买成3瓶啤酒,4瓶香槟酒,剩下0.60元。
求每瓶啤酒、香槟酒各是多少钱?(适于五年级程度)解:因为李平用买一瓶啤酒的钱买了一瓶香槟酒,结果剩下0.60元,这说明每瓶啤酒比每瓶香槟酒贵0.60元。
把每瓶香槟酒的价钱看作1份数,则4瓶啤酒、3瓶香槟酒的10.80元钱就是(4+3)份数多(0.60×4)元,(10.80-0.60×4)元就正好是(4+3)份数。
每瓶香槟酒的价钱是:(10.80-0.60×4)÷(4+3)=8.4÷7=1.2(元)每瓶啤酒的价钱是:1.2+0.60=1.80(元)答略。
(二)以份数法解差倍应用题已知两个数的差及两个数的倍数关系,求这两个数的应用题叫做差倍应用题。
例1 三湾村原有的水田比旱田多230亩,今年把35亩旱田改为水田,这样今年水田的亩数正好是旱田的3倍。
该村原有旱田多少亩?(适于五年级程度)解:该村原有的水田比旱田多230亩(图11-1),今年把35亩旱田改为水田,则今年水田比旱田多出230+35×2= 300(亩)。
根据今年水田的亩数正好是旱田的3倍,以今年旱田的亩数为1份数,则水田比旱田多出的300亩就正好是2份数(图11-2)。
今年旱田的亩数是:(230+35×2)÷ 2=300÷2=150(亩)原来旱田的亩数是:150+35=185(亩)综合算式:(230+35×2)÷2+35=300÷2+35=150+35=185(亩)答略。
*例2 和平小学师生步行去春游。
队伍走出10.5千米后,王东骑自行车去追赶,经过1.5小时追上。
已知王东骑自行车的速度是师生步行速度的2.4倍。
王东和师生每小时各行多少千米?(适于五年级程度)解:根据“追及距离÷追及时间=速度差”,可求出王东骑自行车和师生步行的速度差是10.5÷1.5=7(千米/小时)。
已知骑自行车的速度是步行速度的2.4倍,可把步行速度看作是1份数,骑自行车的速度就是2.4份数,比步行速度多2.4-1=1.4(份)。
以速度差除以份数差,便可求出1份数。
10.5÷1.5÷(2.4-1)=7÷1.4=5(千米/小时)…………………………步行的速度5×2.4=12(千米/小时)………………………………骑自行车的速度答略。
(三)以份数法解变倍应用题已知两个数量原来的倍数关系和两个数量变化后的倍数关系,求这两个数量的应用题叫做变倍应用题。
变倍应用题是小学数学应用题中的难点。
解答这类题的关键是要找出倍数的变化及相应数量的变化,从而计算出“ 1”份(倍)数是多少。
*例1大、小两辆卡车同时载货从甲站出发,大卡车载货的重量是小卡车的3倍。
两车行至乙站时,大卡车增加了1400千克货物,小卡车增加了1300千克货物,这时,大卡车的载货量变成小卡车的2倍。
求两车出发时各载货物多少千克?(适于五年级程度)解:出发时,大卡车载货量是小卡车的3倍;到乙站时,小卡车增加了1300千克货物,要保持大卡车的载货重量仍然是小卡车的3倍,大卡车就应增加1300×3千克。
把小卡车增加1300千克货物后的重量看作1份数,大卡车增加1300×3千克货物后的重量就是3份数。
而大卡车增加了1400千克货物后的载货量是2份数,这说明3份数与2份数之间相差(1300×3-1400)千克,这是1份数,即小卡车增加1300千克货物后的载货量。
1300×3-1400=3900-1400=2500(千克)出发时,小卡车的载货量是:2500-1300=1200(千克)出发时,大卡车的载货量是:1200×3=3600(千克)答略。
*例2甲、乙两个班组织体育活动,选出15名女生参加跳绳比赛,男生人数是剩下女生人数的2倍;又选出45名男生参加长跑比赛,最后剩下的女生人数是剩下男生人数的5倍。
这两个班原有女生多少人?(适于五年级程度)解:把最后剩下的男生人数看作1份数,根据“最后剩下的女生人数是男生人数的5倍”可知,剩下的女生人数为5份数。
根据45名男生未参加长跑比赛前“男生人数是剩下女生人数的2倍”,而最后剩下的女生人数是5份数,可以算出参加长跑前男生人数的份数:5×2=10(份)因为最后剩下的男生人数是1份数,所以参加长跑的45名男生是:10-1=9(份)每1份的人数是:45÷9=5(人)因为最后剩下的女生人数是5份数,所以最后剩下的女生人数是:5×5=25(人)原有女生的人数是:25+15=40(人)综合算式:45÷(5×2-1)×5+15=45÷9×5+15=25+15=40(人)答略。
(四)以份数法解按比例分配的应用题把一个数量按一定的比例分成几个部分数量的应用题,叫做按比例分配的应用题。
例1一个工程队分为甲、乙、丙三个组,三个组的人数分别是24人、21人、18人。
现在要挖2331米长的水渠,若按人数的比例把任务分配给三个组,每一组应挖多少米?(适于六年级程度)解:甲、乙、丙三个组应挖的任务分别是24份数、21份数、18份数,求出1份数后,用乘法便可求出各组应挖的任务。
2331÷(24+21+18)=37(米)37×24=888(米)…………………甲组任务37×21=777(米)…………………乙组任务37×18=666(米)…………………丙组任务答略。
例2生产同一种零件,甲要8分钟,乙要6分钟。
甲乙两人在相同的时间内共同生产539个零件。
每人各生产多少个零件?(适于六年级程度)解:由题意可知,在相同的时间内,甲、乙生产零件的个数与他们生产一个零件所需时间成反比例。
把甲生产零件的个数看作1份数,那么,乙生产零件的个数就是:生产零件的总数539个就是:甲生产的个数:乙生产的个数:答略。
(五)以份数法解正比例应用题成正比例的量有这样的性质:如果两种量成正比例,那么一种量的任意两个数值的比等于另一种量的两个对应的数值的比。
含有成正比例关系的量,并根据正比例关系的性质列出比例式来解的应用题,叫做正比例应用题。
这里是指以份数法解正比例应用题。
例1某化肥厂4天生产化肥32吨。
照这样计算,生产256吨化肥要用多少天?(适于六年级程度)解:此题是工作效率一定的问题,工作量与工作时间成正比例。
以4天生产的32吨为1份数,256吨里含有多少个32吨,就有多少个4天。
4×(256÷32)=4×8=32(天)答略。
例2每400粒大豆重80克,24000粒大豆重多少克?(适于六年级程度)解:每400粒大豆重80克,这一数量是一定的,因此大豆的粒数与重量成正比例。
如把400粒大豆重80克看作1份数,则24000粒大豆中包含多少个400粒,24000粒大豆中就有多少个80克。
24000÷400=60(个)24000粒大豆的重量是:80×60=4800(克)综合算式:80×(24000÷400)=4800(克)答略。
(六)以份数法解反比例应用题成反比例的量有这样的性质:如果两种量成反比例,那么一种量的任意两个数值的比,等于另一种量的两个对应数值的比的反比。
含有成反比例关系的量,并根据反比例关系的性质列出比例式来解的应用题,叫做反比例应用题。
这里是指以份数法解反比例应用题。
例1有一批水果,每箱装36千克,可装40箱。
如果每箱多装4千克,需要装多少箱?(适于六年级程度)解:题中水果的总重量不变,每箱装的多,则装的箱数就少,即每箱装的重量与装的箱数成反比例。
如果把原来要装的40箱看做1份数,那么现在需要装的箱数就是原来要装箱数的:现在需要装的箱数是:答略。
天的用煤量看做1份数,那么改进炉灶后每天的用煤量是原来每天用煤量的:用煤天数与每天用煤量成反比例,原来要用24天的煤,现在可以用的天数是:答略。
(七)以份数法解分数应用题分数应用题就是指分数的三类应用题,即求一个数的几分之几是多少;求一个数是另一个数的几分之几;已知一个数的几分之几是多少,求这个数。
例1长征毛巾厂男职工人数比女职工人数少1/3,求女职工人数比男职工人数多百分之几?(适于六年级程度)解:从题中条件可知,男职工人数相当于女职工人数的:如果把女职工人数看作3份,那么男职工人数就相当于其中的2份。
所以,女职工人数比男职工人数多:(3-2)÷2=50%答略。
那么黄旗占:如果把21面黄旗看作1份数,总数量“1”中包含有多少个7/45,旗的总面数就是21的多少倍。
答略。
棉花谷多少包?(适于六年级程度)解:由题意可知,甲、乙两个仓库各运走了一些棉花之后,甲仓库剩下成8份时,甲仓库剩下的是2份;把乙仓库的棉花分成5份时,乙仓库剩下的也是2份。
但是,乙仓库剩下的2份比甲仓库剩下的2份多130包。
可以看出,乙仓库的1份比甲仓库的1份多出:130÷2=65(包)如果把乙仓库原有的棉花减少5个65包,再把剩下的棉花平均分成5份,这时乙仓库的每一份棉花就与甲仓库的每一份同样多了。