七年级上阶段性测试数学试题及答案

合集下载

2023-2024学年江苏省南通市海安市十三校七年级(上)阶段性测试数学试卷(含解析)

2023-2024学年江苏省南通市海安市十三校七年级(上)阶段性测试数学试卷(含解析)

2023-2024学年江苏省南通市海安市十三校七年级(上)阶段性测试数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作( )A. −0.15B. +0.22C. +0.15D. −0.2272.神舟七号进入地表上空,绕地球运转一周,一共运转了42100000米,请用科学记数法来表示( )A. 42.1×106米B. 421×106米C. 0.421×108米D. 4.21×107米3.如图,数轴上的点A表示的数可能是( )A. −4110B. −412C. −3110D. −3124.下列各对数中,互为相反数的是( )A. −(−2)和2B. 4和−(+4)C. 13和−3 D. 5和|−5|5.一种袋装大米的质量标识为“10±0.25千克”,则下列几袋大米中合格的是( )A. 9.70千克B. 10.30千克C. 10.51千克D. 9.80千克6.若|x|=|y|,则x与y的关系是( )A. 相等或互为相反数B. 都是零C. 互为相反数D. 相等7.如果a−b<0,且a+b<0,那么一定正确的是( )A. a为正数,且|b|>|a|B. a为负数,且|b|<|a|C. b为负数,且|b|>|a|D. b为正数,且|b|<|a|8.下列说法正确的个数有.( ) ①倒数等于本身的数只有1;②相反数等于本身的数只有0;③平方等于本身的数只有0、1、−1;④有理数不是整数就是分数;⑤有理数不是正数就是负数.A. 1个B. 2个C. 3个D. 4个9.有理数a,b在轴上的表示如图所示,则下列结论中:①ab<0,②a+b<0,③a−b<0,④a<|b|,⑤−a>−b,正确的有( )A. 2个B. 3个C. 4个D. 5个10.下列图形都是有几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )A. 32B. 29C. 28D. 26二、填空题(本大题共8小题,共24.0分)11.某市某天最高气温是−1℃,最低气温是−5℃,那么当天的最大温差是_____℃.12.−2.5的相反数是_________;−|−3|=_________;−1.5的倒数是_________.13.有理数2,+7.5,−0.03,−0.4,0,16,10中,非负整数有________个.14.四舍五入法,把130542精确到千位是_____.15.绝对值大于1并且不大于3的整数是__________.16.在数−5,−3,−2,2,6中,任意两个数相乘,所得的积中最小的数是________.17.如图,一条数轴上有点A ,B ,C ,其中点A 、B 表示的数分别是−16、9,现在以点C 为折点将数轴向右对折,若点A′落在射线CB 上,且A′B =3,则C 点表示的数是______.18.给出依次排列的一列数:−1,45,−810,1617,−3226,6437,…,按照此规律,第n 个数为_________.三、解答题(本大题共8小题,共64.0分。

七年级第一学期阶段性监测(数学)参考答案

七年级第一学期阶段性监测(数学)参考答案

七年级第一学期阶段性监测(数学)参考答案一、1-5.6-10.11-12.B C二、13.14. 答案不唯一15. 16.三、17.解:…………2分…………5分…………6分…………4分…………5分.…………6分18.解:去括号,得,…………2分移项,得4y+3y-6y-7y=-77+60,…………4分合并同类项,得-6y=-17,…………5分系数化为1得:…………6分(2)去分母,得,4(x+1)-5(x+1)=-6,…………2分去括号,得,4x+4-5x-5=-6,…………3分移项,得4x-5x=-6+1,…………4分合并同类项,得:-x=-5,…………5分系数化为1得:x=5.…………6分19.解:原式…………2分…………3分…………5分当,时,原式…………7分20.解:(1)80;…………2分设甲种服装进了件,则乙种服装进了件,由题意得,50x+80(40-x)=2750,…………5分解得:.商场销售完这批服装,共盈利15×(80-50)+25×(120-80)=1450(元)…………7分答:商场销售完这批服装,共盈利1450元.(3)由题意张先生上午购买的衣服的费用为320-3×30=230(元),所以晚上八点后打折后的价格为200—300之间.设打了y折之后再参加活动,由题意得…………9分解得:y=9.2.答:先打9.2折再进行满减活动.…………11分21.解:.…………4分与互余,,,平分,,…………6分,,,,,,即.…………9分不成立…………10分此时与之间的数量关系为.…………12分22.解:由题意可得:元,答:该用户这个月应缴纳元水费.…………3分由题意可得,,…………6分解得;…………8分(3)①116-x ;②x+76…………14分。

七年级上学期数学阶段性测试卷2.1 正数与负数(含答案)

七年级上学期数学阶段性测试卷2.1 正数与负数(含答案)

2.1 正数与负数一.选择题(共 10 小题)1.如果向北走 6 步记作+6,那么向南走 8 步记作( )A .+8 步B .﹣8 步C .+14 步D .﹣2 步2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数 若其意义相反,则分别叫做正数与负数,若气温为零上 10℃记作+10℃,则﹣3℃ 表示气温为( )A .零上 3℃B .零下 3℃C .零上 7℃D .零下 7℃3.大米包装袋上(10±0.1)kg 的标识表示此袋大米重( )A .(9.9~10.1)kgB .10.1kgC .9.9kgD .10kg4.纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负 数表示同一时刻比北京时间晚的时数):当北京 6 月 15 日 23 时,悉尼、纽约的时间分别是()A .6 月 16 日 1 时;6 月 15 日 10 时B .6 月 16 日 1 时;6 月 14 日 10 时C .6 月 15 日 21 时;6 月 15 日 10 时D .6 月 15 日 21 时;6 月 16 日 12 时 5.一种面粉的质量标识为“25±0.25 千克”,则下列面粉中合格的是( )A .24.70 千克B .25.30 千克C .24.80 千克D .25.51 千克 6.在﹣2 、+ 、﹣3、2、0、4、5、﹣1 中,负数有( )A .1 个B .2 个C .3 个D .4 个7.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合 储藏此种水饺的是()A .﹣17℃B .﹣22℃C .﹣18℃D .﹣19℃8.有四包真空包装的火腿肠,每包以标准质量 450g 为基准,超过的克数记作 正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的 是()A .+2B .﹣3C .+4D .﹣19.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中城市 时差/时悉尼 +2纽约 ﹣13不合格的是()A.Ö45.02 B.Ö44.9 C.Ö44.98 D.Ö45.0110.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%二.填空题(共10 小题)11.如果向东走3 米记为+3 米,那么向西走6 米记作.12.某种零件,标明要求是ö:20±0.02 mm(ö表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件(填“合格”或“不合格”).13.如果把长江的水位比警戒水位高0.2 米,记作+0.2 米,那么比警戒水位低0.15 米,记作米.14.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3 袋大米的实际重量是kg.15.如果+20%表示增加20%,那么减少6%记作.16.阅览室某一书架上原有图书20 本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书本.1 7.仔细思考下列各对量:①胜两局与负三局;②气温升高3℃与气温为﹣3℃;③盈利3 万元与支出3 万元;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65.其中具有相反意义的量有.18.若收入10 万元记做“+10 万元”,则支出1000 元记做“元”.19.检查5 个篮球的质量,把超过标准质量的克数记作整数,不足的克数记作负数,检查结果如表:篮球的编号与标准质量的差(g)1+42+73﹣34﹣85+9(1)最接近标准质量的是号篮球;(2)质量最大的篮球比质量最小的篮球重g.20.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.三.解答题(共6 小题)21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每100克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100 克奶粉含蛋白质为多少?(2)每100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?22.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?23.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:第一次 ﹣3 第二次 +8 第三次 ﹣9 第四次 +10 第五次 +4 第六次 ﹣6 第七次﹣2千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1. (1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶 1 千米耗油 0.5 升,这一天上午共耗油多少升?24.某公司 6 天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库) +31,﹣32,﹣16,+35,﹣38,﹣20. (1)经过这 6 天,仓库里的货品是(填增多了还是减少了).(2)经过这 6 天,仓库管理员结算发现仓库里还有货品 460 吨,那么 6 天前仓 库里有货品多少吨?(3)如果进出的装卸费都是每吨 5 元,那么这 6 天要付多少元装卸费?25.某校对七年级男生进行俯卧撑测试,以能做 7 个为标准,超过的次数用正 数表示,不足的次数用负数表示,其中 8 名男生的成绩如下表:(1)这 8 名男生的达标率是百分之几? (2)这 8 名男生共做了多少个俯卧撑?26.某检修小组从 A 地出发,在东西方向的马路上检修线路,如果规定向东行 驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km ):(1)求收工时检修小组距 A 地多远; (2)在第次记录时时检修小组距 A 地最远;(3)若每千米耗油 0.1L ,每升汽油需 6.0 元,问检修小组工作一天需汽油费多 少元?﹣1 ﹣2 ﹣3 2 0 3 1 0参考答案与试题解析一.选择题(共10 小题)1.(2017•天门)如果向北走6 步记作+6,那么向南走8 步记作()A.+8 步B.﹣8 步C.+14 步D.﹣2 步【分析】“正”和“负”是表示互为相反意义的量,向北走记作正数,那么向北的反方向,向南走应记为负数.【解答】解:∵向北走6 步记作+6,∴向南走8 步记作﹣8,故选B.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.3.(2017•六盘水)大米包装袋上(10±0.1)kg 的标识表示此袋大米重()A.(9.9~10.1)kgB.10.1kg C.9.9kg D.10kg【分析】根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”千克,∴大米质量的范围是:9.9~10.1 千克, 故选:A .【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目 中的实际意义.4.(2017•聊城)纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间 早的时数,负数表示同一时刻比北京时间晚的时数):当北京 6 月 15 日 23 时,悉尼、纽约的时间分别是( )A .6 月 16 日 1 时;6 月 15 日 10 时B .6 月 16 日 1 时;6 月 14 日 10 时C .6 月 15 日 21 时;6 月 15 日 10 时D .6 月 15 日 21 时;6 月 16 日 12 时 【分析】由统计表得出:悉尼时间比北京时间早 2 小时,悉尼比北京的时间要早 2 个小时,也就是 6 月 16 日 1 时.纽约比北京时间要晚 13 个小时,也就是 6 月 15 日 10 时.【解答】解:悉尼的时间是:6 月 15 日 23 时+2 小时=6 月 16 日 1 时, 纽约时间是:6 月 15 日 23 时﹣13 小时=6 月 15 日 10 时. 故选:A .【点评】本题考查了正数和负数.解决本题的关键是根据图表得出正确信息,再 结合题意计算.5.一种面粉的质量标识为“25±0.25 千克”,则下列面粉中合格的是( )A .24.70 千克B .25.30 千克C .24.80 千克D .25.51 千克【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表 示.【解答】解:“25±0.25 千克”表示合格范围在 25 上下 0.25 的范围内的是合格 品,即 24.75 到 25.25 之间的合格, 故只有 24.80 千克合格. 故选:C .城市 时差/时悉尼 +2纽约 ﹣13【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.在﹣2 、+ 、﹣3、2、0、4、5、﹣1 中,负数有()A.1 个B.2 个C.3 个D.4 个【分析】根据负数的定义逐一判断即可.【解答】解:在﹣2 、+、﹣3、2、0、4、5、﹣1 中,负数有在﹣2、﹣3、﹣1 共3 共个.故选:C.【点评】本题考查了负数的定义:小于0 的数是负数.7.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A 不符合题意;B、﹣22℃<﹣20℃,故B 不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C 不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D 不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.8.有四包真空包装的火腿肠,每包以标准质量450g 为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣1【分析】根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|2|=2,|﹣3|=3,|+4|=4,|﹣1|=1,∵1<2<3<4,∴从轻重的角度来看,最接近标准的是记录为﹣1.故选:D.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.9.(2016•金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Ö45.02 B.Ö44.9 C.Ö44.98 D.Ö45.01【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03.∵44.9 不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.10.(2016•宜昌)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵“盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.二.填空题(共10 小题)11.如果向东走3 米记为+3 米,那么向西走6 米记作﹣6 米.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意,向西走6 米记作﹣6 米.故答案为:﹣6 米.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示12.某种零件,标明要求是ö:20±0.02 mm(ö表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).【分析】ö20±0.02 mm,知零件直径最大是20+0.02=20.02,最小是20﹣0.02=19.98,合格范围在19.98 和20.02 之间.【解答】解:零件合格范围在19.98 和20.02 之间.19.9<19.98,所以不合格.故答案为:不合格.【点评】本题考查数学在实际生活中的应用.13.如果把长江的水位比警戒水位高0.2 米,记作+0.2 米,那么比警戒水位低0.15 米,记作﹣0.15 米.【分析】由已知长江的水位比警戒水位高0.2 米,记作+0.2 米,根据正负数的意义可得出.【解答】解:已知长江的水位比警戒水位高0.2 米,记作+0.2 米,则比警戒水位低0.15 米,记作﹣0.15 米.故答案为:﹣0.15 米.【点评】此题考查了学生对正负数意义的理解与掌握.关键是高记“+”,则低记“﹣”.14.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3 袋大米的实际重量是49.3kg.【分析】根据有理数的加法,可得答案.【解答】解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.【点评】本题考查了正数和负数,利用有理数的加法运算是解题关键.15.(2016 秋•渝北区期末)如果+20%表示增加20%,那么减少6%记作﹣6% .【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.【解答】解:根据正数和负数的定义可知,﹣6%表示减少6%,故答案为:﹣6%【点评】此题考查正数和负数问题,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.16.阅览室某一书架上原有图书20 本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书19 本.【分析】(﹣3,+1)表示借出3 本归还1 本,求出20 与借出归还的和就是该书架上现有图书的本数,【解答】解:20﹣3+1﹣1+2=19(本)故答案为:19【点评】本题考查了有理数的加减混合运算,弄懂记录(﹣3,+1)等是关键.17.仔细思考下列各对量:①胜两局与负三局;②气温升高3℃与气温为﹣3℃;③盈利3 万元与支出3 万元;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65.其中具有相反意义的量有①②.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.【解答】解:①胜两局与负三局,符合题意;②气温升高3℃与气温为﹣3℃,符合题意;③盈利3 万元与支出3 万元,不合题意;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65,不合题意.故答案为:①②.【点评】此题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.18.若收入10 万元记做“+10 万元”,则支出1000 元记做“ ﹣1000元”.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意得:支出1000 元记作:﹣1000 元;故答案为:﹣1000;【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.19.检查5 个篮球的质量,把超过标准质量的克数记作整数,不足的克数记作负数,检查结果如表:篮球的编号与标准质量的差(g)1+42+73﹣34﹣85+9(1)最接近标准质量的是 3 号篮球;(2)质量最大的篮球比质量最小的篮球重17 g.【分析】(1)根据超过标准质量的克数记作整数,不足的克数记作负数,绝对值最小的最接近标准,可得最接近标准质量的球;(2)根据质量最大的篮球减去质量最小的篮球,可得(2)的结果.【解答】解:(1)∵|4|=4,|7|=7,|﹣3|=3,|﹣8|=8,|9|=9,3<4<7<8<9,∴3 号球质量接近标准质量,故答案为:3;(2)质量最大的排球比质量最小的排球重:9﹣(﹣8)=17(克),故答案为:17.【点评】本题考查了绝对值、有理数的减法在实际中的应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.20.(2017•江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为﹣3 .【分析】根据有理数的加法,可得答案.【解答】解:图②中表示(+2)+(﹣5)=﹣3,故答案为:﹣3.【点评】本题考查了有理数的运算,利用有理数的加法运算是解题关键.三.解答题(共6 小题)21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每100克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100 克奶粉含蛋白质为多少?(2)每100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?【分析】(1)平均每100 克奶粉含蛋白质为:标准克数+其余数的平均数,把相关数值代入即可求解;(2)找到合格的奶粉的数目,除以总数目即为所求的合格率.【解答】解:(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5 为不合格,那么合格的有6 个,合格率为=60%.【点评】用到的等量关系为:平均数=标准+和标准相比其余数的平均数;合格率等于合格数目与总数目之比.22.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果;(2)求出每一段到出发点的距离,即可判断出结果;(3)利用绝对值的性质以及有理数加法法则求出即可.【解答】解:(1)(+40)+(﹣30)+(+50)+(﹣25)+(+25)+(﹣30)+(+15)+(﹣28)+(+16)+(﹣18)=+15(米);答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40﹣30=10m,第三段,10+50=60m,第四段,60﹣25=35m,第五段,35+25=60m,第六段,60﹣30=30m,第七段,30+15=45m,第八段,45﹣28=17m,第九段,17+16=33m,第十段,33﹣18=15m,∴在最远处离出发点60m;(3)∵|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=277(米),答:球员在一组练习过程中,跑了277 米.【点评】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.23.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1 千米耗油0.5 升,这一天上午共耗油多少升?【分析】(1)将题目中的数据相加,即可解答本题;(2)取题目中的各个数据的绝对值,将它们相加再乘以0.5 即可解答本题.【解答】解:(1)由题意可得,5+(﹣4)+3+(﹣7)+4+(﹣8)+2+(﹣1)=﹣6,答:A 处在岗亭南方,距离岗亭6 千米;(2)由题意可得,0.5×(5+4+3+7+4+8+2+1)=0.5×34=17,答:这一天上午共耗油17 升.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.24.某公司6 天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6 天,仓库里的货品是减少(填增多了还是减少了).(2)经过这6 天,仓库管理员结算发现仓库里还有货品460 吨,那么6 天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5 元,那么这6 天要付多少元装卸费?【分析】(1)将所有数据相加即可作出判断,若为正,则说明增多了,若为负,则说明减少了;(2)结合(1)的答案即可作出判断;(3)计算出所有数据的绝对值之和,然后根据进出的装卸费都是每吨5 元,可得出这6 天要付的装卸费.【解答】解:(1))+31﹣32﹣16+35﹣38﹣20=﹣40(吨),∵﹣40<0,∴仓库里的货品是减少了.故答案为:减少了.(2)+31﹣32﹣16+35﹣38﹣20=﹣40,即经过这6 天仓库里的货品减少了40 吨,所以6 天前仓库里有货品460+40=500 吨.(3)31+32+16+35+38+20=172(吨),172×5=860(元).答:这6 天要付860 元装卸费.第一次 ﹣3 第二次 +8 第三次 ﹣9 第四次 +10 第五次 +4 第六次 ﹣6 第七次﹣2【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性, 确定具有相反意义的.25.某校对七年级男生进行俯卧撑测试,以能做 7 个为标准,超过的次数用正 数表示,不足的次数用负数表示,其中 8 名男生的成绩如下表:(1)这 8 名男生的达标率是百分之几? (2)这 8 名男生共做了多少个俯卧撑?【分析】(1)达标的人数除以总数就是达标的百分数.(2)要求学生共做的俯卧撑的个数,需理解所给出数据的意义,根据题意知, 正数为超过的次数,负数为不足的次数.【解答】解:(1)这 8 名男生的达标的百分数是 ×100%=62.5%;(2)这 8 名男生做俯卧撑的总个数是:(2﹣1+0+3﹣2﹣3+1+0)+8×7=56 个. 【点评】本题考查了正数和负数的知识,属于基础题,解决本题的关键理解已知 中正数、负数的含义.26.某检修小组从 A 地出发,在东西方向的马路上检修线路,如果规定向东行 驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km ):(1)求收工时检修小组距 A 地多远;(2)在第五次记录时时检修小组距 A 地最远;(3)若每千米耗油 0.1L ,每升汽油需 6.0 元,问检修小组工作一天需汽油费多 少元?【分析】(1)七次行驶的和即收工时检修小组距离 A 地的距离;(2)计算每一 次记录检修小组离开 A 的距离,比较后得出检修小组距 A 地最远的次数;(3) 每次记录的绝对值的和,是检修小组一天的行程,根据单位行程的耗油量计算出 该检修小组一天的耗油量.﹣1 ﹣2 ﹣3 2 0 3 1 0【解答】解:(1)﹣3+8﹣9+10+4﹣6﹣2=2(km),所以收工时距A 地2 km(2)第一次后,检修小组距A 地3km;第二次后,检修小组距A 地﹣3+8=5(km);第三次后,检修小组距A 地﹣3+8﹣9=﹣4(km)第四次后,检修小组距A 地﹣3+8﹣9+10=6(km)第五次后,检修小组距A 地﹣3+8﹣9+10+4=10(km)第六次后,检修小组距A 地﹣3+8﹣9+10+4﹣6=4(km)第七次后,检修小组距A 地﹣3+8﹣9+10+4﹣6﹣2=2(km)故答案为:五(3)(3+8+9+10+4+6+2)×0.1×6.0=42×0.1×6.0=25.2(元)答:检修小组工作一天需汽油费25.2 元【点评】本题考查了有理数的加减法在生活中的应用.耗油量=行程×单位行程耗油量.。

七年级数学上册第1章至第2章阶段性测试卷(含答案)

七年级数学上册第1章至第2章阶段性测试卷(含答案)

学校姓名班级______________学号___________ ………………………………………线………………………………订…………………………………装……………………………………… 初一阶段性测试数学试卷(第一章)一、精心选一选(每小题3分,共30分) 1、-3の相反数是( ) A 、31- B 、31 C 、-3 D 、3 2、国家游泳中心――“水立方”是北京2008年奥运会场馆之一,它の外层膜の展开面积均为260000平方米,将260000用科学记数法表示应为( )A 、0.26×106B 、26×104C 、2.6×105D 、2.6×106 3、下列四个数中,最小の数是( )A 、-2B 、0C 、21- D 、32 4、一天早晨の温度是-7℃,中午の温度比早晨上升了11℃,那么中午の温度是( ) A 、11℃ B 、4℃ C 、18℃ D 、-4℃5、下列运算の结果中,是正数の是( )A 、(-1)×(-2010)B 、(-1)2010C 、(-2010)÷2010D 、-2010+16、计算(-1)3の结果是( )A 、1B 、-1C 、3D 、-37、下列各对数中,互为倒数の是( ) A 、2.051与- B 、5454与- C 、3223与 D 、2211与8、请指出下面计算错在哪一步( ))311()51()32()54(1+---+-+3115132541-+-= …………①)31132()51541(--+= …… …②)32(2--= …… …③322322=+= …… …④A 、①B 、②C 、③D 、④9、两个有理数a 、b 在数轴上の位置如图所示,则下列各式正确の是( )A 、a >bB 、a <bC 、-a <-bD 、b a <10、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256 …根据上述算式の规律,你认为22007の末位字是( )A 、2B 、4C 、8D 、611.0.004007有__ ___个有效数字A .2B .3C .4D .5二、细心填一填(每题3分,共45分) 1.收入358元记作+358元,则支出213元记作 _________元。

2019-2020年七年级数学上学期阶段性测试试题及答案(苏教版)

2019-2020年七年级数学上学期阶段性测试试题及答案(苏教版)

2019-2020年七年级数学上学期阶段性测试试题及答案(苏教版)本试卷由填空题、选择题和解答题三大题组成,共27题,满分130分。

考试用时120分钟。

注意事项:1、答题前,考生务必将班级、姓名、考试号填写子答题卷相应的位置上。

2、考生答题必须用0.5mm黑色墨水签字笔写在答题卷制定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题,答在试卷和草稿纸上的一律无效。

一、选择题:(每题3分,共30分,答案请填写在答题卷相对应的位置上)1、|-2|的相反数是(▲)A、2B、-2C、D、2、如果60m表示“向北走60m”,那么“向南走40m”可以表示为(▲)A. B. C. D.3、下列各数中,π,1.090 090 009…,,0,3.1415是无理数的有(▲)A.1个B.2个C.3个D.4个4、下列各数中数值相等的是(▲)A.32与23 B.-23与(-2)3 C.-32与(-3)2 D.[-2×(-3)]2与2×(-3)25、如图是一个简单的数值运算程序,当输入的x的值为2时,则输出的值为(▲)A.—4 B.4 C.5 D.—86、从哈尔滨开往某市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价有(▲)A.3种 B.4种 C.6种 D.12种7、设a为最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于自身的有理数,则的值为(▲)A. B. C.或 D.或8.若有理数a、b、c在数轴上的位置如图所示,则将-a、-b、c按从小到大的顺序排列为(▲)A.-b<c<-a B.-b<-a<cC.-a<c<-b D.-a<-b<c9.若,那么代数式(a+b) xx的值是(▲)A.xx B.-2009 C.1 D.-110.将正整数按如图所示的位置顺序排列:根据排列规律,则xx 应在(▲)A.A处 B.B处 C.C处 D.D处二、填空题(每题3分,共24分,把解答过程写在答题卷相对应的位置上)11、比-xx大1的数是▲12、的相反数是___▲_____,倒数是____▲____,绝对值是___▲____.13、今后三年内各级政府拟投入医疗卫生领域的资金将达到8 500亿元人民币,用科学记表法表示“8 500亿”为 ▲ 14、数轴上一点A ,一只蚂蚁从A 出发爬了4个单位长度到了原点,则点A 所表示的数是 ▲ 15、某天股票B 的开盘价为10元,上午11:00下跌了1.8元,下午收盘时上涨了1元,则该股票这天的收盘价为 ▲16、绝对值大于1而不大于3的所有整数的和是 ▲ .17、对于自然数a 、b 、c 、d ,定义 表示运算ac -bd .已知 =2,则b +d 的值为 ▲ .18、计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测3xx+1的个位数字是 ▲二、填空题(共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明。

精选初中七年级上数学第一次阶段性测试数学试题(部分带答案)共3份

精选初中七年级上数学第一次阶段性测试数学试题(部分带答案)共3份
【点睛】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.
9.现有以下四个结论:①绝对值等于其本身的有理数只有零;②相反数等于其本身的有理数只有零;③﹣a一定是负数;④一个有理数不是整数就是分数;⑤若两个数的绝对值相等,则这两个数一定相等.其中错误的有()
A.1个B.2个C.3个D.4个
三、解答题
19.计算:
(1)(﹣8 )+(+4.5)
(2)(﹣43)+(﹣28)﹣(+27)﹣(﹣21)
(3)(﹣1.5)﹣(﹣5.25)+(+3 )﹣(+6 )
(4)(﹣ + ﹣ )×|﹣24|
(5)1﹣[(﹣1)﹣( )+5﹣( )]+|﹣4|
(6)|﹣7 +2 |+(﹣2 )+|﹣4﹣ |
【答案】(1) ;(2)-77;(3)1;(4)-2;(5)2;(6)7
非正整数集合{﹣6,0,﹣ ,﹣|﹣5|,…}.
【点睛】本题考查了有理数以及相反数和绝对值的定义,认真掌握正数、分数、自然数、正有理数、非正整数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.
21.在数轴上把下列各数表示出来,并用“<”连接各数.
﹣|﹣2.5|,1 ,0,﹣(﹣2 ),﹣4,﹣5.
【详解】解:-10-(-24),
=24-10,
=14℃.
故选:C.
【点睛】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.
4.数轴上点 表示的数是 ,将点 在数轴上平移 个单位长度得到点 .则点 表示的数是()
A. B. 或
C. D. 或
【答案】D

2022-2023学年人教版七年级数学上册第一次阶段性综合测试题+答案

2022-2023学年人教版七年级数学上册第一次阶段性综合测试题+答案

2022-2023学年人教版七年级数学上册第一次阶段性综合测试题(附答案)一、精心选一选!(每小题3分,共30分)1.2020的相反数是()A.2020B.C.﹣2020D.﹣2.某种大米包装袋上印有这样的字样“净含量:25±0.25kg”,则一袋这种合格的大米其实际净含量可能是()A.25.28kg B.25.18kg C.24.69kg D.24.25kg3.下列各数:﹣|﹣1|,﹣32,(﹣)3,﹣()2,﹣(﹣1)2021,其中负数有()A.2个B.3个C.4个D.5个4.已知x=1,|y|=2且x>y,则x﹣y的值是()A.﹣1B.﹣3C.1D.35.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数,带负号的表示同一时刻比北京时间晚的时数)城市纽约巴黎东京芝加哥时差/时﹣13﹣7+1﹣14如果现在是北京时间9月11日15时,那么现在的纽约时间是()A.9月10日21时B.9月12日4时C.9月11日4时D.9月11日2时6.已知有理数a,b在数轴上的位置如图所示,则a,﹣b,﹣a,b从大到小的顺序为()A.b>a>﹣a>﹣b B.﹣a>﹣b>a>b C.b>﹣a>a>﹣b D.﹣a>a>﹣b>b 7.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和18.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷=36×﹣12×=16丁:(﹣3)2÷×3=9÷1=9A.甲B.乙C.丙D.丁9.设abc≠0,且a+b+c=0,则+++的值可能是()A.0B.±1C.±2D.0或±210.正方形ABCD在数轴上的位置如图所示,点A、D对应的数分别为0和﹣1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则连续翻转2021次后,数轴上数2021所对应的点是()A.点A B.点B C.点C D.点D二、填空题(共24分)11.的倒数是.12.某市某天最高气温是﹣1℃,最低气温是﹣5℃,那么当天的最大温差是℃.13.用“>”“<”填空.(1)﹣0.02 1;(2)﹣()﹣|﹣|.14.已知|x+2|+(y﹣4)2=0,求x y的值为.15.绝对值小于2.5的整数有个,它们的积为.16.小颖同学做这样一道题“计算|﹣5+△|”,其中“△”是被墨水污染看不清的一个数,她翻开后面的答案,得知该题的计算结果是3,那么“△”表示的数是.17.已知a为有理数,{a}表示不小于a的最小整数,如{}=1,{﹣3}=﹣3,则计算{﹣6}﹣{5}×{﹣1}÷{4.9}=.18.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是.三、解答题(满分66分)19.请你把下列各数填入表示它所在的数的集合内:(﹣3)4,﹣(﹣2)5,﹣62,|﹣0.5|﹣2,20%,﹣0.13,﹣7,,0,4.7,正有理数集合:{ …};整数集合:{ …};负分数集合:{ …};自然数集合:{ …}.20.画出数轴,在数轴上表示下列各数,并将上述数据用“<”号连接起来﹣(+4),﹣(﹣2),0,+(﹣1.5),﹣|﹣3|21.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(﹣0.5)﹣(﹣3)+2.75﹣(+7);(3)1×﹣(﹣)×2+(﹣)÷1;(4)(﹣﹣+)×(﹣24);(5)﹣22÷﹣[22﹣(1﹣×)]×12;(6)﹣81÷2×|﹣|﹣(﹣3)3÷27.22.已知:a与b互为相反数,c与d互为倒数,x是到原点距离为3的数,y是最大的负整数.求:2x﹣cd+6(a+b)﹣y2022的值.23.粮库3天内进出库的吨数记录如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过3天,粮库里的粮食是增多了还是减少了?(2)经过3天,粮库管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存量有多少吨?(3)如果进库出库的装卸费都是每吨5元,那么这3天要付出多少装卸费?24.(10分)已知|a|=5,b2=4,c3=﹣8.(1)若a<b<0,求a+b的值;(2)若abc>0,求a﹣3b﹣2c的值.25.在数轴上,若点C到点A的距离恰好是3,则称点C为点A的“幸福点”;若点C到点A,B的距离之和为6,则称点C为点A,B的“幸福中心”.(1)如图1,点A表示的数是﹣1,则点A的“幸福点”C表示的数是.(2)如图2,点M表示的数是﹣2,点N表示的数是4,若点C为点M,N的“幸福中心”,则点C表示的数可以是(填两个即可);(3)如图3,点A表示的数是﹣1,点B表示的数是4,点P表示的数是8,点Q从点P 出发,以2单位/s的速度沿数轴向左运动,经过多少时间点Q是点A,B的“幸福中心”?26.如图,数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的式子表示:第n行的最后一个数是,第n行第一个数是,第n行共有数;(3)求第n行各数之和(只需要写出算式)参考答案一、精心选一选!(每小题3分,共30分)1.解:2020的相反数是:﹣2020.故选:C.2.解:大米的质量的范围是:在25﹣0.25=24.75kg,与25+0.25=25.25kg之间都是合格的,在这个范围内的数只有B.故选:B.3.解:∵﹣|﹣1|=﹣1<0,﹣32=﹣9<0,(﹣)3=,﹣()2=﹣,﹣(﹣1)2021=1>0,∴负数有:﹣|﹣1|,﹣32,(﹣)3,﹣()2,共4个.故选:C.4.解:∵x=1,|y|=2且x>y,∴x=1,y=﹣2,则x﹣y=3.故选:D.5.解:根据题意可得,15+(﹣13)=2,即纽约时间为9月11日2时.故答案为:D.6.解:在数轴上表示a,﹣b,﹣a,b,如图:由数轴上的点表示的数右边的总比左边的大,得:﹣b<a<﹣a<b,即b>﹣a>a>﹣b.故选:C.7.解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C错误,符合题意,故选:C.8.解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷=36×﹣12×=16,做对了;。

七年级数学上册 阶段性测试(一)(含答案)

七年级数学上册 阶段性测试(一)(含答案)

A.5个
C.3个
B.4个
D.2个
杭州良品图书有限公司
阶段性测试(一)
7.下列各式中正确的是( C ) A.-|-16|>0 4 5 C.- >- 7 7
第5 页
B.|0.2|>|-0.2| 1 D.-6<0
8.下表是某市四个景区今年2月份某天6时的气温,其中气温最低的景区是 ( C )
精彩练习 七年级 数学
阶段性测试(一) [考查范围:1.1~1.4]
杭州良品图书有限公司

A.-3
选择题
(每小题3分,共32分)
1.在数-3,-2,0,3中,大小在-1和2之间的数是( C ) B.-2 C.0 D.3
2.仔细思考以下各对量: ①胜二局与负三局; ②气温上升3 ℃与气温下降3 ℃; ③盈利5万元与支出5万元;
第 10 页
解:(1)原式=10+12=22. 3 1 7 (2)原式= - = . 5 4 20 10 3 (3)原式= × =5. 3 2 1 (4)原式=20÷ -15=80-15=65. 4
杭州良品图书有限公司
阶段性测试(一)
第 11 页
16.(10分)如图所示,已知A,B,C,D四个点在一条没有标明原点的数轴上. (1)若点A和点C表示的数互为相反数,则原点为__B __.
④增加10%与减少20%.
其中具有相反意义的量有( C A.1对 B.2对 ) C.3对 D.4对
杭州良品图书有限公司
阶段性测试(一)
3.下列说法中不正确的是( B )
A.0的相反数、绝对值都是0 B.0是最小的整数 C.0大于一切负数 D.0是最小的非负数 4.如图,在数轴上点A表示的数最可能是( C )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学
本试卷由填空题、选择题和解答题三大题组成,共27题,满分130分。

考试用时120分钟。

注意事项:
1、 答题前,考生务必将班级、姓名、考试号填写子答题卷相应的位置上。

2、 考生答题必须用0.5mm 黑色墨水签字笔写在答题卷制定的位置上,不在答题区域内的答案一律
无效,不得用其他笔答题,答在试卷和草稿纸上的一律无效。

一、选择题:(每题3分,共30分,答案请填写在答题卷相对应的位置上) 1、|-2|的相反数是(▲) A 、2 B 、-2 C 、
2
1-
D 、21
2、如果60m 表示“向北走60m ”,那么“向南走40m ”可以表示为(▲) A.m 20-
B. m 20
C. m 40-
D. m 40
3、下列各数中.
.
3.14,π,1.090 090 009…,22
7
,0,3.1415是无理数的有(▲) A .1个
B .2个
C .3个
D .4个
4、下列各数中数值相等的是(▲)
A .32
与23
B .-23
与(-2)3
C .-32
与(-3)2
D .[-2×(-3)]2
与2×(-3)2
5、如图是一个简单的数值运算程序,当输入的x 的值为2时,则输出的值为(▲)
A .—4
B .4
C .5
D .—8
6、从哈尔滨开往某市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价有(▲)
A .3种
B .4种
C .6种
D .12种
7、设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于自身的有理数,则d c b a -+-的值为(▲) A.1
B.3
C.1或3
D.2或1-
8.若有理数a 、b 、c 在数轴上的位置如图所示,则将-a 、-b 、c 按从小到大的顺序排列为(▲)
A .-b<c<-a
B .-b<-a<c
C .-a<c<-b
D .-a<-b<c 9.若()2
210a b ++-=,那么代数式(a+b)
2009
的值是(▲)
A .2009
B .-2009
C .1
D .-1 10.将正整数按如图所示的位置顺序排列:
根据排列规律,则2009 应在(▲)
A .A 处
B .B 处
C .C 处
D .D 处 二、填空题(每题3分,共24分,把解答过程写在答题卷相对应的位置上) 11、比-2015大1的数是 ▲
12
12、1
35
-的相反数是___▲_____,倒数是____▲____,绝对值是___▲____.
13、今后三年内各级政府拟投入医疗卫生领域的资金将达到8 500亿元人民币,用科学记表法表示“8 500亿”为 ▲
14、数轴上一点A ,一只蚂蚁从A 出发爬了4个单位长度到了原点,则点A 所表示的数是 ▲ 15、某天股票B 的开盘价为10元,上午11:00下跌了1.8元,下午收盘时上涨了1元,则该股票这天的收盘价为 ▲
16、绝对值大于1而不大于3的所有整数的和是 ▲ . 17、对于自然数a 、b 、c 、d ,定义
a d
b
c 表示运算ac -b
d .已知2d 4
b =2,则b +d 的值为 ▲ . 18、计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规
律,猜测32009+1的个位数字是 ▲
二、填空题(共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明。

) 19、(本题6分)先把下列各数在数轴上表示出来,再按从小到大的顺序用“<”号把这些数连接起来:
12
-
, 2.5-,0,2
2-,()4--;
20.(本题6分)把下列各数填入它所属的集合内:
5.2, 0,
2
π, 722,(4)+-,324-,-(-3 ), -0.030030003…
(1)分数集合:{ …} (2)非负整数集合:{ …} (3)有理数集合:{ …}
21.计算(本题24分,每小题4分)
(1)24+(一14)+(一16)+8: (2)4139
17575
-+-+;
( 3)112542(4)429-⨯÷-⨯ (4)157
()(36)2912
-+⨯-
(5)2
27(3)65-⨯--⨯+ (6)411110.563⎡⎤⎛
⎫----⨯⨯ ⎪⎢⎥⎝⎭⎣⎦
22、(本题5分)已知有理数a 、b 、c 、d ,若它们分别满足:a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求
20132m a b
cd m
+-+
的值。

23、(本题6分)七年级一班共有48名同学,班级决定每人购买一本定价为5元的《中学生数学学习手册》,书店对购买50本及50本以上者给予九折优惠,请你设计一下,怎样买书最省钱? 24、(本题6分)小明和小亮利用温差来测量山峰的高度,小亮在山脚测得的温度是4℃,此时小明在山顶测得的温度是2℃.已知该地区高度每上升100 m ,气温下降0.8℃,求这个山峰的高度. 25、(本题8分)66路公交车沿东西方向行驶,如果把车站的起点记为0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程(单位:km)依次如下表所示:
(1)该车最后是否回到了车站?为什么?
(2)这辆车离开出发点最远是多少千米?用数轴表示。

(3)这辆车在上述过程中一共行驶了多少千米?
26、(本题6分)观察、猜想、验证、求值.
从2开始,连续偶数相加,它们的和的情况如下表(加数的个数为n ,和为s): 1 2=1×2 2 2+4=6=2×3 3 2+4+6=12=3×4 4 2+4+6+8=20=4×5 5 2+4+6+8+10=30=5×6
当n 个连续偶数相加时,它们的和s 与n 之间有什么样的关系?请用公式表示出来,并由此计算
2+4+6+…+202的值.
27、(本题9分)已知A 、B 在数轴上分别表示a 、b .
(1)对照数轴填写下表:
(2)若A 、B 两点间的距离记为d ,试问d 和a 、b (a <b )有何数量关系; (3)求出数轴上到7和-7的距离之和为14的所有整数的和;
(4)若点C 表示的数为x ,当点C 在什么位置时,12x x ++-取得的值最小.
a
6 -6 -6 2 -1.5 b
4 0 -4 -10 -1.
5 A 、B 两点的距离
2
第一学期阶段性测试(一)
七年级数学
一、选择题:本大题共10小题,每小题3分,共30分.
11、____-2014 _ 12、___513
_____、___16
5_____、___51
3_____ 13、___11108⨯_____ 14、___±4 _____ 15、___9.2元 _____ 16、___0 _____ 17、___5或7 _____ 18、___ 4 _____ 三、解答题:本大题共8小题,共70分. 19、(本题6分). 数轴略,(5分)
22-<1
2
-<0< 2.5-<()4--(1分)
20、(本题6分).
(1)分数集合:{ 5.2,
227,3
24
- …} (2分) (2)非负整数集合:{ 0,-(-3) …} (2分) (3)有理数集合:{5.2, 0, 722,(4)+-,3
24
-,-(-3 )…} (2分) 21、(本题24分)
(1) 解:原式= 2 (2) 解:原式= 2 (3) 解:原式= 6 (4) 解:原式= -19
(5) 解:原式= -5
(6) 解:原式= -2
22、(本题5分)
a+b=0(1分),cd=1(1分),m =±2(1分) 原式=-2012或-2014(2分)
23、(本题6分)
买48本需要240元(2分)
50本只需要225元(3分)
因此该班一次性买50本最省钱(1分) 24、(本题6分) 4-2=2(2分)
2÷0.8=2.5(2分)
2.5×100=250(2分)
25、(本题8分)
(1)该车最后回到了车站.(1分)+5-3+10-8-6+12-10=0(2分)
(2)数轴表示略(2分)12 km (1分)
(3)54 km.(2分)
26、(本题6分)
和s等于n与n+1的乘积,即s=n(n+1).(2分)
2+4+6+…+202=1
2
×202×(
1
2
×202+1)=101×102=10 302(4分)
27、(本题9分)
(1)6,2,12;(3分)
(2)由(1)可得:d=|a-b|或d=b-a;(2分)
(3)所有满足条件的整数之和为:
-7+(-6)+(-5)+(-4)+(-3)+(-2)+(-1)+0+1+2+3+4+5+6+7=0;(2分)
(4)根据数轴的几何意义可得-1和2之间的任何一点均能使|x+1|+|x-2|取得的值最小.故可得:点C的范围在:-1≤x≤2时,能满足题意.(2分)。

相关文档
最新文档