带电粒子在有界磁场中运动的临界问题

合集下载

(完整版)带电粒子在有界磁场中运动的临界问题

(完整版)带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。

粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。

如何分析这类相关的问题是本文所讨论的内容。

一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

磁场临界问题

磁场临界问题

带电粒子在有界磁场中运动的临界问题湖北省黄梅县第五中学石成美“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD 边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

带电粒子在有界匀强磁场中运动的临界问题

带电粒子在有界匀强磁场中运动的临界问题
轨迹圆的圆心是在以O为圆心、以R=mv/qB为半径的圆弧上
分析方法:
(1)找圆心的集合, 画各个v方向的圆, 找临界圆
(2)先画某个v方向 上的圆,再将圆绕入 射点旋转,找临界圆 (“硬币法”)
应用2.如图所示,真空室内存在匀强磁场,磁场方向垂
直于纸面向里,磁感应强度的大小B=0.60T,磁场内有
O
几何法求半径(抓住弦、弧、半
径、角度的关系;
3、找回旋角 确定运动时间
(α单位为弧度) S为弧长
类型一:给定有界匀强磁场,研究带电粒子运动情况
情景1:带正电粒子入射速度方向确定,而大小变化,垂直进入无
界匀强磁场后所有可能的运动轨迹,这些轨迹有什么共同点
粒子进入单
边磁场时,入
射速度与边 界夹角等于
a
b
L
C s
解答:
DB
a
A
D
Bb
R L 2R
C s
情景3 :入射粒子的速度大小、方向都改变,那会是什么情况?
如图所示,两个同心圆为匀强磁场的内外边界,内半径为R1,外 半径为R2,磁场方向垂直纸面向里,已知带正电粒子的电荷为q, 质量为m,匀强磁场的磁感应强度为B,带正电的粒子以某一速 度v从内边界上的A点射入磁场区域。
y
已知圆的一条弦,以此弦为 直径的圆的面积是最小的
30°
a
v
R
r O’
O
b
x
v 60°
思考:若磁场区域是矩形,求最小的矩形面积
小结
带电粒子在有界磁场中运动时,经常会有极 值与临界问题的出现。--找临界圆是关键
类型一:给定有界磁场,研究带电粒子运动情况
情景1:入射速度方向确定,而大小变化

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题“带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场中的运动” 则是此考点中的一个难点.其难点在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,然后应用数学工具和相应物理规律分析解决问题.下面举例谈谈带电粒子在不同形状有界磁场中运动的一些临界问题.一、 带电粒子在“圆形磁场区域”中的运动例1、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.解析:设粒子在洛仑兹力作用下的轨道半径为R ,由Rv m Bq v 2= 得cm m m Bq mv R 2020.0102.3332.0102.31064.619627==⨯⨯⨯⨯⨯==-- 虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周运动的圆心必落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线.由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆直径的A 端射出.如图2,作出磁偏转角ϕ及对应轨道圆心O ',据几何关系得212sin==R r ϕ,得060=ϕ,即α粒子穿过磁场空间的最大偏转角为060.二、带电粒子在“长方形磁场区域”中的运动例2、如图3,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.解析:如图4,设粒子以速率1v 运动时,粒子正好打在左极板边缘(图4中轨迹1),则其圆轨迹半径为41d R =,又由1211R v m Bqv =得m Bqdv 41=,则粒子入射速率小于1v 时可不打在板上.设粒子以速率2v 运动时,粒子正好打在右极板边缘(图4中轨迹2),由图可得22222)2(d R L R -+=,则其圆轨迹半径为d d L R 44222+=,又由2222R v m Bqv =得md d L Bq v 4)4(222+=,则粒子入射速率大于2v 时可不打在板上.综上,要粒子不打在板上,其入射速率应满足:mBqdv 4<或md d L Bq v 4)4(22+>.三、带电粒子在“三角形磁场区域”中的运动例3、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,图3⨯⨯⨯⨯⨯⨯⨯⨯→∙d Lv 图4v2v 图5DB求粒子速率应满足什么条件及粒子从AC间什么范围内射出.解析:如图6所示,设粒子速率为1v 时,其圆轨迹正好与AC边相切于E点. 由图知,在E AO 1∆中,11R E O =,113R a A O -=,由AO E O 11030cos =得11323R a R -=,解得a R )32(31-=,则a R a AO AE )332(23211-=-==. 又由1211R vm Bqv =得m aqB m BqR v )32(311-==,则要粒子能从AC间离开磁场,其速率应大于1v .如图7所示,设粒子速率为2v 时,其圆轨迹正好与BC边相切于F点,与AC相交于G点.易知A点即为粒子轨迹的圆心,则a AG AD R 32===.又由2222R v m Bqv =得m aqBv 32=,则要粒子能从AC间离开磁场,其速率应小于等于2v .综上,要粒子能从AC间离开磁场,粒子速率应满足maqBv m aqB3)32(3≤<-. 粒子从距A点a a 3~)332(-的EG 间射出.四、带电粒子在“圆环形磁场区域”中的运动例4、据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子将没有通常意义上的“容器”可装,而是由磁场约束带电粒子运动使之束缚在某个区域内.现按下面的简化条件来讨论这个问题:如图8所示的是一个截面为内径m R 6.01=、外径mR 2.12=图8图6D1oA的环状区域,区域内有垂直于截面向里的匀强磁场.已知氦核的荷质比kg c mq/108.47⨯=,磁场的磁感应强度T B 4.0=,不计带电粒子重力.(1)实践证明,氦核在磁场区域内沿垂直于磁场方向运动速度v 的大小与它在磁场中运动的轨道半径r 有关,试导出v 与r 的关系式.(2)若氦核沿磁场区域的半径方向平行于截面从A 点射人磁场,画出氦核在磁场中运动而不穿出外边界的最大圆轨道示意图.(3)若氦核在平行于截面从A 点沿各个方向射人磁场都不能穿出磁场外边界,求氦核的最大速度.解析:(1)设氦核质量为m ,电量为q ,以速率v 在磁感强度为B 的匀强磁场中做半径为r 的匀速圆周运动,由洛仑兹力公式和牛顿定律得R v m Bqv 2=,则mBqr v =.(2)所求轨迹示意图如图9所示(要与外圆相切)(3)当氦核以m v 的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则以m v 速度沿各方向射入磁场区的氦核都不能穿出磁场外边界,如图10所示.由图知m R R r 3.0212=-=',又由r v m Bqv 2=得Bq mv r =,在速度为m v 时不穿出磁场外界应满足的条件是r Bqmv m'<, 则s m mr Bq v m /1076.53.0108.44.067⨯=⨯⨯⨯='≤. 五、带电粒子在“宽度一定的无限长磁场区域”中的运动例5、如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=,A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,图9图10已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围.解析:如图12所示,沿PQ方向射出的电子最大轨迹半径由r v m Bev 2=可得Bemv r m m =,代入数据解得d m r m 21022=⨯=-. 该电子运动轨迹圆心在A板上H处,恰能击中B板M处.随着电子速度的减少,电子轨迹半径也逐渐减小.击中B板的电子与Q点最远处相切于N点,此时电子的轨迹半径为d ,并恰能落在A板上H处.所以电子能击中B板MN区域和A板PH区域.在∆MFH中,有d d d MF HM FH 3)2(2222-=-=,s m d PF QM /1068.2)32(3-⨯=-==, m d QN 2101-⨯==,m d PH 21022-⨯==.电子能击中B板Q点右侧与Q点相距m m 23101~1068.2--⨯⨯的范围.电子能击中A板P点右侧与P点相距m 2102~0-⨯的范围.(2)如图13所示,要使P点发出的电子能击中Q点,则有Be mv r =,2sin d r =θ. 解得6108sin ⨯=θv .v 取最大速度s m /102.37⨯时,有41sin =θ,41arcsin min =θ;v 取最小速度时有2max πθ=,s m v /1086min ⨯=.图13P所以电子速度与θ之间应满足6108sin ⨯=θv ,且]2,41[a r c s i n πθ∈,]/102.3,/108[76s m s m v ⨯⨯∈.六、带电粒子在“单边磁场区域”中的运动例6、如图14所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.解析:带电粒子在磁场中运动时有R v mBqv 2=,则cm m Bq mv R 101.0106.1100.1100.1106.1182425==⨯⨯⨯⨯⨯⨯==---.如图15所示,当带电粒子打到y 轴上方的A 点与P 连线正好为其圆轨迹的直径时,A 点既为粒子能打到y 轴上方的最高点.因cm R Op 10==,cm R AP 202==,则cm OP AP OA 31022=-=. 当带电粒子的圆轨迹正好与y 轴下方相切于B点时,B点既为粒子能打到y 轴下方的最低点,易得cm R OB 10==.综上,带电粒子能打到y 轴上的范围为:cm y cm 31010≤≤-.cm/图14o cm x /cmy /p ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯∙Welcome To Download !!!欢迎您的下载,资料仅供参考!。

2013带电粒子在有界磁场中运动的临界问题

2013带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。

二、带电粒子在有界磁场中运动类型的分析1.给定有界磁场(1)确定入射速度的大小和方向,判定带电粒子出射点或其它【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B。

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题此类问题的解题关键是寻找临界点,寻找临界点的有效方法是:方法:轨迹圆的缩放:当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”1、一个质量为m,带电量为+q的粒子(不计重力),从O点处沿+y方向以初速度v0射入一个边界为矩形的匀强磁场中,磁场方向垂直于xy平面向里,它的边界分别是y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________时,粒子将从上边界射出:当B满足条件_________时,粒子将从左边界射出:当B满足条件_________时,粒子将从下边界射出。

2、如图所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。

要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域?3、如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ= 30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求:(1)粒子能从ab 边上射出磁场的v 0大小范围.(2)如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间4、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.小结:带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。

2放缩圆,收缩圆带电粒子在有界磁场中运动的临界问题

2放缩圆,收缩圆带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。

在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按已知参数可将问题分为如下10类(25C ),并可归并为6大类型。

所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定...顺序..尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。

类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。

【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是A .使粒子的速度v <BqL 4mB .使粒子的速度v >5BqL4mC .使粒子的速度v >BqL mD .使粒子的速度BqL 4m <v <5BqL4m【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。

轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。

类型 已知参量类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦入射方向、出射方向类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向图乙图甲 ①②入射点 入射方向入射速度大出射点出射方向① ② ③ ④ ⑧ ⑨⑤⑥⑦⑩【解答】 AB粒子擦着板从右边穿出时,圆心在O 点,有 r 12=L 2+(r 1-L 2)2 , 得 r 1=5L4由 r 1=mv 1Bq ,得 v 1=5BqL 4m ,所以v >5BqL4m时粒子能从右边穿出.粒子擦着上板从左边穿出时,圆心在O ′点,有 r 2=L4由 r 2=mv 2Bq ,得 v 2=BqL 4m ,所以v <BqL4m时粒子能从左边穿出.【易错提醒】容易漏选A ,错在没有将r 先取较小值再连续增大,从而未分析出粒子还可以从磁场左边界穿出的情况。

寻找临界点的两种有效方法——解决带电粒子在有界磁场中运动的临界问题

寻找临界点的两种有效方法——解决带电粒子在有界磁场中运动的临界问题

的磁 场 。 已知磁 场的磁 感应强 度 B= 1O 若被 . T, 束 缚 的粒子 的荷 质 比为旦 一 4 0× 1 / g 不 . 0C k ,
l rI
强 磁场 。 使 发射 的 电子 能到 达 挡 板 , 子 速度 要 电
至少为 多大 ?
计带 电粒子 的重力 。 中空 区域 中带 电粒子 具 有各 个 方 向 的速 度 , 计算 : 试
( )粒子 沿环 的半径 方 向射 人 磁 场 , 能穿 1 不 越 磁 场的最 大速度 ;
析 与解 据 洛伦 兹力 提供带 电粒 子做 匀速 圆周运 动 的向心 力 , 得粒 子做 圆周运 动 的轨道 可 半 径 r一 , 由该式 可知 , 电子到 达挡板 的最 使
qU
( )所有粒 子不 能穿 越磁 场的 最大 速度 。 2 析与解 ( ) 1 该题 背景 取 自受控 热 核反 应 ,
维普资讯
第2 4卷 总 第 2 7期 7 20 0 6年 第 1 0期 ( 半 月) 上







Vo. 4 NO 2 7 12 . 7 ( 1 2 O6 . 3 S) 0. O 7
1 ur a 0f Ph sc Te c n o nl y is a hig
轨迹 圆 , 从圆 的动 态变化 中 即可 发现 “ 临界 点” 。 例 1 如图 , 电子源 S能 在 图示纸 面 上 3 0 范 围 内发 6。
动将 其束缚 在某 个 区域 内 。 现按 下面 的简 化 条 件
来讨 论这个 问题 : 图所 如 示, 有一个 截面 内半 径 为 R。 0 5 外 半 径为 R 一 . m、 :
维普资讯
V o. 4 No 2 7 12 . 7 () 1 .0 S 0 2 06 . 3 . 6

带电粒子在有界磁场中运动的临界问题的解题技巧

带电粒子在有界磁场中运动的临界问题的解题技巧

带电粒子在有界磁场中运动的临界问题的解题技巧将高中物理中常见的“带电粒子在有界磁场中运动的临界问题”归纳为五类典型题型,总结了这五类题型的通用解法——先根据问题类型确定圆心所在曲线,然后按一定的顺序在该曲线上取点作为圆心作出一系列轨迹圆,于是各种临界和多解情况就在图中一目了然了。

对于前三大类型,绝大部分资料都有涉及,主要对后两大类型进行了举例说明。

标签:有界磁场;临界问题;圆心圆;轨迹圆依据带电粒子进出磁场的参数不同,可将高中物理中常见的“带电粒子在有界磁场中运动的临界问题”(当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态)分为五类如下表(√表示该参数确定,×表示该参数不确定,空着表示该参数待定):■ 所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序尽可能多地作不同圆心对应的轨迹圆(一般至少画5个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。

问题类型四:已知初、末速度的方向(所在直线),但未知初速度大小(即未知轨道半径大小)这类问题的特点是:所有轨迹圆的圆心均在初、末速度延长线形成的角的角平分线上。

【例】在xOy平面上的某圆形区域内,存在一垂直纸面向里的匀强磁场,磁感应强度大小为B。

一个质量为m、带电量为+q的带电粒子,由原点O开始沿x正方向运动,进入该磁场区域后又射出该磁场;后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°(如图所示),已知P到O 的距离为L,不计重力的影响。

(1)若磁场区域的大小可根据需要而改变,试求粒子速度的最大可能值;(2)若粒子速度大小为v=■,试求该圆形磁场区域的最小面积。

【分析】初、末速度所在直线必定与粒子的轨迹圆相切,轨迹圆圆心到两条直线的距离(即轨道半径)相等,因此,圆心必位于初、末速度延长线形成的角的角平分线QC上(如图甲);在角平分线QC上取不同的点为圆心,由小到大作出一系列轨迹圆(如图乙),其中以C点为圆心轨迹是可能的轨迹圆中半径最大的,其对应的粒子速度也最大。

带电粒子在有界磁场中的运动的临界问题PPT课件

带电粒子在有界磁场中的运动的临界问题PPT课件
qB
决定,和磁感应强度B 决定。
角速度: ω qB m
频率: f 1 qB
T 2 m
5 动能: Ek

1 mv 2 2
(qBR)2 2m 2019/12/14
解题的基本过程与方法
1 找圆心:

已知任意两点速度方向:作垂线
可找到两条半径,其交点是圆心。
v
已知一点速度方向和另外一点的
面内,与x轴正向的夹角为θ 。若粒子射出磁场
的位置与O点的距离为L,求该粒子的比荷q/m。
y
p
o
θ
x
v
1
6
2019/12/14
入射速度与边界夹角=
出射速度与边界夹角
y
R sin L
4
v pθ
o
θ
q 2v sin
m
LB x
θθ
f洛
v
1
7
2019/12/14
带电粒子在圆形磁场中的运动
2.解题的基本步骤为:找圆心——画轨迹——定半径
3.注意圆周运动中的对称性:
(1) 粒子进入单边磁场时,入射速度与边界夹角等于出射 速度与边界的夹角,并且两个速度移到共点时,具有轴 对称性。
(2) 在圆形磁场区域内,沿径向射入的粒子,必沿径向射 出. 4、解题经验:运动轨迹的半径R往往跟线速度V联系在一起, 进而跟磁感应强度B 、质荷比q/ml有关。运动轨迹对应的圆心
例、一正离子,电量为q ,质量为m, 垂直射入磁感应强度为B、宽度为d
的匀强磁场中,穿出磁场时速度方向 与其原来入射方向的夹角是30°,
d
v v30°
(1)离子的运动半径是多少?
θ

高中物理带电粒子在有界磁场中运动临界问题极值问题和多解问题

高中物理带电粒子在有界磁场中运动临界问题极值问题和多解问题

(1)综合③④结论知,所有从 ab 上射出的粒子的入射 速度 v0 的范围应为q3Bml<v0<qmBl.
临界状态(轨迹与边界相切)
d
c
临界Байду номын сангаас态
B
θv
(轨迹与边界相切)
a
b
圆心在过入射点跟速度方向垂直的直线上
①速度较小时粒子做部分圆周运动后从原边界飞出;
②速度在某一范围内从上侧面边界飞;
③速度较大时粒子做部分圆周运动从右侧面边界飞出;
④速度更大时粒子做部分圆周运动从下侧面边界飞出。
例1 如图所示,S为一个电子源,它可以在纸面 内360°范围内发射速率相同的质量为m、电量为e的 电子,MN是一块足够大的挡板,与S的距离OS=L, 挡板在靠近电子源一侧有垂直纸面向里的匀强磁场, 磁感应强度为B,问:
PQ
v
S
圆心在过入射点跟跟速度方向垂直的直线上 ①速度较小时,作圆弧运动后从原边界飞出; ②速度增加为某临界值时,粒子作部分圆周运动其轨 迹与另一边界相切; ③速度较大时粒子作部分圆周运动后从另一边界飞出
量变积累到一定程度发生质变,出现临界状态
二、带电粒子在矩形边界磁场中的运动
vB
o
圆心在磁场原边界上 ①速度较小时粒子作半圆运动后从原边界飞出; ②速度在某一范围内时从侧面边界飞出; ③速度较大时粒子作部分圆周运动从对面边界飞出。
(1)若使电子源发射的电子能到达 挡板,则发射速度最小为多大?
(2)如果电子源S发射电子的速度 为第(1)问中的2倍,则挡扳上被电子 击中的区域范围有多大?
【解析】 (1)电子射出方向不同,其在匀强磁场中 的轨迹不同,每个电子的圆轨道的圆心都位于以射出点 S 为圆心、半径 r=mBev的圆弧上,如图所示.欲使电子有 可能击中挡板,电子的轨道半径至少为L2,如图所示.

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题的解题技巧带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。

类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。

【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是A .使粒子的速度v <BqL 4mB .使粒子的速度v >5BqL4mC .使粒子的速度v >BqL mD .使粒子的速度BqL 4m <v <5BqL4m【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。

轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。

【解答】 AB类型 已知参量 类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦ 入射方向、出射方向 类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向 图乙图甲 ①②入射点 入射方向入射速度大出射点出射方向 ① ② ③ ④ ⑧ ⑨ ⑤⑥⑦⑩粒子擦着板从右边穿出时,圆心在O 点,有 r 12=L 2+(r 1-L 2)2 , 得 r 1=5L4由 r 1=mv 1Bq ,得 v 1=5BqL 4m ,所以v >5BqL4m时粒子能从右边穿出.粒子擦着上板从左边穿出时,圆心在O ′点,有 r 2=L4由 r 2=mv 2Bq ,得 v 2=BqL 4m ,所以v <BqL4m时粒子能从左边穿出.类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定 这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上——所谓“圆心圆”,是指以入射点为 圆心,以mvr qB=为半径的圆。

带电粒子在有界磁场中运动临界问题

带电粒子在有界磁场中运动临界问题

带电粒子在有界磁场中运动的临界问题的解题技巧带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。

轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。

【解答】AB粒子擦着板从右边穿出时,圆心在O 点,有r 12=L 2+(r 1-L 2)2,得r 1=5L4图乙图甲由r 1=mv 1Bq ,得v 1=5BqL 4m ,所以v >5BqL 4m时粒子能从右边穿出.粒子擦着上板从左边穿出时,圆心在O ′点,有r 2=L4由r 2=mv 2Bq ,得v 2=BqL 4m ,所以v <BqL 4m时粒子能从左边穿出.类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上——所谓“圆心圆”,是指以入射点为圆心,以mvr qB=为半径的圆。

【例2】如图所示,在0≤x≤a 、0≤y≤2a范围内有垂直手xy 平面向外的匀强磁场,磁感应强度大小为B 。

坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xOy 平面内,与y 轴正方向的夹角分布在0~090范围内。

己知粒子在磁场中做圆周运动的半径介于a /2到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。

求最后离开磁场的粒子从粒子源射出时的(1)速度的大小;(2)速度方向与y 轴正方向夹角的正弦。

【分析】本题给定的情形是粒子轨道半径r 大小确定但初速度方向不确定,所有粒子的轨迹圆都要经过入射点O ,入射点O 到任一圆心的距离均为r ,故所有轨迹圆的圆心均在一个“圆心圆”——以入射点O 为圆心、r 为半径的圆周上(如图甲)。

带电粒子在有界电场、磁场中临界问题(可自主编辑word)

带电粒子在有界电场、磁场中临界问题(可自主编辑word)

九、带电粒子在有界电场、磁场中临界问题带电粒子在有界电场、磁场中的临界问题是带电粒子在电磁场中运动问题的难点与易错点,分析解答此类问题的关键在于正确找出临界点,具体方法:分析带电粒子在电场、磁场中运动轨迹与电场、磁场边界的关系。

1.带电粒子在有界电场中的临界问题典例1 (多选)如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L=0.4 m,两板间距离d=4×10-3 m,有一束由相同带电微粒组成的粒子流以相同的速度v 0从两板中央平行极板射入,开关S 闭合前,两极板不带电,由于重力作用,微粒能落到下极板的正中央。

已知微粒质量m=4×10-5 kg,电荷量q=+1×10-8 C,则下列说法正确的是( )A.微粒的入射速度v 0=10 m/sB.电容器上极板接电源正极时微粒有可能从平行板电容器的右边射出电场C.电源电压为180 V 时,微粒可能从平行板电容器的右边射出电场D.电源电压为100 V 时,微粒可能从平行板电容器的右边射出电场答案 AC 开关S 闭合前,两极板不带电,微粒落到下极板的正中央,由d 2=12gt 2,L2=v 0t,得v 0=10 m/s,A 正确;电容器上极板接电源正极时,微粒的加速度更大,竖直方向运动时间更短,水平位移将更小,还将打在下极板,B 错误;设微粒恰好从平行板右边缘下侧飞出时的加速度为a,微粒所受电场力竖直向上,则d 2=12at 2,L=v 0t,mg-Uqd =ma,得U=120 V,同理微粒在平行板右边缘上侧飞出时,可得U=200 V,所以平行板上板带负电,电源电压为120 V≤U≤200 V 时微粒可以从平行板电容器的右边射出电场,C 正确,D 错误。

反思总结本题中当微粒与电场右侧上、下边界相切是解题的临界点,由此可以找出电压的变化范围。

2.带电粒子在有界磁场中的临界问题典例2(多选)如图所示,一粒子发射源P位于足够长绝缘板AB的上方d处,能够在纸面内向各个方向发射速率为v、比荷为k的带正电的粒子,空间存在垂直纸面的匀强磁场,不考虑粒子间的相互作用和粒子重力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在有界磁场中运动的临界问题的解题技巧湖北省恩施高中 陈恩谱带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。

在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按已知参数可将问题分为如下10类(25C ),并可归并为6大类型。

所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。

类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。

【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是A .使粒子的速度v <BqL 4mB .使粒子的速度v >5BqL4mC .使粒子的速度v >BqL mD .使粒子的速度BqL 4m <v <5BqL4m【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。

轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。

【解答】 AB类型 已知参量 类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦ 入射方向、出射方向 类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向 图乙图甲①②入射点 入射方向入射速度大出射点出射方向 ① ② ③ ④ ⑧ ⑨ ⑤⑥⑦⑩粒子擦着板从右边穿出时,圆心在O 点,有 r 12=L 2+(r 1-L 2)2 , 得 r 1=5L4由 r 1=mv 1Bq ,得 v 1=5BqL 4m ,所以v >5BqL4m时粒子能从右边穿出.粒子擦着上板从左边穿出时,圆心在O ′点,有 r 2=L4由 r 2=mv 2Bq ,得 v 2=BqL 4m ,所以v <BqL4m时粒子能从左边穿出.【易错提醒】容易漏选A ,错在没有将r 先取较小值再连续增大,从而未分析出粒子还可以从磁场左边界穿出的情况。

【练习1】两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x 轴和y 轴,交点O 为原点,如图所示。

在y >0,0<x <a 的区域有垂直于纸面向里的匀强磁场,在y >0,x >a 的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B 。

在O 点处有一小孔,一束质量为m 、带电量为q (q >0)的粒子沿x 轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。

入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x <a 的区域中运动的时间与在x >a 的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T /12,其中T 为该粒子在磁感应强度为B 的匀强磁场中作圆周运动的周期。

试求两个荧光屏上亮线的范围(不计重力的影响)。

【分析】粒子在0<x <a 的区域中的运动属于初速度方向已知、大小不确定的情况,在垂直初速度的直线(即y 轴)上取不同点为圆心,半径由小取到大,作出一系列圆(如图甲),其中轨迹圆①与直线x =a 相切,为能打到y 轴上的粒子中轨道半径最大的;若粒子轨道半径大于轨迹圆①,粒子将进入x >a 的区域,由对称性可知,粒子在x >a 的区域内的轨迹圆圆心均在在x =2a 直线上,在x =2a 直线上取不同点为圆心,半径由小取到大,可作出一系列圆(如图乙),其中轨迹圆①'为半径最小的情况,轨迹圆②为题目所要求的速度最大的粒子的轨迹。

【答案】竖直屏上发亮的范围从0到2a ,水平屏上发亮的范围从2a 到2323x a a =+ 【解答】 粒子在磁感应强度为B 的匀强磁场中运动半径为:mvr qB=① 速度小的粒子将在x <a 的区域走完半圆,射到竖直屏上。

半圆的直径在y 轴上,半径的范围从0到a ,屏上发亮的范围从0到2a 。

轨道半径大于a 的粒子开始进入右侧磁场,考虑r=a 的极限情况,这种粒子在右侧的圆轨迹与x 轴在D 点相切(虚线),OD =2a ,这是水平屏上发亮范围的左边界。

速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C 和'C ,C 在y 轴上,有对称性可知'C 在x =2a 直线上。

设t 1为粒子在0<x <a 的区域中运动的时间,t 2为在x >a 的区域中运动的时间,由题意可知② ①'①图乙 图甲 a 2a 2a a x1225t t =,12712T t t +=由此解得:16T t =② 1512T t = ③ 由②③式和对称性可得 60OCM ∠= '60M C N ∠= ⑤5'36015012MC P ∠=⨯= ⑥ 所以'1506090NC P ∠=︒-︒=︒ ⑦即弧长NP 为1/4圆周。

因此,圆心'C 在x 轴上。

设速度为最大值粒子的轨道半径为R ,有直角'COC 可得 2sin 602R a ︒= 233R a =⑧ 由图可知OP =2a +R ,因此水平荧光屏发亮范围的右边界的坐标 2323x a a =+⑨ 【易错提醒】本题容易把握不住隐含条件——所有在x >a 的区域内的轨迹圆圆心均在在x =2a 直线上,从而造成在x >a 的区域内的作图困难;另一方面,在x >a 的区域内作轨迹圆时,半径未从轨迹圆①半径开始取值,致使轨迹圆①'未作出,从而将水平荧光屏发亮范围的左边界坐标确定为x =a 。

类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定 这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上——所谓“圆心圆”,是指以入射点为 圆心,以mvr qB=为半径的圆。

【例2】如图所示,在0≤x≤a 、0≤y≤2a范围内有垂直手xy 平面向外的匀强磁场,磁感应强度大小为B 。

坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xOy 平面内,与y 轴正方向的夹角分布在0~090范围内。

己知粒子在磁场中做圆周运动的半径介于a /2到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。

求最后离开磁场的粒子从粒子源射出时的 (1)速度的大小;(2)速度方向与y 轴正方向夹角的正弦。

【分析】本题给定的情形是粒子轨道半径r 大小确定但初速度方向不确定,所有粒子的轨迹圆都要经过入射点O ,入射点O 到任一圆心的距离均为r ,故所有轨迹圆的圆心均在一个“圆心圆”——以入射点O 为圆心、r 为半径的圆周上(如图甲)。

考虑到粒子是向右偏转,我们从最左边的轨迹圆画起——取“圆心圆”上不同点为圆心、r 为半径作出一系列圆,如图乙所示;其中,轨迹①对应弦长大于轨迹②对应弦长——半径一定、圆心角都较小时(均小于180°),弦长越长,圆心角越大,粒子在磁场中运动时间越长——故轨迹①对应圆心角为90°。

【答案】66(2)(2)22aqB R a v m α=-=-6-6,,sin =10【解答】设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R ,根据牛顿第二定律和洛伦兹力得:图乙图甲 ① ②2v qvB m R=,解得:mv R qB=当a /2<R <a 时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t ,依题意,t =T /4时,∠OCA =π/2设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系得:sin sin cos 2aR R R a R ααα=-=-,,且 22sin cos 1αα+=解得:66(2)(2)22aqB R a v m α=-=-6-6,,sin =10【易错提醒】由于作图不仔细而把握不住“轨迹①对应弦长大于轨迹②对应弦长——半径一定、圆心角都较小时(均小于180°),弦长越长,圆心角越大,粒子在磁场中运动时间越长”,从而误认为轨迹②对应粒子在磁场中运动时间最长。

这类题作图要讲一个小技巧——按粒子偏转方向移动圆心作图。

【练习2】如图所示,在正方形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场。

在t =0时刻,一位于ad 边中点O 的粒子源在abcd 平面内发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与Od 边的夹角分布在0~180°范围内。

已知沿Od 方向发射的粒子在t =t 0时刻刚好从磁场边界cd 上的p 点离开磁场,粒子在磁场中做圆周运动的半径恰好等于正方形边长L ,粒子重力不计,求:(1)粒子的比荷q /m ;(2)假设粒子源发射的粒子在0~180°范围内均匀分布,此时刻仍在磁场中的粒子数与粒子源发射的总粒子数之比; (3)从粒子发射到全部粒子离开磁场所用的时间。

【分析】以L 为半径、O 点为圆心作“圆心圆”(如图甲);由于粒子逆时针偏转,从最下面的轨迹开始画起(轨迹①),在“圆心圆”取不同点为圆心、以L 为半径作出一系列圆(如图乙);其中轨迹①与轨迹④对称,在磁场中运动时间相同;轨迹②并不经过c 点,轨迹②对应弦长短于轨迹③对应弦长——即沿轨迹③运动的粒子最后离开磁场。

p× × × × a b c d O× × × × × × × × × × × ×O 3 p× × × × a b c d O × × × ×× × × × × × × ×p × × × × a b c d O × × × × × × × × × × × × 图甲 图乙 ① ② ③ ④O 1 O 2 O 4 O yxCRDAa P α α αv【答案】6Bt m q π=,5/6 ,0)45arcsin12(t t π= 【解答】(1)初速度沿Od 方向发射的粒子在磁场中运动的轨迹如图,其园心为n ,由几何关系有:6Onp π∠=, 120Tt =粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得R T m Bqv 2)2(π=,T Rv π2=得6Bt m q π= (2)依题意,同一时刻仍在磁场中的粒子到O 点距离相等。

相关文档
最新文档