7.1 假设检验基本概念与一般步骤()
7-1假设检验的基本概念
出判断: 是接受, 还是拒绝.
1. 基本原理
0 0.05
小概率推断原理: 小概率事件(概率接近0的事件),
在一次试验中,实际上可认为
不会发生.
2. 基本思想方法
采用概率性质的反证法: 先提出假设H0 , 再根据 一次抽样所得到的样本值进行计算. 若导致小概率
分析: 用 和 分别表示这一天袋
装糖重总体 X 的均值和标准差,
由长期实践可知, 标准差较稳定, 设 0.015,
则 X ~ N (, 0.0152 ), 其中 未知.
问题: 根据样本值判断 0.5 还是 0.5?
解 1º提出两个对立假设
H0 : 0 0.5 和 H1 : 0 . 2º X 是 的无偏估计量,
样结果判断总体(所有产品)的次品率是否≤3%?
解 用假设检验法,步骤:
1º提出假设 H0: p 0.03 其中 p为总体的次品率.
2º设
Xi
1, 0,
第i次抽取的产品是次品 否则
则 Xi ~ B(1, p)
(i 1, 2, , 10)
令 Y X1 X2 Xn ={ 抽取的10件产品中的次品数 }
误的概率是显著性水平 .
P{拒绝原假设H0 H0为真 }
(2) 当原假设H0不真, 而观察值却落入接受域, 而作出了接受H0的判断, 称为第二类错误, 又叫 取伪错误, 这类错误是“以假为真”.
犯第二类错误的概率记为
P{接受 H0 | H0不真} .
注 1º当样本容量 n 一定时, 若减少犯第一类错 误的概率, 则犯第二类错误的概率往往增大.
则我们拒绝 H0,
反之, 如果 u
x 0 / n
7-1假设检验的基本概念
故拒绝假设H0, 认为该厂罐头的标准重量不是500 g .
二、假设检验的基本概念
1. 显著性水平
= P{拒绝H0 | H0正确}
数 称为显著性水平. 如:对于例2,
X μ0 当H 0 : μ 500为真时,U ~ N 0,1, σ/ n
P{| U | u / 2 | H 0为真} ,
/ n 我们拒绝 0 ; H
反 之 , 如 果 u | |
如 果 | u |
| x 0 |
/ 2 , 则 称x与 0 差 异 是 显 著 的则 ,
| x 0 |
/ n
/ 2 , 则 称 x 与 0 差 异 是 不
显著的,则我们接受0 ; H
上述 x与0有无显著差异的判断是 在显著性水平
假设检验的两类错误
真实情况 (未知) H0为真 H0不真 所 接受 H0 正确 犯第Ⅱ类错误 作 决 策 拒绝 H0 犯第I类错误 正确
思考题
请大家思索下列问题:
1. 在假设检验中,用 a和b分别表示犯第一类错 误和犯第二类错误的概率,则当样本容量一定时, 下列说法正确的是( C )
(A)a减小b也减小; (B)a增大b也增大; (C)a与b不能同时减少,减少其中一个,另一 个往往就会增大; (D)(A)与(B)同时成立.
n 5, σ 2, x 502.4, μ0 500
当
| x 0 |
/ n
/ 2时, 接 受H 0 .
如:若取定 = 0.05, 则μα / 2 μ0.025 1.96. 3° 在假设 H0成立的条件下,由样本计算
| u | | x 0 |
/ n
2.68 1.96 / 2 0.025 .
概率论与数理统计课件:ch7-1 假设检验的概念和步骤
应用中, 一般原则是:控制犯第一类错误的概率,
即给定 , 然后通过增大样本容量 n来减小 .
关于 显著性水平 的选取: 若注重经济效益, 可小些,如 0.01; 若注重社 会效益, 可大些,如 0.1;若要兼顾经济效益和
则没有理由怀疑假设 H0 的正确性. 而取出的是红球,
小概率事件竟然在一次试验中发生了,故有理由拒绝
假设 H0 , 即认为甲的说法不正确.
Probability and Statistics– Chapter 7 Hypothesis Testing
5
二 假设检验的基本思想
假设检验的基本思想 实质上是带有某种概率性质
的反证法. 为了检验一个假设 H0是否正确,首先假 定该 H0 正确,然后根据抽取到的样本对假设 H0
作出接受或拒绝的决策. 如果样本观察值导致了不
合理的现象的发生,就应拒绝假设 H0 , 否则应接受 假设 H0 .
假设检验中所谓“不合理”并,非逻辑中的绝对矛盾,
而是基于人们在实践中广泛采用的原则, 即小概率 事件在一次试验中是几乎不发生的。
社会效益,一般可取 0.05.
Probability and Statistics– Chapter 7 Hypothesis Testing
10
理论上,自然希望犯这两类错误的概率都很小,但
当样本容量 n 固定时, , 不能同时都小,即 变
小时, 就变大;而 变小时, 就变大. 在实际
应用中, 一般原则是:控制犯第一类错误的概率,
14
353 345 357 339 355 360
试问生产线工作是否正常?
07 假设检验
2=02
202
2
2=()02 2>02 2=()02 2<02
2 n 1 S
2 0
单个正态总体均值已知的方差检验——2检验
问题:总体 X~N(,2),已知 假设
H0 : ; H1 : ;
2 2 0 2
构造2统计量 2
概率论与数理统计
第七章 假设检验
主要内容
假设检验的基本概念 正态总体参数的假设检验 *多个正态总体均值的比较——单因素方差 分析 *2拟合优度检验
§7.1 假设检验的基本概念
一、统计假设与统计假设检验 统计假设:通过实际观察或理论分析对总体分布形式 或对总体分布形式中的某些参数作出某种假设。 同一问题中的统计假设有两个:原假设和备择假设
基本原则——小概率事件在一次试验中是不可能发生的。 思想:如果原假设成立,那么某个分布已知的统计 量在某个区域内取值的概率应该较小,如果样本的观 测数值落在这个小概率区域内,则原假设不正确,所以, 拒绝原假设;否则,接受原假设。
• 假设检验的推理用到概率性质的反证法:先假设
H0正确,看由此可以推出什么结果。如果样本观 测值导致了一个不合理现象的出现,则有理由否 定原假设H0,而接受备择假设H1;否则,只能将 原假设H0当做真的保留下来。
故T统计量的观测值为
x 99.978 100 T 0.0545 S n 1.212 9
因为0.0545<1.86 ,即观测值落在接受域内 所以接受原假设,即可认为这天的包装机工作正常。
单边检验
H0:=0;H1:0
拒绝域为
X 0 P t (n 1) S n
X
假设检验的基本概念与步骤
假设检验的基本概念与步骤在统计学中,假设检验是一种常用的方法,用于判断一个统计总体的参数是否与特定的假设相一致。
通过检验统计量在某种给定假设下的抽样分布,我们可以判断是否拒绝该假设,并进行统计推断。
本文将介绍假设检验的基本概念与步骤,帮助读者更好地理解和应用假设检验方法。
一、基本概念1. 总体和样本在假设检验中,我们通常关注一个统计总体中的一个或多个参数。
总体是我们研究的对象所具有的属性的集合,而样本则是从总体中随机抽取的一部分观测值。
2. 假设(Hypothesis)假设是根据现有理论或实证研究提出的对总体参数的某种陈述或假设,用于进行统计推断。
在假设检验中,我们通常提出一个原假设(null hypothesis,H0)和一个备择假设(alternative hypothesis,H1或Ha)。
3. 统计量(Test Statistic)统计量是根据样本数据计算得出的一个统计指标。
它在假设检验中用于度量观测值与假设之间的差异,并作为判断是否拒绝原假设的依据。
常见的统计量有t值、F值、卡方值等。
4. 显著性水平(Significance Level)显著性水平是在假设检验中设定的一个阈值,用于确定拒绝或接受原假设的标准。
通常用α表示,常见的显著性水平有0.05和0.01两种。
5. 拒绝域和p值拒绝域是在假设检验中用来拒绝原假设的一组可能取值区间或区域。
p值是在给定原假设成立的条件下,观测值能够得到的“更极端”结果的概率。
如果p值小于显著性水平α,则拒绝原假设。
二、基本步骤假设检验的一般步骤如下:1. 建立假设首先,我们需要根据研究问题和已有理论或实证研究提出原假设和备择假设。
原假设通常表达我们对总体参数的无差异或相等的假设,备择假设则表达我们对总体参数存在差异的猜测。
2. 选择显著性水平在假设检验中,我们需要选择一个适当的显著性水平。
通常,显著性水平的选择要根据研究的目的和特定领域的惯例来确定。
假设检验的基本概念与步骤
假设检验的基本概念与步骤假设检验,也称为统计假设检验,是统计学中一种重要的推断方法,用于对两个或多个统计推断进行比较,从而对总体参数或者样本之间的差异进行推断。
本文将介绍假设检验的基本概念和步骤。
一、概念在进行假设检验之前,我们首先要明确两个基本概念:零假设(H0)和备择假设(H1)。
零假设通常是我们希望否定的假设,而备择假设则是相反的情况,即我们希望得到支持的假设。
二、步骤1. 确定假设在开始进行假设检验之前,我们需要明确研究问题,并根据问题的背景和研究目的确定合适的零假设和备择假设。
通常情况下,零假设是对现状或者已有结论的表述,而备择假设则是我们对现状的质疑或者改进。
2. 选择统计检验方法根据研究问题的具体情况,选择合适的统计检验方法。
常见的统计检验方法包括t检验、方差分析、卡方检验等。
不同的统计检验方法适用于不同类型的数据和研究问题。
3. 确定显著性水平显著性水平,通常用α表示,是在假设检验中指定的一个阈值,用于判断结果是否具有统计显著性。
常见的显著性水平有0.05和0.01,分别对应着5%和1%的显著性水平。
4. 收集样本数据在进行假设检验前,需要收集和整理所需的样本数据。
样本数据的选取应该有代表性,以尽可能准确地反映总体的特征。
5. 计算统计量根据所选的统计检验方法,计算相应的统计量。
统计量是用于量化样本数据与假设之间的差异程度,从而判断结果的显著性。
6. 判断P值P值是假设检验的核心结果,表示在零假设成立的条件下,观察到的统计量或更极端情况发生的概率。
如果P值小于预先设定的显著性水平α,我们就可以拒绝零假设,否则,则接受零假设。
7. 得出结论根据P值的判断结果,得出对零假设的结论。
如果P值小于α,我们可以认为样本数据支持备择假设;反之,如果P值大于α,则不能拒绝零假设。
以上就是假设检验的基本概念和步骤。
通过对问题的明确、统计检验方法的选择、显著性水平的确定、样本数据的收集、统计量的计算以及P值的判断,我们可以对研究问题进行有效的推断和分析。
假设检验的基本思想和一般步骤
假设检验的基本思想和一般步骤
检验(hypothesis testing)是统计学中常用的一种方法,用于得出对某一性
质具有一定证据基础的结论。
它以假设检验为基础,将统计学原理用于科学研究,以检验一些假设或猜测是否可以被科学地接受。
检验的基本思想是找出统计数据中与原假设不相符合的内容,即在实践结果中
发现与假设不符的结果,证明我们的假设正确或错误。
然而,有时实践中的结果并不能完全证明或排除假设,这时候就要利用统计学方法来做检验,以定量分析参数的趋势,从而给出统计学上的结论。
一般的检验步骤主要分为以下几步:
1、确定必要的基础信息:需要采集一定样本数据,研究对象,所测参数及其
标准。
2、建立假设:根据大致了解的思路,建立正态分布假设,或者拟合度等参数,观察收敛性。
3、求事实统计量:计算有关参数,以显示差别程度。
4、计算置信水平:利用某个置信度,例如95%,用数值检验假设对比,验证
是否可能出现异常结果。
5、做出结论:根据检验的结果,得出假设的可行性。
从而,通过假设检验来检验假设,可以更加客观地得出结论,增强科学研究的
权威性,提高研究水平。
假设检验的基本流程
假设检验的基本流程假设检验是统计学中常用的一种方法,用于判断样本数据是否支持某个假设。
它可以帮助我们做出关于总体参数的推断,从而对研究问题进行验证和决策。
本文将介绍假设检验的基本流程,包括问题提出、假设设定、检验统计量的选择、显著性水平的确定、计算p值、做出决策等步骤。
一、问题提出假设检验的第一步是明确研究问题,并提出相应的假设。
研究问题通常包括两个假设:原假设(H0)和备择假设(H1)。
原假设是我们要进行检验的假设,备择假设是对原假设的否定或补充。
二、假设设定在明确研究问题后,我们需要对原假设和备择假设进行具体的设定。
原假设通常是关于总体参数的某种等式或不等式,而备择假设则是对原假设的补充或否定。
三、检验统计量的选择选择适当的检验统计量是假设检验的关键步骤之一。
检验统计量是根据样本数据计算得出的一个统计量,它能够反映样本数据与原假设之间的差异程度。
常见的检验统计量有t统计量、F统计量、卡方统计量等,选择合适的统计量要根据具体的研究问题和数据类型来决定。
四、显著性水平的确定显著性水平是指在假设检验中所允许的错误发生的概率。
通常用α表示,常见的显著性水平有0.05和0.01。
在进行假设检验时,我们需要根据具体情况确定显著性水平,以控制错误发生的概率。
五、计算p值p值是指在原假设成立的条件下,观察到的样本数据或更极端情况出现的概率。
计算p值的方法根据不同的检验统计量而有所不同,一般可以通过查表或使用统计软件进行计算。
六、做出决策根据计算得到的p值与显著性水平的比较,我们可以做出决策。
如果p 值小于显著性水平,我们拒绝原假设,接受备择假设;如果p值大于显著性水平,我们无法拒绝原假设,即没有足够的证据支持备择假设。
七、结论与解释在做出决策后,我们需要给出结论并解释结果。
结论应该简明扼要地回答研究问题,并根据假设检验的结果进行解释。
同时,还可以给出置信区间等信息,以提供更全面的统计推断。
总结:假设检验是统计学中常用的一种方法,通过明确研究问题、设定假设、选择检验统计量、确定显著性水平、计算p值、做出决策等步骤,帮助我们对样本数据进行推断和决策。
假设检验基本思想和步骤
S X
S / n 0.44 / 40
=n–1=40–1=39
(3) 确定P值,作出统计推断
查 附 表 3 , t界 值 表 , t = -1.294 的 绝 对 值 , 得
0.2<P<0.4,按 =0.05检验水准,不拒绝H0,差
异无统计学意义,尚不能认为该地农村新生儿体 重与该地新生儿平均体重相同。
1、样本均数与总体均数比较的 t 检验
样本均数与已知总体均数(理论值、标准值或
经过大量观察所得的稳定值)比较,其目的是推断样
本所代表的未知总体均数 u 与已知总体均数 u0有无
差别。
t x u0 Sn
v = n-1
若 n 较大,则 t. t. , 可按算得的 t 值用 v = ∞ 查 t 界值表( t 即为 Z )得P值。
t 检验
假设检验一般以检验统计量命名, 如 t 检验
应用时应了解各种检验方法的应用条件和检验 统计量的计算方法。然后按假设检验的一般步骤来 处理实际问题。
t 检验的应用条件: ① 样本取自正态总体; ② σ 未知且n 较小 –单样本t检验; ③ 两小样本均数比较时,两样本的总体方差相 等;若两总体方差不齐可用t’检验; ④ 两大样本均数比较时,可用Z检验。
假设检验的目的是推断样本统计量之差是由于总 体参数存在差异造成的,抑或由于抽样误差造成的。
假设检验的基本思想是在总体参数相等这一假设 成立的前提下,计算出现等于及大于(或等于及小于) 现有样本统计量的可能性(P值)。
如果P值很小,小于等于事先规定的一个界值(例 如5%),结论就是拒绝假设“总体参数相等”,认为 总体参数之间存在差异。
见例8.2
d
该资料为配对设计,所以可以用配对t检验作统 计推断,具体步骤如下:
概率论与数理统计(理工类第四版)吴赣昌主编课后习题答案第七章
写在前面:由于答案是一个个复制到word中,比较耗时耗力,故下载收取5分,希望需要的朋友给予理解和支持!PS:网上有一些没经我同意就将我的答案整合、转换成pdf,放在文库里的,虽然是免费的,但是窃取了我的劳动成果,希望有心的朋友支持我一下,下载我的原版答案。
第七章假设检验7.1 假设检验的基本概念习题1样本容量n确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有(). (A)α+β=1;(B)α+β>1;(C)α+β<1;(D)α+β<2.解答:应选(D).当样本容量n确定后,α,β不能同时都很小,即α变小时,β变大;而β变小时,α变大.理论上,自然希望犯这两类错误的概率都很小,但α,β的大小关系不能确定,并且这两类错误不能同时发生,即α=1且β=1不会发生,故选(D).习题2设总体X∼N(μ,σ2),其中σ2已知,若要检验μ,需用统计量U=X¯-μ0σ/n.(1)若对单边检验,统计假设为H0:μ=μ0(μ0已知),H1:μ>μ0,则拒绝区间为;(2)若单边假设为H0:μ=μ0,H1:μ<μ0,则拒绝区间为(给定显著性水平为α,样本均值为X¯,样本容量为n,且可记u1-α为标准正态分布的(1-α)分位数).解答:应填(1)U>u1-α;(2)U<uα.由单侧检验及拒绝的概念即可得到.习题3如何理解假设检验所作出的“拒绝原假设H0”和“接受原假设H0”的判断?解答:拒绝H0是有说服力的,接受H0是没有充分说服力的. 因为假设检验的方法是概率性质的反证法,作为反证法就是必然要“推出矛盾”,才能得出“拒绝H0”的结论,这是有说服力的,如果“推不出矛盾”,这时只能说“目前还找不到拒绝H0的充分理由”,因此“不拒绝H0”或“接受H0”,这并没有肯定H0一定成立. 由于样本观察值是随机的,因此拒绝H0,不意味着H0是假的,接受H0也不意味着H0是真的,都存在着错误决策的可能.当原假设H0为真,而作出了拒绝H0的判断,这类决策错误称为第一类错误,又叫弃真错误,显然犯这类错误的概率为前述的小概率α:α=P(拒绝H0|H0为真);而原假设H0不真,却作出接受H0的判断,称这类错误为第二类错误,又称取伪错误,它发生的概率β为β=P(接受H0|H0不真).习题4犯第一类错误的概率α与犯第二类错误的概率β之间有何关系?解答:一般来说,当样本容量固定时,若减少犯一类错误的概率,则犯另一类错误的概率往往会增大.要它们同时减少,只有增加样本容量n.在实际问题中,总是控制犯第一类错误的概率α而使犯第二类错误的概率尽可能小.α的大小视具体实际问题而定,通常取α=0.05,0.005等值.习题5在假设检验中,如何理解指定的显著水平α?解答:我们希望所作的检验犯两类错误的概率尽可能都小,但实际上这是不可能的. 当样本容量n固定时,一般地,减少犯其中一个错误的概率就会增加犯另一个错误的概率. 因此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平α,因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,其原因是不知道犯第二类错误的概率β究竟有多少,且α小,β就大,所以通常用“H0相容”,“不拒绝H0”等词语来代替“接受H0”,而“不拒绝H0”还包含有再进一步作抽样检验的意思.习题6在假设检验中,如何确定原假设H0和备择假设H1?解答:在实际中,通常把那些需要着重考虑的假设视为原假设H0,而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设,而将新方案取为备择假设;(2)若提出一个假设,检验的目的仅仅是为了判断这个假设是否成立,这时直接取此假设为原假设H0即可.习题7假设检验的基本步骤有哪些?解答:根据反证法的思想和小概率原理,可将假设检验的步骤归纳如下:(1)根据问题的要求,提出原理假设H0和备择假设H1.(2)根据检验对象,构造检验统计量T(X1,X2,⋯,Xn),使当H0为真时,T有确定的分布.(3)由给定的显著水平α,查统计量T所服从的分布表,定出临界值λ,使P(∣T∣>λ)=α,或P(T>λ1)=P(T<λ2)=α/2,从而求出H0的拒绝域:∣T∣>λ或T>λ1,T<λ2.(4)由样本观察值计算统计量T的观察值t.(5)作出判断,将t的值与临界值比较大小作出结论:当t∈拒绝域量时,则拒绝H0,否则,不拒绝H0,即认为在显著水平α下,H0与实际情况差异不显著.习题8假设检验与区间估计有何异同?解答:假设检验与区间估计的提法虽不同,但解决问题的途径是相通的. 参数θ的置信水平为1-α的置信区间对应于双边假设检验在显著性水平α下的接受域;参数θ的置信水平为1-α的单侧置信区对应于单边假设检验在显著性水平α下的接受域.在总体的分布已知的条件下,假设检验与区间估计是从不同的角度回答同一个问题. 假设检验是判别原假设H0是否成立,而区间估计解决的是“多少”(或范围),前者是定性的,后者是定量的.习题9某天开工时,需检验自动包装工作是否正常. 根据以往的经验,其装包的质量在正常情况下服从正态分布N(100,1.52)(单位:kg).现抽测了9包,其质量为:99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5.问这天包装机工作是否正常?将这一问题化为假设检验问题. 写出假设检验的步骤(α=0.05).解答:(1)提出假设检验问题H0:μ=100,H1:μ≠100;(2)选取检验统计量U:U=X¯-1001.59,H0成立时, U∼N(0,1);(3)α=0.05,uα/2=1.96,拒绝域W={∣u∣>1.96};(4)x¯≈99.97,∣u∣=0.06.因∣u∣<uα/2=1.96,故接受H0,认为包装机工作正常.习题10设总体X∼N(μ,1),X1,X2,⋯,Xn是取自X的样本. 对于假设检验H0:μ=0,H1:μ≠0,取显著水平α,拒绝域为W={∣u∣>uα/2},其中u=nX¯,求:(1)当H0成立时, 犯第一类错误的概率α0;(2)当H0不成立时(若μ≠0),犯第二类错误的概率β.解答:(1)X∼N(μ,1),X¯∼N(μ,1/n),故nX¯=u∼N(0,1).α0=P{∣u∣>uα/2∣μ=0}=1-P{-uα/2≤u≤uα/2}=1-[Φ(uα/2)-Φ(-uα/2)]=1-[(1-α2)-α2]=α,即犯第一类错误的概率是显著水平α.(2)当H0不成立,即μ≠0时,犯第二类错误的概率为β=P{∣u∣≤uα/2∣E(X)=μ}=P{-uα/2≤u≤uα/2∣E(X)=μ}=P{-uα/2≤nX¯≤uα/2∣E(X)=μ}=P{-uα/2-nμ≤n(X¯-μ)≤uα/2-nμ∣E(X)=μ}=Φ(uα/2-nμ)-Φ(-uα/2-nμ).注1当μ→+∞或μ→-∞时,β→0.由此可见,当实际均值μ偏离原假设较大时,犯第二类错误的概率很小,检验效果较好.注2当μ≠0但接近于0时,β≈1-α.因α很小,故犯第二类错误的概率很大,检验效果较差.7.2 单正态总体的假设检验习题1已知某炼铁厂铁水含碳量服从正态分布N(4.55,0.1082).现在测定了9炉铁水,其平均含碳量为4.484.如果估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=4.55,H1:μ≠4.55.由于σ2=0.1082已知,所以可选取统计量U=X¯-4.550.108/9,在H0成立的条件下,U∼N(0,1),且此检验问题的拒绝域为∣U∣=∣X¯-4.550.108/9∣>uα/2,这里u=4.484-4.550.108/9≈-1.833,uα/2=1.96.显然∣u∣=1.833<1.96=uα/2.说明U没有落在拒绝域中,从而接受H0,即认为现在生产之铁水平均含碳量仍为4.55.习题2要求一种元件平均使用寿命不得低于1000小时,生产者从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时. 已知该种元件寿命服从标准差为σ=100小时的正态分布,试在显著性水平α=0.05下确定这批元件是否合格?设总体均值为μ,μ未知,即需检验假设H0:μ≥1000,H1:μ<1000.解答:检验假设H0:μ≥1000,H1:μ<1000.这是单边假设检验问题. 由于方差σ2=0.05,故用u检验法. 对于显著性水平α=0.05,拒绝域为W={X¯-1000σ/n<-uα.查标准正态分布表,得u0.05=1.645.又知n=25,x¯=950,故可计算出x¯-1000σ/n=950-1000100/25=-2.5.因为-2.5<-1.645,故在α=0.05下拒绝H0,认为这批元件不合格.习题3打包机装糖入包,每包标准重为100kg.每天开工后,要检验所装糖包的总体期望值是否合乎标准(100kg).某日开工后,测得9包糖重如下(单位:kg):99.398.7100.5101.298.399.799.5102.1100.5打包机装糖的包得服从正态分布,问该天打包机工作是否正常(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=100,H1:μ≠100.由于σ2未知,所以可选取统计量T=X¯-100S/n,在H0成立的条件下,T∼t(n-1),且此检验问题的拒绝域为∣T∣=∣X¯-100S/n∣>tα/2(n-1),这里t=x¯-100s/n≈99.978-1001.2122/9≈-0.0544,t0.025(8)=2.306.显然∣t∣=0.0544<2.306=t0.025(8),即t未落在拒绝域中,从而接受H0,即可以认为该天打包工作正常.习题4机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准含量为500g,标准差不得超过10g.某天开工后,随机抽取9袋,测得净重如下(单位:g):497,507,510,475,515,484,488,524,491,试在显著性水平α=0.05下检验假设:H0:μ=500,H1:μ≠500.解答:x¯=499,s≈16.031,n=9,t=(x¯-μ0)sn=499-50016.0319=-0.1871,α=0.05,t0.025(8)=2.306.因∣t∣<t0.025(8),故接受H0,认为该天每袋平均质量可视为500g.习题5从清凉饮料自动售货机,随机抽样36杯,其平均含量为219(mL),标准差为14.2mL,在α=0.05的显著性水平下,试检验假设:H0:μ=μ0=222,H1:μ<μ0=222.解答:设总体X∼N(μ,σ2),X代表自动售货机售出的清凉饮料含量,检验假设H0:μ=μ0=222(mL),H1:μ<222(mL).由α=0.05,n=36,查表得t0.05(36-1)=1.6896,拒绝域为W={t=x¯-μ0s/n<-tα(n-1).计算t值并判断:t=219-22214.2/36≈-1.27>-1.6896,习题6某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008Ω,对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?解答:本问题是在α=0.05下检验假设H0:σ2=0.0052,H1:σ2≠0.0052.选取统计量χ2=n-1σ2S2,在H0成立的条件下,χ2∼χ2(n-1),且此检验问题的拒绝域为χ2>χα/22(n-1)或χ2<χ1-α/22(n-1).这里χ2=9-10.0052s2=80.0052×0.0082=20.48,χ0.9752(8)=2.18,χ0.0252(8)=17.5.显然χ2落在拒绝域中,从而拒绝H0,即不能认为这批导线电阻的标准差仍为0.005.习题7某厂生产的铜丝,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容量为9的样本,测得其折断力如下(单位:N):289,286,285,286,285,284,285,286,298,292设总体服从正态分布,问该日生产的铜线的折断力的方差是否符合标准(α=0.05)?解答:检验问题为H0:σ2≤16,H1:σ2>16,n=9,s2≈20.3611,χ2=8×s216≈10.181,α=0.05,χ0.052(8)=15.507.因χ2<χ0.052(8)=15.507,故接受H0,可认为铜丝的折断力的方差不超过16N2.习题8过去经验显示,高三学生完成标准考试的时间为一正态变量,其标准差为6min.若随机样本为20位学生,其标准差为s=4.51,试在显著性水平α=0.05下,检验假设:H0:σ≥6,H1:σ<6.解答:H0:σ≥6,H1:σ<6.α=0.05,n-1=19,s=4.51,χ0.952(19)=10.117.拒绝域为W={χ2<10.117}.计算χ2值χ2=(20-1)×4.51262≈10.74.因为10.74>10.117,故接受H0,认为σ≥6.习题9测定某种溶液中的水分,它的10个测定值给出s=0.037%,设测定值总体服从正态分布,σ2为总体方差,σ2未知,试在α=0.05水平下检验假设:H0:σ≥0.04%,H1:σ<0.04%.解答:在α=0.05下,拒绝域为W={(n-1)S2σ02<χ1-α2(9).查χ2分布表得χ0.952(9)=3.325.计算得(n-1)s2σ02=(10-1)×(0.037\per)2(0.04\per)2≈7.7006>3.325,未落入拒绝域,故接受H0.sw=(5-1)×(1.971)2+(4-1)×(1.167)25+4-2≈1.674.查表得t0.005(7)=1.895.算得t=2.86-2.075-01.67415+14≈0.699<1.895.因为0.699<1.895,故不拒绝H0,认为此药无效.习题3据现在的推测,矮个子的人比高个子的人寿命要长一些.下面给出美国31个自然死亡的总统的寿命,将他们分为矮个子与高个子2类,列表如下:矮个子总统8579679080高个子总统6853637088746466606078716790737177725778675663648365假设2个寿命总体均服从正态分布且方差相等,试问这些数据是否符合上述推陈出推测(α=0.05)?解答:设μ1,μ2分别为矮个子与高个子总统的平均寿命,则检验问题为H0:μ1≤μ2,H1:μ1>μ2,n1=5,x¯=80.2,s1≈8.585,n2=26,y¯≈69.15,s2≈9.315,sw=4×8.5852+9.315229≈9.218,n1n2n1+n2≈2.048,t=(80.2-69.15)9.218×2.048≈2.455,α=0.05,t0.05(29)=1.6991,因t>t0.05(29)=1.6991,故拒绝H0,认为矮个子总统的寿命比高个子总统寿命长.习题4在20世纪70年代后期人们发现,酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA).到了20世纪80年代初期,人们开发了一种新的麦芽干燥过程,下面给出了分别在新、老两种过程中形成的NDMA含量(以10亿份中的份数计):故拒绝H0,认为新、老过程中形成的NDMA平均含量差大于2.习题5有两台车床生产同一种型号的滚珠. 根据过去的经验,可以认为这两台车床生产的滚珠的直径都服从正态分布. 现要比较两台车床所生产滚珠的直径的方差,分别抽出8个和9个样品,测得滚珠的直径如下(单位:mm).甲车床xi:15.014.515.215.514.815.115.214.8乙车床yi:15.215.014.815.215.015.014.815.114.8问乙车床产品的方差是否比甲车床的小(α=0.05)?解答:以X,Y分别表示甲,乙二车床产品直径.X∼N(μ1,σ12),Y∼N(μ2,σ22),X,Y独立. 检验假设H0:σ12=σ22,H1:σ22<σ22.用F检验法, 在H0成立时F=S12S22∼F(n1-1,n2-1).由已知数据算得x¯≈15.01,y¯≈14.99,s12≈0.0955,s22≈0.0261,n1=8,n2=9,α=0.05.拒绝域为Rα={F>Fα(n1-1,n2-1)}.查F分布表得F0.05(8-1,9-1)=3.50.计算F值F=s12/s22=0.0955/0.0261≈3.66.因为3.66>3.50,故应否定H0,即认为乙车床产品的直径的方差比甲车床的小.习题6某灯泡厂采用一项新工艺的前后,分别抽取10个灯泡进行寿命试验. 计算得到:采用新工艺前灯泡寿命的样本均值为2460小时. 样本标准差为56小时;采用新工艺后灯泡寿命的样本均值为2550小时,样本标准差为48小时. 设灯泡的寿命服从正态分布,是否可以认为采用新工艺后灯泡的平均寿命有显著提高(α=0.01)?解答:(1)检验假设H0:σ12=σ22,H1:σ12≠σ22.应选取检验统计量F=S12/S22,若H0真, 则F∼F(m-1,n-1);对于给定的检验水平α=0.01,查自由度为(9,9)的F分布表得F0.005(9,9)=6.54;已知m=n=10,s1=56,s2=48,由此得统计量F的观察值为F=562/482≈1.36;因为F<F0.005(9,9),所以接受原假设H0,即可认为这两个总体的方差无显著差异.(2)检验假设H0′:μ1=μ2,H1′:μ1<μ2.按上述关于双总体方差的假设检验的结论知这两个总体的方差未知但相等,σ12=σ22,所以应选取检验统计量:T=X¯-Y¯(m-1)S12+(n-1)S22m+n-2(1m+1n),若H0′真,则T∼t(m+n-2);对给定的检验水平α=0.01,查自由度为m+n-2=18的t分布表得临界值计算t值t=z¯-0sz/n=-0.1-00.141/5≈-1.59>-2.776,故接受H0:μz=0,即在α=0.05下,认为两种分析方法所得的均值结果相同.7.4 关于一般总体数学期望的假设检验习题1设两总体X,Y分别服从泊松分布P(λ1),P(λ2),给定显著性水平α,试设计一个检验统计量,使之能确定检验H0:λ1=λ2,H1:λ1≠λ2的拒绝域,并说明设计的理论依据.解答:因非正态总体,故宜用大样统计,设X¯=1n1∑i=1n1Xi,S12=1n1-1∑i=1n1(Xi-X¯)2;Y¯=1n2∑i=1n2Yi,S22=1n2-1∑i=1n2(Yi-Y¯)2.\because(X¯-Y¯)-(λ1-λ2)S12n1+S22n2→N(0,1)∴可选用样本函数u=(X¯-Y¯)-(λ1-λ2)S12n1+S22n2作为拒绝域的检验统计量.习题2设某段高速公路上汽车限制速度为104.6km/h,现检验n=85辆汽车的样本,测出平均车速为x¯=106.7km/h,已知总体标准差为σ=13.4km/h,但不知总体是否服从正态分布. 在显著性水平α=0.05下,试检验高速公路上的汽车是否比限制速度104.6km/h显著地快?解答:设高速公路上的车速为随机变量X,近似有X∼N(μ,σ2),σ=13.4km/h,要检验假设H0:μ=μ0=104.6,H1:μ>104.6.α=0.05,n=85,uα=u0.05=1.645.拒绝域W={u=x¯-μ0σ/n>uα.由x¯=106.7,σ=13.4,μ0=104.6,n=85得u=106.7-104.613.4/85≈1.44<1.645.因为1.44<1.645,所以接受H0,即要α=0.05显著性水平下,没有明显的证据说明汽车行驶快于限制速度.习题3某药品广告上声称该药品对某种疾病和治愈率为90%,一家医院对该种药品临床使用120例,治愈85人,问该药品广告是否真实(α=0.02)?解答:设该药品对某种疾病的治愈率为p,随机变量X为X={1,临床者使用该药品治愈0,反之则X∼b(1,p),问题该归结为检验假设:H0:p=0.9,H1:p≠0.9.由于n=120足够大,可以用u检验法,所给样值(x1,x2,⋯,x120)中有85个1,35个0,所以x¯=1120∑i=1120xi=1120∑i=1851=85120≈0.71,又p0=0.9,以之代入统计量U得U的观察值为∣u∣=∣0.71-0.9∣0.9×0.1120=6.94>u0.01=2.33,故拒绝H0,即认为该药品不真实.习题4一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8小时电视.”她认为她所领导的学校,学生看电视时间明显小于该数字. 为此,她向她的学校的100名初中学生作了调查,得知平均每周看电视的时间x¯=6.5小时,样本标准差为s=2小时,问是否可以认为这位校长的看法是对的(α=0.05)?解答:检验假设H0:μ=8,H1:μ<8.由于n=100,所以T=X¯-μS/n近似服从N(0,1)分布,α=0.05,u0.05=1.645.又知x¯=6.5,s=2,故计算得t=6.5-82/100=-7.5,否定域W={X¯-8S/n<-u0.05.因为-7.5<-1.645,故否定H0,认为这位校长的看法是对的.习题5已知某种电子元件的使用寿命X(h)服从指数分布e(λ),抽查100个元件,得样本均值x¯=950(h),能否认为参数λ=0.001(α=0.05)?解答:由题意知X∼e(λ),E(X)=1/λ,D(X)=1/λ2,故当n充分大时u=x¯-1/λ1nλ=(x¯-1λ)λn=(λx¯-1)n(0,1).现在检验问题为H0:λ=0.001,H1:λ≠0.001,样本值u=(0.001×950-1)×100=0.5,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即可认为参数λ=0.001(即元件平均合适用寿命为1000h).习题6某产品的次品率为0.17,现对此产品进行新工艺试验,从中抽取400检查,发现次品56件,能否认为这项新工艺显著地影响产品质量(α=0.05)?解答:检验问题为H0:p=0.17,H1:p≠0.17,由题意知⌢p=mn=56400=0.14,u=(⌢p-p0)p0q0n=0.14-0.170.17×0.83×400≈-1.597,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即认为新工艺没有显著地影响产品质量.习题7某厂生产了一大批产品,按规定次品率p≤0.05才能出厂,否则不能出厂,现从产品中随机抽查50件,发现有4件次品,问该批产品能否出厂(α=0.05)?解答:问题归结为在α=0.05下,检验假设H0:p≤0.05,H1:p>0.05.这是一个单侧检验问题,用u检验法,H0的拒绝域为U=X¯-p0p0(1-p0)n>uα.已知n=50,p0=0.05,x¯=450=0.08,代入U的表达式得u=0.08-0.050.05×0.9550≈0.97<uα=u0.05=1.645,故接受H0,即认为这批产品可以出厂.习题8从选区A中抽取300名选民的选票,从选区B中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所提候选人,试在显著水平α=0.05下,检验两个选区之间对候选人的支持是否存在差异. 解答:这是两个比率的比较问题,待检假设为H0:p1=p2,H1:p1≠p2.由题设知n=300,μn=168,m=200,μm=96,p1 =168320=0.56,p2 =96200=0.48,p=μn+μmm+n=264500=0.528.U0∼=p1 -p2 p(1-p)(1n+1m)=0.56-0.480.528×0.472×1120≈1.755,由P{∣U∼∣>1.96}=α=0.05,得拒绝域∣U∼∣>1.96,因为U0∼=1.755<1.96,故接受H0,即两个选区之间无显著差异.7.5 分布拟合检验Ai k概率pi npi频数fi(fi-npi)2(fi-npi)2npiA001/108085250.3125A111/108093169 2.1125A221/108084160.2A331/10807910.0125A441/10807840.05A551/108069121 1.5125A661/108074360.45A771/10807181 1.0125A881/108091121 1.5125A991/108076160.2∑18007.375由于当H0为真时,χ2=∑i=0k(fi-npi)2npi∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r).这里χ2=7.375,查表知χ0.052(10-1-0)=χ0.052(9)=16.9,显然χ2=7.375<16.9=χ0.052(9),即χ2未落在拒绝域中,所以接受H0,即认为这个正20面体是由均匀材料制面的.习题2根据观察到的数据疵点数0 1 2 3 4 5 6频数fi 14 27 26 20 7 3 3检验整批零件上的疵点数是否服从泊松分布(α=0.05).解答:设X表示整批零件上的疵点数,则本问题是在α=0.05下检验假设H0:P{X=i}=λie-λi!,i=0,1,2,⋯.由于在H0中参数λ未具体给出,所以先估计λ的值. 由极大似然估计法得λ =x¯=1100(0×14+1×27+2×26+3×20+4×7+5×3+6×3)=2.将试验的所有可能结果分为7个互不相容的事件A0,A1,⋯,A7, 当H0成立时,P{X=i}有估计值p0=P{X=0}=e-2≈0.135335,p1=P{X=1}=2e-2≈0.27067,p2=P{X=2}=2e2≈0.270671,p3=P{X=3}≈0.180447,p4=P{X=4}=2/3e-2≈0.090224,p5=P{X=5}=4/15e-2≈0.036089, p6=P{X=6}=4/45e-2≈0.0120298. 列表如下:Ai k 概率pi npi 频数fi (fi-npi)2 (fi-npi)2npiA0 A1 A2 A3 A4 A5 A6 0 1 2 3 4 5 6 0.1353350.270671 0.270671 0.180447 0.090224 0.036089 0.0120298 13.5335 27.0671 27.0672 18.0447 9.02243.60891.2029813.83428 14 27 26 2073313 0.2176 0.0045 1.1387 3.8232 0.6960 0.01608 0.000166 0.04207 0.2118740.050310∑1000.3205当H0为真时,χ2=∑i=0k(fi-npi)2npi ∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r), 这里χ2=0.3205, 查表知χ0.052(5-1-1)=χ0.052(3)=7.815. 显然 χ2=0.3205<7.815=χ0.052(3).即χ2未落在拒绝域中,接受H0, 故可认为整批零件上的疵点数服从泊松分布.习题3检查了一本书的100页,记录各页中印刷错误的个数,其结果为错误个数fi123456 ≥7含fi 个错误的页数 36 4019221问能否认为一页的印刷错误个数服从泊松分布(取α=0.05)? 解答:检验假设H0: 一页的印刷错误个数X 服从泊松分布, P{X=i}=λie -λi!,i=0,1,2,⋯.H0 不成立. 先估计未知参数λλ =x¯=1/100(0×36+1×40+2×19+3×2+4×0+5×2+6×1)=1. 在H0成立下p =P{X=i}=(λ )ie -λ i !=e-1i!,i=0,1,2,⋯. 用χ2检验法χ2=∑i=1k(fi -np )2np ∼χ2(k -r-1). 本题中r=1, 其中fi 为频数. H0的拒绝域为 Rα={χ2>χα2(k -r-1)}. 列表计算如下:n=100, 对每个{X=i}计算 p ,np ,fi -np ,(fi -np )2/(np )(i=1,2,⋯,7). 要求每一个np ≥5.计算χ2值χ2=0.0170+0.2801+0.0202+1.1423=1.4596.习题6下表记录了2880个婴儿的出生时刻:试问婴儿的出生时刻是否服从均匀分布U[0,24](显著性水平α=0.05)?解答:原假设H0:F0(x), 由F0(x)算得pi=F0(i)-F0(i-1)=124,npi=2880×124=120 (i=1,2,⋯,24),于是χ2=∑i=124(fi-npi)2npi≈40.47,对α=0.05, 自由度n-1=23, 查χ2-分布表,得χα2(n-1)=35.17,因为χ2=40.47>35.17, 所以拒绝H0, 即可以认为婴儿出生时刻不服从均匀分布U[0,24].总习题解答习题1下面列出的是某工厂随机选取的20只部件的装配时间(min):9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7.设装配时间的总体服从正态分布N(μ,σ2),μ,σ2均未知,是否可以认为装配时间的均值显著地大于10(取α=0.05)?解答:检验假设H0:μ≤μ0=10,H1:μ>10.已知n=20,α=0.05,由数据算得x¯=10.2,s≈0.5099.因σ2未知,故用t检验法,拒绝域为W={X¯-μ0S/n>tα(n-1).计算得x¯-μ0s/n=10.2-100.5099/20≈1.7541.查t分布表得t0.05(19)=1.7291.因为1.7541>1.7291,故拒绝H0,可以认为装配时间的均值显著地大于10.习题2某地早稻收割根据长势估计平均亩产为310kg,收割时,随机抽取了10块,测出每块的实际亩产量为x1,x2,⋯,x10,计算得x¯=110∑i=110xi=320.如果已知早稻亩产量X服从正态分布N(μ,144),显著性水平α=0.05,试问所估产量是否正确?解答:这是一个正态分布总体,方差已知,对期望的假设检验问题,如果估计正确,则应有μ=310,因此我们先将问题表示成两个假设:①H0:μ=310,H1:μ≠310.接下来就要分析样本值来确定是接受H0,还是接受H1.当H0为真时,统计量②U=X¯-31012/10∼N(0,1),从而有③P{∣U∣>1.96}=0.05,拒绝域为(-∞,-1.96)∪(1.96,+∞).④计算U0=∣320-310∣12/n≈2.64>1.96,即拒绝H0,也就是有理由不相信H0是真的,故认为估产310kg不正确.习题3设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,样本标准差为15分,问在显著水平0.05下,是否可认为这次考试全体考生的平均成绩为70分?并给出检验过程.(1)设这次考试全体考生的平均成绩X∼N(μ,σ2),则待检验假设H0:μ=70,备择假设H1:μ≠70;(2)在H0成立条件下选择统计量T=X¯-μ0S/n∼t(n-1);(3)在显著性水平0.05下,查t分布表,找出临界值tα/2(n-1)=t0.025(35)=2.0301,则拒绝域为(-∞,-2.0301)∪(2.0301,+∞);(4)计算t=∣66.5-70∣15/36=1.4∈(-2.0301,2.0301),故接受H0,因此可认为这次考试全体考生的平均成绩为70分.习题4设有来自正态总体的容量为100的样本,样本均值x¯=2.7,μ,σ2均未知,而∑i=1n(xi-x¯)2=225,在α=0.05水平下,检验下列假设(1)H0:μ=3,H1:μ≠3;(2)H0:σ2=2.5,H1:σ2≠2.5.解答:(1)由题意知n=100,x¯=2.7,s=199×225≈1.508,t=(2.7-3)1.508×100≈-1.9894,α=0.05,t0.025(99)≈t0.025(100)=1.984.因∣t∣=1.9894>t0.025(99)=1.984,故拒绝H0,即认为μ≠3.(2)由题意知χ2=∑i=1n(x1-x¯)22.5=2252.5=90,α=0.05,χ0.0252(99)≈χ0.0252(100)=129.56,χ0.9752(99)≈χ0.9752(100)=74.22,因χ0.9752(99)<χ2=90<χ0.0252(99),故接受H0,即可以认为σ2=2.5.习题5设某大学的男生体重X为正态总体,X∼N(μ,σ2),欲检验假设:H0:μ=68kg,H1:μ>68kg.已知σ=5,取显著性水平α=0.05,若当真正均值为69kg时,犯第二类错误的概率不超过β=0.05,求所需样本大小.解答:由第一类、第二类错误及分位数的定义,易于证明:对于某个给定的δ>0(∣μ-μ0∣≥δ),样本容量n应满足:n≥(uα+uβ)2σ2δ2.因为α=β=0.05,故uα=uβ=1.645,对其对立假设μ=69而言,取δ=1,则n=(uα+uβ)2σ2δ2=(1.645+1.645)2×251≈270.6,故取n=271.某装置的平均工作温度据制造厂家称不高于190∘C.今从一个由16台装置构成的随机样本测得工作温度的平均值和标准差分别为195∘C和8∘C,根据这些数据能否说明平均工作温度比制造厂所说的要高?(设α=0.05,并假设工作温度近似服从正态分布.)解答:设X为工作温度,则X∼N(μ,σ2).①待检假设H0:μ≤190,备择假设H1:μ>190;②在H0成立条件下,选择统计量T=X¯-μ0S/n≈t(n-1);③在显著性水平0.05下,查t分布表,找出临界值tα(n-1)=t0.05(15)=1.75,拒绝域为(1.75,+∞);④计算t=X¯-μ0S/n=195-1908/16=2.5>1.75,所以否定原假设H0,说明平均工作温度比制造厂所说的要高.习题7电工器材厂生产一批保险丝,抽取10根试验其熔断时间,结果为42657578715957685455假设熔断时间服从正态分布,能否认为整批保险丝的熔断时间的方差不大于80(α=0.05)?解答:①待检假设H0:σ2≤80,备择假设H1:σ2>80;②在H0成立时,选取统计量χ2=(n-1)S2σ02∼χ2(n-1);③由α=0.05,n-1=9,查χ2分布表,χα2(n-1)=χ0.052(9)=16.919;④计算样本值:x¯=110(42+65+75+78+71+59+57+68+54+55)=62.4,s2=19∑i=110(xi-x¯)2≈121.8,χ2=9×121.880≈13.7∈(0,16.919).故接受原假设H0即在α=0.05下,可认为整批保险丝的熔断时间的方差不大于80.习题8某系学生可以被允许选修3学分有实验物理课和4学分无实验物理课,11名学生选3学分的课,考试平均分数为85分,标准差为4.7分;17名学生选4学分的课,考试平均分数为79分,标准差为6.1分. 假定两总体近似服从方差相同的正态分布,试在显著性水平α=0.05下检验实验课程是否能使平均分数增加8分?解答:设有实验的课程考分X1∼N(μ1,σ12),无实验的课程考分X2∼N(μ2-σ22).假定σ12=σ22=σ2未知,检验假设H0:μ1-μ2=8,H1:μ1-μ2≠8.由题意知,选用t检验统计量,则拒绝域为W={∣x1¯-x2¯-(μ1-μ2)sw1n1+1n2∣>tα/2(n1+n2-2),其中sw2=(n1-1)s12+(n2-1)s22n1+n2-2.由x1¯=85,x2¯=79,n1=11,n2=17,s1=4.7,s2=6.1,算出sw=(11-1)×4.72+(17-1)×6.1211+17-2≈5.603.从而算出t值为t=85-79-85.603111+117≈-0.92,由α=0.05,查表得t0.025(11+17-2)=t0.025(25)=2.056,因为∣t∣=0.92<2.056,故接受H0,认为μ1-μ2=8.习题9某校从经常参加体育锻炼的男生中随机地选出50名,测得平均身高174.34厘米;从不经常参加体育锻炼的男生中随机地选50名,测得平均身高172.42厘米. 统计资料表明两种男生的身高都服从正态分布,其标准差分别为5.35厘米和6.11厘米,问该校经常参加锻炼的男生是否比不常参加锻炼的男生平均身高要高些(α=0.05)?解答:设X,Y分别表示常锻炼和不常锻炼男生的身高,由题设X∼N(μ1,5.352),Y∼N(μ2,6.112).①待检假设H0:μ1≤μ2,备择假设H1:μ1>μ2;②选取统计量U=X¯-Y¯σ12n+σ22m∼(H0成立)N(0,1);③对于α=0.05,查标准正态分布表,uα=u0.05=1.64;则拒绝域为(1.64,+∞);④计算u=174.34-172.425.35250+6.11250≈1.67>1.64,故否定原假设H0,即表明经常体育锻炼的男生平均身高比不经常体育锻炼的男生平均身高高些.习题10在漂白工艺中要改变温度对针织品断裂强力的影响,在两种不同温度下分别作了8次试验,测得断裂强力的数据如下(单位:kg):70∘C:20.818.819.820.921.519.521.021.280∘C:17.720.320.018.819.020.120.219.1判断两种温度下的强力有无差别(断裂强力可认为服从正态分布α=0.05)?解答:(1)本问题是在α=0.05下检验假设μ1=μ2,为此需要先检验σ12=σ22是否成立.H01:σ12=σ22,H11:σ12≠σ22.选取统计量F=S12S22,在H01成立的条件下,F∼F(n1-1,n2-1),且此检验问题的拒绝域为F>Fα/2(n1-1,n2-1)或F<F1-α/2(n1-1,n2-1).这里F=s12s22≈0.90550.8286≈1.0928,F0.025(7,7)=4.99,F0.975(7,7)=1F0.025(7,7)=14.99≈0.2004.显然F0.975(7,7)=0.2004<1.0928<4.99=F0.025(7,7).说明F未落在拒绝域中,从而接受H01,即认为两温度下的强力的方差没有显著变化,亦即σ12=σ22. (2)再检验假设H0ʹ:μ1=μ2,H0ʹ:μ1≠μ2,在H0ʹ成立的条件下,T=X1¯-X2¯(n1-1)S12+(n2-1)S22n1+n2-21n1+1n2∼t(n1+n2-2),且此检验问题的拒绝域为∣T∣>tα/2(n1+n2-2),这里T≈20.4-19.47×0.9055+7×0.82868+8-218+18≈2.148,显然∣T∣=2.148>2.145=t0.025(14).说明T落在拒绝域中,从而拒绝H0,即认为两种温度下的断裂强力有显著差别.习题11一出租车公司欲检验装配哪一种轮胎省油,以12部装有Ⅰ型轮胎的车辆进行预定的测试. 在不变换驾驶员的情况下,将这12部车辆换装Ⅱ型轮并重复测试,其汽油耗量如下表所示(单位:km/L).汽车编号i123456789101112Ⅰ型胎(xi)4.24.76.67.06.74.55.76.07.44.96.15.2Ⅱ型胎(yi)4.14.96.26.96.84.45.75.86.94.76.04.9假定两总体均服从正态分布,试在α=0.025的显著性水平下,检验安装Ⅰ型轮胎是否要双安装Ⅱ型轮胎省油?解答:设两种轮胎汽油消耗量之差为随机变量D,则取值为zi=xi-yi=0.1,-0.2,0.4,0.1,-0.1,0.1,0,0.2,0.5,0.2,0.1,0.3.设Z∼N(μz,σz2),σz2未知. 若消耗油相同,则μz=0;若Ⅰ型比Ⅱ型轮胎省油,则μz>0,于是检验假设H0:μz=0,H1:μz>0.由题意知z¯≈0.142,s≈0.198,n-1=12-1=11.α=0.025,查t分布表得t0.025(11)=2.201.所以,拒绝域为W={t>2.201}.由于样本值t=z¯-0s/n=0.142-00.198/12≈2.48>2.201,故拒绝H0:μz=0,即说明Ⅰ型轮胎省油.习题12有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量n1=60,n2=40的样本,测得部件重量(以kg计)的样本方差分别为s12=15.46,s22=9.66. 设两样本相互独立,两总体分别服从分布N(μ1,σ12),N(μ2,σ22).μi,σi2(i=1,2)均未知,试在α=0.05水平下检验假设H0:σ12≤σ22,H1:σ12>σ22.解答:在α=0.05下,检验假设H0:σ12≤σ22,H1:σ12>σ22,经计算p=1100×10(45+2×17+3×4+4×1+5×1)=1/10,故检验假设为H0:X∼B(10,1/10),即p =P{X=i}=C10i(1/10)i(9/10)10-i,i=0,1,2,⋯,10.为了使np ≥5,将xi≥3合并,于是k=4,r=1.计算χ2的观察值,计算结果如下表:[200,300) [300,+∞)435843.466.9-0.4-8.90.0041.184∑300300 1.8631其中理论概率pi=p{ti≤T≤ti+1}=∫titi+1f(t)dt(i=1,2,3),p4=1-∑i=13pi,例如p1=P{T<100}=∫01000.005e-0.005tdt=1-e-0.5≈0.393.由k=4,未知参数个数r=0,查表知χα2(k-r-1)=χ0.052(3)=7.815.因χ2=1.8631<χ0.052(3)=7.815.故接受H0,即可认为灯泡的寿命服从该指数分布.习题16关于正态总体X∼N(μ,1)的数学期望有如下二者必居其一的假设,H0:μ=0,H1:μ=1.考虑检验规则:当X¯≥0.98时否定假设H0接受H1,其中X¯=(X1+⋯+X4)/4,而X1,⋯,X4是来自总体X的简单随机样本,试求检验的两类错误概率α和β.解答:易见,在假设“H0:μ=0”成立的条件下,X¯∼N(0,1/4),2X¯∼N(0,1);在假设“H1:μ=1”成立的条件下,X¯∼N(1,1/4),2(X¯-1)∼N(0,1).因此,由定义得α=P{X¯≥0.98∣μ=0}=P{2X¯≥1.96∣μ=0}=0.025,β=P{X¯<0.98∣μ=1}=P{2(X¯-1)<-0.04∣μ=1}=0.4840.习题17考察某城市购买A公司牛奶的比例,作假设H0:p=0.6,H1:p<0.6,随机抽取50个家属,设x为其中购买A公司牛奶的家庭数,拒绝域W={x≤24}.(1)H0成立时,求第一类错误的α;(2)H1成立且p=0.4时,求第二类错误的β(0.4);又当p=0.5时,求第二类错误的β(0.5).解答:由定义知(1)α=P{x≤24∣p=0.6}=Φ(24-50×0.650×0.6×0.4)≈Φ(-1.73)=1-Φ(1.73)=1-0.9528=0.0418.(2)β(0.4)=P{x>24∣p=0.4}=1-Φ(24-50×0.450×0.4×0.6)≈1-Φ(1.15)=1-0.8749=0.1251;。
假设检验的定义和步骤
假设检验的定义和步骤假设检验是一种统计推断方法,用于判断某种假设是否成立。
它可以帮助我们从样本数据中推断总体的特征,并且在决策和判断中起到重要的作用。
下面将介绍假设检验的定义和步骤。
一、定义假设检验是基于样本数据对总体参数进行推断的方法。
它基于一个原假设(H0)和一个备择假设(H1),通过对样本数据进行统计分析,得出关于总体参数的结论。
二、步骤假设检验的步骤一般包括以下几个阶段:1. 建立假设:在进行假设检验之前,需要明确原假设和备择假设。
原假设通常是我们要进行推断的对象是否符合某种特定的条件,备择假设则是原假设的补集。
2. 选择显著性水平:显著性水平是用来判断原假设是否成立的标准。
一般情况下,我们会选择一个显著性水平(通常用α表示),如0.05或0.01,来作为判断的标准。
3. 选择统计检验方法:根据数据类型和假设条件的不同,选择适当的统计检验方法。
常见的统计检验方法包括t检验、F检验、卡方检验等。
4. 计算统计量:根据选定的统计检验方法,计算得到相应的统计量。
统计量的计算方法根据具体的检验方法而定。
5. 确定拒绝域:根据显著性水平和统计量的分布,确定拒绝域。
拒绝域是在原假设成立的条件下,观察到的统计量取值落在其中的区域。
6. 判断结论:将计算得到的统计量与拒绝域进行比较,若统计量的取值落在拒绝域内,则拒绝原假设,接受备择假设;若统计量的取值落在拒绝域外,则接受原假设。
7. 给出推断:根据判断的结论,给出对总体的推断。
若拒绝原假设,则说明总体不符合假设条件;若接受原假设,则说明总体符合假设条件。
假设检验是一种重要的统计分析方法,可以帮助我们从样本数据中推断总体的特征。
通过明确假设、选择显著性水平、选择适当的统计检验方法、计算统计量、确定拒绝域、判断结论和给出推断,我们可以得出对总体的结论。
这种方法在科学研究、医学实验、市场调查等领域都有广泛的应用。
假设检验法的原理和步骤
假设检验法的原理和步骤一、常用核心概念什么是假设检验:假设就是对从总体参数(均值、比例等)的具体数值所作的陈述,比如,我认为配方一比配方二的效果要好。
而假设检验就是先对总体的参数提出某种假设,然后利用样本的信息判断假设是否成立的过程,比如上面的假设信息我该接受还是拒绝。
什么是显著性水平:显著性水平是一个概率值,原假设为真时,拒绝原假设的概率,表示为α,常取值为0.05、0.01、0.10。
一个公司招聘,本来准备招聘100个人,公司希望只有5%的人是混水摸鱼招聘进来,所以可能会有5个人混进来,所谓显著性水平α,就是你允许有多少比例混水摸鱼的能通过测试。
原假设与备择假设:待检验的假设又叫原假设(零假设),一般表示为H0,原假设一般表示两者没有显著性差异。
与原假设进行对比的叫备择假设,表示为H1。
一般在比较的时候,主要有等于、大于、小于。
检验统计量:即计算检验的统计量。
根据给定的显著性水平,查表得出相应的临界值。
再将检验统计量的值与该显著性水平的临界值进行比较,得出是否拒绝原假设的结论。
P值:是一个概率值,如果原假设为真,p值是抽样分布中大于或小于样本统计量的概率。
左检验时,p值为曲线上方小于等于检验统计量部分的面积。
右检验时,p值为曲线上方大于等于检验统计量部分的面积。
假设检验的两种错误:类型 I 错误(弃真),如原假设为真,但否定它,则会犯类型 I 错误。
犯类型 I 错误的概率为α(即您为假设检验设置的显著性水平)。
α为 0.05 表明,当您否定原假设时,您愿意接受 5% 的犯错概率。
为了降低此风险,必须使用较低的α值。
但是,使用的α值越小,在差值确实存在时检测到实际差值的可能性也越小。
类型 II 错误(采伪),如原假设为假,但无法否定它,则会犯类型 II 错误。
犯类型 II 错误的概率为β,β依赖检验功效。
可以通过确保检验具有足够大的功效来降低犯类型 II 错误所带来的风险。
方法是确保样本数量足够大,以便在差值确实存在时检测到实际差值。
假设检验的基本原理与一般步骤PPT课件( 61页)
有时我们只关心总体均值是否增大或减小。 此时,我们需要检验假设: 右边检验: H0 : 0 , H1 : 0 . 左边检验: H0 : 0 , H1 : 0 . 右边检验和左边检验统称为单边检验。
再利用已知样本作出判断是接受假设H0(拒绝假 设H1), 还是拒绝假设H0(接受假设H1).
如果作出的判断是接受H0, 则 0,
即认为机器工作是正常的, 否则, 认为是不正常的.
由于要检验的假设涉及总体均值, 故可借助于样本 均值来判断.
因为 X是的无偏估, 计量
所H 以 0为 ,若 则 真 |x0|不应 , 太大
一般来说,我们总是控制犯第Ⅰ类错误的概率, 使它不大于显著性水平,而不考虑犯第Ⅱ类错 误的概率的检验,称为显著性检验.
三、假设检验的一般步骤
1. 根据实际问 ,提题 出的 原 H 要 0假 及 求 设 备择 假设 H1;
2.选择适当的检,在 验H统 0成计 立量 的条, 件下 确定它的概; 率分布
然而由于作出决策的依据是一个样本,当实际
上 H0 为真时仍可能做出拒绝 H0 的决策,这是一
种错误,其概率记为
P{当 H0为真时拒绝 H0}
我们给定一个较小的数α (0< α < 1),使得 P{当 H0 为真时拒绝 H0 }≤α
取允许犯这类错误的概率最大为 α 即令
P
{当为真
时拒绝
}=
P
{
X-u0
又已 n9,知 0.0由 15 样 , 本x 算 0.得 511,
即有 x / n 0 2. 21.96,
于是拒绝假设H0, 认为包装机工作不正常.
假设检验基本原理
–Zα/2
Zα/2
(a)双侧检验
α
α
–Zα
0
0
Zα
(b)左检验的拒绝域分配
14
表6-1 拒绝域 位置 双侧 左单侧 右单侧
拒绝域的单、双侧与备择假设之间的对应关系 P-值检验的显 著性水平判断 标准 α/2 α α 原假设 备择假设
H0 :θ=θ0 H0 :θ≥θ0 H0 :θ≤θ0
H1 :θ≠θ0 H1 :θ<θ0 H1 :θ>θ0
15
• 在统计的假设检验中,一般是把“不能轻易否定 的命题”作为原假设,把“需要验证的问题”作 为备择假设。什么是“不能轻易否定的命题”? 一般来说,原有的理论、原有的看法、原有的状 况、或者说是那些保守的、历史的、经验的,在 没有充分论据证明其错误前总是被假定为正确的, 作为原假设,处于被保护的位置,而那些猜测的、 可能的、预期的取为备择假设。假设检验的目的 就是要用事实验证原来的理论、看法、状况等是 否成立,或更明确地说,是希望用事实推翻原假 设。
11
• 例如,有一个厂商称其产品的合格率很高,可以得到99 %,那么从一批产品中(如100件)随机抽取1件,这一 件恰好是次品的概率就非常小,只有1%。 • 如果厂商的宣称是真的,随机抽取1件是次品的情况就 几乎不可能发生的; • 但如果这种情况确实发生了,就有理由怀疑原来的假设, 即产品中只有1%次品的假设是否成立,这时就可以推 翻原来的假设,可以做出厂商的宣称是假的这样一个推 断。
19
α/2 1–α
α/2
–Zα/2
Zα/2
(a)双侧检验
α
α
–Zα
0
0
Zα
(b)左侧检验
(c)右侧检验
双侧、 图6-1 双侧、单侧检验的拒绝域分配
统计学 假设检验的原理与一般步骤
对于具体问题而言,到底用哪种推断方法中的哪种
类型来处理,这是本课程的核心问题,也是难点。
.
假设检验的基本思想与步骤
假设检验过去称显著性检验。它是利 用小概率反证法思想,从问题的对立面
均数比较的t检验p2224样本均数与总体均数比较配对计量资料比较两独立样本均数比较小样本方差分析p5054完全随机设计成组设计配伍组设计主要看资料类型设计方式推断目的和应用条件抽样误差大小的衡量标准误standarderrowse样本均数的标准差称为标准误反映了用样本均数代替总体均数的可靠性程度的大小增加样本容量可以降低抽样误差
具体的P值,省得我们查表。
.
4. 下结论
根据 P 值来下结论 若 P ,按所取检验水准 ,拒绝 H0 ,
接受 H1 ,下“有差别”的结论。其统计学依 据是,在 H0 成立的条件下,得到现有检验结 果的概率小于或等于 ,因为小概率事件不 可能在一次试验中发生,所以拒绝 H0 。
.
若 P ,是否也能下“无差别”或
Q=p75-p25=Qu-QL
.
离散趋势指标/变异指标
方差
总体方差 σ2= (x ) 2 N
在样本中,μ未知,常用S2替代
2
(x x)
S2=
n 1
其中n-1为自由度
.
离散趋势指标/变异指标
标准差(standard deviation,SD)
总体标准差σ= (x )2
N
μ未知,样本标准差
130.83g/L ≠140g/L ?
如果我们排除了抽 样误差导致的差异, 那么比较双方就实
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算统计量观测值: U =
X − µ0
σ0
n
(2)得 (2)得到区间W0 : [−U 1−α 2 ,U 1−α 2 ], W1 : (−∞, −U 1−α 2 ) U (U 1−α 2 , +∞)
(3)做出判断:若U ∈ W0 , 接受;若U ∉ W0,拒绝
判断的依据: 判断的依据:小概率反例否定法
受伪概率(使用方风险) 受伪概率(使用方风险) β = P {接受H 0 | H 0不真}
理想方法: 理想方法: α 与β 都尽可能地小 不可能 方法
∧
个原则: 原假设遵循 3 个原则:
(1)等号原则 )
(2)尊重原假设原则 )
(3)控制严重后果原则 )
假设检验中的两类错误
第一类错误(弃真) : 第一类错误(弃真)
H 0 正确, U ∈ W1 正确,
拒真概率(厂方风险) 拒真概率(厂方风险) α = P{拒绝H0 | H0真}
H0
错误, 第二类错误(取伪) : 第二类错误(取伪) H 0 错误, U ∈ W0
H 0:µ = µ0 = 0.5 , H 1:µ ≠ µ0
给定置信度为 α = 0.05
分析: 分析: 若 H 0 真,即 µ = µ0
对给定的置信度 α ,选定常数 c , 使得 P {
X − µ0 ≤ c
} = 1−α
(1)选 (1)选统计量 U =
X − µ0
σ0
n
和 临界 值 U 1 − α 2 ,
——最优势检验 ——最优势检验 最优势检 不足: 不足:检测方法不一定存在
(3)给定 α ,找出 W0 (W1 ) ——显著性检验 ) ——显著性检验
不足:只控制α ,不控制β ,使得H 0与H 1地位不平等
控制严重后果原则
P {U ∈ W1 | H 0为真} ≤ α
( 1 ) U ∈W1 (a) H 0 错,则推断正确 ) (b) H 0 正确,则推断不正确 ) 正确,则推断不
假设检验
点估计 估计 区间估计 统计推断 单侧检验 假设检验 双侧检验
两厂生产同一产品, 例 两厂生产同一产品, 其重量指标都服从正态分 。从甲厂抽出 布,按规定其均值应该等于 120( g ) 从甲厂抽出 ( 。 5 件产品测得:119,120,119.2,119.7,119.6。 件产品测得: , , , , 。 件产品测得 测得: 从乙厂也抽出 5 件产品测得:110.5,106.3, , ,122.2, , 113.8,117.2,要问这两家工厂的产品是否都符合 , , 国家标准. 国家标准
受伪概率(使用方风险) 受伪概率(使用方风险) β = P {接受H 0 | H 0不真}
理想方法: 理想方法: α 与β 都尽可能地小 不可能 方法
(1)取定 α ,增大样本容量使 β 减小 )
不足: 不足:带来检验和试验成本的增加
降低错误的方法: 降低错误的方法:
(2) n 给定,规定 α ,使 β 尽可能地小 ) 给定,
设用户满意率为 p
H0:p ≤ 0.75Байду номын сангаас
H1:p > 0.75
单侧检验
个原则: 原假设遵循 3 个原则:
(1)等号原则 )
(2)尊重原假设原则 )
(3)控制严重后果原则 )
(二)构造统计量 U ,由样本观测值计算对应的 统计量测试值, 统计量测试值,并做出判断
例 7.1.1
2 2 X ~ N ( µ , σ 0 ),σ 0 = 0.014 2 , 总体
(1)先提出假设: µ = 120 )先提出假设:
(2)在给定的置信水平下,利用抽样数据, )在给定的置信水平下,利用抽样数据, 判断 µ 是否落在接受区间 是否落在接受区间
(3)做出判断(接受或拒绝原假设) )做出判断(接受或拒绝原假设)
假设检验的理论依据
小概率反例否定法 1)小概率事件在一次随机试验中几乎 ) 不会发生 2)反例否定 )
P {U ∈ W1 | H 0为真} ≤ α , 弃真概率小,且可控
( 2 ) U ∈W0
(a) H 0 正确,则推断正确 ) 正确, 则推断不 ( b) H 0 错,则推断不正确 )
P {U ∈ W0 | H 0不真} = β , 无法控制
弥补的方法: 弥补的方法: 接受H
0
⇒ 不拒绝H0
假设检验的一般步骤
(1)提出 H 0 , H 1 , )
∧
(2) 选取统计量 U ,计算测试值 U ;
3) 求出临界值, (3)对于给定的 α 求出临界值,划分W0 和W1 , 使得: 使得: P {U ∈ W1 | H 0真} ≤ α
∧
(4) 做出判断:若 U ∈ W1 拒绝 H 0 ; 做出判断: 若 U ∈ W0 不拒绝 H 0
有一厂商声称, 例 7.1.2 有一厂商声称,有 75%以上的用 以上的用 户对其产品质量感到满意。 在对 60 名用户的 户对其产品质量感到满意。 调查中, 人对该厂产品质量表示满意, 调查中,有 50 人对该厂产品质量表示满意, 问调查数据是否充分支持该厂商的说法? 问调查数据是否充分支持该厂商的说法?
机抽取 10 袋,称得净重分别为: 称得净重分别为: 0.496 0.510 0.515 0.506 0.512 0.524 0.497 0.488 问这台包装机的工作是否正常. 问这台包装机的工作是否正常 0.518 0.511
X ~ N(µ, 0.0142) 设每袋净重为随机变量 X ,则
H0 : µ = µ0, H1 : µ ≠ µ0 双侧检验
Excel判 Excel判别:p值检验法
p 2
p 2
−U
U
假设检验中的两类错误
第一类错误(弃真) : 第一类错误(弃真)
H 0 正确, U ∈ W1 正确,
拒真概率(厂方风险) 拒真概率(厂方风险) α = P{拒绝H0 | H0真}
错误, 第二类错误(取伪) : 第二类错误(取伪) H 0 错误, U ∈ W0
7.1 假设检验基本概念与一般步骤
(一)提出假设(Hypothesis) 提出假设(
原假设H 0 , 备选假设H 1
H 0与H 1互不相容
某药厂包装硼酸粉, 例 7.1.1 某药厂包装硼酸粉, 规定每袋净重为 0.5 ( kg ) 设 每 袋 重 量 服 从 正 态 分 布 , 标 准 差 ,
σ = 0.014 (kg) 为检验包装机的工作是否正常,随 。为检验包装机的工作是否正常 ) 为检验包装机的工作是否正常, 。