假设检验的基本概念与基本思想

合集下载

4 假设检验和t检验

4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检

统计学假设检验的基本原理与方法

统计学假设检验的基本原理与方法

第四节假设检验的基本原理与方法4.4.1假设检验的基本思想[理解]假设检验是除参数估计之外的另一类重要的统计推断问题。

它的基本思想可以用小概率原理来解释。

所谓小概率原理,就是认为小概率事件在一次试验中是几乎不可能发生的。

也就是说,对总体的某个假设是真实的,那么不利于或不能支持这一假设的事件A在一次试验中是几乎不可能发一的;要是在一次试验中事件A竟然发生了,我们就有理由怀疑这一假设的真实性,拒绝这一假设。

例7:某公司想从国外引进一种自动加工装置。

这种装置的工作温度X 服从正态分布(μ,52),厂方说它的平均工作温度是80度。

从该装置试运转中随机测试16次,得到的平均工作温度是83度。

该公司考虑,样本结果与厂方所说的是否有显著差异?厂方的说法是否可以接受?类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题,就是假设检验的问题。

我们把任一关于单体分布的假设,统称为统计假设,简称假设。

上例中,可以提出两个假设:一个称为原假设或零假设,记为H:μ=80(度);另一个称为备择假设或对立假设,记为H1:μ≠80(度)这样,上述假设检验问题可以表示为:H0:μ=80 H1:μ≠80原假设与备择假设相互对立,两者有且只有一个正确,备择假设的含义是,一旦否定原假设H0,备择假设H1备你选择。

所谓假设检验问题就是要判断原假设H是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设。

应该如何作出判断呢?如果样本测定的结果是100度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的,而现在竟然出现了,当然要拒绝原假设H。

现在的问题是样本平均工作温度为83度,结果虽然与厂方说的80度有差异,但样本具有随机性,80度与83度之间的差异很可能是样本的随机性造成的。

在这种情况下,要对原假设作出接受还是拒绝的抉择,就必须根据研究的问题和决策条件,对样本值与原假设的差异进行分析。

假设检验的基本思想

假设检验的基本思想
现在,我们来解决例1提出的问题:
(1)假设H0:= 0=4.55,H1:≠4.55;
(2)选择检验用统计量 ;
(3)对于给定小正数,如=0.05,查标准正态分表得到临界值z/2 =z0.025 =1.96;
因为| z|=3.9>1.96,所以拒绝H0,接受H1,即认为新工艺改变了铁水的平均含碳量。
以上两例都是科技领域中常见的假设检验问题。 我们把问题中涉及到的假设称为原假设或称待检假设,一般用H0表示。而把与原假设对立的断言称为备择假设,记为H1。
如例1,若原假设为H0:= 0=4.55,则备择假设为H1:≠4.55。 若例2的原假设为H0:X服从正态分布,则备择假设为H1:X不服从正态分布。
例如,在100件产品中,有一件次品,随机地从中取出一个产品是次品的事件就是小概率事件。 因为此事件发生的概率=0.01很小,因此,从中任意抽一件产品恰好是次品的事件可认为几乎不可能发生的,如果确实出现了次品,我们就有理由怀疑这“100件产品中只有一件次品”的真实性。 那么取值多少才算是小概率呢?这就要视实际问题的需要而定,一般取0.1,0.05,0.01等。
一、假设检验问题的提出
统计推断的另一个重要问题是假设检验问题。在总体的分布函数未知或只知其形式,但不知其参数的情况下,为了推断总体的某些性质,提出某些关于总体的假设。例如,提出总体服从泊松分布的假设,又如,对于正态总体提出数学期望μ0的假设等。
这里,先结合例子来说明假设检验的基本思
二、假设检验的基本思想
假设检验的一般提法是:在给定备择假设H1下,利用样本对原假设H0作出判断,若拒绝原假设H0,那就意味着接受备择假设H1,否则,就接受原假设H0。 换句话说,假设检验就是要在原假设H0和备择假设H1中作出拒绝哪一个和接受哪一个的判断。究竟如何作出判断呢?对一个统计假设进行检验的依据是所谓小概率原理,即 概率很小的事件在一次试验中是几乎不可能发生

教育与心理统计学 第五章 假设检验考研笔记-精品

教育与心理统计学  第五章 假设检验考研笔记-精品
把出现小概率的随机事件称为小概率事件。
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\

假设检验的基本概念

假设检验的基本概念

—— 小概率事件
,+∞) 显著性水平不超过α
故取拒绝域 ( μ 0 + zα
σ
n
注 3º
关于零假设与备择假设的选取
H0与H1地位应平等,但在控制犯第一类错误 的概率 α 的原则下,使得采取拒绝H0 的决 策变得较慎重,即H0 得到特别的保护.
因而,通常把有把握的、有经验的结论作为 原假设,或者尽可能使后果严重的错误成为 第一类错误.
3、根据样本值计算,并作出相应的判断.
⎛ 66.82 − 69 ⎞ ⎛ 69.18 − 69 ⎞ = Φ⎜ ⎟ − Φ⎜ ⎟ 0.6 ⎠ ⎝ ⎝ 0.6 ⎠ = Φ (0.3) − Φ (−3.63) = 0.6179 − 0.0002 = 0.6177
取伪的概率较大.
0.12 0.1 0.08 0.06
α/2
0.04 0.02 60 62.5 65 67.5 70 72.5 75
若不采用假设检验, 按理也不能够出厂. 上述出厂检验问题的数学模型 对总体
X ~ f (x; p) = px (1− p)1−x x = 0,1 提出假设
H 0 : p ≤ 0.04; H1 : p > 0.04
( ∑ xi = 3 or 1 )
i =1 12
要求利用样本观察值 ( x1 , x2 , , x12 ) 对提供的信息作出接受 H (不准出厂) 的判断.
n ) , E( X ) = μ
⎞ ⎛ X −μ ⎟ ⎜ P⎜ > zα ⎟ = α ⎟ ⎜ σ ⎟ ⎜ ⎠ ⎝ n
X ~ N (μ ,
σ2
若原假设正确, 则
但现不知 μ的真值,只知 μ ≤ μ0 = 68
⎞ ⎞ ⎛ X −μ ⎛ X −μ 0 ⎟ ⎟ ⎜ ⎜ ⎜ > zα ⎟ > zα ⎟ ⊂ ⎜ ⎟ ⎟ ⎜ σ ⎜ σ ⎟ ⎟ ⎜ ⎜ n n ⎠ ⎠ ⎝ ⎝ ⎞ ⎛ X −μ 0 ⎟ ⎜ P⎜ > zα ⎟ ≤ α ⎟ ⎜ σ ⎟ ⎜ n ⎠ ⎝

第七章假设检验

第七章假设检验
第七章 假设检验
第一节 第二节 检验 假设检验的一般问题 总体均值, 总体均值,比例和方差的假设
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 能对实际问题作假设检验
第一节 假设检验的一般问题
一,假设检验的概念 二,假设检验的步骤 三,假设检验中的小概率原理 四,假设检验中的两类错误 五,双侧检验和单侧检验
拒绝域 置信水平
α
1-α 接受域 H0值 样本统计量
临界值
6,右侧检验(显著性水平与拒绝域 ) 右侧检验( 抽样分布
置信水平 拒绝域 1-α 接受域 H0值 观察到的样本统计量 样本统计量
α
临界值
抽样分布
1-α 接受域 H0值
置信水平 拒绝域
α
临界值
样本统计量
第二节 总体均值,比例和方差的假设检验
1,原假设为真时拒绝原假设 , 2,会产生一系列后果 , 3,第一类错误的概率为α ,第一类错误的概率为α
被称为显著性水平 第二类错误(取伪错误) (二)第二类错误(取伪错误)
1,原假设为假时接受原假设 , 2,第二类错误的概率为β ,第二类错误的概率为β
(三)列表
H0: 无罪
假设检验就好 像一场审判过程
2,确定假设的步骤 例如问题为: 检验该企业生产的零件平均长度为4厘米 步骤: (1)从统计角度陈述问题 ( = 4) 1 (2)从统计角度提出相反的问题 ( ≠ 4) 必需互斥和穷尽 (3)提出原假设 ( = 4) (4)提出备择假设 ( ≠ 4) 有 ≠ 符号
3,双侧检验(例子) 双侧检验(例子)
1,原假设与备择假设是一个完整事件组. 2,通常先确定备择假设,再定原假设. 3,等号总放在原假设. 4,两者的选择本质上带有主观色彩. 5,假设检验的目的主要是收集证据拒绝原 假设.

概率论与数理统计 第8章

概率论与数理统计  第8章
后所生产的灯管中抽取 25 只,测得平均寿命为 1675 小时。 问采用新工艺后,灯管寿命是否有显著性提高?
现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。

8-1假设检验的基本概念

8-1假设检验的基本概念

2 比如在例 1.2 中, 36 件甲批产品中的次品率为 5.56% , 36 3 50 件乙批产品中的次品率为 6% ,虽然有 5.56% 6% ,但 50
不能依此作出结论,认为 p1 p2 ,而是需要根据假设检验的思想 和方法,进行充分的理论分析,最后给出科学客观的结论.
6
2.假设的提法
12
例 1.4 只是用来介绍假设检验的基本原理,其中还有 许多问题并没有讲透.
X 500 比如,为什么选择统计量为 U ,而不是其 n
又如, 小概率事件 A {U 3} 是由正态分布的 “3 原
它统计量;
则”产生的,对于其它分布,如 2 分布, t 分布和 F 分布 等并无此原则,那么一般情况下,小概率事件 A 又如何确 定等等.这些问题将在后续内容中逐一介绍.
其分位点决定的, 同时又与所谓的双侧检验和单侧检验有关.
24
如果假设检验问题 ( H 0 , H1 ) 为
H 0 : 0 , H1 : 0 ,
就称之为双侧(边)检验.
如果假设检验问题 ( H 0 , H1 ) 为
H 0 : 0 , H1 : 0 ,

H 0 : 0 , H1 : 0 ,
7
二、假设检验的思想和方法
1.假设检验中的反证法思想
反证法思想(注意:不是指严格的反证法) : 先假定 H 0 成立,然后根据统计分析的思想和方法, 进行推理和演算,如果推理和演算的结果中有“矛盾” 的现象出现,就“主动地”拒绝 H 0 ,接受 H1 ;如果其 结果中没有“矛盾”的现象出现,就不能拒绝 H 0 ,因 此只好“被动地”接受 H 0 ,拒绝 H1 .
第八章
假设检验

《概率论与数理统计》第八章1假设检验的基本概念

《概率论与数理统计》第八章1假设检验的基本概念
单侧检验 H0 : 0 1000, H1 : 1000
2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%?
双侧检验 H0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, 先抽取某个班的平均 分,看该成绩是否显著高于全校整体水平?
单侧检验 H0 : 0 65, H1 : 65
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
分析 以 和 分别表示这一天袋装糖的净重
总体X 的均值和标准差,
由长期实践表明标准差比较稳定, 我们就设
0.015,于是 X ~ N(, 0.0152 ),这里 未知. 问题 问题是根据样本值判断 0.5 还是 0.5 .

以,原假
设H
不正确
0

对于这两种解释,哪种解释比较合理呢?
我们需要判断以上两种假设谁对谁错,并给出判断的理由
以上例子属于参数检验(parametric test) 的问题,(如针对总体均值,总体方差等参数的假 设检验)。
另外还有非参数检验(Nonparametric test) 的问题,如关于总体服从某种分布(如正态分布, 泊松分布)的假设检验。
4. 拒绝域与临界点
拒绝域W1: 拒绝原假设 H0 的所有样本值 (x1, x2, ···, xn)所组成的集合.
W1 W1 :拒绝原假设H0的检验统计量的取值范围.
临界点(值):拒绝域的边界点(值) (相应于检验统计量的值).
如: 在前面例4中,拒绝域 {u :| u | u / 2 }.
5. 双边备择假设与双边假设检验
之 下 做 出 的.
2. 检验统计量

假设检验

假设检验

第四节假设检验的基本原理与方法一、假设检验的基本思想[理解] 小概率的反证法假设检验是除参数估计之外的另一类重要的统计推断问题。

它的基本思想可以用小概率原理来解释。

所谓小概率原理,就是认为小概率事件在一次试验中是几乎不可能发生的。

也就是说,对总体的某个假设是真实的,那么不利于或不能支持这一假设的事件A在一次试验中是几乎不可能发一的;要是在一次试验中事件A竟然发生了,我们就有理由怀疑这一假设的真实性,拒绝这一假设。

例1:某公司想从国外引进一种自动加工装置。

这种装置的工作温度X服从正态分布(μ,52),厂方说它的平均工作温度是80度。

从该装置试运转中随机测试16次,得到的平均工作温度是83度。

该公司考虑,样本结果与厂方所说的是否有显著差异?厂方的说法是否可以接受?类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题,就是假设检验的问题。

我们把任一关于单体分布的假设,统称为统计假设,简称假设。

上例中,可以提出两个假设:一个称为原假设或零假设,记为H0:μ=80(度);另一个称为备择假设或对立假设,记为H1:μ≠80(度)这样,上述假设检验问题可以表示为:H0:μ=80 H1:μ≠80原假设与备择假设相互对立,两者有且只有一个正确,备择假设的含义是,一旦否定原假设H0,备择假设H1备你选择。

所谓假设检验问题就是要判断原假设H0是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设。

应该如何作出判断呢?如果样本测定的结果是100度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的,而现在竟然出现了,当然要拒绝原假设H0。

现在的问题是样本平均工作温度为83度,结果虽然与厂方说的80度有差异,但样本具有随机性,80度与83度之间的差异很可能是样本的随机性造成的。

在这种情况下,要对原假设作出接受还是拒绝的抉择,就必须根据研究的问题和决策条件,对样本值与原假设的差异进行分析。

8.1 假设检验的基本思想与步骤

8.1 假设检验的基本思想与步骤
原假设H0 : p=1/2 即该女士凭猜测判断, 对立假设H1: p>1/2 即该女士确有判断力.
如在工件直径的假设检验问题中,设α1 < α2 < α3, 对不同的分位数
电子科技大学
假设检验基本思想
(x)
显著性水 平α3下拒
绝H0
- u1 - u2- u3
u3 u2 u1
显著性水平α2下接受H0
α1 < α2 < α3
电子科技大学
假设检验基本思想
注2 在确定H0的拒绝域时应遵循有利准则: 将检验统计量对H0有利的取值区域确定为接受 域,对H1成立有利的区域作为拒绝域. 如在工件直径假设检验问题中
1.提出原假设:根据实际问题提出原假设
H0和备选假设H1;
电子科技大学
假设检验基本思想
2. 建立检验统计量:寻找参数的一个良好 估计量,据此建立一个不带任何未知参数的统
计量U作为检验统计量,并在H0成立的条件下,
确定U的分布(或近似分布);
2
3.确定H0的否定域:根据实际问题选定显
著性水平α,依据检验统计量的分布与H0的内
给定α,H1的否定域为:
x
-
0
-
0
n

例中
x
-
2
-0.022
-
0
n
u0.05
-0.0165
拒绝H0,即认为新工艺使工件直径偏小.
大样本假设检验例
电子科技大学
假设检验基本思想
四、两类错误 1)假设检验的主要依据是“小概率事件原 理”,而小概率事件并非绝对不发生. 2)假设检验方法是依据样本去推断总体,样 本只是总体的一个局部,不能完全反映整体 特性.

概率论与数理统计(假设检验的思想方法和基本概念)

概率论与数理统计(假设检验的思想方法和基本概念)
x 0 z 2 | z | / n
= {| z | z0.025}={| z |1.96}
由样本数据计算得到

x 0 z / n
(497 506 518 524 488 517 510 515 516) / 9 500 2.02 15 / 9
因此,假设检验问题可能会犯如下两类错误:
第一类错误(“弃真”):实际情况是H0成立,而检验 的结果表明H0不成立,拒绝了H0. 第二类错误(“存伪”):实际情况是H0不成立,H1成 立,而检验的结果表明H0成立,接受了H0.
下面我们来研究一下犯这两类错误的概率.
8.1.2 假设检验的两类错误
犯第一类错误的概率:
X
H1: < 0
~ N (0,1)
/ n 对于给定的小概率 , 由图8-3知
X P z , / n X X 0 , 当原假设成立时,由于 / n / n X 0 所以 P z , / n X 0 即 z 是小概率事件. / n
8.1.1 假设检验的思想方法
根据上例可以看到假设检验的思想方法是:
(1) 提出假设; (2) 在假设成立的条件下构造一个小概率事件; (3) 由样本数据判断小概率事件是否发生了,如果小 概率事件发生了,根据“小概率原理”,作出否定原 假设的推断.
8.1.1 假设检验的思想方法
再考察下面的例子. 【例8.2】一台包装机包装洗衣粉,额定标准重量为500g, 根据以往经验,包装机的实际装袋重量服从正态N(,2), 其中 = 15g通常不会变化
x 0
这违背了小概率原理, 原因是原假设出了问 题
/ n

假设检验的基本思想和一般步骤

假设检验的基本思想和一般步骤

假设检验的基本思想和一般步骤
检验(hypothesis testing)是统计学中常用的一种方法,用于得出对某一性
质具有一定证据基础的结论。

它以假设检验为基础,将统计学原理用于科学研究,以检验一些假设或猜测是否可以被科学地接受。

检验的基本思想是找出统计数据中与原假设不相符合的内容,即在实践结果中
发现与假设不符的结果,证明我们的假设正确或错误。

然而,有时实践中的结果并不能完全证明或排除假设,这时候就要利用统计学方法来做检验,以定量分析参数的趋势,从而给出统计学上的结论。

一般的检验步骤主要分为以下几步:
1、确定必要的基础信息:需要采集一定样本数据,研究对象,所测参数及其
标准。

2、建立假设:根据大致了解的思路,建立正态分布假设,或者拟合度等参数,观察收敛性。

3、求事实统计量:计算有关参数,以显示差别程度。

4、计算置信水平:利用某个置信度,例如95%,用数值检验假设对比,验证
是否可能出现异常结果。

5、做出结论:根据检验的结果,得出假设的可行性。

从而,通过假设检验来检验假设,可以更加客观地得出结论,增强科学研究的
权威性,提高研究水平。

应用统计学7假设检验

应用统计学7假设检验

应用统计学第九章假设检验朱佳俊博士Applied Statistics 第一节假设检验的基本问题一、假设检验的基本概念对总体的概率分布或分布参数作出某种“假设”,根据抽样得到的样本观测值,运用数理统计的分析方法,检验这种“假设”是否正确,从而决定接受或拒绝“假设”,这就是本章要讨论的假设检验问题。

1、假设定义为一个调研者或管理者对被调查总体的某些特征所做的一种假定或猜想。

是对总体参数的一种假设。

常见的是对总体均值或比例和方差的检验;在分析之前,被检验的参数将被假定取一确定值。

2、假设检验(hypothesis test)(1)概念–事先对总体参数或分布形式作出某种假设–然后利用样本信息来判断原假设是否成立(2)类型–参数假设检验–非参数假设检验(3)特点–采用逻辑上的反证法–依据统计上的小概率原理... 因此我们拒绝假设 =20... 如果这是总体的真实均值样本均值μ= 50抽样分布H0这个值不像我们应该得到的样本均值...203、假设检验的基本思想小概率原理是假设检验的基本依据,即认为小概率事件在一次试验中几乎是不可能发生的。

当进行假设检验时,先假设H 0正确,在此假设下,若小概率事件A出现的概率很小,例如P (A )=0.01,经过取样试验后,A 出现了,则违反了上述原理,我们认为这是一个不合理的结果。

4、小概率原理5、原假设和备择假设(1)原假设(null hypothesis)研究者想收集证据予以支持的假设也称“研究假设”总是有符号≠, <或>表示为H 1–H 1 :μ<某一数值,或μ>某一数值–例如, H 1 :μ< 10cm ,或μ>10cm(2)备择假设(alternative hypothesis)研究者想收集证据予以支持的假设也称“研究假设”总是有符号≠, <或>表示为H1–H1 :μ<某一数值,或μ>某一数值–例如, H1 :μ< 10cm,或μ>10cm6、双侧检验与单侧检验(1)备择假设没有特定的方向性,并含有符号“≠”的假设检验,称为双侧检验或双尾检验(two-tailed test)(2)备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验,称为单侧检验或单尾检验(one-tailed test)–备择假设的方向为“<”,称为左侧检验–备择假设的方向为“>”,称为右侧检验双侧检验与单侧检验(假设的形式)单侧检验H1: μ> μ0H1:μ< μ0H1: μ≠μ0备择假设H: μ≤μ0H: μ≥μ0H: μ= μ0原假设右侧检验左侧检验双侧检验假设二、假设检验中的两类错误与显示性水平1、假设检验中的两类错误(1)第Ⅰ类错误(弃真错误)–原假设为真时拒绝原假设–第Ⅰ类错误的概率记为α•被称为显著性水平(2)第Ⅱ类错误(取伪错误)–原假设为假时未拒绝原假设–第Ⅱ类错误的概率记为β(Beta)2、显著性水平(significant level)(1)是一个概率值(2)原假设为真时,拒绝原假设的概率–被称为抽样分布的拒绝域(3)表示为α(alpha)–常用的α值有0.01, 0.05, 0.10(4)由研究者事先确定三、检验统计量与拒绝域(一)检验统计量(test statistic)1、根据样本观测结果计算得到的,并据以对原假设和备择假设作出决策的某个样本统计量2、对样本估计量的标准化结果–原假设H为真–点估计量的抽样分布点估计量的抽样标准差假设值—点估计量标准化检验统计量=3.标准化的检验统计量显著性水平和拒绝域(双侧检验)抽样分布临界值临界值α/2α/2 样本统计量拒绝H 0拒绝H 01 -α1 -置信水平显著性水平和拒绝域(单侧检验)0临界值α样本统计量拒绝H 0抽样分布1 -α置信水平(二)决策规则1、给定显著性水平α,查表得出相应的临界值z α或z α/2,t α或t α/22、将检验统计量的值与α水平的临界值进行比较3、作出决策–双侧检验:I 统计量I > 临界值,拒绝H 0–左侧检验:统计量< -临界值,拒绝H 0–右侧检验:统计量> 临界值,拒绝H 0四、利用P 值进行决策(一)什么是P 值(P -value)1、在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率–双侧检验为分布中两侧面积的总和2、反映实际观测到的数据与原假设H 0之间不一致的程度3、被称为观察到的(或实测的)显著性水平4、决策规则:若p 值<α, 拒绝H 0双侧检验的P 值α/ 2α/ 2Z拒绝H 0拒绝H 0临界值计算出的样本统计量计算出的样本统计量临界值1/2 P 值1/2 P 值临界值α样本统计量拒绝H 0抽样分布1 -1 -α置信水平计算出的样本统计量P 值左侧检验的P 值临界值α拒绝H 0抽样分布 1 -1 -α置信水平计算出的样本统计量P 值右侧检验的P 值五、假设检验步骤1、陈述原假设和备择假设2、从所研究的总体中抽出一个随机样本3、确定一个适当的检验统计量,并利用样本数据算出其具体数值4、确定一个适当的显著性水平,并计算出其临界值,指定拒绝域5、将统计量的值与临界值进行比较,作出决策–统计量的值落在拒绝域,拒绝H 0,否则不拒绝H 0–也可以直接利用P 值作出决策第二节一个总体参数的检验z 检验(单尾和双尾)z 检验(单尾和双尾)t 检验(单尾和双尾)t 检验(单尾和双尾)z 检验(单尾和双尾)z 检验(单尾和双尾)χ2 检验(单尾和双尾)χ2 检验(单尾和双尾)均值均值一个总体一个总体比率比率方差方差是z 检验x z nμσ−=否z 检验ns x z 0μ−=一、总体均值的检验σ是否已知小样本容量n大σ是否已知否t 检验ns x t 0μ−=是z 检验nx z σμ0−=(一)总体均值的检验(大样本)•1.假定条件–正态总体或非正态总体大样本(n ≥30)2.使用z 检验统计量σ2已知:σ2未知:)1,0(~0N nx z σμ−=)1,0(~0N nsx z μ−=1、总体均值的检验(σ2已知)【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml ,标准差为5ml 。

4. 假设检验和t检验

4. 假设检验和t检验
0g/L
假设检验的基本思想—利用小概率反证法的思想
利用小概率反证法思想,从问题的对立面(H0)出 发间接判断要解决的问题(H1)是否成立。然后在
H0成立的条件下计算检验统计量,最后获得P值来判 断。当P小于或等于预先规定的概率值α,就是小概
率事件。根据小概率事件的原理:小概率事件在一次 抽样中发生的可能性很小,如果他发生了,则有理由 怀疑原假设H0,认为其对立面H1成立
案例10-13
0 136.0g / L, n 25, X 121g / L, S 48.8g / L;
造成 X 0 的可能原因有二:
① 抽样误差造成的; ② 本质差异造成的。
假设检验目的——判断差别是由哪种原因造成的。
一种假设H0
炊事员血红蛋白总体均数
136.0g/L
抽样误差
X 121g/L
( 二)单样本 z 检验
样本来自正态分布的总体
样本含量较大( 100)或总体标准差已知
我们可以近似用z检验
公式如下:
z x u0 x u0 (n 100) sx s / n
z
x u0
x
x u0
0 / n
( 0已知时)
案例
大规模调查表明,健康成年男子血红蛋白的均 数为136.0g/L,今随机调查某单位食堂成年男 性炊事员100名,测得其血红蛋白均数121g/L, 标准差48.8g/L。
似用z检验。当样本含量较大时,t检验与z检验可 以等同使用。
一、样本均数与总体均数比较 ➢ 单样本t检验 ➢ 单样本z检验
二、配对t检验 三、完全随机设计两均数比较
➢ 两独立样本t检验 ➢ 两样本z检验
一、样本均数与总体均数比较
样本均数 X (代表未知总体均数)与已知 总体均数0(一般为理论值、标准值或经过大量

6、 假设检验(参数)

6、 假设检验(参数)
加样本容量.
单、双侧检验 双侧检验,它的拒绝域取在两侧; 单侧检验,它的拒绝域取在左侧或右侧 . 下面看一个单侧检验的例子.
例3 某织物强力指标X的均值 0 =21公斤. 改
进工艺后生产一批织物,今从中取30件,测
得 X =21.55公斤. 假设强力指标服从正态分
布 N ( , 2 ), 且已知 =1.2公斤, 问在显著 性水平 =0.01下,新生产织物比过去的织物
H0: 0( 0 = 355)
它的对立假设是:
H1: 0
在实际工作中, 往往把不轻易 否定的命题作
为原假设.
称H0为原假设(或零假设); 称H1为备择假设(或对立假设).
由于 是正态分布的期望值,它的估计量是
样本均值 X ,因此可以根据 X 与 0的差距 | X - 0| 来判断H0 是否成立. 当 | X - 0| 较小时,可以认为H0是成立的;
{
X
0
U } 1
2
n
(1)均值的检验
(1) 2已知
对假设:.H 0 : 0
H1 : 0;
拒绝域为: W {X c}


P{X
c|

0}
P0 { X
c}

X P0{
0

c
0
})

1

(
c

0
)
n
n
n
即:c 0
罐装可乐的容量按标准应在 350毫升和360毫升之间.
生产流水线上罐装可 乐不断地封装,然后装箱 外运. 怎么知道这批罐装 可乐的容量是否合格呢?
通常的办法是进行抽样检查.
每隔一定时间,抽查若干罐 . 如每隔1小时, 抽查5罐,得5个容量的值X1,…,X5,根 据这些值来判断生产是否正常.

假设检验的基本思想

假设检验的基本思想
《概率统计》 返回 下页 结束
㈡ 检验的逻辑过程 例3. 设某考试成绩X~N(m , 202), 从中任抽36人的成绩, 算得 平均分为75, 问在显著性水平a = 0.05下, 是否可以认为全体考生 的平均成绩为70分? 要点: 某考试 (所有) 成绩是总体, 任意抽取的36人的成绩为 样本. 欲通过样本信息推断总体分布中的 m 是否为70分? 检验依据: 小概率事件在一次试验中一般不发生,若发生了,则认为
② 选择统计量
③ 确定拒绝域
选统计量 U
X m
/
~ N ( 0 ,1) .
n
由 P { | U | u a } a 0 .0 5, 查 表 得 拒 绝 域 为
2
U< -1.96 或 U>1.96 . ④ 计算统计量的值 统 计 量 的 值 为
U x m
完整解答…
/
75 70 20 / 6 1 .5 . n
《概率统计》 返回 下页 结束
例3. 设某考试成绩X~N(m , 202), 从中任抽36人的成绩, 算得 平均分为75, 问在显著性水平a = 0.05下, 是否可以认为全体考生 的平均成绩为70分? 检验过程(形而下): ① H0: m =m0=70, 即总体X~N(70 , 202), 从而知
一、假设检验的基本思想 例1. 设某厂生产一种灯管, 其寿命 X~N (m , 200 2), 原来灯管
的平均寿命为m = 1500小时. 现在采用新工艺后, 在所生产的灯管 中抽取25只, 测得平均寿命为1675小时. 问采用新工艺后, 灯管寿
命是否有显著提高 ?
问题表现为:判断 m >1500 ? 例2. 某种农作物的农药残留量 X 是否服从正态分布 ?

假设检验的基本思想和有关概念的教学设计

假设检验的基本思想和有关概念的教学设计

㊀㊀㊀㊀㊀假设检验的基本思想和有关概念的教学设计假设检验的基本思想和有关概念的教学设计Һ魏满满1㊀李石虎2∗㊀周㊀勤2㊀(1.江苏师范大学科文学院,江苏㊀徐州㊀221116;2.江苏师范大学数学与统计学院,江苏㊀徐州㊀221116)㊀㊀ʌ摘要ɔ本文主要探究了假设检验的基本思想和有关概念的教学设计.首先,通过 女士品茶 的故事引入,提炼出假设检验的基本思想;其次,通过分析项链含金量这一实际案例总结出假设检验的基本步骤,并介绍了假设检验的两类错误和p值的概念;最后,融入思政的元素,丰富了课堂教学内容.ʌ关键词ɔ假设检验;教学设计ʌ基金项目ɔ江苏师范大学课程思政专项研究(KCSZY17);江苏师范大学数学与统计学院思政示范课程(XYKCSZ01)一㊁引㊀言概率论与数理统计课程是各个高校理工科的基础必修课,它在理工科及经管类各专业被广泛应用.假设检验是概率论与数理统计中的重要知识点,是统计推断的主要方法之一,在概率统计的理论研究与实际应用中都占有极其重要的地位.2019年3月18日,在学校思想政治理论课教师座谈会上,习近平总书记明确提出[1]:要坚持灌输性和启发性相统一,注重启发性教育,引导学生发现问题㊁分析问题㊁思考问题,在不断启发中让学生水到渠成得出结论.近年来,各大高校都十分重视思政建设,通过教师培训㊁专家讲座㊁示范课程等多种方式来加深教师对课程思政的理解.教师是高校的 第一主角 ,作为专业课教师,也有责任和义务认真挖掘所授课程的 思政元素 .例如,2021年,李晨和陈丽萍[2]在研究概率统计的思政元素时,以概率学者的文化素养和科学治学精神为切入点,通过多个实际案例剖析全概率公式的应用,潜移默化地引入诸多思政元素来激发学生的学习兴趣.受此启发,本文着重从概率论与数理统计课程中 假设检验 这一角度思考,通过教学设计来探索课程思政理念进概率统计课堂的实践方法,目的就是同大家交流如何上好 假设检验 这一知识点的教学课.首先,我们通过 女士品茶 这一广为流传且富有趣味性的故事引入,启发学生思考,从中提炼出假设检验的基本思想.其次,我们通过分析项链含金量这一实际案例总结出假设检验的基本步骤.接着,我们介绍假设检验的两类错误和p值的概念,并介绍假设检验的一些应用.最后,我们融入思政的元素,以我国著名数学家严加安院士的‘悟道诗“为结尾,阐述了概率统计的基本思想,同时激励学生向老一辈科学家学习,树立正确的价值观,从而丰富了课堂教学内容.二㊁教学过程(一)问题引入首先,我们从一个经典故事出发,来体会假设检验的基本思想.例1[3]㊀(女士品茶试验)故事发生在英国剑桥大学,那是20世纪20年代,一群大学精英们正在品茶.该茶是由牛奶和茶水混合而成的.在品茶过程中,一位女士宣称:先加入牛奶还是先加入茶,不同的顺序会使茶的口感不同.周围人都认为这位女士简直是在胡言乱语,这是不可能的啊!然而在场的统计学家Fisher却对这个话题很感兴趣,他请人端来10杯调制好的茶让该女士品尝,其中有的是先加的牛奶,有的是先加的茶.结果,这位女士正确地鉴别出每一杯茶的制作顺序.该如何判断该女士是否有鉴别能力呢?Fisher的想法:假设该女士没有鉴别能力,这个时候她只能靠猜,从而她猜对的概率为12.因此,她能同时判断出10杯茶的概率为2-10<0.001,这个概率非常非常小,仅仅做一次试验是几乎不会发生的,可是,它却发生了!这表明原假设不恰当,应予以拒绝,认为该女士有鉴别能力!假设检验的基本思想:小概率反证法思想.先提出假设,然后设计试验,在原假设成立的条件下计算概率,依据小概率原理来判断是否拒绝原假设.那么多大的概率属于小概率呢?对于不同的问题,会有不同的标准,在统计学中,这个小概率称为显著性水平,常取0.05或0.01.接下来,我们就通过生活中的一个实际案例来探索一下假设检验的奥秘.(二)实例分析在生活中,经常会遇到一组数据,我们来看下面的例子.例2[4]㊀质检部门接到投诉后,对某金店进行调查,从标有18K的一批项链中抽取20条,测得其含金量如下:表1㊀某金店项链含金量数据单位:K17.618.117.918.318.017.417.518.617.317.817.317.818.117.417.618.017.218.318.317.5∗通信作者:李石虎,男,讲师,博士,就职于江苏师范大学,研究方向为概率论与数理统计.联系方式:江苏省徐州市江苏师范大学泉山校区数学与统计学院;电话邮编:221116;E-mail:shihuli@jsnu.edu.cn.㊀㊀㊀㊀㊀㊀问:如何判断这批项链有没有达到标准呢?(显著性水平α=0.05)分析:观察表1中的数据,我们可以发现:有的含金量大于18K,有的含金量小于18K,还有的恰好等于18K.那么我们能否直接说和标准值18K有显著差别呢?根据所学的统计学思想方法,我们已经了解到答案是否定的,因为这里看到的只是样本数据,我们无法直接做出判断.那么应该如何判断呢?我们的思路如下:首先,计算出这20条项链含金量的平均值为17.8,它与标准值18存在0.2的差值.这0.2的差值是由抽样引起的误差,还是有本质的差别?我们利用上述思想来检验一下.令ξ表示这批项链的含金量,由中心极限定理可知ξ ㊃N(μ,σ2),我们要检验均值是否为μ=18,具体步骤如下:1.建立假设.原假设H0:μ=18,表示这批项链符合标准;与之对立的备择假设H1:μʂ18,表示这批项链不符合标准.2.在H0成立时,由Fisher定理可知统计量T= x-μSnnt(n-1)=t(19).3.由T分布图像(如图1)可以看出:T的取值集中在零点附近.这表明:|T|越大,对应的概率就越小.从而存在临界值C,使得|T|大于或等于C是一个小概率事件,则C要满足P(|T|ȡC|H0成立)=α,再由T分布图像的对称性可知C=t0.975(19)ʈ2.093.图1㊀T分布图像从而,当|T|ȡ2.093时,非常小的概率事件在此就发生了,只能拒绝原假设H0.我们将W={(ξ1,ξ2, ,ξn)||T|ȡ2.093}这一集合称为拒绝域,如果样本的观测值落到W中,则原假设应被拒绝.4.代入样本均值和样本标准差进行计算,得到所观测的样本统计量t的值:|t|=|17.8-18|0.4039320ʈ2.214>2.093,其落到拒绝域W中,因此原假设被拒绝,故这批项链没有达到标准.为了更直观地理解拒绝域的含义,同学们可以参考T分布图像.小结㊀本案例利用假设检验思想得出了该金店项链的含金量不符合标准的结论,启发我们对待任何事情都不要抱有侥幸心理,不要弄虚作假,要诚信做人做事,方能赢得大家的信任.项链含金量不达标可能只是使消费者金钱方面的利益受损.试想一下:如果是某大型婴儿奶粉企业检测出质量不达标的产品呢?再或者是婴儿霜经检测含有毒物质呢?抑或是我们服用的某种药物检测出有危害健康的成分呢?这些案例都不是捕风捉影,均上过各大网站热搜,引起了消费者的恐慌.利用假设检验这个工具,有助于我们全面地认识这类事件,既可以让我们避免无谓的损失,又可以帮助我们找到有利的取舍依据.(三)假设检验的基本步骤通过对上述案例的分析,我们可以归纳出求解假设检验的基本步骤:第一步:从要研究的实际问题引入,先提出一个假设,一般称之为原假设,记为H0,与其对立的假设称为备择假设,记为H1.例如,在上述案例中,原假设为 这批项链符合标准 ,备择假设为 这批项链不符合标准 .第二步:依据所研究总体服从的分布,我们来构造合适的检验统计量,并通过所学知识来确定统计量服从的分布.第三步:接下来,我们需要确定检验的拒绝域W使得P((ξ1,ξ2, ,ξn)ɪW|H0成立)ɤα.第四步:根据样本数值计算统计量所对应的观测值.如果计算所得观测值落进了W中,则说明原假设不当,应予以拒绝,否则原假设不可以被拒绝.(四)假设检验的两类错误在 女士品茶 的例子中,如果该女士本来就没有鉴别能力,但是她运气好,每次都猜对了,这时候我们的推断就出错了.事实上,在假设检验问题中,我们由样本提供的信息来推断总体信息,由于样本只包含总体的一部分信息,这就不可能保证从来不会犯错误.假设检验可能犯的错误有如下两类:(Ⅰ)是否在 拒绝假设H0 时用了 小概率原理 .注意小概率事件并非不可能事件,如果原假设本为真,但由于样本值落进了拒绝区域内而得出 拒绝 的结论,这里犯的错误为弃真错误,通常称为第一类错误,记为α,即P(拒绝H0|H0为真)=α.(Ⅱ)反之,如果原假设H0本来是不成立的,却由于样本值未落进拒绝区域而得出 不能拒绝 的结论.这里的错误是纳伪错误,一般称为第二类错误,记作β,即P(接受H0|H0不真)=β.根据检验法则知:当H0成立时,拒绝H0的概率小于或等于显著性水平α,但是显著性水平α取得越小越好,因为㊀㊀㊀㊀㊀此时拒绝域也会相应地减小,从而导致犯第二类错误的概率增大.这是一个矛盾的双方,类似于区间估计时的做法,我们需要先固定显著性水平α,再选择合理的检验统计量来适当地减小β的值.下面我们再结合一个实际例子来理解两类错误:在新冠肺炎疫情发生初期,新闻报道中时常会出现 假阳 的检测结果.我们可以从假设检验的两类错误的角度来理解:事实上,任何检验方法都会存在犯错误的可能性,理想的试剂应是 假阴 和 假阳 出现的概率都越小越好,但当样本量有限㊁检测技术没有明显优化提升时,一类错误概率的减少必会导致另一类错误概率的增加,因此处理原则是:人为限定犯第一类错误的概率α,为降低犯第二类错误的概率,我们可以增大样本容量.所以,从统计学的观点看,新闻报道中的 假阴 假阳 患者出现并不奇怪.启发:小概率事件虽然在一次试验中不易发生,但绝非不可能事件,重复次数多了,发生的可能性也就增大了.这说明做任何事情都不要存在投机取巧的心理,俗话说 常在河边走,哪有不湿鞋 勿以恶小而为之,勿以善小而不为 .反之,再困难的事情,只要我们持之以恒,总是可以成功的,正所谓 锲而不舍,金石为开 !(五)假设检验的p值可以看出,显著性水平α变小,对应的拒绝域也会变小;当显著性水平α取得足够小时,使得样本值不落在相应的拒绝域中,从而在此显著性水平α下不能拒绝假设H0.当显著性水平α由上述足够小的值不断增大时,对应的拒绝域也会变大,当显著性水平α大到一定程度时,便可以使样本值落入相应的拒绝域中,从而在此显著性水平α下可以拒绝假设H0.对于一个确定的样本值,存在一个实数p(0<p<1),当显著性水平α=p时可以拒绝H0,而当α<p时原假设H0不可以被拒绝.可见,p是使依据给定样本数值做出 拒绝H0 的最小的那个显著性水平,我们称之为检验的p值.在例2中,我们也可以通过统计软件计算t统计量的值和p值:表2㊀某金店项链含金量检验结果检验值=18tdfp值均值差值项链含金量-2.214190.039-0.20000给定显著性水平α为0.05,由表2可知p值0.039<0.05,原假设应被拒绝,认为项链含金量与18K之间有显著的统计差异,从而得出 项链不符合标准 的结论.(六)课堂小结与思政本节课我们主要通过 女士品茶 的案例引入假设检验的基本思想,通过分析项链含金量这一实际案例总结出假设检验的基本步骤,也给出了假设检验的两类错误和p值的含义,这为接下来进一步学习不同类型的㊁具体的假设检验打下了必要的基础.假设检验不仅是一种重要的统计方法,更是一种思维方式,告诉我们用数据来说话,理性地看待问题.正因为如此,假设检验在我们的现实生活中有着十分重要的应用.比如,专家利用假设检验,结合临床数据分析不同采样点㊁人群㊁年龄的新冠病毒核酸检测的结果,给有关部门的决策提供参考.假设检验的理论方法不仅被广泛应用于医学检验㊁生物制药等诸多领域,在我们的生产生活,特别是工业产品的质量判断中也有着十分广泛的应用[5],因为在工厂的实际生产过程中,产品的尺寸总是左右浮动的,存在一定的误差,那么如何判断这些误差是否在允许的范围内?这就要用到假设检验的思想方法.不仅如此,假设检验的理论还可应用于文学研究.例如,东南大学韦博成教授在2009年[6]利用假设检验的理论方法分析了‘红楼梦“前80回与后40回的某些文风差异,得到的结论是 这两部分内容在写作风格方面存在明显的差异 ,给关于‘红楼梦“作者的论断提供了一个强有力的证据.在现实生活中,数据是无处不在的,学习假设检验的思想方法有助于我们正确地挖掘数据背后的规律,做出更客观的判断.如今,我们身处一个大数据时代,通过学习假设检验,更重要的是培养透过现象看本质这一统计思维.这里,调查得来的数据是现象,规律是从数据中探索出来的本质属性.我们需要借助数学模型,并结合统计方法来寻找这其中的规律和随机性,在潜移默化中培养统计思维.正如我国著名的数学家严加安院士在‘悟道诗“中所题:随机非随意,概率破玄机;无序隐有序,统计解迷离.注:课后同学们若想进一步了解统计学的发展历程,可以读一读‘20世纪统计怎样变革了科学:女士品茶“[7]这一科普著作.ʌ参考文献ɔ[1]习近平主持召开学校思想政治理论课教师座谈会[N].新华社,2019-03-18,20:57.[2]李晨,陈丽萍.概率论与数理统计课程教学中思政元素的挖掘与实践[J].大学教育,2021(9):104-106.[3]茆诗松,程依明,濮晓龙.概率论与数理统计教程:第3版[M].北京:高等教育出版社,2019.[4]朱元泽,李贤彬.概率论与数理统计[M].上海:上海交通大学出版社,2015.[5]乔静.假设检验在工业产品质量判断中的应用[J].机电信息,2020(27):142-143.[6]韦博成.‘红楼梦“前80回与后40回某些文风差异的统计分析(两个独立二项总体等价性检验的一个应用)[J].应用概率统计,2009(4):441-448.[7]萨尔斯伯格.20世纪统计怎样变革了科学:女士品茶[M].北京:中国统计出版社,2004.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又如, 对于正态总体提出数学期望等于 0 的
假设等. 假设检验就是根据样本对所提出的假设作
出判断: 是接受, 还是拒绝.
2020年6月12日星期五
4
目录
上页
下页
返回
假设检验问题是统计推断的另一类重要问题. 如何利用样本值对一个具体的假设进行检验?
通常借助于直观分析和理论分析相结 合的做法,其基本原理就是人们在实际问题 中经常采用的所谓实际推断原理:“一个小概 率事件在一次试验中几乎是不可能发生的”.
98.3,97.7,100.5,98.8,101.2,99.5,102.5, 99.7,100.1
试问此包装机的工作是否正常?
设 X 表示每包饲料的重量,则 X ~ N (, 2 ) .当自动 包装机工作原正假常设时(nu,llh0ypo1t0h0e,sis) 2 1.152 .
备提择出假两设个(a相lte互rn独at立iv的e h假yp设othesis)
而若| u |
x 0 / n
k u /2 ,则接受 H0 .
2020年6月12日星期五
10
目录
上页
下页
返回
例如,在本例中取 0.05,则有 k u0.05/2 u0.025 1.96 , 又已知 n 9 , 1.15,即有
x 0 0.493 1.96 , / n
于是接受 H0 ,即可认为这天包装机工作正常.
2020年6月12日星期五
11
目录
上页
下页
返回
通过以上分析,我们知道假设检验的方法符合“小概率
推断原理”.因为通常 总是取得较小,一般地取 0.1, 0.01 , 0.05 等 . 因 而 , 若 H0 为 真 , 即 当 0 时 ,
X
0
/ n
u
/
2

















理,如果 H0 为真,则由一次试验得到的观测值 x ,满足不
《概率论与数理统计》
*****大学理学院数学系
伯努利(Bernoulli) 柯尔莫哥洛夫(Kolmogorov)
2020年6月12日星期五
1
目录
上页
下页
返回
第八章 假设检验
§8.1 假设检验的基本概念和基本思想 §8.2 正态总体均值的假设检验 §8.3 正态总体方差的假设检验 §8.4 分布拟合检验
2020年6月12日星期五
2
目录
上页
下页
返回
8.1 假设检验的基本概念 和基本思想
2020年6月12日星期五
3
目录
上页

下页
返回
假设检验的基本原理
在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下, 为了推断总体的某些性 质, 提出某些关于总体的假设.
例如, 提出总体服从泊松分布的假设;
等式
X 0 / n
u /2 几乎是不会发生的.如果发生了,则有
理由怀疑 H0 的正确性,因而拒绝 H0 .相反,观测值 x 满

X 0 / n
u /2 ,此时没有理由拒绝原假设 H0 ,从而可以
接受 H0 .
2020年6月12日星期五
12
目录
上页
下页
返回
一般地,称统计量 U X 0 为检验统计量(test / n
拒绝 H0 .考虑到,当 H0 为真时,
X
0
/n
~
N (0,1) .而衡量
x 0
的大小可归结为衡量
x
0
/n
的大小.因此,我们可
适当选定一正数 k ,使得当观测值 x 满足 x 0 k 时就拒 / n
绝原假设
H0
,反之,若
x
/
0
n
k ,就接受原假设 H0 .
2020年6月12日星期五
7
目录
statistic).当检验统计量取某个区域W 中的值时,我 们 拒 绝 原 假 设 H0 , 称 区 域 W 为 拒 绝 域 (rejection region) , 拒 绝 域 的 边 界 点 称 为 临 界 点 (critical
point) , 拒 绝 域 的 补 集 W 称 接 受 域 (acceptance region).例如上例中拒绝域为
H0 : 0 100 和 H1 : 0.
2020年6月12日星期五
6
目录
上页
下页
返回
由第六章的知识知,样本均值 X 是总体均值 的无偏估计,
X 的观测值 x 的大小在一定程度上反映 的大小.因此,如
果原假设 H0 为真,则观测值 x 与 0 的偏差 x 0 一般不应
太大.若 x 0 过分大,我们就怀疑原假设 H0 的正确性而
下面结合实例来说明假设检验的基本思想.
2020年6月12日星期五
5
目录
上页
下页
返回
【例 1】 某饲料厂用自动包装机将饲料打包,每包饲料 的标准重量规定为 100 斤.每天开工时,需要先检验一 下包装机的工作是否正常.机器正常时,其均值为 100 斤,标准差为 1.15 斤.某日开工后,抽检了 9 包,其重 量数据如下(单位:斤):
W (, 1.96) U(1.96, ) ,
而 u u /2 1.96 为两个临界点.
2020年6月12日星期五
2020年6月12日星期五
9
目录
上页
下页
返回
为了确定常数 k ,我们考虑统计量 x 0 . / n

P
拒绝H0
H0为真
P
|
X
0
|
k
.
/ n
当 H0 为真时,U
X
0
/n
~
N (0,1) ,由标准正态分布分
位点的定义有 k u /2 ,
若U 的观察值满足 u
x 0 / n
k u /2 ,则拒绝 H0 ,
上页
下页
返回
两类错误
第I类错误(error of the first kind)
(弃真错误 )
P
拒绝H0
H
为真
0
第II类错误(error of the second kind) (取伪错误 )
P 接受H0 H0为假
2020年6月12日星期五
8
目录
上页
下页
返回
实践中,人们习惯地采用如下策略:限制犯第 I 类错 误的概率,或者在限制犯第 I 类错误的概率下,使犯第 II 类错误的概率尽可能地小.
就前一种情况而言,要求犯错误的概率很小,因此, 人们常常要求
P 拒绝H0 H0为真 ,
其中 (0 1) 是一个人为给定的很小的数,常见地取 0.01,0.05,0.1 等,称 为显著性水平(significance
level). 只对犯第 I 类错误的概率加以控制,而不考虑 犯 第 II 类 错 误 的 概 率 的 检 验 , 称 为 显 著 性 检 验 (significance test),它只涉及到原假设.
相关文档
最新文档