假设检验的基本概念与基本思想
4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检
统计学假设检验的基本原理与方法

第四节假设检验的基本原理与方法4.4.1假设检验的基本思想[理解]假设检验是除参数估计之外的另一类重要的统计推断问题。
它的基本思想可以用小概率原理来解释。
所谓小概率原理,就是认为小概率事件在一次试验中是几乎不可能发生的。
也就是说,对总体的某个假设是真实的,那么不利于或不能支持这一假设的事件A在一次试验中是几乎不可能发一的;要是在一次试验中事件A竟然发生了,我们就有理由怀疑这一假设的真实性,拒绝这一假设。
例7:某公司想从国外引进一种自动加工装置。
这种装置的工作温度X 服从正态分布(μ,52),厂方说它的平均工作温度是80度。
从该装置试运转中随机测试16次,得到的平均工作温度是83度。
该公司考虑,样本结果与厂方所说的是否有显著差异?厂方的说法是否可以接受?类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题,就是假设检验的问题。
我们把任一关于单体分布的假设,统称为统计假设,简称假设。
上例中,可以提出两个假设:一个称为原假设或零假设,记为H:μ=80(度);另一个称为备择假设或对立假设,记为H1:μ≠80(度)这样,上述假设检验问题可以表示为:H0:μ=80 H1:μ≠80原假设与备择假设相互对立,两者有且只有一个正确,备择假设的含义是,一旦否定原假设H0,备择假设H1备你选择。
所谓假设检验问题就是要判断原假设H是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设。
应该如何作出判断呢?如果样本测定的结果是100度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的,而现在竟然出现了,当然要拒绝原假设H。
现在的问题是样本平均工作温度为83度,结果虽然与厂方说的80度有差异,但样本具有随机性,80度与83度之间的差异很可能是样本的随机性造成的。
在这种情况下,要对原假设作出接受还是拒绝的抉择,就必须根据研究的问题和决策条件,对样本值与原假设的差异进行分析。
假设检验的基本思想

(1)假设H0:= 0=4.55,H1:≠4.55;
(2)选择检验用统计量 ;
(3)对于给定小正数,如=0.05,查标准正态分表得到临界值z/2 =z0.025 =1.96;
因为| z|=3.9>1.96,所以拒绝H0,接受H1,即认为新工艺改变了铁水的平均含碳量。
以上两例都是科技领域中常见的假设检验问题。 我们把问题中涉及到的假设称为原假设或称待检假设,一般用H0表示。而把与原假设对立的断言称为备择假设,记为H1。
如例1,若原假设为H0:= 0=4.55,则备择假设为H1:≠4.55。 若例2的原假设为H0:X服从正态分布,则备择假设为H1:X不服从正态分布。
例如,在100件产品中,有一件次品,随机地从中取出一个产品是次品的事件就是小概率事件。 因为此事件发生的概率=0.01很小,因此,从中任意抽一件产品恰好是次品的事件可认为几乎不可能发生的,如果确实出现了次品,我们就有理由怀疑这“100件产品中只有一件次品”的真实性。 那么取值多少才算是小概率呢?这就要视实际问题的需要而定,一般取0.1,0.05,0.01等。
一、假设检验问题的提出
统计推断的另一个重要问题是假设检验问题。在总体的分布函数未知或只知其形式,但不知其参数的情况下,为了推断总体的某些性质,提出某些关于总体的假设。例如,提出总体服从泊松分布的假设,又如,对于正态总体提出数学期望μ0的假设等。
这里,先结合例子来说明假设检验的基本思
二、假设检验的基本思想
假设检验的一般提法是:在给定备择假设H1下,利用样本对原假设H0作出判断,若拒绝原假设H0,那就意味着接受备择假设H1,否则,就接受原假设H0。 换句话说,假设检验就是要在原假设H0和备择假设H1中作出拒绝哪一个和接受哪一个的判断。究竟如何作出判断呢?对一个统计假设进行检验的依据是所谓小概率原理,即 概率很小的事件在一次试验中是几乎不可能发生
教育与心理统计学 第五章 假设检验考研笔记-精品

假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\
假设检验的基本概念

—— 小概率事件
,+∞) 显著性水平不超过α
故取拒绝域 ( μ 0 + zα
σ
n
注 3º
关于零假设与备择假设的选取
H0与H1地位应平等,但在控制犯第一类错误 的概率 α 的原则下,使得采取拒绝H0 的决 策变得较慎重,即H0 得到特别的保护.
因而,通常把有把握的、有经验的结论作为 原假设,或者尽可能使后果严重的错误成为 第一类错误.
3、根据样本值计算,并作出相应的判断.
⎛ 66.82 − 69 ⎞ ⎛ 69.18 − 69 ⎞ = Φ⎜ ⎟ − Φ⎜ ⎟ 0.6 ⎠ ⎝ ⎝ 0.6 ⎠ = Φ (0.3) − Φ (−3.63) = 0.6179 − 0.0002 = 0.6177
取伪的概率较大.
0.12 0.1 0.08 0.06
α/2
0.04 0.02 60 62.5 65 67.5 70 72.5 75
若不采用假设检验, 按理也不能够出厂. 上述出厂检验问题的数学模型 对总体
X ~ f (x; p) = px (1− p)1−x x = 0,1 提出假设
H 0 : p ≤ 0.04; H1 : p > 0.04
( ∑ xi = 3 or 1 )
i =1 12
要求利用样本观察值 ( x1 , x2 , , x12 ) 对提供的信息作出接受 H (不准出厂) 的判断.
n ) , E( X ) = μ
⎞ ⎛ X −μ ⎟ ⎜ P⎜ > zα ⎟ = α ⎟ ⎜ σ ⎟ ⎜ ⎠ ⎝ n
X ~ N (μ ,
σ2
若原假设正确, 则
但现不知 μ的真值,只知 μ ≤ μ0 = 68
⎞ ⎞ ⎛ X −μ ⎛ X −μ 0 ⎟ ⎟ ⎜ ⎜ ⎜ > zα ⎟ > zα ⎟ ⊂ ⎜ ⎟ ⎟ ⎜ σ ⎜ σ ⎟ ⎟ ⎜ ⎜ n n ⎠ ⎠ ⎝ ⎝ ⎞ ⎛ X −μ 0 ⎟ ⎜ P⎜ > zα ⎟ ≤ α ⎟ ⎜ σ ⎟ ⎜ n ⎠ ⎝
第七章假设检验

第一节 第二节 检验 假设检验的一般问题 总体均值, 总体均值,比例和方差的假设
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 能对实际问题作假设检验
第一节 假设检验的一般问题
一,假设检验的概念 二,假设检验的步骤 三,假设检验中的小概率原理 四,假设检验中的两类错误 五,双侧检验和单侧检验
拒绝域 置信水平
α
1-α 接受域 H0值 样本统计量
临界值
6,右侧检验(显著性水平与拒绝域 ) 右侧检验( 抽样分布
置信水平 拒绝域 1-α 接受域 H0值 观察到的样本统计量 样本统计量
α
临界值
抽样分布
1-α 接受域 H0值
置信水平 拒绝域
α
临界值
样本统计量
第二节 总体均值,比例和方差的假设检验
1,原假设为真时拒绝原假设 , 2,会产生一系列后果 , 3,第一类错误的概率为α ,第一类错误的概率为α
被称为显著性水平 第二类错误(取伪错误) (二)第二类错误(取伪错误)
1,原假设为假时接受原假设 , 2,第二类错误的概率为β ,第二类错误的概率为β
(三)列表
H0: 无罪
假设检验就好 像一场审判过程
2,确定假设的步骤 例如问题为: 检验该企业生产的零件平均长度为4厘米 步骤: (1)从统计角度陈述问题 ( = 4) 1 (2)从统计角度提出相反的问题 ( ≠ 4) 必需互斥和穷尽 (3)提出原假设 ( = 4) (4)提出备择假设 ( ≠ 4) 有 ≠ 符号
3,双侧检验(例子) 双侧检验(例子)
1,原假设与备择假设是一个完整事件组. 2,通常先确定备择假设,再定原假设. 3,等号总放在原假设. 4,两者的选择本质上带有主观色彩. 5,假设检验的目的主要是收集证据拒绝原 假设.
概率论与数理统计 第8章

现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。
8-1假设检验的基本概念

2 比如在例 1.2 中, 36 件甲批产品中的次品率为 5.56% , 36 3 50 件乙批产品中的次品率为 6% ,虽然有 5.56% 6% ,但 50
不能依此作出结论,认为 p1 p2 ,而是需要根据假设检验的思想 和方法,进行充分的理论分析,最后给出科学客观的结论.
6
2.假设的提法
12
例 1.4 只是用来介绍假设检验的基本原理,其中还有 许多问题并没有讲透.
X 500 比如,为什么选择统计量为 U ,而不是其 n
又如, 小概率事件 A {U 3} 是由正态分布的 “3 原
它统计量;
则”产生的,对于其它分布,如 2 分布, t 分布和 F 分布 等并无此原则,那么一般情况下,小概率事件 A 又如何确 定等等.这些问题将在后续内容中逐一介绍.
其分位点决定的, 同时又与所谓的双侧检验和单侧检验有关.
24
如果假设检验问题 ( H 0 , H1 ) 为
H 0 : 0 , H1 : 0 ,
就称之为双侧(边)检验.
如果假设检验问题 ( H 0 , H1 ) 为
H 0 : 0 , H1 : 0 ,
或
H 0 : 0 , H1 : 0 ,
7
二、假设检验的思想和方法
1.假设检验中的反证法思想
反证法思想(注意:不是指严格的反证法) : 先假定 H 0 成立,然后根据统计分析的思想和方法, 进行推理和演算,如果推理和演算的结果中有“矛盾” 的现象出现,就“主动地”拒绝 H 0 ,接受 H1 ;如果其 结果中没有“矛盾”的现象出现,就不能拒绝 H 0 ,因 此只好“被动地”接受 H 0 ,拒绝 H1 .
第八章
假设检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设等. 假设检验就是根据样本对所提出的假设作
出判断: 是接受, 还是拒绝.
2020年6月12日星期五
4
目录
上页
下页
返回
假设检验问题是统计推断的另一类重要问题. 如何利用样本值对一个具体的假设进行检验?
通常借助于直观分析和理论分析相结 合的做法,其基本原理就是人们在实际问题 中经常采用的所谓实际推断原理:“一个小概 率事件在一次试验中几乎是不可能发生的”.
98.3,97.7,100.5,98.8,101.2,99.5,102.5, 99.7,100.1
试问此包装机的工作是否正常?
设 X 表示每包饲料的重量,则 X ~ N (, 2 ) .当自动 包装机工作原正假常设时(nu,llh0ypo1t0h0e,sis) 2 1.152 .
备提择出假两设个(a相lte互rn独at立iv的e h假yp设othesis)
而若| u |
x 0 / n
k u /2 ,则接受 H0 .
2020年6月12日星期五
10
目录
上页
下页
返回
例如,在本例中取 0.05,则有 k u0.05/2 u0.025 1.96 , 又已知 n 9 , 1.15,即有
x 0 0.493 1.96 , / n
于是接受 H0 ,即可认为这天包装机工作正常.
2020年6月12日星期五
11
目录
上页
下页
返回
通过以上分析,我们知道假设检验的方法符合“小概率
推断原理”.因为通常 总是取得较小,一般地取 0.1, 0.01 , 0.05 等 . 因 而 , 若 H0 为 真 , 即 当 0 时 ,
X
0
/ n
u
/
2
是
一
个
小
概
率
事
件
.
根
据
小
概
率
推
断
原
理,如果 H0 为真,则由一次试验得到的观测值 x ,满足不
《概率论与数理统计》
*****大学理学院数学系
伯努利(Bernoulli) 柯尔莫哥洛夫(Kolmogorov)
2020年6月12日星期五
1
目录
上页
下页
返回
第八章 假设检验
§8.1 假设检验的基本概念和基本思想 §8.2 正态总体均值的假设检验 §8.3 正态总体方差的假设检验 §8.4 分布拟合检验
2020年6月12日星期五
2
目录
上页
下页
返回
8.1 假设检验的基本概念 和基本思想
2020年6月12日星期五
3
目录
上页
下页
返回
假设检验的基本原理
在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下, 为了推断总体的某些性 质, 提出某些关于总体的假设.
例如, 提出总体服从泊松分布的假设;
等式
X 0 / n
u /2 几乎是不会发生的.如果发生了,则有
理由怀疑 H0 的正确性,因而拒绝 H0 .相反,观测值 x 满
足
X 0 / n
u /2 ,此时没有理由拒绝原假设 H0 ,从而可以
接受 H0 .
2020年6月12日星期五
12
目录
上页
下页
返回
一般地,称统计量 U X 0 为检验统计量(test / n
拒绝 H0 .考虑到,当 H0 为真时,
X
0
/n
~
N (0,1) .而衡量
x 0
的大小可归结为衡量
x
0
/n
的大小.因此,我们可
适当选定一正数 k ,使得当观测值 x 满足 x 0 k 时就拒 / n
绝原假设
H0
,反之,若
x
/
0
n
k ,就接受原假设 H0 .
2020年6月12日星期五
7
目录
statistic).当检验统计量取某个区域W 中的值时,我 们 拒 绝 原 假 设 H0 , 称 区 域 W 为 拒 绝 域 (rejection region) , 拒 绝 域 的 边 界 点 称 为 临 界 点 (critical
point) , 拒 绝 域 的 补 集 W 称 接 受 域 (acceptance region).例如上例中拒绝域为
H0 : 0 100 和 H1 : 0.
2020年6月12日星期五
6
目录
上页
下页
返回
由第六章的知识知,样本均值 X 是总体均值 的无偏估计,
X 的观测值 x 的大小在一定程度上反映 的大小.因此,如
果原假设 H0 为真,则观测值 x 与 0 的偏差 x 0 一般不应
太大.若 x 0 过分大,我们就怀疑原假设 H0 的正确性而
下面结合实例来说明假设检验的基本思想.
2020年6月12日星期五
5
目录
上页
下页
返回
【例 1】 某饲料厂用自动包装机将饲料打包,每包饲料 的标准重量规定为 100 斤.每天开工时,需要先检验一 下包装机的工作是否正常.机器正常时,其均值为 100 斤,标准差为 1.15 斤.某日开工后,抽检了 9 包,其重 量数据如下(单位:斤):
W (, 1.96) U(1.96, ) ,
而 u u /2 1.96 为两个临界点.
2020年6月12日星期五
2020年6月12日星期五
9
目录
上页
下页
返回
为了确定常数 k ,我们考虑统计量 x 0 . / n
令
P
拒绝H0
H0为真
P
|
X
0
|
k
.
/ n
当 H0 为真时,U
X
0
/n
~
N (0,1) ,由标准正态分布分
位点的定义有 k u /2 ,
若U 的观察值满足 u
x 0 / n
k u /2 ,则拒绝 H0 ,
上页
下页
返回
两类错误
第I类错误(error of the first kind)
(弃真错误 )
P
拒绝H0
H
为真
0
第II类错误(error of the second kind) (取伪错误 )
P 接受H0 H0为假
2020年6月12日星期五
8
目录
上页
下页
返回
实践中,人们习惯地采用如下策略:限制犯第 I 类错 误的概率,或者在限制犯第 I 类错误的概率下,使犯第 II 类错误的概率尽可能地小.
就前一种情况而言,要求犯错误的概率很小,因此, 人们常常要求
P 拒绝H0 H0为真 ,
其中 (0 1) 是一个人为给定的很小的数,常见地取 0.01,0.05,0.1 等,称 为显著性水平(significance
level). 只对犯第 I 类错误的概率加以控制,而不考虑 犯 第 II 类 错 误 的 概 率 的 检 验 , 称 为 显 著 性 检 验 (significance test),它只涉及到原假设.