假设检验的基本思想

合集下载

假设检验的基本思想总结

假设检验的基本思想总结

假设检验的基本思想总结假设检验是统计推断的一种重要方法,用于判断样本数据与某个假设之间是否存在显著差异。

其基本思想是在给定样本数据的条件下,根据统计学的方法进行推理和决策,以判断假设是否成立。

假设检验的基本思想可以总结为以下几个关键步骤。

首先,确定原假设和备择假设。

原假设通常是关于总体参数或分布形态的一个特定陈述,它是我们想要得到充分证据支持的假设。

备择假设则是对原假设的一个反面陈述,它是我们想要通过实证研究来支持的假设。

其次,选择合适的统计量。

在假设检验中,我们通常会选择一个适当的统计量来衡量样本数据与原假设之间的差异程度。

常用的统计量包括均值差异、比例差异、方差比等。

然后,建立显著性水平。

显著性水平是指在给定样本数据的条件下,原假设被拒绝的最高概率。

通常情况下我们会选择一个较小的显著性水平(例如0.05或0.01),这意味着我们要求在5%或1%的情况下,得到的差异不是由于随机误差所致。

接着,计算推断统计量的观察值。

观察值是指样本数据经过计算得到的统计量的实际值。

根据观察值和原假设,计算用于推断的统计量的分布。

然后,根据观察值和分布来进行假设检验。

根据推断统计量的分布及显著性水平,通过比较观察值和临界值来判断是否拒绝原假设。

当观察值落入临界值的拒绝域时,意味着我们有足够的证据来拒绝原假设;反之,当观察值不在拒绝域时,无法拒绝原假设。

最后,进行统计推断和决策。

在对原假设的判断上,我们可以得到两种结果:一种是拒绝原假设,这意味着我们得到了有力的证据来支持备择假设;另一种是接受原假设,这意味着我们没有足够的证据来支持备择假设,而假设中的参数值仍然可靠。

总体来说,假设检验的基本思想就是在已知样本数据和原假设的条件下,通过计算统计量的观察值和分布,进行假设检验,从而得到结论。

它既可以帮助我们验证一个科学假设的正确性,也可以帮助我们进行决策和判断。

假设检验为科学研究和决策提供了有力的统计工具,使我们能够更加准确和可靠地进行推断和判断。

4 假设检验和t检验

4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检

假设检验的基本思想

假设检验的基本思想
现在,我们来解决例1提出的问题:
(1)假设H0:= 0=4.55,H1:≠4.55;
(2)选择检验用统计量 ;
(3)对于给定小正数,如=0.05,查标准正态分表得到临界值z/2 =z0.025 =1.96;
因为| z|=3.9>1.96,所以拒绝H0,接受H1,即认为新工艺改变了铁水的平均含碳量。
以上两例都是科技领域中常见的假设检验问题。 我们把问题中涉及到的假设称为原假设或称待检假设,一般用H0表示。而把与原假设对立的断言称为备择假设,记为H1。
如例1,若原假设为H0:= 0=4.55,则备择假设为H1:≠4.55。 若例2的原假设为H0:X服从正态分布,则备择假设为H1:X不服从正态分布。
例如,在100件产品中,有一件次品,随机地从中取出一个产品是次品的事件就是小概率事件。 因为此事件发生的概率=0.01很小,因此,从中任意抽一件产品恰好是次品的事件可认为几乎不可能发生的,如果确实出现了次品,我们就有理由怀疑这“100件产品中只有一件次品”的真实性。 那么取值多少才算是小概率呢?这就要视实际问题的需要而定,一般取0.1,0.05,0.01等。
一、假设检验问题的提出
统计推断的另一个重要问题是假设检验问题。在总体的分布函数未知或只知其形式,但不知其参数的情况下,为了推断总体的某些性质,提出某些关于总体的假设。例如,提出总体服从泊松分布的假设,又如,对于正态总体提出数学期望μ0的假设等。
这里,先结合例子来说明假设检验的基本思
二、假设检验的基本思想
假设检验的一般提法是:在给定备择假设H1下,利用样本对原假设H0作出判断,若拒绝原假设H0,那就意味着接受备择假设H1,否则,就接受原假设H0。 换句话说,假设检验就是要在原假设H0和备择假设H1中作出拒绝哪一个和接受哪一个的判断。究竟如何作出判断呢?对一个统计假设进行检验的依据是所谓小概率原理,即 概率很小的事件在一次试验中是几乎不可能发生

总结假设检验的基本思想

总结假设检验的基本思想

总结假设检验的基本思想假设检验是统计学的重要方法之一,其基本思想是通过对样本数据进行统计分析,从而对总体参数进行推断。

其步骤包括建立原假设和备选假设、选择合适的统计量、确定显著性水平、计算检验统计量的值、进行假设检验并做出推断。

假设检验的基本思想可以总结为以下几点:1. 建立原假设和备选假设:在进行假设检验之前,需要首先建立原假设和备选假设。

原假设(H0)是对总体参数的一个假设,而备选假设(H1)则是对原假设的否定或对立假设。

通常情况下,原假设是关于总体参数等于某个特定值或满足某个特定条件的假设,而备选假设则是关于总体参数不等于特定值或不满足特定条件的假设。

2. 选择合适的统计量:假设检验需要选择一个合适的统计量来对样本数据进行分析。

统计量是从样本数据中计算得到的一个数值,可以用来推断总体参数。

选择合适的统计量需要考虑其与总体参数的关系,以及其满足的分布假设等。

3. 确定显著性水平:显著性水平是进行假设检验时所允许的错误发生的概率。

通常情况下,显著性水平被设定为0.05或0.01,表示允许发生5%或1%的错误。

显著性水平的选择需要根据具体情况进行权衡,过高的显著性水平可能导致过多的错误推断,而过低的显著性水平可能会导致错误推断的概率过大。

4. 计算检验统计量的值:根据样本数据和选择的统计量,可以计算得到检验统计量的值。

检验统计量是对样本数据进行统计分析后得到的一个数值,用于评估原假设的可信程度。

5. 进行假设检验并做出推断:根据计算得到的检验统计量的值和显著性水平,可以进行假设检验并做出推断。

如果检验统计量的值落在拒绝域内(即小于或大于显著性水平对应的临界值),则可以拒绝原假设,接受备选假设;如果检验统计量的值落在接受域内(即大于或小于显著性水平对应的临界值),则不能拒绝原假设。

综上所述,假设检验的基本思想是通过对样本数据进行统计分析,从而对总体参数进行推断。

通过建立原假设和备选假设,选择合适的统计量,确定显著性水平,计算检验统计量的值,并进行假设检验,可以对总体参数进行推断,并做出相应的结论。

总结假设检验的基本思想

总结假设检验的基本思想

总结假设检验的基本思想假设检验是统计学中一种常用的推断方法,用于对两个或多个互相竞争的假设进行比较,以确定观察数据是否支持某个假设。

它的基本思想是将待检验的问题转化为假设的形式,并根据样本数据进行统计推断,从而对原假设的真实性进行判断。

假设检验的基本思想可以总结为以下几个步骤:第一步:提出问题和建立假设。

在进行假设检验之前,首先需要明确一个问题,并对该问题提出两个或多个互相竞争的假设。

通常情况下,我们会将其中一个假设作为原假设(null hypothesis, H0),另一个作为备择假设(alternative hypothesis, Ha)。

原假设通常是我们希望通过数据证明的假设,而备择假设则是与原假设相对立的假设。

第二步:选择合适的检验统计量。

为了对假设进行检验,我们需要选择适当的检验统计量,它是样本数据的函数,用于对假设进行判断。

检验统计量的选择应该具备敏感性,即能够对不同假设下的数据波动进行有效的区分。

常见的检验统计量包括t统计量、z统计量、卡方统计量等。

第三步:确定显著性水平。

显著性水平(significance level)是我们对原假设进行拒绝的阈值。

通常情况下,我们选择显著性水平为0.05或0.01,代表了我们对得出假阳性结果的容忍度。

一旦检验统计量的观察值小于或大于临界值,我们将拒绝原假设。

第四步:计算检验统计量的观察值。

使用样本数据计算得到检验统计量的观察值,并将其与临界值进行比较。

一般情况下,观察值越远离临界值,我们越倾向于拒绝原假设。

第五步:做出决策。

根据第四步的比较结果,我们可以选择接受原假设,也可以选择拒绝原假设。

如果观察值小于或大于临界值,且差异达到显著性水平,则我们可以拒绝原假设。

相反,如果观察值位于临界值附近,则我们应该接受原假设。

第六步:给出结论。

根据第五步的决策,我们可以给出关于原假设真实性的结论。

如果拒绝了原假设,我们可以认为备择假设更为合理;如果接受了原假设,我们则认为原假设具有足够的证据支持。

假设检验

假设检验

假设检验假设检验的基本思想是应用小概率原理小概率原理:指发生概率很小的随机事件在一次试验中是几乎不可能发生的。

小概率指p<5%。

假设检验的一些基本概念1.原假设和备择假设原假设:用H0表示,即虚无假设、零假设、无差异假设;备择假设:用H1表示,是原假设被拒绝后替换的假设。

若证明为H0为真,则H1为假; H0为假,则H1为真。

对于任何一个假设检验问题所有可能的结果都应包含在两个假设之内,非此即彼。

2.检验统计量用于假设检验问题的统计量称为检验统计量。

与参数估计相同,需要考虑:总体是否正态分布;大样本还是小样本;总体方差已知还是未知。

3.显著性水平用样本推断H0是否正确,必有犯错误的可能。

原假设H0正确,而被我们拒绝,犯这种错误的概率用α表示。

把α称为假设检验中的显著性水平( Significant level), 即决策中的风险。

显著性水平就是指当原假设正确时人们却把它拒绝了的概率或风险。

通常取α=0.05或α=0.01或α=0.001, 那么, 接受原假设时正确的可能性(概率)为:95%, 99%, 99.9%。

4.接受域与拒绝域接受域:原假设为真时允许范围内的变动,应该接受原假设。

拒绝域:当原假设为真时只有很小的概率出现,因而当统计量的结果落入这一区域便应拒绝原假设,这一区域便称作拒绝域。

5.双侧检验与单侧检验假设检验根据实际的需要可以分为 :双侧检验(双尾): 指只强调差异而不强调方向性的检验。

单侧检验(单尾):强调某一方向性的检验。

左侧检验 右侧检验0101101010::H H μμμμμμμμ=≠只关注,是否有差异,不关心比大还是小0101100111::::H H H H μμμμμμμμ≥⎧⎨<⎩≤⎧⎨>⎩6.假设检验中的两类错误假设检验是依据样本提供的信息进行推断的,即由部分来推断总体,因而假设检验不可能绝对准确,是可能犯错误的。

两类错误:α错误(I型错误): H0为真时却被拒绝,弃真错误;β错误(II型错误): H0为假时却被接受,取伪错误。

假设检验的基本思想与步骤

假设检验的基本思想与步骤

假设检验的基本思想与步骤假设检验是统计学中重要的方法之一,用于验证关于总体特征的假设。

通过收集样本数据,利用统计分析方法对假设进行检验,从而对总体的真实特征进行推断。

本文将介绍假设检验的基本思想与步骤。

一、基本思想假设检验的基本思想是通过收集样本数据来判断总体的特征是否与我们所假设的一致。

在进行假设检验时,我们首先提出原假设(H0)和备择假设(H1)。

原假设通常表示我们对总体特征的假设,备择假设则是与原假设相对立的假设,用于检验原假设的推翻。

在收集样本数据后,通过对样本数据的统计分析,我们可以判断原假设是否应该被拒绝。

二、步骤假设检验的步骤可以分为六个主要的部分,下面将详细介绍每一步的具体内容。

1. 确定假设在进行假设检验前,我们首先需要确定原假设和备择假设。

原假设通常是我们所期望的总体特征,而备择假设则是与原假设相对立的假设。

例如,当我们想要检验某个产品的平均销售额是否达到预期水平时,原假设可以是销售额等于预期值,备择假设则可以是销售额不等于预期值。

2. 选择显著性水平显著性水平是决定是否拒绝原假设的标准。

在进行假设检验前,我们需要选择一个显著性水平(通常用α表示),该水平表示我们允许出现的错误类型I的概率。

常见的显著性水平选择包括0.05和0.01。

3. 计算检验统计量在进行假设检验时,我们需要计算一个检验统计量来对假设进行评估。

检验统计量的具体计算方法取决于所使用的统计分析方法和数据类型。

例如,在比较两个总体均值时,可以使用t检验,计算t值作为检验统计量。

4. 确定拒绝域拒绝域是根据显著性水平和检验统计量确定的。

拒绝域是指当检验统计量落在该区域内时,我们拒绝原假设。

拒绝域的确定需要根据所选用的检验方法和显著性水平进行计算。

5. 计算p值p值是根据样本数据计算得出的,在假设检验中用来判断原假设是否应该被拒绝。

p值表示当原假设为真时,观察到与样本数据一样极端情况的概率。

若p值小于显著性水平α,则拒绝原假设。

假设检验的基本思想是什么原理(简述假设检验的思想原理)

假设检验的基本思想是什么原理(简述假设检验的思想原理)

假设检验的基本思想是什么原理(简述假设检验的思想原理)
假设检验的基本思想是“小概率事件”原理,其统计推断方法是带有某种概率性质的反证法。

小概率思想是指小概率事件在一次试验中基本上不会发生。

反证法思想是先提出检验假设,再用适当的统计方法,利用小概率原理,确定假设是否成立。

即为了检验一个假设H0是否正确,首先假定该假设H0正确,然后根据样本对假设H0做出接受或拒绝的决策。

如果样本观察值导致了“小概率事件”发生,就应拒绝假设H0,否则应接受假设H0。

假设检验中所谓“小概率事件”,并非逻辑中的绝对矛盾,而是基于人们在实践中广泛采用的原则,即小概率事件在一次试验中是几乎不发生的,但概率小到什么程度才能算作“小概率事件”,显然,“小概率事件”的概率越小,否定原假设H0就越有说服力,常记这个概率值为α(0<α<1),称为检验的显著性水平。

对于不同的问题,检验的显著性水平α不一定相同,一般认为,事件发生的概率小于0.1、0.05或0.01等,即“小概率事件”
基本步骤:
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。

H0:样本与总体或样本与样本间的差异是由抽样误差引起的;H1:样本与总体或样本与样本间存在本质差异;
预设的检验水平一般为0.05。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档