证明比较法(1)
不等式证明的基本方法

4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
证明不等式的基本方法—比较法

§4.2.1证明不等式的基本方法—比较法【学习目标】能熟练运用比较法来证明不等式。
【新知探究】1.比较法证明不等式的一般步骤:作差(商)—变形—判断—结论.2.作差法:a -b >0⇒a >b ,a -b <0⇒a <b .作差法证明不等式是不等式证明的最基本的方法.作差后需要判断差的符号,作差变形的方向常常是因式分解(分式通分、无理式有理化等)后,把差写成积的形式或配成完全平方式.3.作商法:a >0,b >0,ba >1⇒a >b . 比商法要注意使用条件,若b a >1不能推出a >b .这里要注意a 、b 两数的符号. 【自我检测】1.设0<x <1,则a =2x ,b =1+x ,c =x-11中最大的一个是 A. a B. b C. c D.不能确定2.已知x 、y ∈R ,M =x 2+y 2+1,N =x +y +xy ,则M 与N 的大小关系是A.M ≥NB.M ≤NC.M =ND.不能确定 3.若a 1<b1<0,则下列结论不正确...的是 A.a 2<b 2B.ab <b 2C.a b +ba >2 D.|a |+|b |>|a +b | 4.已知|a +b |<-c (a 、b 、c ∈R ),给出下列不等式:①a <-b -c ;②a >-b +c ;③a <b -c ;④|a |<|b |-c ;⑤|a |<-|b |-c .其中一定成立的是____________.(把成立的不等式的序号都填上)5.若a 、b ∈R ,有下列不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +a1≥2.其中一定成立的是__________.(把成立的不等式的序号都填上) 【典型例题】 例1、已知,a b 都是正数,并且a b ≠,求证:.2233ab b a b a +>+变式训练:当m >n 时,求证:m 3-m 2n -3mn 2>2m 2n -6mn 2+n 3.例2、已知,a b 都是正数,求证:,ab b a b a b a ≥ 当且仅当b a =时,等号成立。
2.1《证明不等式的基本方法-比较法》课件(新人教选修4-5)[1].
![2.1《证明不等式的基本方法-比较法》课件(新人教选修4-5)[1].](https://img.taocdn.com/s3/m/6d70cdcb58f5f61fb73666a3.png)
5.设P a 2b2 5, Q 2ab a 2 4a, 若P Q, 则实数a, b
ab 1或ab 2 满足的条件为 ________
ab 1 6.若0 a b 1, P log 1 , Q (log 1 a log 1 b), 2 2
2 2 2
Q>P>M M log 1 (a b), 则P , Q , M的大小关系是__________
2
练习
1.求证a 3b 2b(a b)
2 2
2.求证• a
b 2 2a 2b 4a 3.已知a 2, 求证 1 2 4a
2 2
例4.甲,乙 两 人 同 时 同 地 沿 同 一 路线走到 同一地点 .甲 有 一 半 时 间 以 速 度 m 行 走, 另一半时间以速度 n行 走;乙 有 一 半 路 程 以 速 度m 行 走, 另 一 半 路 程 以 速 度 n行 走. 如 果m n,问 甲 乙 两 人 谁 先 到 达 指 定 地 点.
2
2
2
2
(a b )(a b )2
a, b 0, a b 0 2 又 a b (a b) 0
故(a b)(a b)2 0即(a 3 b 3 ) (a 2b ab 2 ) 0
a b a b ab
3
3
2Hale Waihona Puke 2a 例 2 如果用akg白糖制出bkg糖溶液, 则其浓度为 , b 若在上述溶液中再添加 mkg白糖, 此时溶液的浓度 am 增加到 , 将这个事实抽象为数学 问题, 并给出证明 . bm 解 : 可以把上述事实抽象成 如下不等式问题 :
一、比较法 (1)作差比较法
不等式的证明方法之一比较法

不等式的证明方法之一:比较法目的要求:重点难点:教学过程:一、引入:要比较两个实数的大小,只要考察它们的差的符号即可,即利用不等式的性质:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a二、典型例题:例1、设b a ≠,求证:)(2322b a b b a +>+。
例2、若实数1≠x ,求证:.)1()1(32242x x x x ++>++证明:采用差值比较法: 2242)1()1(3x x x x ++-++=3242422221333x x x x x x x ------++=)1(234+--x x x=)1()1(222++-x x x=].43)21[()1(222++-x x ,043)21(,0)1(,122>++>-≠x x x 且从而 ∴ ,0]43)21[()1(222>++-x x ∴ .)1()1(32242x x x x ++>++讨论:若题设中去掉1≠x 这一限制条件,要求证的结论如何变换?例3、已知,,+∈R b a 求证.a b b a b a b a ≥ 本题可以尝试使用差值比较和商值比较两种方法进行。
证明:1) 差值比较法:注意到要证的不等式关于b a ,对称,不妨设.0>≥b a0)(0≥-=-∴≥---b a b a b b a b b a b a b a b a b a b a ,从而原不等式得证。
2)商值比较法:设,0>≥b a,0,1≥-≥b a ba .1)(≥=∴-b a a b b a b a b a b a 故原不等式得证。
注:比较法是证明不等式的一种最基本、最重要的方法。
用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。
例4、甲、乙两人同时同地沿同一路线走到同一地点。
甲有一半时间以速度m 行走,另一半时间以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走。
比较法

例3.已知:a ≥1.
求证: a 1 a a a 1.
练习: 1.若M a b , N ( 2 a b 1 ) , 则M与N的
2 2
大小关系是( ) A A.M N B.M N C.M N D.M N a b 2.若c a b 0,比较大小: ____ ca c b (填“”“”或“ ”) .
证明不等式的基本方法 (比较法)
比较法是证明不等式的一种最基 本、最重要的方法. 【方法一】差比法
作差→变形→判断→结论 注:配方、因式分解是常用的变形手 段,为了便于判断差式的符号,常将 差式变形为一个常数或几个因式的积 的形式.
典例剖析
例1.已知:a,b都是正数,且a ≠ b.
求证:a3+b3 >a2b+ab2 例2.已知:a、b、m > 0,且a < b. am a 求证: bm b
>
比较法是证明不等式的一种最基 本、最重要的方法. 【方法二】商比法
作商→变形→判断→结论 注:主要适用于积、商、幂、对数、 根式等形式的不等式证明.
例4.已知:a,b都是正数.求证:aabb ≥ abba
当且仅当a =b时,等号成立.
例5.已知:0 < x <1,a > 0,a ≠ 1 求证:|loga(1- x)|>|loga(1+x)|.
作商→变形→判断与1的大小→结论
注意:要灵活掌握配方法和通分法,因式 分解法对差式进行恒等变形。
作业:
P23
练习 1,2,3.
练习: 1 1 2 1.设A ,B (a 0, b 0) ,则 2a 2b ab A, B的大小关系为________ A≥B . 1 1 2.比较大小: log1 ____log1 . 2 3 3 2
证明不等式的基本方法

x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
不等式的证明方法经典例题

不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。
注意ab b a 222≥+的变式应用。
常用2222b a b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。
一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。
1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。
2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。
6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。
7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。
四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。
9、1<b ,求证:1)1)(1(22≤--+b a ab 。
10、122=+y x ,求证:22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3.13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10. 14、解不等式15+--x x >21 15、-1≤21x --x ≤2.五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。
证明不等式的基本方法——比较法

证明不等式的基本方法——比较法不等式的基本方法之一是比较法(或称为递推法)。
该方法的主要思想是通过比较不等式两边的表达式来确定它们的大小关系。
在使用比较法证明不等式时,我们通常需要注意以下几点:1.明确不等式的目标:确定我们想要证明的具体不等式。
2.选择合适的比较对象:我们需要找到一个或多个合适的表达式作为比较对象,通常是在已知不等式中出现过的表达式。
3.建立递推关系:通过比较对象与目标表达式的大小关系,建立一种递推关系。
递推关系可以是通过改变不等式两边的表达式,或是通过引入新的变量来推导出来。
4.递归执行递推关系:通过递归执行建立好的递推关系,最终推导出目标不等式的结果。
下面将通过具体的例子来说明比较法的应用。
例1:证明对于任意正整数n,有$n^2>n$。
解:首先明确不等式的目标是$n^2>n$。
可以选择$n-1$作为比较对象,因为$n^2>n$与$n>n-1$是等价的。
建立递推关系:假设$n>1$,则有$(n-1)^2=n^2-2n+1<n^2<n(n-1)$。
递归执行递推关系,当$n=2$时,有$2^2=4>2$。
对于$n>2$,可以继续推导出$n^2>n$。
综上所述,对于任意正整数n,有$n^2>n$。
例2:证明对于任意正整数n,有$2^n>n$。
解:首先明确不等式的目标是$2^n>n$。
可以选择$n-1$作为比较对象,因为$2^n>n$与$n>n-1$是等价的。
建立递推关系:假设$n>1$,则有$2^{n-1} = \frac{1}{2^n} <\frac{n}{2}$。
递归执行递推关系,当$n=2$时,有$2^2=4>2$。
对于$n>2$,可以继续推导出$2^n>n$。
综上所述,对于任意正整数n,有$2^n>n$。
比较法是一种简单直观的证明不等式的方法。
通过找到合适的比较对象,建立递推关系,并递归执行递推关系,我们可以有效地证明不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S(m n)2
2mn(m n)
其中S,m,n都是正数,且m≠n, 于是t1-t2<0
即 t1 t2 从而可知甲比乙首先到达指定地点。
小结:
• 作差比较法是证明不等式的一种最基本、 最重要的一种方法,用比较法证明不等式 的步骤是:作差—变形—判断符号—下结 论。
• 要灵活掌握配方法和通分法对差式进行恒 等变形。
6.3 不等式的证明(1) ___比较法
根据前一节学过的知识,我们如何用实数运
a 算来比较两个实数 与 b 的大小?
ab>0a>b,ab<0a<b,ab=0a=b
• 比较法是证明不等式的一种最基本、最
重要的一种方法,用比较法证明不等式的 步骤是: • 作差—变形—判断符号—下结论。 • 作商—变形—与1比较大小---下结论。
即: a m a
b(Байду номын сангаас m)
bm b
1.本题变形的方法—通分法
2.本题的结论反映了分式的一个性质:若 a, b, m 都是正数,
当
a
b 时,a
b
m m
a b
;
当a
b 时,a
b
m m
a b
;
例3. 已知 a, b都是正数,并且 a b,求证:a5 b5 a2b3 a3b2
证明:(a5 b5 ) (a2b3 a3b2 )
(a5 a3b2 ) (b5 a2b3 )
a3 (a2 b2 ) b3 (a2 b2 ) (a2 b2 )(a3 b3 ) (a b)(a b)2 (a2 ab b2 )
∵ a, b 都是正数, ∴ a b 0, a2 ab b2 0
又∵ a b, (a b)2 0 (a b)(a b)2 (a2 ab b2 ) 0
2.本题的变形方法——配方法
例2.已知 a,b, m 都是正数,并且a b, 求证 a m a
bm b
证明:a m a b(a m) a(b m)
bm b
b(b m)
m(b a)
b(b m)
∵ a,b, m 都是正数,并且 a b,
b m 0,b a 0 m(b a) 0
• 要灵活掌握配方法和通分法对差式进行恒 等变形。
6.3 不等式的证明(1)--比较法
例1.求证:x2 3 3x
证:∵ (x2 3) 3x
x2 3x (3)2 (3)2 3
22
x
3 2
2
3 4
≥
3 4
0
x2 3 3x
1.变形的目的全在于判断差的符号,而不必考虑差的值是 多少。至于怎样变形,要灵活处理。
解:设从出发地点至指定地点的路程是S,甲、乙两人走完
这段路程所用的时间分别为t1,t2,依题意有
t1 m t1 n S, 22
S 2m
S 2n
t2
t1
2S mn
t2
S(m n) , 2mn
t1 t2
2S S(m n) m n 2mn
S 4mn (m n)2 2(m n)mn
即:a5 b5 a2b3 a3b2
本题变形的方法— 因式分解法
例4
比较aa bb和ab ba的
例5.甲、乙两人同时同地沿同一线路走到同一地点。甲有一半 时间以速度m行走,另一半时间以速度n行走;乙有一半路程以 速度m行走,另一半路程以速度n行走。如果m≠n,问甲、乙 两人谁先到达指定地点。