生化分离技术(主要内容)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生化分离技术(主要内容) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

生化分离技术:描述回收生物产品分离过程原理和方法的术语,是指从动植物组织培养液或微生物发酵液中分离、纯化生物产品过程中所采用的方法和手段的总称。

生化分离过程是生物技术转化为生产力不可缺少的重要环节,其技术进步程度对生物技术的发展有着举足轻重作用,为突出其在生物技术领域中的地位和作用,常称它为生物技术

的下游工程。

分离纯化过程的难点:目的产物在细胞或反应液中含量不高,杂质种类多,数量大;杂质性质与产物相似;产物稳定性不高。

生化分离技术的主要种类:沉淀分离(盐析、有机溶剂沉淀、选择性变性沉淀、非离子聚合物沉淀);膜分离(透析、微滤、超滤、纳滤、反渗透);层析分离(吸附、凝胶、离子交换、疏水、反相、亲和层析);电泳分离(SDS-PAGE、等电聚焦、双向电泳、毛细管电泳);离心分离(低速、高速、超速离心分离技术),

生化分离的特点:成分复杂;含量甚微;易变性/易被破坏;具经验性;均一性的相对性。

预处理需注意的条件:⑴温度尽可能低⑵提取液的量要保证“充分浸入”⑶加入足量酚类吸附剂⑷加入足量氧化酶抑制剂⑸搅拌转速要恰当⑹ pH控制在合适范围,一般5.5~7

细胞的破碎:用一定方法(机械/物理/化学/酶法)打开细胞壁或膜,使细胞内含物有效释放出来。

挤压:微生物细胞在高压下通过一个狭窄的孔道高速冲出,因突然减压而引起一种空穴效应,使细胞破碎。

沉淀:溶液中溶质由液相变成固相析出的过程。本质:通过改变条件使胶粒发生聚结,降低其在液相中的溶解度,增加固相中的分配率。作用:分离、澄清、浓缩、保存

盐溶:低浓度中性盐离子对蛋白质分子表面极性基团及水活度的影响,增加蛋白质与溶剂相互作用力,使其溶解度增大。

盐析:中性盐浓度增至一定时,水分子定向排列,活度大大减少,蛋白质表面电荷被中和,水膜被破坏,从而聚集沉淀。

有机溶剂沉淀法:使溶液的介电常数大大降低,从而增加带电粒子自身之间的作用力,易聚集沉淀;争夺酶、蛋白质等物质表面的水分子,破坏水化层,使分子易碰聚产生沉淀。

沉淀条件讨论:1. 温度;2. pH ;3. 浓度;4. 离子强度;5. 有机溶剂的选择;6. 多价阳离子的影响;7. 溶剂用量

膜分离或膜过滤定义:用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对两个或两个以上组分的溶质和溶剂进行分离、提纯和富集的方法。

膜:两相之间的一个不连续区间,是隔开两种流体的一个薄的阻挡层。

膜分离的特点:过程为常温过程;不发生相变;密闭系统中进行;产品不受污染;选择性好;适应性强;实现自动化操作。

项目膜类型操作压力分离机理适用范围技术特点不足之处

微滤(MF) 对称微孔膜

0.02~10μm

0.01 MPa~

0.2 MPa

颗粒大小、

形状

含微粒或菌体溶

液的分离

操作简便,通水量大,工

作压力低,制水率高。

有机污染物的分

离效果较差。

超滤(UF) 不对称微孔膜

0.001~0.1μm

0.1 MPa~

0.5 MPa

颗粒大小、

形状

有机物或微生物

溶液的分离

与微滤技术相似。与微滤技术相似。

纳滤(NF) 带皮层不对称复

合膜1~50 nm

0.5 MPa~

2.5 MPa

优先吸附、

表面电位

硬水或有机物溶

液的脱盐

可对原水进行部分脱盐和

软化,生产优质饮用水。

常需预处理,工作

压力较高。

反渗透(RO) 带皮层不对称复

合膜<1 nm

1.0 MPa~

10 MPa

优先吸附、

溶解扩散

海水或苦咸水的

淡化

几乎可去除水中一切杂

质,包括悬浮物、胶体、

有机物、盐、微生物等。

工作压力高;制水

率低;能耗大。

按膜断面的物理形态:表面活性层( 0.1~1μm,分离作用,其孔径和性质决定膜的分离特性,厚度决定传质速度);多孔支撑层(100~200μm,机械支撑作用,对分离特性和传质速度影响很小)

表征膜性能的参数:孔的性质;水通量;耐压能力;pH适用范围;对热和溶剂的稳定性;截留分子量分布

膜的劣化:膜本身不可逆转的质量变化(化学性:水解、氧化;物理性:固结、干燥;生物性:微生物代谢产物)。

污染膜是否清洗的判据:进出口压力降;透水量或透水质量;定时清洗。

污染膜的常用清洗方法:机械方法;加起溶解作用的物质;加起氧化作用的物质;加起渗透作用的物质;切断离子结合作用。浓差极化:指外源压力迫使分子量较小的溶质通过薄膜,而大分子被截留于膜表面,并逐渐形成浓度梯度的现象。

克服极化的主要措施:震动、搅拌、错流、切流。

膜分离的原理:利用溶液中溶质分子的大小、形状、性质的差别,对于各种薄膜表现出不同的可透性而达分离的目的。分子透过膜可由简单的扩散作用引起或外加的流体静压差或电场作用所推动。

透析Dialysis(DS):除去或更换小分子物质;脱盐;改变溶剂成分

透析膜的特点:亲水性,分子筛状多孔薄膜;化学惰性;一定机械强度和良好的再生性能。

提高透析效果的措施:搅拌;定期或连续更换新鲜溶剂。

反渗透RO原理(毛细孔流动模型):膜组成中含有亲水活性基团,膜表面能选择性吸附水分子而排斥溶质分子,靠近膜表面的浓度梯度急剧下降,从而在膜和溶液的界面形成一层被膜吸附的纯水层(厚度约2个水分子),在反渗透压力推动下,纯水层的水通过膜的毛细孔连续不断地渗出。

溶解-扩散模型:把半透膜看成完全致密的中性界面,水和溶质通过膜分为两个阶段:第一阶段:水和溶质被吸附溶解到膜材质表面;第二阶段:水和溶质在膜中扩散传递而通过膜。孔隙开闭学说:膜里无固定连续孔道,所谓渗透性指因聚合物的链经常振动而在不同时间和空间内渗透的平均值而已。

氢键理论:水分子进入醋酸纤维膜的非结晶部分后,因和羧基的氧形成氢键而构成结合水,结合水的结合强度取决于膜内的孔径,孔径越小结合越牢;牢固的结合水把孔占满,不与醋酸纤维膜氢键结合的溶质就不能扩散透过,但能与膜氢键结合的离子和分子(水,酸)却能穿过结合水层而有序扩散通过膜。

临界孔径:膜表面孔径为吸附水层厚度2倍时,能获最大分离效果和最高渗透通量。

超滤 Ultrafiltration UF:以超滤膜为分离介质,以膜两侧压力差为推动力,将不同分子量的物质进行选择性分离。其用途:大分子物质的脱盐和浓缩;小分子物质的纯化;大分子物质的分级分离;生化制剂或其它制剂的去热原处理。

超滤膜的选择(主要考虑参数:截留分子量、流动速率)。截留分子量:指截流率90%以上的最小被截留物质的分子量(以球形分子测定)

流动速率:一定压力下每分钟通过单位面积膜的液体量

(mL/cm2.min)

其它:操作T、化学耐受性、膜吸附性、膜无菌处理

影响超滤流率的因素:(1)溶质分子的性质;(2)溶质浓度;(3)压力;(4)搅拌;(5)温度;(6)其它(溶液pH、离子强度及溶剂因素等)超滤膜的截留机理:筛分作用:据分子大小、形态而分离。超滤应用:浓缩和脱盐;分级分离与纯化;超滤分离与酶反应器(或发酵罐)联用。

纳滤 Nanofiltration NF:介于超滤与反渗透之间的膜分离技术,其截留分子量在200~2 000的范围内,孔径为几纳米。能截留小分子有机物并同时透析出盐,集浓缩与透析为一体;在保证一定膜通量的情况下,纳滤所需压力比反渗透低得多,可节约动力。

纳滤膜的分离机理:筛分作用(位阻效应);离子与膜之间的静电作用。

纳滤膜对盐的截留率主要由阴离子的价态决定。

反渗透的应用:海水和苦咸水的淡化;饮料用水和纯水制备;果蔬汁和乳制品的浓缩。

微孔膜过滤 Microfitration MF:以多孔细小薄膜为过滤介质,压力为推动力,使不溶物浓缩过滤的操作。

层析(色谱):利用各组分与固定相亲和力或相互作差别实现分离。

广义吸附 (Sorption) :有选择地将一种或多种溶质从流动相转移到固定相的过程,利用固定相和流动相间的相互作用将组分分离开来。

Gel的准备:(1)凝胶溶涨;(2)倾析;(3)控制稠度;(4)脱气。

层析柱操作效果的影响因素:所用层析介质;洗脱剂的空柱流速;柱孔隙率;层析介质的可渗透性能;组分在固定相和流动相中的分配系数;处理量。

层析的两个基本问题:区带分离和峰形变宽。

层析分离效果常用两个目标峰的分辨率(RS)描述(分辨率:两个洗脱峰峰顶对映的洗脱体积之差比上两峰在基线上峰宽的和的平均值)。分辨率取决于:两组分的洗脱体积和峰宽;决定洗脱体积和峰宽因素:层析柱的选择性和柱效

层析分辨率取决于:系统选择性α、柱效率N和容量因子k′。k′的取值与溶质在固定相和流动相的分配性质、温度及固定相和流动相体积比有关,而与柱尺寸和流速无关。

欲提高RS 达到满意分离效果,须满足的条件:(1)相对保留值α>1;(2)理论塔板数N 尽可能大;(3)k′≠ 0。

对极性组分:用极性较小溶剂溶解样品/上样/吸附;用极性较大的溶剂作洗脱剂。

凝胶过滤层析原理:利用具有网状结构的凝胶的分子筛作用,据被分离物分子大小不同进行分离.

相关文档
最新文档