2019-2020年四川省高考理科数学模拟试题word版
2019年四川省高考数学理科试题含答案(Word版)
![2019年四川省高考数学理科试题含答案(Word版)](https://img.taocdn.com/s3/m/6be139e733d4b14e8524689a.png)
2019年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题),第I 卷1至2页,第II 卷3至4页,共4页,满分150分,考试时间120分钟,考生作答时,须将答案答在答题卡上,在本试题卷、草稿上答题无效,考试结束 后,将本试题卷和答题卡一并交回。
第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( ) (A )3(B )4(C )5(D )62.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 43.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( ) (A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度 4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )(A )24(B )48(C )60(D )725.某公司为激励创新,计划逐年加大研发资金投入.若该公司2019年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年(B )2019年(C )2020年(D )2021年6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A )9 (B )18 (C )20 (D )357.设p :实数x ,y 满足(x –1)2+(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A )33(B )23(C )22(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)10.在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA DB =DB DC =DC DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是( ) (A )434(B )494(C )37634+(D )372334+第II卷(非选择题100分)二、填空题:本大题共5小题,每小题5分,共25分。
2019年四川省高考理科数学试卷及答案解析【word版】
![2019年四川省高考理科数学试卷及答案解析【word版】](https://img.taocdn.com/s3/m/fcf710ee7f1922791788e821.png)
高考数学精品复习资料2019.5普通高等学校招生全国统一考试理科(四川卷)参考答案一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上 所有的点 A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D【解析】由1100c d d c<<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为 A .0 B .1 C .2 D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。
2019-2020学年四川省广安市、眉山市高考数学一诊试卷(理科)
![2019-2020学年四川省广安市、眉山市高考数学一诊试卷(理科)](https://img.taocdn.com/s3/m/dc1bc1a5c8d376eeaeaa3183.png)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个
选项中,只有一项是符合题目要求的.
1.(5 分)已知集合 A={x|x>1},函数 y=lg(2﹣x)的定义域为 B,则( )
A.A∪B={x|1<x<2} B.A∪B=R C.A∩B={x|x>1} D.A∩B={x|x<2}
∴M(﹣ , ),
∴ + =1,①
∵a2﹣b2=c2=1,②, 由①②可得 4a4﹣8a2+1=0,
解得 a2=
<1(舍去),a2=
,
∴a2=
=
=(
∴a=
=
,
∴e= =
= ﹣1,
)2,
! 功
故选:C.
成
到
马
考
高
您
11.(5 分)已知 SC 是球 O 的直径,A,B 是球 O 球面上的两点,且
,
祝若三棱锥 S﹣ABC 的体积为 1,则球 O 的表面积为(
)
A.4π B.13π C.16π D.52π
【解答】解:∵SC 是球 O 的直径,A,B 是球 O 球面上的两点,且
,
∴∠SAC=∠SBC=90°,
cos∠ACB=
=﹣ ,
∴∠ACB=120°,∴∠CAB=∠CBA=30°, ∴∠ASB=60°,∴SA=SB=AB= ,
∴SC=
=2,
∴球半径 R=1,
的斜率
考 和截距的最小二乘估计公式分别为: =
,=
.
高 20.(12 分)如图,ABCD 是菱形,∠ABC=60°,AC 与 BD 相交于点 O,平面 AEFC
⊥平面 ABCD,且 AEFC 是直角梯形,∠EAC=90°,CF∥AE,AE=AB=2,CF=4.
【精品高三数学试卷】2019-2020成都市高三(上)7月摸底(理科)+答案
![【精品高三数学试卷】2019-2020成都市高三(上)7月摸底(理科)+答案](https://img.taocdn.com/s3/m/1549465e482fb4daa58d4b94.png)
2019-2020学年四川省成都市高三(上)7月摸底数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z 满足(1)(i z i i +=是虚数单位),则z 的虚部为( ) A .12B .12-C .12iD .12i -2.(5分)已知集合{1A =,2,3,4},2{|60}B x x x =--<,则(A B =I ) A .{2}B .{1,2}C .{2,3}D .{1,2,3}3.(5分)如图是某赛季甲,乙两名篮球运动员9场比赛所得分数的茎叶图,则下列说法错误的是( )A .甲所得分数的极差为22B .乙所得分数的中位数为18C .两人所得分数的众数相等D .甲所得分数的平均数低于乙所得分数的平均数4.(5分)若实数x ,y 满足约束条件220100x y x y +-⎧⎪-⎨⎪⎩„……,则2z x y =-的最小值为( ) A .0 B .2 C .4 D .65.(5分)已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67(a a =) A .1B .3C .6D .96.(5分)已知函数sin(),0()621,0.x x x f x x ππ⎧+⎪=⎨⎪+>⎩„,则(2)f f -+(1)(= ) A 63+ B 63- C .72D .527.(5分)ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .若向量(,cos )m a A =-rg ,(cos ,2)n C b c =-r ,且0m n =r r g ,则角A 的大小为( )A .6πB .4π C .3π D .2π 8.(5分)执行如图所示的程序框图,则输出的m 的值为( )A .5B .6C .7D .89.(5分)若矩形ABCD 的对角线交点为O ',周长为410O 的表面上,且3OO '=O 的表面积的最小值为( ) A .3223πB .6423πC .32πD .48π10.(5分)已知函数22()(1)x f x x a x e =++,则“2a ()f x 在1x =-处取得极小值”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件11.(5分)已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1(,0)F c -,2(,0)F c ,又点23(,)2b N c a-.若双曲线C 左支上的任意一点M 均满足2||||4MF MN b +>,则双曲线C 的离心率的取值范围为( ) A .13(5) B .(5,13)C .(1)+∞UD .)+∞U 12.(5分)若关于x 的不等式210xlnx kx k -++>在(2,)+∞内恒成立,则满足条件的整数k 的最大值为( ) A .2B .3C .4D .5二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.(5分)某公司一种新产品的销售额y 与宣传费用x 之间的关系如表:已知销售额y 与宣传费用x 具有线性相关关系,并求得其回归直线方程为ˆˆ9ybx =+,则ˆb 的值为 .14.(5分)已知曲线2cos ,:(sin x C y θθθ=⎧⎨=⎩为参数).若点P 在曲线C 上运动,点Q 为直线:20l x y +-=上的动点,则||PQ 的最小值为 .15.(5分)已知()f x 是定义在(,)22ππ-上的奇函数,其导函数为()f x ',()8f π=,且当(0,)2x π∈时,()sin 22()cos20f x x f x x '+>.则不等式()sin 21f x x <的解集为 .16.(5分)已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l .若位于x 轴上方的动点A 在准线l 上,线段AF 与抛物线C 相交于点B ,且||||1||AF AF BF -=,则抛物线C 的标准方程为 .三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知函数321()33f x x mx nx =+++,其导函数()f x 的图象关于y 轴对称,2(1)3f =-.(Ⅰ)求实数m ,n 的值;(Ⅱ)若函数()y f x λ=-的图象与x 轴有三个不同的交点,求实数λ的取值范围. 18.(12分)为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内A ,B ,C 三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下A 类行业:85,82,77,78,83,87;B 类行业:76,67,80,85,79,81;C 类行业:87,89,76,86,75,84,90,82.(Ⅰ)试估算这三类行业中每类行业的单位个数;(Ⅱ)若在A 类行业抽样的这6个单位中,随机选取3个单位进行交流发言,求选出的3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.19.(12分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD =,AB AD =,PA PD ⊥,AD CD ⊥,60BAD ∠=︒,M ,N 分别为AD ,PA 的中点.(Ⅰ)证明:平面//BMN 平面PCD ;(Ⅱ)若6AD =,3CD =,求平面BMN 与平面BCP 所成锐二面角的余弦值.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1(3,0)F -,2(3,0)F ,且经过点1(3,)2A .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点(4,0)B 作一条斜率不为0的直线l 与椭圆C 相交于P ,Q 两点,记点P 关于x 轴对称的点为P '.若直线P Q '与x 轴相交于点D ,求DPQ ∆面积的最大值. 21.(12分)已知函数2()22x x f x e ae ax =--,其中0a >. (Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 有唯一零点,求a 的值. [选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在直角坐标系xOy 中,过点(1,1)P 的直线l 的参数方程为1cos (1sin x t t y t αα=+⎧⎨=+⎩为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=.(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于A ,B 两点,求11||||PA PB的最小值.2019-2020学年四川省成都市高三(上)7月摸底数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 【解答】解:由(1)i z i +=, 得(1)1111(1)(1)222i i i i z i i i i -+====+++-, 则z 的虚部为:12. 故选:A .【解答】解:{|23}B x x =-<<Q ,{1A =,2,3,4}, {1A B ∴=I ,2}.故选:B .【解答】解:甲所得分数的极差为331122-=,A 正确; 乙所得分数的中位数为18,B 正确;甲所得分数的众数为22,乙所得分数的众数为22,C 正确; 故选:D .【解答】解:作出实数x ,y 满足220100x y x y +-⎧⎪-⎨⎪⎩„……表示的平面区域,如图所示.由2z x y =-可得1122y x z =-,则12z -表示直线1122y x z =-在y 轴上的截距,截距越大,z 越小.作直线20x y -=,然后把该直线向可行域平移,当直线经过点B 时,12z -最大,z 最小.由2201x y x +-=⎧⎨=⎩可得1(1,)2B ,此时0z =,故选:A .【解答】解:因为等比数列{}n a 的各项均为正数,且3132312log log log 12a a a ++⋯+=,即31212log ()12a a a ⋯=g g g ,所以1212123a a a ⋯=g g g , 所以61267()3a a = ,所以26739a a ==, 故选:D .【解答】解:Q 1(2)sin(2)sin 662f πππ-=-+==,f (1)1213=+=,∴17(2)(1)322f f -+=+=, 故选:C .【解答】解:由0m n =r rg 得,0(,cos )(cos )cos )cos a A C c a C c A =--=--g ,由正弦定理得,sin cos cos sin cos 0A C B A C A +=,化为sin()cos 0A C B A +=,即sin cos 0B B A =, 由于sin 0B ≠,∴cos A = ∴4A π=,故选:B .【解答】解:模拟程序的运行,可得③ 12312223234100⨯+⨯+⨯=< 4m = ④ 12341222324298100⨯+⨯+⨯+⨯=< 5m = ⑤123451222324252258100⨯+⨯+⨯+⨯+⨯=>6m =故选:B .【解答】解:如图,设矩形ABCD 的两邻边分别为a ,b ,则210a b +=,且外接圆O 'e 的半径22a b r +=.由球的性质得,OO '⊥平面ABCD ,所以球O 的半径2222(3)34a b R r +=+=+值不等式得,2222a ba b ++„222()202a b a b ++=…, 所以222220(3)33844a b R r ++=++=…10a b == 所以球O 的表面积的最小值为2432R ππ=, 故选:C .【解答】解:若()f x 在1x =-取得极小值,2222()[(2)1](1)(1)x x f x x a x a e x x a e '=++++=+++. 令()0f x '=,得1x =-或21x a =--.①当0a =时,2()(1)0x f x x e '=+…. 故()f x 在R 上单调递增,()f x 无最小值;②当0a ≠时,211a --<-,故当21x a <--时,()0f x '>,()f x 单调递增; 当211a x --<<-时,()0f x '<,()f x 单调递减;当1x >-时,()0f x '>,()f x 单调递增. 故()f x 在1x =-处取得极小值.综上,函数()f x 在1x =-处取得极小值0a ⇔≠.∴ “2a =”是“函数()f x 在1x =-处取得极小值”的充分不必要条件.故选:A .【解答】解:双曲线C 左支上的任意一点M 均满足2||||4MF MN b +>, 即2(||||)4min MF MN b +>,又22123||||2||||2||22b MF MN a MF MN a NF a a++++=+厖 2223244382b a b a b ab a∴+>⇒+>34802b a ba b a ⇒+->⇒>g 或23b a <2221b e a∴=+,5e >或131e << 故选:D .【解答】解:关于x 的不等式210xlnx kx k -++>在(2,)+∞内恒成立,即关于x 的不等式(2)1xlnx k x >--在(2,)+∞内恒成立,即函数(2)y xlnx x =>的图象恒在直线(2)1y k x =--的上方.当直线(2)1y k x =--与函数(2)y xlnx x =>相切时,设切点为0(x ,0)y ,则()0000000(2)211y x lnx x y k x lnx k =>⎧⎪=--⎨⎪+=⎩①②③,由①②得,000(2)1x lnx k x =--,把③代入得00(1)(2)1x k k x -=--,化简得021x k =+.由02x >得,12k >. 又由③得011k lnx =+>.即相切时整数2k ….因此函数(2)y xlnx x =>的图象恒在直线(2)1y k x =--的上方时,整数k 的最大值为2,故选:A .二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 【解答】解;由表中数据,计算0123425x ++++==,10152030351102255y ++++===,又归直线方程为ˆˆ9y bx =+过样本中心点(2,22)得, ˆ2229b=+, 解得13ˆ 6.52b ==. 故答案为:6.5.【解答】解:把曲线2cos ,:(sin x C y θθθ=⎧⎨=⎩为参数)上任意点(2cos ,sin )P θθ到直线:20l x y +-=的距离d ==当sin()1θα+=时,||min min PQ d ===.【解答】解:已知()f x 是定义在(,)22ππ-上的奇函数,其导函数为()f x ',()8f π=令()()sin 2(0)2F x f x x x π=<<,且当(0,)2x π∈时,()sin 22()cos20f x x f x x '+>.则()()sin 22()cos20(0)2F x f x x f x x x π''=+><<,所以()()sin 2F x f x x =在(0,)2π上为单调递增,且()()sin(2)1888F f πππ=⨯=,所以()()sin 2()8F x f x x F π=<,解得08x π<<,由()f x 是定义在(,)22ππ-上的奇函数得,()()sin 2F x f x x =在(,)22ππ-为偶函数,所以不等式()sin 21f x x <的解集为:(,)88ππ-,故答案为:(,)88ππ-.【解答】解:如图所示,设(0)2AFO παα∠=<<,过点B 作BB l '⊥与点B ',由抛物线的定义知,||||BF BB '=,||FC p =,ABB AFO α'∠=∠=;在Rt ABB '∆中,||||cos ||||BB BF AB AB α'==,||||cos BF AB α=, 从而||||||||(1cos )AF BF AB AB α=+=+; 又||||1||AF AF BF -=,所以||(1cos )||1||cos AB AF AB αα+-=, 即1cos ||1cos AF αα+-=,所以1||cos AF α=; 在Rt AFC ∆中,||cos ||||CF pAF AF α==,||cos p AF α=, 所以1cos 1cos p αα==g , 所以抛物线C 的标准方程为22y x =. 故答案为:22y x =.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 【解答】解:2()()2I f x x mx n '=++.1⋯⋯分Q 函数()f x 的图象关于y 轴对称,0m ∴=.2⋯⋯⋯分又12(1)333f n =++=-,解得4n =-.3⋯⋯⋯分0m ∴=,4n =-.4⋯⋯⋯⋯分(Ⅱ)问题等价于方程()f x λ=有三个不相等的实根时,求λ的取值范围. 由()I ,得31()433f x x x =-+.2()4f x x '∴=-.⋯⋯⋯..5分 令()0f x '=,解得2x =±.6⋯⋯⋯⋯分Q 当2x <-或2x >时,()0f x '>,()f x ∴在(,2)-∞-,(2,)+∞上分别单调递增.7⋯⋯分 又当22x -<<时,()0f x '<,()f x ∴在(2,2)-上单调递减,..8分()f x ∴的极大值为25(2)3f -=,极小值为7(2)3f =-.⋯⋯⋯..10分 ∴由图可知,实数λ的取值范围为725(,)33-.⋯⋯⋯.12分【解答】解:()I 由题意,抽取的三类行业单位个数之比为3:3:4. 由分层抽样的定义,有A 类行业单位个数为32006010⨯=(个), B 类行业单位个数为32006010⨯=(个), C 类行业单位个数为42008010⨯=(个). A ∴,B ,C 三类行业单位的个数分别为60,60,80.(Ⅱ)记选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位为事件M 在A 类行业的6个单位中随机选取3个单位的考核数据情形有:{85,82,77},{85,82,78},{85,82,83},{85,82,87},{85,77,78},{85,77,83},{85,77,87},{85,78,83},{85,78,87},{85,83,87},{82,77,78},{82,77,83},{82,77,87},{82,78,83},{82,78,87},{82,83,87},{77,78,83},{77,78,87},{77,83,87},{78,83,87}.共20种.7⋯分这3个单位都是“星级”环保单位的考核数据情形有:{85,82,83},{85,82,87},{85,83,87},{82,83,87}.共4种.这3个单位都是“非星级”环保单位的考核数据情形有0种,∴这3个单位都是“星级”环保单位或都是“非星级”环保单位的情形共4种. ∴选出的3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率为:44()1205P M =-=. 【解答】解:()I 证明:连接BD ,AB AD =Q ,60BAD ∠=︒,ABD ∴∆为正三角形.M Q 为AD 的中点,BM AD ∴⊥.AD CD ⊥Q ,CD ,BM ⊂平面ABCD ,//BM CD ∴.又BM ⊂/平面PCD ,CD ⊂平面PCD ,//BM ∴平面PCD .M Q ,N 分别为AD ,PA 的中点,//MN PD ∴.又MN ⊂/平面PCD ,PD ⊂平面PCD ,//MN ∴平面PCD .又BM ,MN ⊂平面BMN ,BM M N M =I ,∴平面//BMN 平面PCD .(Ⅱ)解:连接PM .Q 平面PAD ⊥平面ABCD ,平面ABCD ⋂平面PAD AD =,PM ⊂平面PAD ,又PM AD ⊥,PM ∴⊥平面ABCD .又BM AD ⊥,MB ∴,MD ,MP 两两互相垂直.以M 为坐标原点,MB u u u r ,MD u u u u r ,MP u u u r的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系M xyz -.6AD =Q ,CD =,则(0M ,0,0),(0P ,0,3),(0A ,3-,0),33(0,,)22N -,B ,C .设平面BMN 的一个法向量111(,,)m x y z =r ,平面BCP 的一个法向量222(,,)n x y z =r.Q (33,0,0)MB =u u u r ,33(0,,)22MN =-u u u u r ,∴由00m MB m MN ⎧=⎪⎨=⎪⎩u u u r r g u u u u r r g ,得11133033022x y z ⎧=⎪⎨-+=⎪⎩.∴取(0,1,1)m =r . Q (23,3,0)BC =-u u u r ,(33,0,3)BP =-u u u r,∴由00n BC n BP ⎧=⎪⎨=⎪⎩u u u r r g u u u rr g ,得222223303330x y x z ⎧-+=⎪⎨-+=⎪⎩.∴取(3,2,3)n =r . ∴52cos ,||||821642n m n m n m <>====r rg r rr r g g .∴平面BMN 与平面BCP 所成锐二面角的余弦值为52.【解答】解:()I 由椭圆的定义,可知212112||||(23)()422a AF AF =+=+=.1⋯⋯⋯分解得2a =.2⋯⋯⋯⋯分 又222(3)1b a =-=.3⋯⋯分所以椭圆C 的标准方程为2214x y +=.⋯⋯⋯.4分(Ⅱ)由题意,设直线l 的方程为4x my =+,0m ≠.设1(P x ,1)y ,2(Q x ,2)y ,则1(P x ',1)y -.由22414x my x y =+⎧⎪⎨+=⎪⎩,消去x ,可得22(4)8120m y my +++=.5⋯⋯⋯⋯分 因为△216(12)0m =->,所以212m >所以12284m y y m -+=+,122124y y m=+.⋯⋯⋯.6分 因为21212121()P Q y y y y k x x m y y '++==--,所以直线P Q '的方程为211121()()y y y y x x m y y ++=--.7⋯⋯⋯⋯分令0y =,可得211112()4m y y y x my y y -=+++.8⋯⋯⋯分所以21212212222444441884m my y m m x m y y m m +=+=+=+=-+-+g ,所以(1,0)D .9⋯⋯⋯⋯分 所以2212121213612||||||()422DPQ BDQ BDPm S S S BD y y y y y y ∆∆∆-=-=-=+-=g .10⋯⋯分 令212t m =-,(0,)t ∈+∞. 则266316164DPQ t S t t t∆==++…,当且仅当4t =即27m =±时等号成立, 所以DPQ ∆面积的最大值为34.12⋯⋯分【解答】解:()I 当1a =时,2()22x x f x e e x =--,2()222x x f x e e '∴=--.00(0)2222f e e '∴=--=-, 又00(0)201f e e =--=-,∴曲线()y f x =在点(0,(0))f 处的切线方程为(1)2y x --=-,即210x y ++=;(Ⅱ)法一:22()2222()x x x x f x e ae a e ae a '=--=--,令(0,)x t e =∈+∞,则2()()2()f x g t t at a '==--, 0a >Q ,∴函数()y g t =在(0,)+∞仅有一个零点,∴存在0(0,)t ∈+∞,使得0()0g t =.即存在0x 满足00x t e =时,0()0f x '=, ∴当0(0,)t t ∈,即0(,)x x ∈-∞时,()0f x '<.()f x ∴在0(,)x -∞上单调递减;当0(t t ∈,)+∞,即0(x x ∈,)+∞时,()0f x '>.()f x ∴在0(x ,)+∞上单调递增, 又当x →-∞时,220x x e ae -→,2ax -→+∞,()f x ∴→+∞;当0x >时,x e x >,22()2222(4)x x x x x x x f x e ae ax e ae ae e e a ∴=-->--=-.Q 当x →+∞时,(4)x x e e a -→+∞,∴当x →+∞时,()f x →+∞.∴由题意,函数()f x 有唯一零点时,必有00200()220x x f x e ae ax =--=.①,又0020x x e ae a --=,②由①②消去a ,得00210x e x +-=.令()21x h x e x =+-.()20x h x e '=+>Q ,()h x ∴单调递增, 又(0)0h =,∴方程00210x e x +-=有唯一解00x =. 将00x =代入0020x x e ae a --=,解得12a =.∴当函数()f x 有唯一零点时,a 的值为12. 法二:问题等价于关于x 的方程2220(0)x x e ae ax a --=>有唯一解时,求a 的值. 令(0)x e t t =>,则x lnt =. 问题等价于关于t 的方程11(1)(0)2lntt a t t=+>有唯一的解时,求a 的值. 令21()(1)lnt lnt t g t t t t +=+=,则312()t lntg t t --'=.令()12(0)h t t lnt t =-->,则22()10(0)t h t t t t+'=--=-<>. ()h t ∴在(0,)+∞单调递减,而h (1)0=,∴当(0,1)t ∈时,()0h t >,当(1,)t ∈+∞时,()0h t <. ∴当(0,1)t ∈时,()0g t '>,当(1,)t ∈+∞时,()0g t '<.从而()g t 在(0,1)单调递增,在(1,)+∞单调递减.注意到:g (1)1=,当1t >时,()0g t >,当0t →时,()g t →-∞,()g t ∴的唯一极大值为g (1)1=.结合()g t 的图象知,112a =或102a<时,关于t 的方程11(1)(0)2lnt t a t t =+>有唯一的解, 而0a >,所以12a =. [选修4-4:坐标系与参数方程](本小题满分10分)【解答】解:()I 曲线C 的极坐标方程为4cos ρθ=.4cos ρθ=Q ,24cos ρρθ∴=.∴曲线C 的直角坐标方程为2240x y x +-=.(Ⅱ)将直线l 的参数方程1cos (1sin x t t y t αα=+⎧⎨=+⎩为参数)代入曲线C 的方程, 并整理得2(2sin 2cos )20t t αα+--=.Q △2(2sin 2cos )80αα=-+>,∴可设.1t ,2t 是方程的两个实数根,则1t +.22cos 2sin t αα=-,1220t t =-<.∴1212121212||||||1111||||||||||||||t t t t PA PB t t t t t t +-+=+=====,当4πα=时,等号成立.∴11||||PA PB +。
四川省成都市2019-2020学年高考数学仿真第一次备考试题含解析
![四川省成都市2019-2020学年高考数学仿真第一次备考试题含解析](https://img.taocdn.com/s3/m/46d957ac524de518964b7d54.png)
四川省成都市2019-2020学年高考数学仿真第一次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a ,b ,R c ∈,a b c >>,0a b c ++=.若实数x ,y 满足不等式组040x x y bx ay c ≥⎧⎪+≤⎨⎪++≥⎩,则目标函数2z x y =+( ) A .有最大值,无最小值 B .有最大值,有最小值 C .无最大值,有最小值 D .无最大值,无最小值【答案】B 【解析】 【分析】判断直线0bx ay c ++=与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况. 【详解】由0a b c ++=,a b c >>,所以可得0,0a c ><.1112,22222c c c ca b a a c b c a c c a a a a>⇒>--⇒>->⇒-->⇒<-∴-<<-⇒<-<, 所以由0b cbx ay c y x a a++=⇒=--,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值. 故选:B 【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用. 2.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( )A .1B .2C .3D .4【答案】D 【解析】 【分析】利用导数的几何意义得直线的斜率,列出a 的方程即可求解 【详解】 因为1y a x'=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 故选:D 【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题3.已知3log a =ln3b =,0.992c -=,则,,a b c 的大小关系为( ) A .b c a >> B .a b c >>C .c a b >>D .c b a >>【答案】A 【解析】 【分析】根据指数函数与对数函数的单调性,借助特殊值即可比较大小. 【详解】因为331log log 2<=, 所以12a <. 因为3>e ,所以ln3ln 1b e =>=,因为00.991>->-,2xy =为增函数,所以0.991221c -=<< 所以b c a >>, 故选:A. 【点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题. 4.一个几何体的三视图如图所示,则该几何体的表面积为( )A .24π+B .24π-C .242π-D .243π-【答案】B 【解析】 【分析】由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积. 【详解】由三视图可知,该几何体为边长为2正方体ABCD A B C D ''''-挖去一个以B 为球心以2为半径球体的18, 如图,故其表面积为2124342248πππ-+⨯⨯⨯=-, 故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5.设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围是( )A .10,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭ C .222,e e ⎛⎫⎪⎝⎭ D .221,e e ⎛⎫⎪⎝⎭ 【答案】D 【解析】令()()0g x f x ax =-=,可得()f x ax =.在坐标系内画出函数()ln f x x =的图象(如图所示).当1x >时,()ln f x x =.由ln y x =得1y x'=. 设过原点的直线y ax =与函数y x ln =的图象切于点00(,ln )A x x ,则有000ln 1x ax a x =⎧⎪⎨=⎪⎩,解得01x e a e =⎧⎪⎨=⎪⎩. 所以当直线y ax =与函数y x ln =的图象切时1a e=. 又当直线y ax =经过点()2B ,2e 时,有22a e =⋅,解得22a e=. 结合图象可得当直线y ax =与函数()ln f x x =的图象有3个交点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭. 即函数()()g x f x ax =-在区间()20,e上有三个零点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭.选D. 点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法 (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.6.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .60【答案】D 【解析】 【分析】根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量=频数频率求出班级人数. 【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30, ∴样本容量(即该班的学生人数)是180.30=60(人). 故选:D. 【点睛】本题考查了频率分布直方图的应用问题,也考查了频率=频数样本容量的应用问题,属于基础题7.在平面直角坐标系xOy 中,已知,n n A B 是圆222x y n +=上两个动点,且满足()2*2n n n OA OB n N ⋅=-∈u u u u v u u u u v ,设,n n A B 到直线()310x n n ++=的距离之和的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S m <恒成立,则实数m 的取值范围是( ) A .3,4⎛⎫+∞⎪⎝⎭B .3,4⎡⎫+∞⎪⎢⎣⎭C .2,3⎛⎫+∞⎪⎝⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】B 【解析】 【分析】由于,n n A B到直线()10x n n ++=的距离和等于,n n A B 中点到此直线距离的二倍,所以只需求,n n A B 中点到此直线距离的最大值即可。
2020届四川省高考数学(理)模拟试题(word版,有答案)
![2020届四川省高考数学(理)模拟试题(word版,有答案)](https://img.taocdn.com/s3/m/2686a0dcc850ad02de8041b8.png)
普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题),第I 卷1至2页,第II 卷3至4页,共4页,满分150分,考试时间120分钟,考生作答时,须将答案答在答题卡上,在本试题卷、草稿上答题无效,考试结束 后,将本试题卷和答题卡一并交回。
第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )62.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 43.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( ) (A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度 4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) (A )24(B )48(C )60(D )725.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) ( A )2018年(B )2019年(C )2020年(D )2021年6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A )9 (B )18 (C )20 (D )357.设p :实数x ,y 满足(x –1)2+(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A 3(B )23(C 2(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)10.在平面内,定点A ,B ,C ,D 满足DA u u u r =DB u u u r =DC u u u r ,DA u u u r g DB u u u r =DB u u u r g DC u u u r =DC u u u r g DA u u u r=-2,动点P ,M满足AP u u u r =1,PM u u u u r =MC u u uu r ,则2BM u u u u u r 的最大值是( )(A )434(B )494(C 3763+D 37233+第II 卷(非选择题 100分)二、填空题:本大题共5小题,每小题5分,共25分。
2019-2020学年四川省内江市高考数学一模试卷(理科)
![2019-2020学年四川省内江市高考数学一模试卷(理科)](https://img.taocdn.com/s3/m/15ca6a31dd88d0d233d46ac3.png)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个
选项中,只有一个是符合题目要求的.
1.(5 分)已知集合 A={x|x2<1},B={x|2x>1},则 A∪B=( )
A.(0,1) B.(﹣1,+∞) C.(1,+∞) D.(﹣∞,﹣1)∪(0,+∞)
∴
考 ,解得 a=1.
故选:C.
高
您 3.(5 分)下列各组向量中,可以作为基底的是(
A.
,
B.
,
)
祝C.
,
D.
,
【解答】解:对于 A,
, , 是两个共线向量,故不可作为基底.
对于 B, , 是两个不共线向量,故可作为基底.
对于 C,
, , 是两个共线向量,故不可作为基底..
对于 D, 故选:B.
上单调递减,
则
,可得
φ
,k∈Z.
∴φ= 故选:C
7.(5 分)已知 α 是锐角,若 A. B. C. D. 【解答】解:∵已知 α 是锐角,若
,则 cos2α=( )
!
功 , ∴ cos ( α ﹣ )
= 则 cos2α=sin(
=, ﹣2α)=﹣sin(2α﹣
)=﹣2sin(α﹣
成)cos(α﹣
, , 是两个共线向量,故不可作为基底.
4.(5 分)下列说法中正确的是( )
A.先把高三年级的 2000 名学生编号:1 到 2000,再从编号为 1 到 50 的 50 名
学生中随机抽取 1 名学生,其编号为 m,然后抽取编号为 m+50,m+100,m+150…
四川省成都市2019-2020学年第三次高考模拟考试数学试卷含解析
![四川省成都市2019-2020学年第三次高考模拟考试数学试卷含解析](https://img.taocdn.com/s3/m/9afcd178a32d7375a517802e.png)
四川省成都市2019-2020学年第三次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.四人并排坐在连号的四个座位上,其中A 与B 不相邻的所有不同的坐法种数是( ) A .12 B .16 C .20 D .8【答案】A 【解析】 【分析】先将除A ,B 以外的两人先排,再将A ,B 在3个空位置里进行插空,再相乘得答案. 【详解】先将除A ,B 以外的两人先排,有222A =种;再将A ,B 在3个空位置里进行插空,有23326A =⨯=种,所以共有2612⨯=种. 故选:A 【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题. 2.已知α满足1sin 3α=,则cos cos 44ππαα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭( ) A .718B .79C .718-D .79-【答案】A 【解析】 【分析】利用两角和与差的余弦公式展开计算可得结果. 【详解】1sin 3α=Q ,cos cos cos cos sin sin cos cos sin sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫∴+-=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()22211cos cos cos sin 12sin 222222ααααααα⎛⎫⎛⎫=-+=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭2117122318⎡⎤⎛⎫=-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 故选:A. 【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.3.复数z 满足()11i z i +=-,则z =( )A .1i -B .1i +C .22- D .22+ 【答案】C 【解析】 【分析】利用复数模与除法运算即可得到结果. 【详解】解: )()())1111112i i i z ii i ---=====++-, 故选:C 【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题. 4.若0a b <<,则下列不等式不能成立的是( ) A .11a b> B .11a b a>- C .|a|>|b|D .22a b >【答案】B 【解析】 【分析】根据不等式的性质对选项逐一判断即可. 【详解】选项A :由于0a b <<,即0ab >,0b a ->,所以110b aa b ab --=>,所以11a b>,所以成立; 选项B :由于0a b <<,即0a b -<,所以110()b a b a a a b -=<--,所以11a b a<-,所以不成立; 选项C :由于0a b <<,所以0a b ->->,所以||||a b >,所以成立;选项D :由于0a b <<,所以0a b ->->,所以||||a b >,所以22a b >,所以成立. 故选:B. 【点睛】本题考查不等关系和不等式,属于基础题.5.已知平面α和直线a ,b ,则下列命题正确的是( ) A .若a ∥b ,b ∥α,则a ∥α B .若a b ⊥r r,b α⊥,则a ∥αC .若a ∥b ,b α⊥,则a α⊥D .若a b ⊥r r,b ∥α,则a α⊥【分析】根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可. 【详解】A :当a α⊂时,也可以满足a ∥b ,b ∥α,故本命题不正确;B :当a α⊂时,也可以满足a b ⊥r r,b α⊥,故本命题不正确;C :根据平行线的性质可知:当a ∥b ,b α⊥,时,能得到a α⊥,故本命题是正确的;D :当a α⊂时,也可以满足a b ⊥r r,b ∥α,故本命题不正确.故选:C 【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.6.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( ) A .2B .2CD【答案】A 【解析】 【分析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x 、y 轴上两种情况讨论,进而求得双曲线的离心率. 【详解】设双曲线C 的渐近线方程为y=kx1k ∴=, , 得双曲线的一条渐近线的方程为3y =∴焦点在x 、y 轴上两种情况讨论: ①当焦点在x轴上时有: b c e a a === ②当焦点在y 轴上时有:2a c e b a ==;∴求得双曲线的离心率 2.本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案. 7.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤ D .21,2n n n ∃>≤【答案】C 【解析】根据命题的否定,可以写出p ⌝:21,2nn n ∀>≤,所以选C.8.,,a b αβαβ//////,则a 与b 位置关系是 ( ) A .平行 B .异面C .相交D .平行或异面或相交【答案】D 【解析】结合图(1),(2),(3)所示的情况,可得a 与b 的关系分别是平行、异面或相交.选D .9.已知函数()3cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数2()3g x m x=+的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 【答案】D由函数()f x 的图象关于直线3x π=对称,得1m =,进而得()cos 2sin 2cos 63f x x x x x ππ⎛⎫⎛⎫=+=+=- ⎪ ⎪⎝⎭⎝⎭,再利用图像变换求解即可【详解】由函数()f x 的图象关于直线3x π=对称,得3f π⎛⎫=⎪⎝⎭322m +=1m =,所以()cos 2sin 2cos 63f x x x x x ππ⎛⎫⎛⎫=+=+=- ⎪ ⎪⎝⎭⎝⎭,()2cos2g x x =,故只需将函数()f x 的图象上的所有点“先向左平移3π个单位长度,得2cos ,y x =再将横坐标缩短为原来的12,纵坐标保持不变,得()2cos2g x x =”即可. 故选:D 【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题 10.若直线2y kx =-与曲线13ln y x =+相切,则k =( ) A .3 B .13C .2D .12【答案】A 【解析】 【分析】设切点为00(,2)x kx -,对13ln y x =+求导,得到3y x '=,从而得到切线的斜率03k x =,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果. 【详解】设切点为00(,2)x kx -,∵3y x '=,∴0003,213ln ,k x kx x ⎧=⎪⎨⎪-=+⎩①②由①得03kx =, 代入②得013ln 1x +=, 则01x =,3k =,该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目. 11.已知函数1()cos 22f x x x π⎛⎫=++ ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的极大值点为( ) A .3π-B .6π-C .6π D .3π 【答案】A 【解析】 【分析】求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可. 【详解】 因为()11cos 222f x x x x sinx π⎛⎫=++=- ⎪⎝⎭, 故可得()12f x cosx '=-+, 令()0f x '=,因为,22x ππ⎡⎤∈-⎢⎥⎣⎦, 故可得3x π=-或3x π=,则()f x 在区间,23ππ⎛⎫-- ⎪⎝⎭单调递增, 在,33ππ⎛⎫- ⎪⎝⎭单调递减,在,32ππ⎛⎫ ⎪⎝⎭单调递增,故()f x 的极大值点为3π-. 故选:A. 【点睛】本题考查利用导数求函数的极值点,属基础题.12.定义域为R 的偶函数()f x 满足任意x ∈R ,有(2)()(1)f x f x f +=-,且当[2,3]x ∈时,2()21218f x x x =-+-.若函数()log (1)a y f x x =-+至少有三个零点,则a 的取值范围是( )A .0,2⎛ ⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎛ ⎝⎭【答案】B由题意可得()f x 的周期为2,当[2,3]x ∈时,2()21218f x x x =-+-,令()log (1)a g x x =+,则()f x 的图像和()g x 的图像至少有3个交点,画出图像,数形结合,根据(2)(2)g f >,求得a 的取值范围. 【详解】()f x 是定义域为R 的偶函数,满足任意x ∈R ,(2)()(1)f x f x f +=-,令1,(1)(1)(1)x f f f =-=--,又(1)(1),(1))(2)(0,f f x f x f f -=∴+==,()f x ∴为周期为2的偶函数,当[2,3]x ∈时,22()212182(3)f x x x x =-+-=--,当2[0,1],2[2,3],()(2)2(1)x x f x f x x ∈+∈=+=--, 当2[1,0],[0,1],()()2(1)x x f x f x x ∈--∈=-=-+, 作出(),()f x g x 图像,如下图所示:函数()log (1)a y f x x =-+至少有三个零点, 则()f x 的图像和()g x 的图像至少有3个交点,()0f x ≤Q ,若1a >,()f x 的图像和()g x 的图像只有1个交点,不合题意,所以01a <<,()f x 的图像和()g x 的图像至少有3个交点, 则有(2)(2)g f >,即log (21)(2)2,log 32a a f +>=-∴>-,22113,,01,03a a a a ∴><<<∴<<Q 故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
四川省成都市2019-2020学年第一次高考模拟考试数学试卷含解析
![四川省成都市2019-2020学年第一次高考模拟考试数学试卷含解析](https://img.taocdn.com/s3/m/597d074779563c1ec4da7111.png)
四川省成都市2019-2020学年第一次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( ) A .2cos x - B .2sin x -C .2cos xD .2sin x【答案】D 【解析】 【分析】通过计算()()()()()12345,,,,f x f x f x f x f x ,可得()()()()4342414,,,k k k k f x f x f x f x ---,最后计算可得结果. 【详解】由题可知:()sin f x x x =所以()()12sin cos ,2cos sin f x x x x f x x x x =+=-()()343sin cos ,4cos sin f x x x x f x x x x =--=-+ ()55sin cos ,f x x x x =+⋅⋅⋅所以猜想可知:()()4343sin cos k f x k x x x -=-+()()4242cos sin k f x k x x x -=-- ()()4141sin cos k f x k x x x -=--- ()44cos sin k f x k x x x =-+由201945051,202145063=⨯-=⨯- 所以()20192019sin cos f x x x x =--()20212021sin cos f x x x x =+所以()()201920212sin f x f x x += 故选:D 【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.2.已知定义在[)1,+∞上的函数()f x 满足()()33f x f x =,且当13x ≤≤时,()12f x x =--,则方程()()2019f x f =的最小实根的值为( ) A .168 B .249C .411D .561【答案】C 【解析】 【分析】先确定解析式求出(2019)f 的函数值,然后判断出方程()()2019f x f =的最小实根的范围结合此时的5()3f x x =-,通过计算即可得到答案.【详解】当1x ≥时,()()33f x f x =,所以22()3()3()33x x f x f f ===L 3()3n nx f =,故当 +133n n x ≤≤时,[1,3]3n x ∈,所以()13,233(12)33,23n n nn n nx x x f x x x +⎧-≥⋅=--=⎨-<⋅⎩,而 672019[3,3]∈,所以662019(2019)3(12)3f =--=732109168-=,又当13x ≤≤时, ()f x 的极大值为1,所以当+133n n x ≤≤时,()f x 的极大值为3n ,设方程()168f x =的最小实根为t ,45168[3,3]∈,则56533(3,)2t +∈,即(243,468)t ∈,此时5()3f x x =-令5()3168f x x =-=,得243168411t =+=,所以最小实根为411. 故选:C. 【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.3.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( ) A .3- B .2- C .1-D .1【答案】B 【解析】 【分析】由555(1)(1)(1)(1)ax x x ax x ++=+++,进而分别求出展开式中2x 的系数及展开式中3x 的系数,令二者之和等于10-,可求出实数a 的值. 【详解】由555(1)(1)(1)(1)ax x x ax x ++=+++,则展开式中2x 的系数为1255105C aC a +=+,展开式中3x 的系数为32551010C aC a +=+,二者的系数之和为(105)(1010)152010a a a +++=+=-,得2a =-. 故选:B. 【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.4.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .1B .43C .3D .4【答案】A 【解析】 【分析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果. 【详解】根据三视图可知:该几何体为三棱锥 如图该几何体为三棱锥A BCD -,长度如上图 所以111121,11222MBD DEC BCN S S S ∆∆∆==⨯⨯==⨯⨯= 所以3222BCDMBD DEC BCN S S S S ∆∆∆∆=⨯---=所以113A BCD BCD V S AN -∆=⋅⋅= 故选:A 【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.5.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( )A .5i >B .8i >C .10i >D .12i >【答案】C 【解析】 【分析】根据循环结构的程序框图,带入依次计算可得输出为25时i 的值,进而得判断框内容. 【详解】根据循环程序框图可知,0,1S i == 则1,3S i ==,4,5S i ==, 9,7S i ==, 16,9S i ==, 25,11S i ==,此时输出S ,因而9i =不符合条件框的内容,但11=i 符合条件框内容,结合选项可知C 为正确选项, 故选:C. 【点睛】本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.6.已知函数31,0()(),0x x f x g x x ⎧+>=⎨<⎩是奇函数,则((1))g f -的值为( )A .-10B .-9C .-7D .1【答案】B 【解析】 【分析】根据分段函数表达式,先求得()1f -的值,然后结合()f x 的奇偶性,求得((1))g f -的值. 【详解】因为函数3,0()(),0x x x f x g x x ⎧+≥=⎨<⎩是奇函数,所以(1)(1)2f f -=-=-,((1))(2)(2)(2)10g f g f f -=-=-=-=-.故选:B 【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.7.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )A .12B .13C .41π- D .42π-【答案】C 【解析】令圆的半径为1,则()22'41S P S ππππ--===-,故选C . 8.已知随机变量X 的分布列如下表: X1-0 1P ab c其中a ,b ,0c >.若X 的方差()13D X ≤对所有()0,1a b ∈-都成立,则( )A .13b ≤B .23b ≤C .13b ≥D .23b ≥【答案】D 【解析】 【分析】根据X 的分布列列式求出期望,方差,再利用1a b c ++=将方差变形为21()412b D X a b -⎛⎫=--+- ⎪⎝⎭,从而可以利用二次函数的性质求出其最大值为113b -≤,进而得出结论. 【详解】由X 的分布列可得X 的期望为()E X a c =-+, 又1a b c ++=,所以X 的方差()()()()22211D X a c a a c b a c c =-+-+-++-()()()222a c a b c a c a c =-++--++ ()2a c a c =--++ ()2211ab b =--++- 21412b a b -⎛⎫=--+- ⎪⎝⎭,因为()0,1a b ∈-,所以当且仅当12ba -=时,()D X 取最大值1b -, 又()13D X ≤对所有()0,1a b ∈-成立, 所以113b -≤,解得23b ≥,故选:D. 【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题. 9.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( ) A .B .C .D .【解析】 【分析】求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值. 【详解】 抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A .【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.10.已知随机变量X 服从正态分布()4,9N ,且()()2P X P X a ≤=≥,则a =( ) A .3 B .5C .6D .7【答案】C 【解析】 【分析】根据在关于4X =对称的区间上概率相等的性质求解. 【详解】4μ=Q ,3σ=,(2)(42)(42)(6)()P X P X P X P X P X a ∴≤=≤-=≥+=≥=≥,6a ∴=.故选:C . 【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量X 服从正态分布()2,N μσ,则()()P X m P X m μμ≤-=≥+.11.已知定义在R 上的函数()f x 的周期为4,当[2,2)x ∈-时,1()43xf x x ⎛⎫=-- ⎪⎝⎭,则()()33log 6log 54f f -+=( )A .32B .33log 22- C .12-D .32log 23+ 【答案】A 【解析】因为给出的解析式只适用于[2,2)x ∈-,所以利用周期性,将3(log 54)f 转化为32(log )3f ,再与()3log 6f -一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】Q 定义在R 上的函数()f x 的周期为43332(log 54)(log 544)(log )3f f f ∴=-=,Q 当[2,2)x ∈-时,1()()43x f x x =--,3log 6[2,2)-∈-,32log [2,2)3∈-,()()33log 6log 54f f ∴-+332log log 6333112()(log 6)4()log 4333-=---+-- 11333log 6log 233112()()(log 6log )8333=++--3336log (6)822=++⨯-32=. 故选:A. 【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题. 12.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( ) A .z 的虚部为i - B .2z =C .z 的共轭复数为1i --D .2z 为纯虚数【答案】D 【解析】 【分析】将复数z 整理为1i -的形式,分别判断四个选项即可得到结果. 【详解】()()()2121111i z i i i i -===-++-z 的虚部为1-,A 错误;z ,B 错误;1z i =+,C 错误;()2212z i i =-=-,为纯虚数,D 正确本题正确选项:D 【点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
2020年高考理科数学模拟试题含答案及解析5套)
![2020年高考理科数学模拟试题含答案及解析5套)](https://img.taocdn.com/s3/m/78cbfb68960590c69fc376be.png)
绝密★启用前2020年高考模拟试题(一)理科数学时间:120分钟分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为()A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有()A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为()A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为() A .5 B .34C .41D .526.()()()()sin ,00,xf x x x=∈-ππ大致的图象是()A .B .C .D .此卷只装订不密封级 姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为() A .14B .15 C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为() A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是() A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==,则四面体ABCD 的外接球的表面积为() A .2π B .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b bb b ⎡⎤+++⎢⎥⎣⎦=()A .2017B .2018C .2019D .202012[]0,1上单调递增,则实数a 的取值范围() A .()1,1- B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。
【精品高三数学试卷】2019-2020成都高三(上)零诊(理科)+答案
![【精品高三数学试卷】2019-2020成都高三(上)零诊(理科)+答案](https://img.taocdn.com/s3/m/4fd581025acfa1c7ab00cc1c.png)
2019-2020学年四川省成都高三(上)零诊数学试卷(理科)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合{||1|1}A x x =-<,2{|10}B x x =-<,则(A B = )A .(1,1)-B .(1,2)-C .(1,2)D .(0,1)2.(5分)若1122aii i+=++,则(a = ) A .5i --B .5i -+C .5i -D .5i +3.(5分)设()f x 是定义在R 上周期为2的奇函数,当01x <<时,2()f x x x =-,则5()(2f -=)A .14-B .12-C .14D .124.(5分)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元5.(5分)设D 为ABC ∆中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,则()A .5166BO AB AC =-+B .1162BO AB AC =-C .5166BO AB AC =- D .1162BO AB AC =-+6.(5分)执行如图的程序框图,则输出x 的值是( )A .2016B .1024C .12D .1-7.(5分)等差数列{}n a 中的2a 、4032a 是函数321()4613f x x x x =-+-的两个极值点,则2220174032log ()(a a a = )A .624log +B .4C .323log +D .324log +8.(5分)以下三个命题正确的个数有( )个 ①:若225a b +≠,则1a ≠或2b ≠;②:定义域为R 的函数()f x ,函数()f x 为奇函数是(0)0f =的充分不必要条件; ③:若0x >,0y >且21x y +=,则11x y+的最小值为32+A .0个B .1个C .2个D .3个9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.(5分)如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点,设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )A .3[3,1] B .6[3,1] C .6[3,22]3D .22[3,1] 11.(5分)函数2()sin (4cos 1)f x x x =-的最小正周期是( ) A .3πB .23π C .π D .2π12.(5分)如图,已知ABC ∆,其内部有一点O 满足OAB OAC OBC OCA θ∠=∠=∠=∠=,命题:p θ最大值有可能超过36度;命题q :若三边长对应分别为a ,b ,c ,则2a bc =;则正确的选项为( )A .p 真q 假B .p 假q 假C .p 真q 真D .p 假q 真二.填空题:本大题共四小题,每小题5分,共20分.13.(5分)命题p :“0x R ∃∈,200220x x ++”,则命题p 的否定p ⌝是 .14.(5分)曲线y x 与直线(0)x a a =>,0y =所围成封闭图形的面积为2a ,实数m ,n 满足190m n m n a n -⎧⎪+⎨⎪⎩,则2m n -的取值范围是 .15.(5分)已知抛物线22y mx =与椭圆22221(0)x y a b a b+=>>有相同的焦点F ,P 是两曲线的公共点,若5||6PF m =,则此椭圆的离心率为 .16.(5分)定义在区间(0,2]上的函数2()(2)()f x x ln x x t =--+恰有2个不同零点,则实数t 的取值范围是 .三、解答题(共70分):解答应写出文字说明,证明过程或演算步骤,写在答题卷上.17.(12分)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知4B π=,cos cos20A A -=.(1)求角C ;(2)若222b c a bc +=-+,求ABC S ∆.18.(12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185cm 之间的概率;(3)从样本中身高在165~180cm 之间的女生中任选2人,求至少有1人身高在170~180cm 之间的概率.19.(12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (1)证明:1AC AB =;(2)若1AC AB ⊥,160CBB ∠=︒,1BC =,求二面角111A A B C --的余弦值的绝对值.20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>,与x 轴负半轴交于(2,0)A -,离心率12e = (1)求椭圆C 的方程;(2)设直线:l y kx m =+与椭圆C 交于1(M x ,1)y ,2(N x ,2)y 两点,连接AM ,AN 并延长交直线4x =于3(E x ,3)y ,4(F x ,4)y 两点,若12341111y y y y +=+,求证:直线MN 恒过定点,并求出定点坐标.21.(12分)设函数1()(21)x f x e x ax +=+-,其中1a < (1)当0a =时,()f x 的零点个数;(2)若()0f x <的整数解有且唯一,求a 的取值范围. [选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系下,知圆:cos sin O ρθθ=+和直线:sin()0,02)4l πρθρθπ-=.(1)求圆O 与直线l 的直角坐标方程;(2)当(0,)θπ∈时,求圆O 和直线l 的公共点的极坐标.2019-2020学年四川省成都高三(上)零诊数学试卷(理科)参考答案与试题解析一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.【解答】解:由A 中不等式变形得:111x -<-<, 解得:02x <<,即(0,2)A =2{|10}(1,1)B x x =-<=- (1,2)AB ∴=-故选:B . 【解答】解:1122aii i+=++,1(2)(12)5ai i i i ∴+=++=, 51(51)5i i i a i i i i---∴===+-. 故选:D .【解答】解:根据题意,()f x 是定义在R 上周期为2的奇函数, 则511()()()222f f f -=-=-,又由当01x <<时,2()f x x x =-,则21111()()2224f =-=-,故511()()244f -=--=,故选:C .【解答】解:由题意可得1(8.28.610.011.311.9)105x =++++=,1(6.27.58.08.59.8)85y =++++=,代入回归方程可得ˆ80.76100.4a=-⨯=, ∴回归方程为ˆ0.760.4yx =+, 把15x =代入方程可得0.76150.411.8y =⨯+=, 故选:B . 【解答】解:D 为ABC ∆中BC 边上的中点,∴1()2AD AB AC =+, O 为AD 边上靠近点A 的三等分点,∴23OD AD =, ∴1()3OD AB AC =+, ∴111151()()()232366BO BD OD BC AB AC AC AB AB AC AB AC =-=-+=--+=-+. 故选:A .【解答】解:模拟执行程序框图,可得 2x =,0y =满足条件1024y <,执行循环体,1x =-,1y = 满足条件1024y <,执行循环体,12x =,2y = 满足条件1024y <,执行循环体,2x =,3y = 满足条件1024y <,执行循环体,1x =-,4y =⋯观察规律可知,x 的取值周期为3,由于102434131=⨯+,可得: 满足条件1024y <,执行循环体,1x =-,1024y = 不满足条件1024y <,退出循环,输出x 的值为1-. 故选:D . 【解答】解:321()4613f x x x x =-+-,2()86f x x x ∴'=-+,等差数列{}n a 中的2a 、4032a 是函数321()4613f x x x x =-+-的两个极值点,240328a a ∴+=,240326a a =, ∴24032201742a a a +==,322201*********log ()log (46)233log 3a a a log log ∴=⨯=+=+. 故选:C .【解答】解:对于②,若225a b +≠,则1a ≠或2b ≠,因为逆否命题:1a =且2b =则225a b +=是真命题,所以①正确;对于②,函数()f x 的定义域为R ,函数()f x 为奇函数是(0)0f =的充分不必要条件,故选项②正确;对于③,若0x >,0y >且21x y +=,则11112()(2)332y xx y x y x y x y+=++=+++且仅当21x y y +=⎧⎪⎨=⎪⎩即1x =,1y =时取“=”,故③正确;故选:D .【解答】解:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了 故选:D .【解答】解:由题意可得:直线OP 于平面1A BD 所成的角α的取值范围是111[,][,]22AOA C OA ππ∠∠.不妨取2AB =.在1Rt AOA ∆中,111sinAA AOA AO ∠==.111111sin sin(2)sin 22sin cos 23C OA AOA AOA AOA AOA π∠=-∠=∠=∠∠==>, sin12π=.sin α∴的取值范围是6[,1]3. 故选:B .【解答】解:函数2()sin (4cos 1)f x x x =-化简可得:223()4sin cos sin 4sin (1sin )sin 3sin 4sin sin3f x x x x x x x x x x =-=--=-=. ∴最小正周期23T π=. 故选:B . 【解答】解:方法1: 在ACO ∆中,根据正弦定理得sin(2)sin b m πθθ=-,即sin 2sin b mθθ=① 在CBO ∆中,根据正弦定理得sin(2)sin b m πθθ=-,即sin()sin b mθαθ=+② 由①②得sin 2sin()b a θθα=+,即sin 2sin()b a θθα=+. 又sin sin2A θ=,sin sin()C θα=+,sin sin b Aa C=在ABC ∆中,根据正弦定理得sin sin A a C c =,即得a bc a=, 2a bc ∴=.q ∴为真. 2a bc =,b ∴不是最长边,B ∴∠,C ∠至少有一个超过2θ,∴内角和超过5θ,所以p 错误.方法2:如图延长AO 交BOC ∆的外接圆于点D ,则2DBC DOC CAB θ∠=∠==∠,BCD BOD ABO ABC θ∠=∠=+∠=∠~ABC BCD ∴∆∆,∴AB BCBC DC=. 又CDA CDO CBO CAD θ∠=∠=∠==∠,DC AC ∴=. ∴AB BCBC AC=,即2BC AC BA =,即2a bc =.q ∴为真. 2a bc =,b ∴不是最长边,B ∴∠,C ∠至少有一个超过2θ,∴内角和超过5θ,所以p 错误. 故选:D .二.填空题:本大题共四小题,每小题5分,共20分.【解答】解:因为特称命题的否定是全称命题,所以命题p :“0x R ∃∈,200220x x ++”,则命题p 的否定p ⌝是:x R ∀∈,2220x x ++>. 故答案为:x R ∀∈,2220x x ++>.【解答】解:由题意,曲线y x =与直线x a =,0y =所围成封闭图形的面积为23320022|33axdx x a ==⎰∴32223a a =,9由实数m ,n 满足140m n m n n -⎧⎪+⎨⎪⎩,作出可行域如图,(4,0)A ,联立14m n m n -=⎧⎨+=⎩,解得5(2B ,3)2.化目标函数2u m n =-为22m un =-, 由图可知,当直线22m un =-过A 时,直线在n 轴上的截距最小,z 有最大值为4; 当直线22m u n =-过B 时,直线在n 轴上的截距最大,z 有最小值为12-. 2u m n ∴=-的取值范围是:1[2-,4]. 故答案为:1[2-,4].【解答】解:设2(2y P m ,)y ,由抛物线的定义可得:25||226y m PF m m +==,化为:2223y m =, 又2m c =,2283c y ∴=.点P 在椭圆上,∴4222214y y m a b +=,即222248193c c a b+=,222b a c =-. 化为:422243790c a c a -+=,4243790e e ∴-+=,解得214e =或9, (0,1)e ∈,2故答案为:12. 【解答】解:定义在区间(0,2]上的函数2()(2)()f x x ln x x t =--+恰有两个不同零点 ⇔函数()0f x =在区间(0,2]上有2个不同零点2x ⇒=或2()0ln x x t -+=在(0,2)上有且只有一个解21x x t ⇔-+=在(0,2)上有且只有一个解y t ⇔=与21y x x =-++在(0,2)上有且只有一个交点可知最大值为1()254x y==;(0)1x y ==;(2)1x y ==-. 又当01x <时,20x x t -+>恒成立, 211()24t x ∴>--+,14t ∴>,t ∴取值范围为15(,1]{}44;故答案为:15(,1]{}44.三、解答题(共70分):解答应写出文字说明,证明过程或演算步骤,写在答题卷上. 【解答】解:(1)因为cos cos20A A -=, 所以22cos cos 10A A --=, 解得1cos 2A =-,cos 1A =(舍去).所以23A π=,又4B π=,所以12C π=.(2)在ABC ∆中,因为23A π=,由余弦定理所以222222cos a b c bc A b c bc =+-=++, 又222b c a bc +=-+, 所以22a a =+, 所以2a =,又因为sin sinsin()1234C πππ==-=, 由正弦定理sin sin c aC A=得c ,所以1sin 12ABC S ac B ∆==.【解答】解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400. (2)由统计图知,样本中身高在170~185cm 之间的学生有141343135++++=人,样本容量为70,所以样本中学生身高在170~185cm 之间的频率 350.570f ==故由f 估计该校学生身高在170~180cm 之间的概率0.5p = (3)样本中女生身高在165~180cm 之间的人数为10,身高在170~180cm 之间的人数为4. 设A 表示事件“从样本中身高在165~180cm 之间的女生中任选2人,至少有1人身高在170~180cm 之间”,则 P (A )26210213C C =-=【解答】解:(1)证明:连接1BC ,交1B C 于点O ,连接AO , 因为侧面11BB C C 为菱形,所以11B C BC ⊥,且O 为1B C 与1BC 的中点, 又1AB B C ⊥,所以1B C ⊥平面ABO . 由于AO ⊂平面ABO ,故1B C AO ⊥. 又1B O CO =,故1AC AB =.(2)解:因为1AC AB ⊥,且O 为1B C 的中点,所以AO CO =.又因为AB BC =,所以BOA BOC ∆≅∆,故OA OB ⊥,从而OA ,OB ,1OB 两两相互垂直, 以O 为坐标原点,OB 的方向为x 轴正方向,||OB 为单位长,建立空间直角坐标O xyz -, 因为160CBB ∠=︒,所以1CBB ∆为等边三角形, 又AB BC =,则1(1,0,0),(0,A B B C ,111113333(0,,),(1,0,),(1,,0)3333AB A B AB B C BC =-==-==--, 设(n x =,y ,)z 是平面11AA B 的法向量,则11100nAB nA B ⎧=⎪⎨=⎪⎩,33033303y z x z ⎧-=⎪⎪⎨⎪-=⎪⎩,取1x =,得(1,3,3)n =.设m 是平面111A B C 的法向量,则111100m A B m B C ⎧=⎪⎨=⎪⎩,同理可取(1,3,3)m =-,1cos ,||||7m n m n m n ∴<>==,所以二面角111A A B C --的余弦值为17.【解答】解:(1)由题有2a =,12c e a ==.1c ∴=,2223b a c ∴=-=. ∴椭圆方程为22143x y +=.(2)法22222,1:(34)84120143y kx m k x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, △222222644(34)(412)0129k m k m m k =-+->⇒<+,122834kmx x k-+=+,212241234m x x k -=+. 又AM AE k k = ∴3113110062422y y y y x x --=⇒=+++同理24262y y x =+ 又12341111y y y y +=+∴1212122112121212222()666y y x x x y x y y y y y y y y y ++++++=+=1212214()y y x y x y ⇒+=+1212214()()()kx m kx m x kx m x kx m ⇒+++=+++ 1212(4)()280k m x x kx x m ⇒-+-+=,22228(412)24()(4)2800343434km m k m k m k m k k k --+⇒--+=⇒=+++.m k ∴=-,此时满足22129m k <+(1)y kx m k x ∴=+=-∴直线MN 恒过定点(1,0).法2:设直线AM 的方程为:12x t y =-则1222112(34)120143x t y t y t y x y =-⎧⎪⇒+-=⎨+=⎪⎩, 0y ∴=或1211234ty t =+, ∴211111122111268223434t t x t y t t t -=-=-=++同理222226834t x t -=+,22221234ty t =+, 当34x =时,由3132x t y =-有316y t =. ∴16(4,)E t 同理26(4,)F t ,又12341111y y y y +=+, ∴221212123434121266t t t t t t +++=+,12121212()(34)126t t t t t t t t +++⇒=, 当120t t +≠时,124t t =-, ∴直线MN 的方程为121112()y y y y x x x x --=-- 122222221121111112222222221211112112121112112122212121212343468126868124(34)44444()()(1)6868343434343434(34)()3434t tt t t t t t t t t y x y x y x x x t t t t t t t t t t t t t t t t t t t t t t t -++---+⇒-=-⇒-=-⇒=-+=-=---+++++++++++++-++,∴直线MN 恒过定点(1,0)当120t t +=时,此时也过定点(1,0)综上直线MN 恒过定点(1,0).【解答】解:(1)1()(23)x f x e x +'=+,当32x >-时,()0f x '>,函数单增,且0x =时函数值都已经大于0了;当32x <-时,()0f x '<,函数单减,且()0f x <,所以只有一个零点.(2)观察发现(1)0f -<,下证除整数1-外再无其他整数而1()(23)x f x e x a +'=+-, ①当1x >-时,11x e +>,231x +>根据同向不等式乘法得到1(23)1x e x ++>,因为1a <, 所以1()(23)0x f x e x a +'=+->,所以函数单增,且x 趋于+∞时函数值显然很大很大; 但要保证只有唯一整数1-,需要(0)0f >,却发现恒成立. ②当1x <-时,要保证只有唯一整数1-,首先需要(2)0f -,得到32ae当2x <-时,11x e e +<,231x +<-根据同向不等式得到11(23)x e x e ++<-,又因32a e>,所以1()(23)0x f x e x a +'=+-<,所以函数在2x <-单减,且(2)0f -> 综上所述:()0f x <的整数解有且唯一时,312a e<. [选修4-4:坐标系与参数方程](本小题满分10分)【解答】解:(1)圆:cos sin O ρθθ=+,即2cos sin ρρθρθ=+, 故圆O 的直角坐标方程为:220x y x y +--=,直线:sin()4l πρθ-=sin cos 1ρθρθ-=,则直线的直角坐标方程为:10x y -+=. (2)由(1)知圆O 与直线l 的直角坐标方程, 将两方程联立得22010x y x y x y ⎧+--=⎨-+=⎩,解得01x y =⎧⎨=⎩.即圆O 与直线l 的在直角坐标系下的公共点为(0,1), 转化为极坐标为(1,)2π.。
2020年四川省高考数学模拟试卷(理科)含答案解析
![2020年四川省高考数学模拟试卷(理科)含答案解析](https://img.taocdn.com/s3/m/022aa3af5727a5e9856a61f3.png)
2020年四川省高考数学模拟试卷(理科)一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,a∈R,若(a2+2a﹣3)+(a+3)i为纯虚数,则a的值为()A.1 B.﹣3 C.﹣3或1 D.3或12.已知集合M={x||x|≤2,x∈R},N={x||x﹣1|≤a,a∈R},若N⊆M,则a的取值范围为()A.0≤a≤1 B.a≤1 C.a<1 D.0<a<13.设命题p:存在四边相等的四边形不是正方形;命题q:若cosx=cosy,则x=y,则下列判断正确的是()A.p∧q为真B.p∨q为假C.¬p为真D.¬q为真4.已知抛物线x2=﹣2py(p>0)经过点(2,﹣2),则抛物线的焦点坐标为()A.B.C.D.5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有()种.A.14 B.18 C.12 D.166.执行如图所示的程序框图,输出P的值为()A.﹣1 B.1 C.0 D.20207.设x,y满足约束条件,则的最大值为()A.1024 B.256 C.8 D.48.已知O为△ABC内一点,且有,记△ABC,△BCO,△ACO的面积分别为S1,S2,S3,则S1:S2:S3等于()A.3:2:1 B.3:1:2 C.6:1:2 D.6:2:19.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.B. C.D.10.已知函数,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为()A.B.C.D.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x1,x2,…,x10的平均数为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数为_______.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x5的系数为_______.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为_______.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为_______.15.已知a>0,f(x)=a2lnx﹣x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为_______.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.18.如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(Ⅰ)求证:AB∥GH;(Ⅱ)求异面直线DP与BQ所成的角;(Ⅲ)求直线AQ与平面PDC所成角的正弦值.19.已知数列{a n}的前n项和为S n,S n=2a n﹣4,数列{b n}满足b n+1﹣b n=1,其n项和为T n,且T2+T6=32.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若不等式nlog2(S n+4)≥λb n+3n﹣7对任意的n∈N*恒成立,求实数λ的取值范围.20.已知椭圆C: +=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,上顶点为B,若直线BA1与圆M:(x+1)2+y2=相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:x=2与x轴交于D,P是椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|•|DF|为定值.21.设函数f(x)=x2﹣x+t,t≥0,g(x)=lnx.(Ⅰ)若对任意的正实数x,恒有g(x)≤x2α成立,求实数α的取值范围;(Ⅱ)对于确定的t,是否存在直线l与函数f(x),g(x)的图象都相切?若存在,讨论直线l的条数,若不存在,请说明理由.2020年四川省高考数学模拟试卷(理科)参考答案与试题解析一.选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,a∈R,若(a2+2a﹣3)+(a+3)i为纯虚数,则a的值为()A.1 B.﹣3 C.﹣3或1 D.3或1【考点】复数的基本概念.【分析】直接由实部等于0且虚部不为0列式求得a值.【解答】解:∵(a2+2a﹣3)+(a+3)i为纯虚数,∴,解得:a=1.故选:A.2.已知集合M={x||x|≤2,x∈R},N={x||x﹣1|≤a,a∈R},若N⊆M,则a的取值范围为()A.0≤a≤1 B.a≤1 C.a<1 D.0<a<1【考点】集合的包含关系判断及应用.【分析】分别化简集合M,N,对a分类讨论,利用集合之间的关系即可得出.【解答】解:集合M={x||x|≤2,x∈R}=[﹣2,2],N={x||x﹣1|≤a,a∈R},∴当a<0时,N=∅,满足N⊆M.当a≥0时,集合N=[1﹣a,1+a].∵N⊆M,∴,解得0≤a≤1.综上可得:a的取值范围为a≤1.故选:B.3.设命题p:存在四边相等的四边形不是正方形;命题q:若cosx=cosy,则x=y,则下列判断正确的是()A.p∧q为真B.p∨q为假C.¬p为真D.¬q为真【考点】命题的否定.【分析】根据复合命题的真假关系进行判断即可.【解答】解:菱形的四边形的边长相等,但不一定是正方形,故命题p是真命题,当x=﹣y时,满足cosx=cosy,但x=y不成立,即命题q是假命题,故¬q为真,其余都为假命题,故选:D4.已知抛物线x2=﹣2py(p>0)经过点(2,﹣2),则抛物线的焦点坐标为()A.B.C.D.【考点】抛物线的简单性质.【分析】抛物线x2=﹣2py(p>0)经过点(2,﹣2),代值计算即可求出p,能求出焦点坐标.【解答】解:抛物线x2=﹣2py(p>0)经过点(2,﹣2),∴4=4p,∴p=1,∴抛物线的焦点坐标为(0,﹣),故选:C.5.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有()种.A.14 B.18 C.12 D.16【考点】计数原理的应用.【分析】小明不站排头,小张不站排尾,可按小明在排尾与不在排尾分为两类,根据分类计数原理可得.【解答】解:小明不站排头,小张不站排尾排法计数可分为两类,第一类小明在排尾,其余3人全排,故有A33=6种,第二类小明不在排尾,先排小明,有A21种方法,再排小张有A21种方法,剩下的2人有A22种排法,故有2×2×2=8种根据分类计数原理可得,共有6+8=14种,故选:A.6.执行如图所示的程序框图,输出P的值为()A.﹣1 B.1 C.0 D.2020【考点】程序框图.【分析】模拟执行程序框图的运行过程,写出每次循环得到的P,i的值,当i=2020>2020时,满足条件,终止循环,输出P的值.【解答】解:执行程序框图,有p=0,i=1,P=0+cosπ=﹣1,i=2,不满足条件i>2020?,有P=﹣1+cos2π=0,i=3,不满足条件i>2020,有P=0+cos3π=﹣1,,…,i=2020,不满足条件i>2020,有P=﹣1+cos2020π=0,i=2020,满足条件i>2020,输出P的值为0.故选:C.7.设x,y满足约束条件,则的最大值为()A.1024 B.256 C.8 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:由z==22x﹣y,令u=2x﹣y,作出约束条件,对应的平面区域如图(阴影部分):平移直线y=2x﹣u由图象可知当直线y=2x﹣u过点A时,直线y=2x﹣u的截距最小,此时u最大,由,解得,即A(5,2).代入目标函数u=2x﹣y,得u=2×5﹣2=8,∴目标函数z==22x﹣y,的最大值是28=256.故选:B.8.已知O为△ABC内一点,且有,记△ABC,△BCO,△ACO的面积分别为S1,S2,S3,则S1:S2:S3等于()A.3:2:1 B.3:1:2 C.6:1:2 D.6:2:1【考点】平面向量的基本定理及其意义.【分析】如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,由于+2+3=,可得﹣=3.又=2,可得=2.于是=,得到S△ABC=2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.即可得出.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE.则+2=+=,∵+2+3=,∴﹣=3.又=2,可得=2.于是=,∴S△ABC=2S△AOB.同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC.∴ABC,△BOC,△ACO的面积比=6:1:2.故选:C.9.若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.B. C.D.【考点】圆与圆锥曲线的综合.【分析】由题设知,由,得2c>b,再平方,4c2>b2,;由,得b+2c<2a,.综上所述,.【解答】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c>b,再平方,4c2>b2,在椭圆中,a2=b2+c2<5c2,∴;由,得b+2c<2a,再平方,b2+4c2+4bc<4a2,∴3c2+4bc<3a2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴.综上所述,.故选A.10.已知函数,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为()A.B.C.D.【考点】分段函数的应用.【分析】先作出函数图象然后根据图象,根据f(x1)=f(x2),确定x1的取值范围然后再根据x1f(x2)﹣f(x2),转化为求在x1的取值范围即可.【解答】解:作出函数的图象:∵存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2)∴0≤x1<,∵x+在[0,)上的最小值为;2x﹣1在[,2)的最小值为,∴x1+≥,x1≥,∴≤x1<.∵f(x1)=x1+,f(x1)=f(x2)∴x1f(x2)﹣f(x2)=x1f(x1)﹣f(x1)2=﹣(x1+)=x12﹣x1﹣,设y=x12﹣x1﹣=(x1﹣)2﹣,(≤x1<),则对应抛物线的对称轴为x=,∴当x=时,y=﹣,当x=时,y=,即x1f(x2)﹣f(x2)的取值范围为[﹣,).故选:B.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.若样本数据x1,x2,…,x10的平均数为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数为15.【考点】众数、中位数、平均数.【分析】根据平均数与方差的公式即可求出数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数.【解答】解:∵样本数据x1,x2,…,x10的平均数是10,∴=(x1+x2+…+x10)=8;∴数据2x1﹣1,2x2﹣1,…,2x10﹣1的平均数是:= [(2x1﹣1)+(2x2﹣1)+…+(2x10﹣1)]=2×(x1+x2+…+x10)﹣1=2×8﹣1=15.故答案为:15.12.在二项式的展开式中,所有二项式系数之和为128,则展开式中x5的系数为35.【考点】二项式定理的应用.【分析】由条件利用二项式系数的性质求得n=7,再利用二项展开式的通项公式求得x5的系数.【解答】解:由题意可得2n=128,n=7,∴=,它的通项公式为T r+1=•x21﹣4r,令21﹣4r=5,求得r=4,故展开式中x5的系数为=35,故答案为:35.13.已知正方体ABCD﹣A1B1C1D1的棱长为a,P为棱AA1的中点,在面BB1D1D上任取一点E,使得EP+EA最小,则最小值为a.【考点】棱柱的结构特征.【分析】由图形可知AC⊥平面BB1D1D,且A到平面BB1D1D的距离与C到平面BB1D1D 的距离相等,故EA=EC,所以EC就是EP+EP的最小值;【解答】解:连接AC交BD于N,连接EN,EC,则AC⊥BD,∵BB1⊥平面ABCD,∴BB1⊥AC,∴AC⊥平面BB1D1D,∴AC⊥EN,∴△AEN≌△CEN,∴EA=EC,连接EC,∴线段EC的长就是EP+EA的最小值.在Rt△EAC中,AC=a,EA=a,∴EC==a.故答案为:a.14.在平面直角坐标系中,以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为2π.【考点】直线与圆的位置关系.【分析】圆半径r=,a=﹣1时,r min==1,a=1时,r max==,由此能求出最大圆面积与最小圆面积的差.【解答】解:∵圆以(0,﹣1)为圆心且与直线ax+y++1=0(a∈R)相切,∴圆半径r===,∴a=﹣1时,r min==1,最小圆面积S min=π×12=π,a=1时,r max==,最大圆面积S max==3π,∴最大圆面积与最小圆面积的差为:3π﹣π=2π.故答案为:2π.15.已知a>0,f(x)=a2lnx﹣x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为[e+1,].【考点】利用导数求闭区间上函数的最值.【分析】利用导数可求得f(x)的单调区间,由f(1)=﹣1+a≥e可得a≥e+1,从而可判断f(x)在[1,e]上的单调性,得到f(x)的最大值,令其小于等于3e+2可得答案.【解答】解:f′(x)=﹣2x+a=,∵x>0,又a>0,∴x∈(0,a)时f′(x)>0,f(x)递增;x∈(a,+∞)时,f′(x)<0,f(x)递减.又f(1)=﹣1+a≥e,∴a≥e+1,∴f(x)在[1,e]上是增函数,∴最大值为f(e)=a2﹣e2+ae≤3e+2,解得:a≤,又a≥e+1,而e+1<,∴a的取值集合是[e+1,],故答案为:[e+1,].三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,且=(I)求角A;(Ⅱ)若=(0,﹣1),=(cosB,2cos2),求|+|的取值范围.【考点】平面向量数量积的运算.【分析】(I)将切化弦,利于和角公式和正弦定理化简得出cosA;(II)求出+的坐标,计算|+|2,根据B的范围解出|+|的范围.【解答】解:(I)∵=,∴,整理得cosA=.∴A=.(II)∵2cos2=1+cosC=1﹣cos(B+)=1﹣cosB+sinB,∴=(cosB,1﹣cosB+ sinB).∴=(cosB,﹣cosB+sinB),∴()2=cos2B+(﹣cosB+sinB)2=+﹣sin2B=1+cos(2B+).∵0<B<,∴<2B+<.∴﹣1≤cos(2B+)<,∴≤()2<.∴≤|+|<.17.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)12名学生中成绩是“优良”的学生人数为9人,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,由此能求出至少有1人成绩是“优良”的概率.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(Ⅰ)∵随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87,根据学校体制标准,成绩不低于76的为优良,∴12名学生中成绩是“优良”的学生人数为9人,从这12名学生中任选3人进行测试,基本事件总数n==220,至少有1人成绩是“优良”的对立事件是抽到的两人的成绩都不是“优良”,∴至少有1人成绩是“优良”的概率:p=1﹣=.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ有的分布列为:ξ0 1 2 3PEξ==.18.如图所示,在三棱锥P﹣ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(Ⅰ)求证:AB∥GH;(Ⅱ)求异面直线DP与BQ所成的角;(Ⅲ)求直线AQ与平面PDC所成角的正弦值.【考点】直线与平面所成的角;异面直线及其所成的角.【分析】(I)根据中位线及平行公理可得CD∥EF,于是CD∥平面EFQ,利用线面平行的性质得出CD∥GH,从而GH∥AB;(II)由AQ=2BD可得AB⊥BQ,以B为原点建立空间直角坐标系,求出,的坐标,计算,的夹角得出异面直线DP与BQ所成的角;(III)求出和平面PDC的法向量,则直线AQ与平面PDC所成角的正弦值为|cos<>|.【解答】证明:(I)∵CD是△ABQ的中位线,EF是△PAB的中位线,∴CD∥AB,EF∥AB,∴CD∥EF,又EF⊂平面EFQ,CD⊄平面EFQ,∴CD∥平面EFQ,又CD⊂平面PCD,平面PCD∩平面EFQ=GH,∴GH∥CD,又CD∥AB,∴GH∥AB.(II)∵D是AQ的中点,AQ=2BD,∴AB⊥BQ.∵PB⊥平面ABQ,∴BA,BP,BQ两两垂直.以B为原点以BA,BQ,BP为坐标轴建立空间直角坐标系如图:设BA=BP=BQ=1,则B(0,0,0),P(0,0,1),D(,,0),Q(0,1,0).∴=(﹣,﹣,1),=(0,1,0).∴=﹣,||=,||=1,∴cos<>=﹣.∴异面直线DP与BQ所成的角为arccos.(III)设BA=BP=BQ=1,则A(1,0,0),Q(0,1,0),P(0,0,1),D(,,0),C(0,,0).=(﹣1,1,0),=(,0,0),=(0,﹣,1).设平面CDP的一个法向量为=(x,y,z),则,=0,∴,令z=1,得=(0,2,1).∴=2,||=,||=,∴cos<>==,∴直线AQ与平面PDC所成角的正弦值为.19.已知数列{a n}的前n项和为S n,S n=2a n﹣4,数列{b n}满足b n+1﹣b n=1,其n项和为T n,且T2+T6=32.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若不等式nlog2(S n+4)≥λb n+3n﹣7对任意的n∈N*恒成立,求实数λ的取值范围.【考点】数列的求和;数列递推式.【分析】(I)利用等差数列与等比数列的通项公式及其前n项和公式、递推关系即可得出.(Ⅱ)S n=2×4n﹣4.不等式nlog2(S n+4)≥λb n+3n﹣7,化为:λ≤,利用单调性求出的最小值即可得出.【解答】解:(I)∵S n=2a n﹣4,∴n=1时,a1=2a1﹣4,解得a1=4;当n≥2时,a n=S n﹣S n﹣1=2a n﹣4﹣(2a n﹣1﹣4),化为:a n=2a n﹣1.∴数列{a n}是等比数列,首项为4,公比为2,∴a n=4×2n﹣1=2n+1.∵数列{b n}满足b n+1﹣b n=1,∴数列{b n}是等差数列,公差为1.∵T2+T6=32,∴2b1+1+6b1+×1=32,解得b1=2.∴b n=2+(n﹣1)=n+1.(Ⅱ)S n=2×2n+1﹣4.∴不等式nlog2(S n+4)≥λb n+3n﹣7,化为:λ≤,∵=(n+1)+﹣3≥2﹣3=3,当n=2时,取得最小值3,∴实数λ的取值范围是λ≤3.20.已知椭圆C: +=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4,上顶点为B,若直线BA1与圆M:(x+1)2+y2=相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:x=2与x轴交于D,P是椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l于E、F两点,求证:|DE|•|DF|为定值.【考点】椭圆的简单性质.【分析】(Ⅰ)由条件可得到A1(﹣2,0),B(0,b),从而可以写出直线BA1的方程,这样即可得出圆心(﹣1,0)到该直线的距离为,从而可以求出b,这便可得出椭圆C的标准方程为;(Ⅱ)可设P(x1,y1),从而有,可写出直线A1P的方程为,从而可以求出该直线和直线x=的交点E的坐标,同理可得到点F的坐标,这样即可得出|DE|,|DF|,然后可求得|DE|•|DF|=3,即得出|DE|•|DF|为定值.【解答】解:(Ⅰ)由题意得A1(﹣2,0),B(0,b);∴直线BA1的方程为;∴圆心(﹣1,0)到直线BA1的距离为;解得b2=3;∴椭圆C的标准方程为;(Ⅱ)证明:设P(x1,y1),则,;∴直线A1P的方程为;∴;同理得,;∴;∴|DE|•|DF|为定值.21.设函数f(x)=x2﹣x+t,t≥0,g(x)=lnx.(Ⅰ)若对任意的正实数x,恒有g(x)≤x2α成立,求实数α的取值范围;(Ⅱ)对于确定的t,是否存在直线l与函数f(x),g(x)的图象都相切?若存在,讨论直线l的条数,若不存在,请说明理由.【考点】利用导数研究曲线上某点切线方程.【分析】(1)由题意可得lnx﹣x2α≤0恒成立,讨论当α≤0时,h(x)=lnx﹣x2α递增,无最大值;当α>0时,求出导数,求得单调区间,可得极大值,也为最大值,由恒成立思想解不等式即可得到所求范围;(2)分别设出切点,再根导数的几何意义求出切线方程,构造方程组,消元,再构造函数F(x)=ln x+﹣(t+1),利用导数求出函数F(x)的最小值,再分类讨论,得到方程组的解得个数,继而得到切线的条数.【解答】解:(1)对任意的正实数x,恒有g(x)≤x2α成立,即为lnx﹣x2α≤0恒成立,当α≤0时,h(x)=lnx﹣x2α递增,无最大值;当α>0时,h′(x)=﹣2α•x2α﹣1,当x>时,h′(x)<0,h(x)递减;当0<x<时,h′(x)>0,h(x)递增.即有x=时,h(x)取得最大值,且为ln﹣,由ln﹣≤0,可得α≥,综上可得,实数α的取值范围是[,+∞);(2)记直线l分别切f(x),g(x)的图象于点(x1,x12﹣x1+t),(x2,ln x2),由f′(x)=2x﹣1,得l的方程为y﹣(x12﹣x1+t)=(2x1﹣1)(x﹣x1),即y=(2x1﹣1)x﹣x12+t.由g′(x)=,得l的方程为y﹣ln x2=(x﹣x2),即y=•x+ln x2﹣1.所以(*)消去x1得ln x2+﹣(t+1)=0 (**).令F(x)=ln x+﹣(t+1),则F′(x)=﹣==,x>0.由F'(x)=0,解得x=1.当0<x<1时,F'(x)<0,当x>1时,F'(x)>0,所以F(x)在(0,1)上单调递减,在(1,+∞)上单调递增,从而F(x)min=F(1)=﹣t.当t=0时,方程(**)只有唯一正数解,从而方程组(*)有唯一一组解,即存在唯一一条满足题意的直线;当t>0时,F(1)<0,由于F(e t+1)>ln(e t+1)﹣(t+1)=0,故方程(**)在(1,+∞)上存在唯一解;令k(x)=ln x+﹣1(x≤1),由于k'(x)=﹣=≤0,故k(x)在(0,1]上单调递减,故当0<x<1时,k(x)>k(1)=0,即ln x>1﹣,从而ln x+﹣(t+1)>(﹣)2﹣t.所以F()>(+)2﹣t=+>0,又0<<1,故方程(**)在(0,1)上存在唯一解.所以当t>0时,方程(**)有两个不同的正数解,方程组(*)有两组解.即存在两条满足题意的直线.综上,当t=0时,与两个函数图象同时相切的直线的条数为1;当t>0时,与两个函数图象同时相切的直线的条数为2.2020年9月9日。
2020年四川省高考模拟试卷数学理科答案(1)
![2020年四川省高考模拟试卷数学理科答案(1)](https://img.taocdn.com/s3/m/597a600df242336c1eb95ed5.png)
2020年四川省高考模拟试卷(一)数学(理科)答案一、选择题(本大题共12小题,每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDCBBCBDCDCB1.2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( ) A.1150 B.1380 C.1610 D.1860依题有接受调查的100名学生中有70位看过《我和我的祖国》,故全校学生中约有2300*0.71610=人看过《我和我的祖国》这部影片,故选C. 2若复数z 满足2+=ii z,则||=z ( ) A.55- B.55C.5-D.5 由2+=ii z,得|2|||||+=i i z ,||5=z ,故选D. 3.某单位共有老年人120人,中年人360人,青年人n 人,为调查身体健康状况,需要从中抽取一个容量为m 的样本,用分层抽样的方法进行抽样调查,样中的中年人为6人,则n 和m 的值不可以是下列四个选项中的哪组( )A.360=n ,14=mB.420=n ,15=mC.540=n ,18=mD.660=n ,19=m 某单位共有老年人120人,中年人360人,青年人n 人,样本中的中年人为6人,则老年人为61202360⨯=,青年人为636060=n n ,2686060++=⇒+=n nm m ,代入选项计算,C 不符合,故选C.4.()221(1)+-axax 的展开式中4x 项的系数为-8,则a 的值为( )A.2B.-2C.22D.22-22(1)(1)ax ax +-的展开式中,4x 项为34a x ,382a a =-=-∴,,故选B.5.已知n S 是等差数列{}n a 的前n 项和,若24836149++=+a a a a a ,则149=SS ( )A.14 9B.73C.32D.2设{}na的公差为d,由24836149++=+a a aa a,1=≠a d,1141419914()1415729()91032+⨯===+⨯a aS da aS d,故选B.6.已知函数sin=a xyx在点(,0)Mπ处的切线方程为1-+=x b yπ,则()A.1=-a,1=b B.1=-a,1=-b C.1=a,1=b D.1=a,1=-b由题意可知2cos sin-'=ax x a xyx,故在点(,0)Mπ处的切线方程为1()-=-=-+ay x x bπππ,则11=⎧⎨=⎩ab,故选C.7.函数2cos2()1=+x xf xx的图象大致为()A. B. C. D.由()f x为奇函数,得()f x的图象关于原点对称,排除C,D;又当04<<xπ时,()0>f x,故选B.8.如图,在四棱锥-P ABCD中,底面ABCD是平行四边形,且1=AB,2=BC,60︒∠=ABC,⊥PA平面ABCD,⊥AE PC于E.下列四个结论:①⊥AB AC;②⊥AB平面P AC;③⊥PC平面ABE;④⊥BE PC.正确的个数是()A.1B.2C.3D.4已知1=AB,2=BC,60︒∠=ABC,由余弦定理可得2222cos603︒=+-⋅=AC AB BC AB BC,所以222+=AC AB BC,即⊥AB AC,①正确;由⊥PA平面ABCD,得⊥AB PA,所以⊥AB平面P AC,②正确;⊥AB平面P AC,得⊥AB PC,又⊥AE PC,所以⊥PC平面ABE,③正确;由⊥PC平面ABE,得⊥PC BE,④正确,故选D.9.已知i为虚数单位,执行如图所示的程序框图,则输出的z为()A.-iB.iC.0D.1+i由程序框图得0=z ,第一次运行011=+=a ,101=+=z ,011=+=n ;第二次运行0=+=b i i ,1=+z i ,112=+=n ;第三次运行, ,故(1111)()0=-++-+-+-=L L z i i i ,故选C.10.双曲线2222:1(0,0)-=>>x y E a b a b的一条渐近线方程为2=y x ,过右焦点F 作x 轴的垂线,与双曲线在第一象限的交点为A ,若V OAF 的面积是25(O 为原点),则双曲线E 的实轴长是( ) A.4 B.22 C.1 D.2因为双曲线E 的一条渐近线方程为2=y x ,所以2=b a ,2215==+=c b e a a,由V OAF 的面积是25,得21252⋅=b a,所以24=b ,2=b ,所以1=a ,双曲线的实轴长为2,故选D. 11. 已知函数()-=-xxg x e e ,()()=f x xg x ,若53,,(3)22⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭a fb fc f ,则a,b,c 的大小关系为 A.a<b<c B.c<b<a C.b<a<c D.b<c<a依题意,有()()g x g x -=-,则()e e x x g x -=-为奇函数,且在R 上单调递增,所以()f x 为偶函数.当0x >时,有()(0)g x g >且()0g x '>,所以()()()f x g x xg x ''=+(0)0g >=,即()f x 在(0)+∞,上递增,所以355(3)222f f f f ⎛⎫⎛⎫⎛⎫<-=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C . 12.已知圆221:4+=O x y ,直线:(0)=+≠l y kx b k ,l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α和β,给出如下3个命题:①当k 为常数,b 为变数时,sin()+αβ是定值;②当k 为变数,b 为变数时,sin()+αβ是定值; ③当k 和b 都是变数时,sin()+αβ是定值. 其中正确命题的个数是( )A.0B.1C.2D.3设点11(),E x y ,22(),F x y ,由三角函数的定义得111cos 21sin 2⎧=⎪⎪⎨⎪=⎪⎩x y αα,221cos 21sin 2⎧=⎪⎪⎨⎪=⎪⎩x y ββ,将直线EF 的方程与圆的方程联立2214=+⎧⎪⎨+=⎪⎩y kx b x y ,得2221(1)204+++-=k x kbx b ,由韦达定理得122212221141⎧+=-⎪+⎪⎨-⎪=⎪+⎩kb x x k b x x k ,所以211221121212sin()sin cos cos sin 444()4()84()+=+=+=+++=++x y x y x kx b x kx b kx x b x x αβαβαβ22221882411⎛⎫-- ⎪⎝⎭==-++k b kb k k k ,因此,当k 是常数时,sin()+αβ是常数,故选B. 二、填空题(本大题共4小题,每小题5分,共20分)题号 1314 1516答案8π582322195+=x y 13.已知||1=r a ,||8=r b ,()3⋅-=r r r a b a ,则向量ra 与向量rb 的夹角是____.由()3-=r r r a b a ,得3⋅-⋅=r r r r a b a a ,即4⋅=r r a b ,故1cos ,2||||⋅〈〉==⋅r r r r r ra b a b a b ,则向量r a 与rb 的夹角为3π. 14.数列{}n a 的前n 项和2(0)=+≠n S An Bn A ,若11=a ,1a ,2a ,5a 成等比数列,则3=a ________.由n S 的表达式知,{}n a 为等差数列,设公差为d ,则1,1+d ,14+d 成等比数列,故2(1)14+=+d d ,即220-=d d ,解得0=d 或2=d ,若0=d ,1=n a ,=n S n ,与0≠A 矛盾,故2=d ,3125=+=a d .15.如图,正八面体的棱长为2,则此正八面体的体积为________. 正八面体上半部分的斜高为3,高为2,则其体积为22282233⨯⨯⨯=. 16已知点1F ,2F 是椭圆2222:1(0)+=>>x y C a b a b 的左、右焦点,以1F 为圆心,1F ,2F 为半径的圆与椭圆在第一象限的交点为P .若椭圆C 的离心率为23,且1215=V PF F S ,则椭圆C 的方程为________.依题意,112||||2==PF F F c,由椭圆的定义可得2||22=-PF a c,所以22112||1112cos 1||224-⎛⎫∠===-= ⎪⎝⎭PF a c PF F F F c e ,从而2115sin 4∠=PF F ,因为离心率23=c a ,所以1222122111515sin ()224=⋅⋅∠=-=V PF F S PF F F PF F c a c c ,又1215=V PF F S ,解得24=c ,所以29=a ,25=b ,故椭圆C 的方程为22195+=x y . 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次、其中,徒步方队15个为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行徒步方队队员,男性身高普遍在175 cm 至185 cm 之间:女性身高普遍在163 cm 至175 cm 之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184 cm 至190 cm 之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C 为事件:“某一阅兵女子身高不低于169 cm ”,根据直方图得到P (C )的估计值为0.5.女子身高直方图 注:身高代码1~13分别对应身高163~175(单位:cm ) (1)求直方图中a ,b 的值;(2)估计这个阵营女子身高的平均值.(同一组中的数据用该组区间的中点值为代表) 解:(1)由已知得(0.110.065)20.5++⨯=b ,故0.075=b . (3分) 法一:212(0.110.0750.0750.0650.05)=-⨯++++a ,∴0.125=a . (6分) 法二:1()10.50.5-=-=P C ,∴2(0.050.075)0.5⨯++=a ,∴0.125=a . (6分) (2)2(0.0520.07540.12560.1180.075100.06512)⨯⨯+⨯+⨯+⨯+⨯+⨯2(0.10.30.750.880.750.78)=⨯+++++2 3.567.12=⨯=, (10分)估计女子的平均身高为163(7.121)169.12+-=(cm ). (12分) 18.在锐角V ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,cos (2)cos 0+-=b C c a B . (1)求角B ;(2)若1=a ,求+b c 的取值范围. 解:(1)∵cos (2)cos 0+-=b C c a B ,∴cos cos 2cos +=b C c B a B , (1分) 由正弦定理得sin cos cos sin 2sin cos +=B C B C A B , (2分)sin()sin()sin 0+=-=≠B C πA A , (3分)∴2cos 1=B ,1cos 2=B , (5分) 又B 是V ABC 的内角,∴3=πB . (6分) (2)∵V ABC 为锐角三角形,3=πB ,1=a ,∴23+=A C π,62<<ππA , (7分)由正弦定理得1sin sin sin ==b cA B C, ∴2sin sinsin sin 33sin sin sin sin ⎛⎫- ⎪⎝⎭+=+=+ππA B C b c A A A A(8分) 31cos sin 333cos 13(1cos )1222sin sin 2sin 2sin 22sin 2++=+=+⋅+=+A AA A A A A A A , (9分) ∵62<<ππA ,∴+b c 关于A 为减函数, (10分) ∴31cos 31cos 112622sin 2sin 26⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+<+<+ππb c ππ2, (11分) ∴31322+<+<+b c ,即+b c 的取值范围是31,322⎛⎫++ ⎪ ⎪⎝⎭. (12分) 19.如图,在三棱锥P-ABC 中,已知22====,AC AB BC PA ,顶点P 在平面ABC 上的射影为V ABC的外接圆圆心.(1)证明:平面⊥PAC 平面ABC ; (2)若点M 在棱PA 上,||||=λAM AP ,且二面角P-BC-M 的余弦值为53333,试求λ的值.(1)证明:如图,设AC 的中点为O ,连接PO , (1分) 由题意,得222BC AB AC +=,则ABC △为直角三角形, 点O 为ABC △的外接圆圆心. (2分) 又点P 在平面ABC 上的射影为ABC △的外接圆圆心, 所以PO ⊥平面ABC , (3分)又PO ⊂平面PAC ,所以平面PAC ⊥平面ABC . (4分) (2)解:由(1)可知PO ⊥平面ABC , 所以PO OB ⊥,PO OC ⊥,OB AC ⊥,于是以OC ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系, (5分) 则(000)O ,,,(100)C ,,,(010)B ,,,0()10A -,,,(001)P ,,, 设[01](101)(10)AP A AM P M λλλλ=∈=-u u u u u u u r r u u u r,,,,,,,,,(110)BC =-u u u r ,,,(101)PC =-u u u r ,,,(20)MC λλ=--u u u u r,,. (6分) 设平面MBC 的法向量为111()m x y z =u r,,,则00m BC m MC ⎧=⎪⎨=⎪⎩u r g u r g u u u r u u u u r ,,得11110(2)0x y x z λλ-=⎧⎨--=⎩,, 令11x =,得11y =,12z λλ-=,即211m λλ-⎛⎫= ⎪⎝⎭u r ,,. (8分)设平面PBC 的法向量为222()n x y z =r,,,由00n BC n PC ⎧=⎪⎨=⎪⎩g g u u u r r u u u r r ,,得222200x y x z -=⎧⎨-=⎩,, 令1x =,得1y =,1z =,即(111)n =r,,, (9分) 22533cos 33||||22(2)23n m n m n m λλλλ-+-+〈〉===u r u r u r r r g g g r,, (10分) 解得1110222⎛⎫=- ⎪⎝⎭,,,,λM 即M 为PA 的中点. (12分) 20.已知函数2()(1)=--x f x k x e x ,其中∈R k .(1)当1=-k 时,求函数()f x 的单调区间;(2)当[1,2]∈k 时,求函数()f x 在[0,]k 上的最大值. 解:(1)1=-k ,2()(1)=---xf x x e x ,令()2(2)00'=--=-+=⇒=xxf x xe x x e x , (2分) 故(,0)∈-∞x ,()0'>f x ;(0,)∈+∞x ,()0'<f x (3分)()f x 的单调递增区间为(,0)-∞,()f x 的单调递减区间为(0,)+∞. (4分)(2)()2(2)'=-=-xxf x kxe x x ke , 令2()0ln [0,ln 2]'=⇒=∈f x x k,其中[1,2]∈k . (5分) 令2()ln=-g x x x,[1,2]∈x , 211()21102⎛⎫'=⋅--=--< ⎪⎝⎭x g x x x, (6分) 故()g x 在[1,2]上单调递减, 故2()(1)ln 210ln ≤=-<⇒<g x g k k, (7分) 故20,ln⎛⎫∈ ⎪⎝⎭x k ,()0'<f x ;2ln ,⎛⎫∈ ⎪⎝⎭x k k ,()0'>f x ,从而()f x 在20,ln⎛⎫ ⎪⎝⎭k 上单调递减;在2ln ,⎛⎫ ⎪⎝⎭k k 上单调递增, (8分) 故在[0,]k 上,函数max ()max{(0)=f x f ,()}max{=-f k k ,2(1)}--k k k e k ,[1,2]∈k . (9分)由于2()(0)(1)[(1)1]-=--+=--+k kf k f k k e k k k k e k ,令()(1)1=--+xh x x e x ,[1,2]∈x , (10分)()10'=->x h x xe ,对于[1,2]∀∈x 恒成立,从而()(1)0≥=h x h ,即()(0)≥f k f ,当1=k 时等号成立, (11分)故2max ()()(1)==--k f x f k k k e k . (12分)21.已知抛物线2:=E y x 的焦点为F ,过点F 的直线l 的斜率为k ,与抛物线E 交于A ,B 两点,抛物线在点A ,B 处的切线分别为1l ,2l ,两条切线的交点为D .(1)证明:90︒∠=ADB ;(2)若V ABD 的外接圆Γ与抛物线E 有四个不同的交点,求直线l 的斜率的取值范围. (1)证明:依题意有10,4⎛⎫ ⎪⎝⎭F ,直线1:4=+l y kx , (1分) 设11(,)A x y ,22(,)B x y ,直线l 与抛物线E 相交,联立方程214⎧=⎪⎨=+⎪⎩y x y kx 消去y ,化简得2104--=x kx , (2分) 所以,12+=x x k ,1214=-x x . (3分) 又因为2'=y x ,所以直线1l 的斜率112=k x .同理,直线2l 的斜率222=k x , (4分) 所以,121241==-k k x x , (5分)所以,直线12⊥l l ,即90︒∠=ADB . (6分)(2)解:由(1)可知,圆Γ是以AB 为直径的圆,设(,)P x y 是圆上的一点,则0⋅=u u u r u u u rPA PB ,所以,圆Γ的方程为1212()()()()0--+--=x x x x y y y y , (7分) 又因为12+=x x k ,1214=-x x ,21212111442+=+++=+y y kx kx k ,221212116==y y x x , 所以,圆Γ的方程可化简为222130216⎛⎫+--+-= ⎪⎝⎭x y kx k y , (8分) 联立圆Γ与抛物线E 得2222130216⎧⎛⎫+--+-=⎪ ⎪⎝⎭⎨⎪=⎩x y kx k y y x , 消去y ,得422130216⎛⎫----= ⎪⎝⎭x k x kx , 即22211042⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭x kx ,即2213044⎛⎫⎛⎫--++= ⎪⎪⎝⎭⎝⎭x kx x kx , (9分)若方程2104--=x kx 与2304++=x kx 方程有相同的实数根0x ,则20020020010114032404⎧--=⎪⎪⇒=-⇒+=⎨⎪++=⎪⎩x kx kx x x kx ,矛盾, (10分) 所以,方程2104--=x kx 与方程2304++=x kx 没有相同的实数根, 所以,圆Γ与抛物线E 有四个不同的交点等价于221030⎧+>⎪⎨->⎪⎩k k ,3⇔>k 或3<-k , (11分)综上所述,3>k 或3<-k . (12分)22.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线C 的极坐标方程是6sin =ρθ,建立以极点为坐标原点,极轴为x 轴正半轴的平面直角坐标系.直线l 的参数方程是cos 2sin =⎧⎨=+⎩x t y t θθ(t 为参数).(1)求曲线C 的直角坐标方程;(2)若直线t 与线相交于A ,B 两点,且||34=AB ,求直线的斜率k . 解:(1)由曲线C 的极坐标方程是6sin =ρθ,得直角坐标方程为226+=x y y , 即22(3)9+-=x y . (3分)(2)把直线l 的参数方程cos 2sin =⎧⎨=+⎩x t y t θθ(t 为参数),代入圆C 的方程得22(cos )(sin 1)9+-=t t θθ,化简得22sin 80--=t t θ. (5分)设A ,B 两点对应的参数分别是1t ,2t ,则122sin +=t t θ,128=-t t , (6分) 故22121212()44sin 3234=-=+-=+=|AB||t t |t t t t θ, (8分)得2sin 2=±θ, (9分) 得1=±k . (10分) 23.(本小题满分10分)【选修4-5:不等式选讲】 已知,,+∈R a b c ,且2++=a b c .求证:(1)134633++≥+a b c;(2)2222++≥c a b a b c . 证明:(1)由柯西不等式,得2 134********()633 22⎛⎫⎛⎫++=++++≥++=+⎪⎪ ⎪⎝⎭⎝⎭a b c a b ca b c a b c a b c,所以134633++≥+a b c. (5分)(2)由柯西不等式,得222222211()()222⎛⎫⎛⎫++=++++≥++=⎪ ⎪⎝⎭⎝⎭c a b c a ba b c c a ba b c a b c,所以2222++≥c a ba b c. (10分)11。
2019-2020学年四川省高考数学二模试卷(理科)(有答案)
![2019-2020学年四川省高考数学二模试卷(理科)(有答案)](https://img.taocdn.com/s3/m/3319df4e7f1922791688e89f.png)
四川省高考数学二模试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,B=N,则集合A∩B的真子集个数为()A.3 B.4 C.7 D.82.已知z=2+i,(i是虚数单位),z的共轭复数是,则=()A.5 B.25 C.4 D.33.已知向量,,与垂直,则实数λ的值为()A.1 B.C.D.﹣14.已知回归直线方程为,样本点的中心为,若回归直线的斜率估计值为2,且,,则回归直线方程为()A.B.C.D.5.“k=1”是“函数(k为常数)在定义域上是奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.设x∈[0,3],执行如图所示的程序框图,从输出的结果中随机取一个数a,“2a﹣10≥0”的概率为()A.B.C.D.7.如图是某几何体的三视图,则该几何体外接球的体积为()A .B .C .D .8.已知a >﹣2,若圆O 1:x 2+y 2+2x ﹣2ay ﹣8a ﹣15=0,圆O 2:x 2+y 2+2ax ﹣2ay+a 2﹣4a ﹣4=0恒有公共点,则a 的取值范围为( ) A .(﹣2,﹣1]∪[3,+∞) B .C .D .(﹣2,﹣1)∪(3,+∞)9.设f (x )=x 2+ax+b (a ,b ∈R ),当x ∈[﹣1,1]时,|f (x )|的最大值为m ,则m 的最小值为( ) A .B .1C .D .210.已知双曲线的左、右焦点分别为F 1、F 2,过F 2的直线交双曲线于P ,Q 两点且PQ ⊥PF 1,若|PQ|=λ|PF 1|,,则双曲线离心率e 的取值范围为( )A .B .C .D .二、填空题(每题5分,满分25分,将答案填在答题纸上) 11.=______.12.已知等差数列{a n }的前n 项和为S n ,若a 3+a 4=18﹣a 6﹣a 5,则S 8=______. 13.设,则a 3=______.14.若x ,y 满足约束条件则的取值范围为______.15.已知a 为正整数,f (x )=ax 2+4ax ﹣2x+4a ﹣7,若y=f (x )至少有一个零点x 0且x 0为整数,则a 的取值为______.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且.(Ⅰ)求角A 的大小; (Ⅱ) 若a=2,△ABC 的面积为,求b ,c .17.自2014年1月26日悄悄上线后,微信红包迅速流行开来,其火爆程度不亚于此前的“打飞机”小游戏,数据显示,从除夕开始至初一16时,参与抢微信红包的用户超过500万,总计抢红包7500万次以上.小张除夕夜向在线的小王、小李、小明随机发放微信红包,每次发1个. (Ⅰ)若小张发放10元红包3个,求小王恰得到2个的概率;(Ⅱ)若小张发放4个红包,其中5元的一个,10元的两个,15元的一个,记小明所得红包的总钱数为X ,求X 的分布列和期望.18.如图所示,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AD ,底面ABCD 为正方形,E 为DP 的中点,AF ⊥PC 于F .(Ⅰ)求证:PC ⊥平面AEF ; (Ⅱ)求二面角B ﹣AC ﹣E 的余弦值.19.已知等差数列{a n }的前n 项和为S n ,且a 3=6,S 7=56,数列{b n }前n 项和为T n ,且2T n ﹣3b n +2=0. (Ⅰ)求数列{a n },{b n }的通项公式; (Ⅱ)设,求数列{c n }的前n 项和Q n .20.已知椭圆C 的中心在原点,离心率为,且与抛物线有共同的焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设椭圆C 的左、右顶点分别为A 1、A 2,P 为椭圆C 上异于A 1、A 2的动点,直线A 1P 、A 2P 分别交直线l :x=4于M 、N 两点,设d 为M 、N 两点之间的距离,求d 的最小值. 21.已知函数f (x )=e x ﹣ax ﹣1.(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线方程为y=2x+b ,求实数a ,b 的值; (Ⅱ)求f (x )在[0,+∞)上的最小值; (Ⅲ)证明:.四川省高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,B=N,则集合A∩B的真子集个数为()A.3 B.4 C.7 D.8【考点】集合的包含关系判断及应用.【分析】解不等式求出集合A,进而得到集合A∩B的元素个数,最后由n元集合有2n﹣1个真子集得到答案.【解答】解:∵集合=[,3],B=N,∴集合A∩B={1,2,3},故集合A∩B的真子集个数为23﹣1=7个,故选:C.2.已知z=2+i,(i是虚数单位),z的共轭复数是,则=()A.5 B.25 C.4 D.3【考点】复数求模.【分析】求出z的共轭复数,代入求出的值即可.【解答】解:∵z=2+i,∴=2﹣i,则=|(3﹣2(2+i))•(2﹣i)|=|(﹣1﹣2i)•(2﹣i)|=|﹣3i|=3,故选:D.3.已知向量,,与垂直,则实数λ的值为()A.1 B.C.D.﹣1【考点】平面向量数量积的运算.【分析】根据向量的坐标可以求出向量和的坐标,根据与垂直便可得到,进行数量积的坐标运算即可得出关于λ的方程,从而可解出λ的值.【解答】解:;∵;∴;∴.故选C.4.已知回归直线方程为,样本点的中心为,若回归直线的斜率估计值为2,且,,则回归直线方程为()A.B.C.D.【考点】线性回归方程.【分析】根据题意,求出、,代人回归直线方程求出,写出回归直线方程即可.【解答】解:∵回归直线方程为的斜率估计值为2,且,,∴==3, ==5;代人回归直线方程得=5﹣2×3=﹣1,∴回归直线方程为=2x﹣1.故选:C.5.“k=1”是“函数(k为常数)在定义域上是奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】函数(k为常数)在定义域上是奇函数,则f(﹣x)+f(x)=0,化为:k2=1,解出即可判断出结论.【解答】解:函数(k为常数)在定义域上是奇函数,则f(﹣x)+f(x)=0,∴+=0,化为:k2(e x+e﹣x)=e x+e﹣x,∴k2=1,解得k=±1,经过验证,此时函数f(x)是奇函数.∴“k=1”是“函数(k为常数)在定义域上是奇函数”的充分不必要条件.故选:A.6.设x∈[0,3],执行如图所示的程序框图,从输出的结果中随机取一个数a,“2a﹣10≥0”的概率为()A.B.C.D.【考点】程序框图.【分析】先分析程序的功能为计算并输出分段函数y=的值,进而求出函数的值域,再由几何概型概率计算公式,得到答案.【解答】解:由已知可得该程序的功能是计算并输出分段函数y=的值,当x∈[0,2)时,y∈[3,5),当x∈[2,3]时,y∈[5,10],故输出的结果的范围为[3,10],若从输出的结果中随机取一个数a,“2a﹣10≥0”⇔a∈[5,10],则P==,故选:C7.如图是某几何体的三视图,则该几何体外接球的体积为()A .B .C .D .【考点】球内接多面体;球的体积和表面积.【分析】由正四面体的棱长为a ,所以此四面体一定可以放在棱长为a 的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球的半径,再代入体积公式计算.【解答】解:由题意,由三视图得该几何体是正四面体,棱长为a ,此四面体一定可以放在正方体中, ∴我们可以在正方体中寻找此四面体. 如图所示,四面体ABCD 满足题意,BC=a , ∴正方体的棱长为a ,∴此四面体的外接球即为此正方体的外接球, ∵外接球的直径=正方体的对角线长, ∴外接球的半径为R=a ,∴该几何体外接球的体积为V=πR 3=πa 3.故选:B .8.已知a >﹣2,若圆O 1:x 2+y 2+2x ﹣2ay ﹣8a ﹣15=0,圆O 2:x 2+y 2+2ax ﹣2ay+a 2﹣4a ﹣4=0恒有公共点,则a 的取值范围为( ) A .(﹣2,﹣1]∪[3,+∞) B . C . D .(﹣2,﹣1)∪(3,+∞)【考点】圆与圆的位置关系及其判定.【分析】求出圆的标准方程,求出圆心和半径,根据两圆相交的条件进行求解即可.【解答】解:圆O1:x2+y2+2x﹣2ay﹣8a﹣15=0的标准方程为(x+1)2+(y﹣a)2=a2+8a+16,圆心O1(﹣1,a),半径R==|a+4|=a+4,圆O2:x2+y2+2ax﹣2ay+a2﹣4a﹣4=0的标准方程为(x+a)2+(y﹣a)2=a2+4a+4,圆心O2(﹣a,a),半径R==|a+2|=a+2,则圆心距离|O1O2|=|﹣a+1|=|a﹣1|,若两圆恒有公共点,则两圆相交或相切,即a+4﹣(a+2)≤|O1O2|≤a+2+a+4,即2≤|a﹣1|≤2a+6,若a≥1,则不等式等价为2≤a﹣1≤2a+6,即,即得a≥3,若﹣2<a<1,则不等式等价为2≤1﹣a≤2a+6,即,即,得﹣≤a≤﹣1,综上﹣≤a≤﹣1或a≥3,故选:C.9.设f(x)=x2+ax+b(a,b∈R),当x∈[﹣1,1]时,|f(x)|的最大值为m,则m的最小值为()A.B.1 C.D.2【考点】二次函数的性质.【分析】若x∈[﹣1,1]时,|f(x)|的最大值为m,则4m≥|f(﹣1)|+|f(1)|+2|f(0)|≥2,解得m 的最小值.【解答】解:∵f(x)=x2+ax+b(a,b∈R),当x∈[﹣1,1]时,|f(x)|的最大值为m,∴4m≥|f(﹣1)|+|f(1)|+2|f(0)|=|1+A+B|+|1﹣A+B|+2|B|≥|(1+A+B)+(1﹣A+B)﹣2B|=2m≥,即m的最小值为,故选:A10.已知双曲线的左、右焦点分别为F 1、F 2,过F 2的直线交双曲线于P ,Q 两点且PQ ⊥PF 1,若|PQ|=λ|PF 1|,,则双曲线离心率e 的取值范围为( )A .B .C .D .【考点】双曲线的简单性质.【分析】由PQ ⊥PF 1,|PQ|=λ|PF 1|,可得|QF 1|=|PF 1|,由双曲线的定义可得2a=|PF 1|﹣|PF 2|=|QF 1|﹣|QF 2|,解得|PF 1|=,|PF 2|=|PF 1|﹣2a ,由勾股定理可得:2c=|F 1F 2|=,代入化简.令t=1﹣λ+,则上式化为8(﹣)2+,由t 关于λ单调递减,可得≤t <,即≤≤,由二次函数的单调性解出即可. 【解答】解:可设P ,Q 为双曲线右支上一点, 由PQ ⊥PF 1,|PQ|=λ|PF 1|, 在直角三角形PF 1Q 中,|QF 1|==|PF 1|,由双曲线的定义可得:2a=|PF 1|﹣|PF 2|=|QF 1|﹣|QF 2|, 由|PQ|=λ|PF 1|,即有|PF 2|+|QF 2|=λ|PF 1|, 即为|PF 1|﹣2a+|PF 1|﹣2a=λ|PF 1|, ∴(1﹣λ+)|PF 1|=4a ,解得|PF 1|=.|PF 2|=|PF 1|﹣2a=,由勾股定理可得:2c=|F 1F 2|=, 即有()2+[]2=4c 2,即为+=e 2.令t=1﹣λ+,则上式化为e 2==8(﹣)2+,由t=1﹣λ+=1+,且≤λ≤,由t 关于λ单调递减,可得≤t < 即≤≤,由∉[,],可得e 2在[,]递增, ≤e 2≤,解得≤e ≤. 可得椭圆离心率的取值范围是[,].故选:C .二、填空题(每题5分,满分25分,将答案填在答题纸上) 11.=.【考点】两角和与差的正弦函数;三角函数的化简求值. 【分析】利用诱导公式以及两角和与差的三角函数化简求解即可.【解答】解: ===﹣.故答案为:.12.已知等差数列{a n }的前n 项和为S n ,若a 3+a 4=18﹣a 6﹣a 5,则S 8= 36 . 【考点】等差数列的前n 项和.【分析】利用等差数列的性质可得:a 3+a 6=a 4+a 5=a 1+a 8.再利用前n 项和公式即可得出. 【解答】解:∵等差数列{a n }的前n 项和为S n ,a 3+a 4=18﹣a 6﹣a 5, ∴a 3+a 4+a 6+a 5=18,a 3+a 6=a 4+a 5=a 1+a 8. ∴2(a 1+a 8)=18,即a 1+a 8=9. 则S 8==36.故答案为:36. 13.设,则a 3= 400 .【考点】二项式定理的应用.【分析】根据x7+x6=[(x+2)﹣2]7+[(x+2)﹣2]6,按照二项式定理展开,可得(x+2)3的系数a3的值.【解答】解:∵x7+x6=[(x+2)﹣2]7+[(x+2)﹣2]6=a0+a1(x+2)+a2•(x+2)2+…+a7(x+2)7,∴a3=•(﹣2)4+•(﹣2)3=400,故答案为:400.14.若x,y满足约束条件则的取值范围为[1,] .【考点】简单线性规划.【分析】画出约束条件的可行域,化简所求表达式,利用表达式的几何意义,求解即可.【解答】解:x,y满足约束条件的可行域如图:则==+.由可行域可知:∈[1,kOA],由,可得A(1,3),kOA=3,∈, +2∈,∈,则∈[1,].故答案为:[1,].15.已知a为正整数,f(x)=ax2+4ax﹣2x+4a﹣7,若y=f(x)至少有一个零点x0且x为整数,则a的取值为1或5 .【考点】二次函数的性质;函数零点的判定定理.【分析】令f(x)=ax2+4ax﹣2x+4a﹣7=0,则a(x2+4x+4)=2x+7,即a=,结合a为正整数,可得:﹣3≤x≤1,分别代入验证可得答案.【解答】解:∵f(x)=ax2+4ax﹣2x+4a﹣7=a(x2+4x+4)﹣2x﹣7,∴f(﹣2)=﹣3≠0,即x=﹣2不是函数y=f(x)的零点,令f(x)=ax2+4ax﹣2x+4a﹣7=0,则a(x2+4x+4)=2x+7,即a=,∵a为正整数,∴≥1,解得:﹣3≤x≤1,当且仅当x=﹣3时,a=1,x=﹣1时,a=5,x=1时,a=1满足条件,综上可得:a的值为1或5,故答案为:1或5.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知在△ABC中,角A,B,C所对的边分别为a,b,c,且.(Ⅰ)求角A的大小;(Ⅱ)若a=2,△ABC的面积为,求b,c.【考点】余弦定理;正弦定理.【分析】(I)由.利用正弦定理可得:(a+b)(b﹣a)=c(b﹣c),化简再利用余弦定理即可得出.(II)bcsinA=,化为bc=4.利用余弦定理可得=4,联立解出即可得出.【解答】解:(I)在△ABC中,∵,由正弦定理可得:(a+b)(b﹣a)=c(b﹣c),化为b2+c2﹣a2=bc,∴cosA==,∵A∈(0,π),∴解得A=.(II)bcsinA=,化为bc=4.=4,联立解出:或.17.自2014年1月26日悄悄上线后,微信红包迅速流行开来,其火爆程度不亚于此前的“打飞机”小游戏,数据显示,从除夕开始至初一16时,参与抢微信红包的用户超过500万,总计抢红包7500万次以上.小张除夕夜向在线的小王、小李、小明随机发放微信红包,每次发1个.(Ⅰ)若小张发放10元红包3个,求小王恰得到2个的概率;(Ⅱ)若小张发放4个红包,其中5元的一个,10元的两个,15元的一个,记小明所得红包的总钱数为X,求X的分布列和期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出小张发放10元红包3个,小王恰得到2个的概率.(Ⅱ)由题意知X的可能取值为0,5,10,15,20,25,30,35,40,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(Ⅰ)小张除夕夜向在线的小王、小李、小明随机发放微信红包,每次发1个.∵小张发放10元红包3个,∴小王恰得到2个的概率p==.(Ⅱ)由题意知X的可能取值为0,5,10,15,20,25,30,35,40,P(X=0)=()4=,P(X=5)==,P(X=10)==,P(X=15)=×+=,P(X=20)==,P(X=25)=×2=,P(X=30)==,P(X=35)==,P(X=40)=()4=,∴X的分布列为:X 0 5 10 15 20 25 30 35 40PEX=+++35×=.18.如图所示,在四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AD,底面ABCD为正方形,E为DP的中点,AF⊥PC于F.(Ⅰ)求证:PC⊥平面AEF;(Ⅱ)求二面角B﹣AC﹣E的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向理量法能证明PC⊥平面AEF.(Ⅱ)先求出平面AEC的法向量和平面ABC的法向量,由此能求出二面角B﹣AC﹣E的余弦值.【解答】证明:(Ⅰ)以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,设PA=AD=2,则P(0,0,2),C(2,2,0),D(2,0,0),B(0,2,0),E(1,0,1),A(0,0,0),=(1,0,1),=(2,2,﹣2),=2+0﹣2=0,∴PC⊥AE,∵AF⊥PC于F,AE∩AF=A,∴PC⊥平面AEF.解:(Ⅱ) =(2,2,0),=(1,0,1),设平面AEC的法向量=(x,y,z),则,取x=1,得=(1,﹣1,﹣1),平面ABC的法向量=(0,0,1),设二面角B﹣AC﹣E的平面角为α,则cosα===.∴二面角B ﹣AC ﹣E 的余弦值为.19.已知等差数列{a n }的前n 项和为S n ,且a 3=6,S 7=56,数列{b n }前n 项和为T n ,且2T n ﹣3b n +2=0. (Ⅰ)求数列{a n },{b n }的通项公式; (Ⅱ)设,求数列{c n }的前n 项和Q n .【考点】数列的求和;等差数列的通项公式.【分析】(I )设等差数列{a n }的公差为d ,由于a 3=6,S 7=56,可得,解出即可得出.由数列{b n }前n 项和为T n ,且2T n ﹣3b n +2=0.利用递推关系即可得出.(II )对n 分类讨论,分别利用等差数列与等比数列的前n 项和公式即可得出. 【解答】解:(I )设等差数列{a n }的公差为d ,∵a 3=6,S 7=56,∴,解得a 1=d=2.∴a n =2+2(n ﹣1)=2n .∵数列{b n }前n 项和为T n ,且2T n ﹣3b n +2=0. ∴2b 1﹣3b 1+2=0,解得b 1=2. 当n ≥2时,2T n ﹣1﹣3b n ﹣1+2=0, ∴2b n ﹣3b n +3b n ﹣1=0,∴b n =3b n ﹣1,∴数列{b n }是等比数列,首项为2,公比为3. ∴b n =2×3n ﹣1. (II ),当n=2k ﹣1(k ∈N *)时,数列{c n }的前n 项和Q n =(a 1+a 3+…+a 2k ﹣1)+(b 2+b 4+…+b 2k ﹣2) =2[1+3+…+(2k ﹣1)]+2×(3+33+…+32k ﹣3) =+2×=2k 2+=+.当n=2k (k ∈N *)时,数列{c n }的前n 项和Q n =(a 1+a 3+…+a 2k ﹣1)+(b 2+b 4+…+b 2k ) =2[1+3+…+(2k ﹣1)]+2×(3+33+…+32k ﹣1) =2k 2+=+.20.已知椭圆C 的中心在原点,离心率为,且与抛物线有共同的焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设椭圆C 的左、右顶点分别为A 1、A 2,P 为椭圆C 上异于A 1、A 2的动点,直线A 1P 、A 2P 分别交直线l :x=4于M 、N 两点,设d 为M 、N 两点之间的距离,求d 的最小值. 【考点】直线与圆锥曲线的综合问题;椭圆的标准方程. 【分析】(I )抛物线的焦点为,即为椭圆的焦点.设椭圆C 的标准方程为:+=1(a >b >0).由题意可得:c=,,a 2=b 2+c 2,联立解出即可得出.(II )设P (x 0,y 0),(x 0≠±2,y 0≠0),可得+=1,根据点斜式可得直线A 1P 、A 2P 的方程,分别交直线l :x=4于M ,N 两点,可得d=,k=表示经过椭圆上的点P (x 0,y 0)与点Q (4,0)的直线的斜率(y 0≠0).设经过点Q 且斜率为k 的直线方程为:y=k (x ﹣4),与椭圆方程联立,根据判别式即可得出.【解答】解:(I )抛物线的焦点为,即为椭圆的焦点.设椭圆C 的标准方程为:+=1(a >b >0).由题意可得:c=,,a 2=b 2+c 2,联立解得c=,a=2,b=1.故椭圆C 的标准方程为:=1.(II )由(I )可得:A 1(﹣2,0),A 2(2,0),设P (x 0,y 0),(x 0≠±2,y 0≠0), 则+=1,∴=4﹣.直线A 1P 、A 2P 的方程分别为:y=(x+2),y=(x ﹣2),分别交直线l :x=4于M ,N 两点,d=====,k=表示经过椭圆上的点P (x 0,y 0)与点Q (4,0)的直线的斜率(y 0≠0).设经过点Q 且斜率为k 的直线方程为:y=k (x ﹣4), 联立,化为:(1+4k 2)x 2﹣32k 2x+64k 2﹣4=0,由△=(32k 2)2﹣4(1+4k 2)(64k 2﹣4)≥0,化为:k 2≤,解得≤k ≤,k ≠0,∴k=±时,d 取得最小值=2.21.已知函数f (x )=e x ﹣ax ﹣1.(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线方程为y=2x+b ,求实数a ,b 的值; (Ⅱ)求f (x )在[0,+∞)上的最小值; (Ⅲ)证明:.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求导数,利用导数的几何意义,结合曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,即可求实数a,b的值;(Ⅱ)求导数,分类讨论,确定函数的单调性,即可求f(x)在[0,+∞)上的最小值;(Ⅲ)证明e x≥x+1.取x=﹣,i=1,3,…,2n﹣1,得1﹣≤,即()n≤,利用累加法,即可证明结论.【解答】(Ⅰ)解:∵f(x)=e x﹣ax﹣1,∴f′(x)=e x﹣a,∴f′(1)=e﹣a,∵f(1)=e﹣a﹣1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(e﹣a﹣1)=(e﹣a)(x﹣1),即y=(e﹣a)x﹣1,∵曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,∴e﹣a=2,b=﹣1,∴a=e﹣2,b=﹣1;(Ⅱ)解:∵f(x)=e x﹣ax﹣1,∴f′(x)=e x﹣a∴a≤1时,函数在[0,+∞)上单调递增,∴f(x)在[0,+∞)上的最小值为f(0)=0;a>1时,f′(x)=e x﹣a=0,x=lna,∴函数在[0,lna)上单调递减,(lna,+∞)上单调递增,∴x=lna时,f(x)在[0,+∞)上的最小值为f(lna)=a﹣alna﹣1;(Ⅲ)证明:设t(x)=e x﹣x﹣1,则t′(x)=e x﹣1,令t′(x)=0得:x=0.在x<0时t′(x)<0,f(x)递减;在x>0时t′(x)>0,f(x)递增.∴t(x)最小值为t(0)=0,故e x≥x+1.取x=﹣,i=1,3,…,2n﹣1,得1﹣≤,即()n≤,累加可得++…+≤+…+=<,∴.。
四川省成都市2019-2020学年高考数学模拟试题含解析
![四川省成都市2019-2020学年高考数学模拟试题含解析](https://img.taocdn.com/s3/m/85cc1f860b4e767f5bcfce14.png)
四川省成都市2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A 33263cmB 36463cmC 33223cmD 36423cm 【答案】B【解析】设折成的四棱锥的底面边长为a ,高为h ,则32h a =,故由题设可得12124222a a a +=⨯⇒=所以四棱锥的体积2313646=(42)423V =,应选答案B . 2.已知,a b ∈R ,3(21)ai b a i +=--,则|3|a bi +=( )A 10B .3C .3D .4【答案】A【解析】【分析】根据复数相等的特征,求出3a 和b ,再利用复数的模公式,即可得出结果.【详解】 因为3(21)ai b a i +=--,所以3,(21),b a a =⎧⎨--=⎩, 解得3,31,b a =⎧⎨=⎩ 则22|3|131310a bi i +=+=+=故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.3.已知向量a b (3,1),3)==r r ,则向量b r 在向量a r 方向上的投影为( )A.BC .1-D .1【答案】A【解析】【分析】 投影即为cos a b b aθ⋅⋅=r r r r ,利用数量积运算即可得到结论. 【详解】设向量a r 与向量b r 的夹角为θ,由题意,得31a b ⋅=+=-r r2a ==r,所以,向量b r 在向量a r方向上的投影为cos 2a b b aθ⋅-⋅===r r 故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.4.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( ) A .a b c >>B .c a b >>C .b c a >>D .a c b >>【答案】D【解析】【分析】 由指数函数的图像与性质易得b 最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较a 和c 的大小关系,进而得解.【详解】根据指数函数的图像与性质可知1314120131b ⎛⎫<= ⎪⎭<⎝,由对数函数的图像与性质可知12log 131a =>,13log 141c =>,所以b 最小;而由对数换底公式化简可得1132log 13log 14a c -=-lg13lg14lg12lg13=- 2lg 13lg12lg14lg12lg13-⋅=⋅由基本不等式可知()21lg12lg14lg12lg142⎡⎤⋅<+⎢⎥⎣⎦,代入上式可得 ()2221lg 13lg12lg14lg 13lg12lg142lg12lg13lg12lg13⎡⎤-+⎢⎥-⋅⎣⎦>⋅⋅ 221lg 13lg1682lg12lg13⎛⎫- ⎪⎝⎭=⋅11lg13lg168lg13lg16822lg12lg13⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭=⋅((lg13lg13lg 0lg12lg13+⋅-=>⋅所以a c >,综上可知a c b >>,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.5.已知()f x 是定义在[]2,2-上的奇函数,当(]0,2x ∈时,()21x f x =-,则()()20f f -+=( ) A .3-B .2C .3D .2- 【答案】A【解析】【分析】由奇函数定义求出(0)f 和(2)f -.【详解】 因为()f x 是定义在[]22-,上的奇函数,(0)0f ∴=.又当(]0,2x ∈时,()()()2()21,22213x f x f f =-∴-=-=--=-,()()203f f ∴-+=-.故选:A .【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键.6.已知非零向量a r ,b r 满足()a a ⊥r r ,()b b ⊥r r ,则a r 与b r 的夹角为( ) A .6π B .4π C .3π D .2π 【答案】B【解析】【分析】由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得a r 与b r 的夹角.【详解】根据平面向量数量积的垂直关系可得()20a a a b ⋅=-⋅=r r r r , ()20b b b b ⋅=⋅=r r r r ,所以22a b b ==⋅r r r ,即a b =r r ,由平面向量数量积定义可得2cos ,a b a b=⋅r r r r ,所以cos ,2a b =r r ,而[],0,a b π∈r r , 即a r 与b r 的夹角为4π. 故选:B【点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.7.若i 为虚数单位,则复数22sincos 33z i ππ=-+,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】首先根据特殊角的三角函数值将复数化为12z i =-,求出z ,再利用复数的几何意义即可求解. 【详解】Q 221sin cos 332z i i ππ=-+=,122i z -∴=+,则z在复平面内对应的点的坐标为3,21⎛⎫- ⎪⎪⎝⎭,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.8.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为( )A.B.C.D.【答案】A【解析】【分析】设球心为,三棱柱的上底面的内切圆的圆心为,该圆与边切于点,根据球的几何性质可得为直角三角形,然后根据题中数据求出圆半径,进而求得球的半径,最后可求出球的体积.【详解】如图,设三棱柱为,且,高.所以底面为斜边是的直角三角形,设该三角形的内切圆为圆,圆与边切于点,则圆的半径为.设球心为,则由球的几何知识得为直角三角形,且, 所以, 即球的半径为, 所以球的体积为.故选A .【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径、球心到小圆圆心的距离和小圆半径为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为,斜边为,则该直角三角形内切圆的半径,合理利用中间结论可提高解题的效率.9.设,,a b R i ∈是虚数单位,则“复数z a bi =+为纯虚数”是“0ab =”的( )A .充要条件B .必要不充分条件C .既不充分也不必要条件D .充分不必要条件 【答案】D【解析】【分析】结合纯虚数的概念,可得0,0a b =≠,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数z a bi =+为纯虚数,则0,0a b =≠,所以0ab =,若0ab =,不妨设1,0a b ==,此时复数1z a bi =+=,不是纯虚数,所以“复数z a bi =+为纯虚数”是“0ab =”的充分不必要条件.故选:D【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.10.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .928【答案】A【解析】【分析】根据循环结构的运行,直至不满足条件退出循环体,求出x 的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的x 的范围是[]23247,, 所以输出的x 不小于103的概率为24710314492472322414-==-. 故选:A.【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题. 11.已知向量()1,2a =r ,()2,2b =-r ,(),1c λ=-r ,若()//2c a b +r r r ,则λ=( ) A .2-B .1-C .12-D .12【答案】A【解析】【分析】 根据向量坐标运算求得2a b +rr ,由平行关系构造方程可求得结果.【详解】()1,2a =r Q ,()2,2b =-r ()24,2a b ∴+=r r()//2c a b +r r r Q 24λ∴=-,解得:2λ=- 故选:A【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则12210x y x y -=.12.已知集合{}{}2|1,|31x A x x B x ==<…,则()R A B U ð=( )A .{|0}x x <B .{|01}x x 剟C .{|10}x x -<…D .{|1}x x -… 【答案】D【解析】【分析】先求出集合A ,B ,再求集合B 的补集,然后求()R A B U ð【详解】 {|11},{|0}A x x B x x =-=<剟,所以 (){|1}R A B x x =-U …ð.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高等学校招生全国统一考试(四川卷)
数学(理工类)
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是
(A )3(B )4(C )5(D )6
2.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为
(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 4
3.为了得到函数πsin(2)3
y x =-的图象,只需把函数sin 2y x =的图象上所有的点
(A )向左平行移动π3个单位长度(B )向右平行移动π3
个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度 4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为
(A )24(B )48(C )60(D )72
5.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,学科&网则该公司全年投入的研发资金开始超过200万元的年份是
(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)
( A )2018年(B )2019年(C )2020年(D )2021年
6.秦九韶是我国南宋使其的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为
(A )9 (B )18 (C )20 (D )35
7.设p :实数x ,y 满足(x –1)2–(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩
则p 是
q 的
(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件
8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为
(A )33(B )23
(C )22(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值
范围是
(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)
10.在平面内,定点A ,B ,C ,D 满足DA u u u r =DB u u u r =DC u u u r ,DA u u u r ﹒DB u u u r =DB u u u r ﹒DC u u u r =DC u u u r ﹒
DA u u u r =-2,动点P ,M 满足AP u u u r =1,PM u u u u r =MC u u u u r ,则2BM u u u u u r 的最大值是
(A )434(B )494
(C )3734+(D )372334+
二、填空题:本大题共5小题,每小题5分,共25分。
11.cos 2π8–sin 2π8
=.
12.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是.
13.已知三棱镜的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是。
14.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )
=,则f ()+ f (1)=。
15.在平面直角坐标系中,当P (x ,y )不是
原点时,定义P 的“伴随点”为'2222(
,)y x P x y x y -++; 当P 是原点时,定义P 的“伴随点“为它自身,平面曲线C 上所有点的“伴随点”所构成的曲线'C 定义为曲线C 的“伴随曲线”.现有下列命题:
①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C 关于x 轴对称,则其“伴随曲线”'C 关于y 轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
三、解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)
我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月
用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,学科.网通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(I )求直方图中a 的值;
(II )设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(III )若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.
17.(本小题满分12分)
在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且
cos cos sin A B C a b c +=. (I )证明:sin sin sin A B C =;
(II )若22265
b c a bc +-=,求tan B .
18.(本小题满分12分)
如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD. 学.科.网E 为边AD 的中点,异面直线PA 与CD 所成的角为90
°.
(I )在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;
(II)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.
19.(本小题满分12分)
已知数列{n a }的首项为1,n S 为数列{n a }的前n 项和,11n n S qS +=+,其中q>0,*n N ∈.
(I )若2322,,2a a a +成等差数列,求a n 的通项公式;
(ii)设双曲线2221n y x a -=的离心率为n e ,且253e =,证明:121433n n n n e e e --++⋅⋅⋅+>.
20.(本小题满分13分)
已知椭圆E :的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T .
(I )求椭圆E 的方程及点T 的坐标;
(II )设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,学.科网使得∣PT ∣2=λ∣PA ∣·∣PB ∣,并求λ的值.
21.(本小题满分14分)
设函数f (x )=ax 2-a -ln x ,其中a ∈R.
(I )讨论f (x )的单调性;
(II)确定a的所有可能取值,使得f(x)>-e1-x+在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。