随机过程2016作业及答案3

合集下载

(完整word版)随机过程试题及答案

(完整word版)随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程试题及答案

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

应用随机过程第三章习题解

应用随机过程第三章习题解

g(t) = f (x, tx)|x|dx
3
第三章 更新过程
第三章 更新过程
其中 f (t, tx) 是 Xi 与 TiXi 的联合密度函数, 当 Xi 与 TiXi 独立时,有
∫ g(t) = λ exp{−λtx}f (x)|x|dx
所以这样的 Ti 是存在的.
3.6 如果 p = P (X = ∞) > 0, 则称 X 是广义的随机变量. 设 X 是广
是 3 分钟. 假设每台电话独立工作, 一共有 6 部电话, 估算上午 10:30 时恰
有 5 部电话占线的概率.
解:
由题可知每台电话占线的概率为
p
=
3 23
,
又各电话是否占线独立,
所以 10:30 有 5 部电话占线的概率为:
P = C65p5(1 − p)
3.11 眨眼使泪水均匀地涂在角膜和结膜的表面,以保持眼球润湿而不
∑ ∑k

P ( Xi = j, Xk+1 > t − j) = (kλ)jexp(−kλ)P (X1 > t − j)/j!
0≤j≤t i=1
0≤j≤t
3.9 设更新过程 N (t) 的更新间隔是 Xn, i1, i2, . . . , in 是 1, 2, . . . , n 的一
个全排列. 对于 n ≥ 2, 证明
= 1/p − 1
3.7 对于泊松过程验证定理 1.2(2)成立.
证明: 对于泊松过程 N (t) 有 m(t) = E(N (t)) = λ·t, 而 λ·(t) 是连续的且 在 t≥0 时是严格增加的,当然是单调不减的, 也即定理 1.2(2) 对于泊松过 程是成立的。
3.8 设更新过程N(t)的更新间隔是来自总体 X 的随机变量。

(完整版)随机过程习题答案

(完整版)随机过程习题答案

(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。

解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。

解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。

随机过程试题及解答

随机过程试题及解答

2016随机过程(A )解答1、(15分)设随机过程V t U t X +⋅=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。

1) 求)(t X 的一维概率密度函数;2) 求)(t X 的均值函数、相关函数和协方差函数。

3) 求)(t X 的二维概率密度函数; 解:由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +⋅=)(也服从正态分布,且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==⋅+=⋅+=+{}{}{}{}22()()99D t D X t D U t V t D U D V t ==⋅+=+=+故: (1) )(t X的一维概率密度函数为:()222218(1)(),x t t t f x ex ---+=-∞≤≤∞(2) )(t X 的均值函数为:()22m t t =+;相关函数为:{}{}(,)()()()()R s t E X s X t E U s V U t V =⋅=⋅+⋅⋅+{}{}{}22()13()413st E U s t E U V E V st s t =⋅++⋅⋅+=⋅++⋅+协方差函数为:(,)(,)()()99B s t R s t m s m t st =-⋅=+(3)相关系数:(,)s t ρρ====)(t X 的二维概率密度函数为:2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x eρ⎧⎫⎡⎤-----⎪⎪+⎢⎥⎨⎬-++⎢⎥⎪⎪⎣⎦⎩⎭=2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。

问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00—14:00之间到达商店顾客数的数学期望和方差是多少? 解:到达商店顾客数服从非齐次泊松过程。

随机过程第三章作业答案

随机过程第三章作业答案
k =0 ∞ ∞
Yk-1 ]] ≤ b ⋅ ∑ E[I{T ≥ k} ]
k =0
= b ⋅ ∑ P(T ≥ k) = b(1 + E[T]) < ∞,即E[W] < ∞
10证明:利用停时定理2 由已知P(T<∞)=1,得条件1已满足。
2 2 又∀n ≥ 1,E[X T ∧ n ]=E[|X T ∧ n | ] ≤ c;
利用柯西-施瓦茨不等式(E[XY])2 ≤ E[X 2 ]E[Y 2 ]: 令Y=1,(E[|X T ∧ n |])2 ≤ E[|X T ∧ n |2 ]E[12 ] ≤ c ∴ E[|X T ∧ n |] ≤ c,进而有E[ sup|X T ∧ n |] ≤ c < ∞,
第三章习题解答
3-(1) ∵{ X n , n ≥ 0}是鞅, ∴ E[X 0 ] = E[X n ] = 0,且有 E[Yk ]=E[X k -X k-1 ]=0;Var(Yk )=E[Yk2 ];Var(X n )=E[X 2 n ];
2 E[Yk2 ]=E[(X k -X k-1 )2 ]=E[X k +X 2 k-1 -2X k X k-1 ] 2 =E[X k ]+E[X 2 其中 k-1 ]-2E[X k X k-1 ],
9 (一)常规证明: 右侧不等号: E[X T ∧ n ]=E[X T ∧ n ⋅ I{T ≥ n} ]+E[X T ∧ n ⋅ I{T<n} ]=E[X n ⋅ I{T ≥ n} ]+E[X T ⋅ I{T<n} ] =E[X n ⋅ I{T ≥ n} ]+E[∑ X k ⋅ I{T=k} ]
k =0 n-1
E[X k X k-1 ]=E[E[X k X k-1|X 0 X1 =E[X k-1E[X k |X 0 X1

随机过程答案

随机过程答案

随机过程第三章与第四章习题解答3.1 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

4030(30)((1)40)!k k P N e k -=≤=∑。

3.2 解:法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。

1N T 表示1()N t =1N 的发生时刻,2N T 表示2()N t =2N 的发生时刻。

1111111111()exp()(1)!N NN T f t t t N λλ-=-- 2221222222()exp()(1)!N NN T f t t t N λλ-=--1212121221112,12|12211122212(,)(|)()exp()exp()(1)!(1)!N N N N N NNN N T T T T T f t t f t t f t t t t t N N λλλλ--==---- 12212121112211122210012()exp()exp()(1)!(1)!NNt N N N N P T T dt t t t t dt N N λλλλ∞--<=----⎰⎰(2)当1N =2N 、1λ=2λ时,12121()()2N N N N P T T P T T <=>=法二:(1)乘车到来的人数可以看作参数为1λ+2λ的泊松过程。

令1Z 、2Z 分别表示乘坐公共汽车1、2的相邻两乘客间到来的时间间隔。

则1Z 、2Z 分别服从参数为1λ、2λ的指数分布,现在来求当一个乘客乘坐1路汽车后,下一位乘客还是乘坐1路汽车的概率。

212211122210()exp()exp()z p P Z Z dz z z dz λλλλ∞=<=--⎰⎰112λλλ=+。

故当一个乘客乘坐1路汽车后,下一位乘客乘坐2路汽车的概率为1-p 212λλλ=+上面的概率可以理解为:在乘客到来的人数为强度1λ+2λ的泊松过程时,乘客分别以112λλλ+概率乘坐公共汽车1,以212λλλ+的概率乘坐公共汽车2。

随机过程2016quiz及答案3

随机过程2016quiz及答案3

• Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit. Do not write in the table to the right.
Stochastic Processes
Quizz 3: The Poisson Award - Page 4 of 9
14/12/16
3. (20 points) A coin with probability p of Heads is flipped repeatedly. For (a) and (b), suppose that p is a known constant, with 0 < p < 1. (a) (5 points) What is the expected number of flips until the pattern HT is observed? (b) (5 points) What is the expected number of flips until the pattern HH is observed? (c) (10 points) Now suppose that p is unknown, and that we use a Beta(a, b) prior to reflect our uncertainty about p (where a and b are known constants and are greater than 2). In terms of a and b, find the corresponding answers to (a) and (b) in this setting.

(完整版)随机过程习题和答案

(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程习题答案

随机过程习题答案

随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。

(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。

解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。

2、设和为独立的随机变量,期望和方差分别为和。

(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。

解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。

解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。

(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。

解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。

(2)典型样本函数是一条正弦曲线。

(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。

(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)当i =j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。

经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。

(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:,(2)因此:P112/9.解:(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵 的特征多项式为:由此可得特征值为:,及特征向量:,则有:因此有:(1)令矩阵P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。

随机过程习题及答案

随机过程习题及答案

第二章 随机过程分析1.1 学习指导 1.1.1 要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。

1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。

可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。

2. 随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。

ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1)如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为1111111(,)(, ) (2 - 2)∂=∂F x t f x t x对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率{}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤称为随机过程ξ (t )的二维分布函数。

如果2212122121212(,;,)(,;,) (2 - 4)F x x t t f x x t t x x ∂=∂⋅∂存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。

对于任意时刻t 1,t 2,…,t n ,把{}n 12n 12n 1122n n ()(),(),,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。

如果n n 12n 12n n 12n 12n 12n(x )() (2 - 6)∂=∂∂∂F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,,存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。

(完整版)随机过程习题

(完整版)随机过程习题

随机过程复习一、回答: 1、 什么是宽平稳随机过程?2、 平稳随机过程自相关函数与功率谱的关系?3、 窄带随机过程的相位服从什么分布?包络服从什么分布?4、什么是白噪声?性质?二、计算:1、随机过程t A t X ωcos )(=+t B ωsin ,其中ω是常数,A 、B 是相互独立统计的高斯变量,并且E[A]=E[B]=0,E[2A ]=E[2B ]=2σ。

求:)(t X 的数学期望和自相关函数?2、判断随机过程)cos()(φω+=t A t X 是否平稳?其中ω是常数,A 、φ分别为均匀分布和瑞利分布的随机变量,且相互独立。

πϕφ21)(=f πϕ20 ; 222)(σσa A eaa f -=0 a3、求随机相位正弦函数)cos()(0φω+=t A t X 的功率谱密度,其中A 、0ω是常数,φ为[0,2π]内均匀分布的随机变量。

4、求用)(t X 自相关函数及功率谱表示的)cos()()(0φω+=t t X t Y 的自相关函数及谱密度。

其中,φ为[0,2π]内均匀分布的随机变量,)(t X 是与φ相互独立的随机过程。

5、设随机过程}),cos()({0+∞<<-∞+=t Y t A t X ω,其中0ω是常数,A 与Y 是相互独立的随机变量,Y 服从区间)2,0(π上的均匀分布,A 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-000)(2222x x ex x f x A σσ试证明)(t X 为宽平稳过程。

解:(1))}{cos()()}cos({)(00Y t E A E Y t A E t m X +=+=ωω⎰⎰=+=∞+-πσωσ20002220)cos(22dy y t dx exx 与t 无关(2) )()}({cos )()}cos({)}({)(20222022A E Y t E A E Y t A E t X E t X≤+=+==ωωψ dt e tdx e xA E t x ⎰⎰∞+-∞+-==0222223222221)(σσσσσ,20222022|2|222σσσσσ=-=+-=∞+-∞+-∞+-⎰t t tedt ete所以+∞<=)}({)(22t X E t Xψ (3))]}cos()][cos({[),(201021Y t A Y t A E t t R X ++=ωω )}cos(){cos(][20102Y t Y t E A E ++=ωω dy t t y t t πωωωσπ21)](cos )[cos(2121202010202--++=⎰)(cos 1202t t -=ωσ 只与时间间隔有关,所以)(t X 为宽平稳过程。

应用随机过程第3章习题简答

应用随机过程第3章习题简答

第 3 章补充作业
1. 设 {N (t ), t 0} 是速率为 的泊松过程,请计算其均值函数、自相关函数与
协方差函数。
N (t ) E ( N (t )) t ,
RN (s, t ) E ( N (s) N (t )) E{N (s)(( N (t ) N (s)) N (s)]} ,(s t )
F( X1 , X 2 , X 3 ) (t1 , t2 , t3 ) P{ X1 t1 , X 2 t2 , X 3 t3} i 1(1 e ti )
3
( X1 , X 2 , X 3 ) 的联合密度为:
f ( X1 , X 2 , X 3 ) (t1 , t2 , t3 ) 3e (t1 t2 t3 )
et?0t??rfs1tdt??ss?wfs1tdtw?r?1?e?r?1?det??s2?w?r?1??edsdet当w1r时?0平均到家时间是s的增函数所以1的ds期望时间在s0时最小
随机过程_第 3 章泊松过程习题简答
教材 P16 习题 2,4,5,10,11,13,15,17,21
4. 计算泊松过程前三个事件到达时刻 S1,S2,S3 的联合分布。 解:设事件到达的时间间隔为 { X n , n 0} ,则有 X n 独立同分布于参数为λ的 指数分布,进而, ( X1 , X 2 , X 3 ) 的联合分布函数为:
(1) P{ X (3) 5} e 3
(3 )5 ; 5!
P{ X (2) 5, X (3) X (2) 0} P{ X (3) 5} e2 (2 )5 e 2 5! ( )5 ; 5 (3 ) 3 e3 5!
( 3 ) P{ X (2) 5 | X (3) 5}

《信息与通信工程中的随机过程》习题解答 第3章

《信息与通信工程中的随机过程》习题解答 第3章

相关系数为: ρ = E {UV } = E { X 2 − Y 2 } = E { X 2 } − E { X 2 } = 0 由此得到,U 和V 的联合概率密度为:
1 − e fU ,V (u, v ) = 4π
u 2 +v 2 4
② 有①的结论,容易得到:
fU (u ) =
fV (v ) =
1 4π
2⎪ ⎫
⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭
第 5 页 共 10 页
《随机过程》作业标准答案·第 1 章
所以: 又:
dX (t ) = A。 dt
2⎪ ⎧ ⎫ ⎪ A A 2 ⎪ ⎪ 2 ⎪ ⎪ (t + τ ) + B(t + τ ) − t − Bt ⎪ ⎪ ⎪ 2 ⎪ 2 lim E ⎨ − (At + B ) ⎬ ⎪ τ →∞ ⎪ τ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 2⎪ ⎧ ⎫ ⎪ A ⎪ ⎪ 2 ⎪ ⎪ τ + At τ + B τ − (At + B )τ ⎪ ⎪ 2 ⎪ ⎪ = lim E ⎨ ⎬ ⎪ τ →∞ ⎪ τ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 2 ⎧ ⎫ τ 1 ⎪ ⎪ 2 2 E { A2 } = 0 = lim E ⎪ ⎨ Aτ ⎪ ⎬ = lim ⎪ τ →∞ ⎪ ⎪4 ⎪ τ →∞ 4 ⎩ ⎭
所以:
⎧ X1 = Y1 ⎪ ⎪ ⎪ ⎪ X2 = − Y1 + Y2 ⎪ ⎪ ⎨ ⎪ " ⎪ ⎪ ⎪ X =− Yn −1 + Yn ⎪ ⎪ ⎩ n
系数矩阵为下三角矩阵,容易求得 Jocobi 行列式为: J = 1 。所以: fY Y "Y (y1, y2 , ", yn ) = J fX X "X (y1, y2 − y1, ", yn − yn −1 ) 1 2 n 1 2 n = fX (y1 )fX (y2 − y1 )" fX (yn − yn −1 )

(完整版)随机过程习题答案

(完整版)随机过程习题答案

随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。

解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。

解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。

随机过程习题和答案

随机过程习题和答案

、1.1设二维随机变量(X , F)的联合概率密度函数为:=—i—[l241-ι>⅛= "k"QTh Xl-JF)1.2 设离散型随机变量X服从几何分布:Hm=(Ip)HPJt=U-试求/的特征函数,并以此求其期望E(X)与方差I K X)¾0 = Efr ir) = ∑e⅛ = *)解:一=⅛α-ri M P=√^∑^α-p)t U O-P) ⅛J1—(I-JI)1—q/(O)=α⅛24(1-小丄0<y<x<l苴它试求:在OJu <■ 1时,求I『F)解:J;240 H)JKfc0<y<l Jj2Jf(I_y)3 0<JF<1P 其它^{θ其它当OJXI 时,Aw)2OT(Xy)y<x<l其它所以:-⅛(0)二丄f PZUr=J Er3-(JEIf)3=^^-^=4PPp2.1袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t 对应随机变量x(t^3如果对t时取得红球e t如果对t时取得白球试求这个随机过程的一维分布函数族2.2设随机过程 W 加吨MIF)∙ gZ I叫,其中吗是常数,/与F是相互独立的随机变量,F服从区间(°2刘上的均匀分布,/服从瑞利分布,其概率密度为x>0x≤0试证明Xu)为宽平稳过程。

解:( 1)⑷+F)} q啊诚如+ f)}= 与无关(2)枚F(M 仪加血I(Q/伽说如")汁F(才),f _ t t⅛(Q) =-J PQ ÷g)= -te^t∣Γ÷p ^dt =-2σ1e^i∣Γ=2σ3所以必U)啟0⑴卜"(3)R lM壊M∞¼⅛+Hl∕∞Ψ⅛+y)]}=豺]£{oKs(A +Γ)∞<β(A +Γ)}=2^Jtt 2{α≈(0A + β⅛+ y)-rasfflfc A)I^⅛心’皿叫仏Z L)只与时间间隔有关,所以XU)为宽平稳过程2.3设随机过程 X(t)=Ucos2t,其中U是随机变量,且 E(U)= 5, D(U)= 5.求: (1)均值函数;(2)协方差函数;(3)方差函数2.4设有两个随机过程 X(t)=Ut2, Y(t)=Ut3,其中U是随机变量,且D(U) = 5.试求它们的互协方差函数2.5设代B是两个随机变量,试求随机过程X(t) =At ∙3B,t∙ T =(」:「:)的均值函数和自相关函数若A, B相互独立,且A~ N(1,4), B ~U (0,2),则mχ (t)及Rχ(t1,t2)为多少?3.1 一队学生顺次等候体检。

随机过程作业和答案第三章

随机过程作业和答案第三章

第三章 马尔科夫过程1、将一颗筛子扔多次。

记X n 为第n 次扔正面出现的点数,问{X(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

又记Y n 为前n 次扔出正面出现点数的总和,问{Y(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

解:1)由已知可得,每次扔筛子正面出现的点数与以前的状态无关。

故X(n)是马尔科夫链。

E={1,2,3,4,5,6} ,其一步转移概率为:P ij = P ij =P{X(n+1)=j ∣X(n)=i }=1/6 (i=1,2,…,6,j=1,2,…,6) ∴转移矩阵为2)由已知可得,每前n 次扔正面出现点数的总和是相互独立的。

即每次n 次扔正面出现点数的总和与以前状态无关,故Y(n)为马尔科夫链。

其一步转移概率为其中2、一个质点在直线上做随机游动,一步向右的概率为p , (0<p<1),一步向左的概率为 q , q =1-p 。

在x = 0 和x = a 出放置吸收壁。

记X(n)为第n 步质点的位置,它的可能值是0,1,2,···,a 。

试写出一步转移概率矩阵。

解:由已知可得, 其一步转移概率如下:故一步转移概率为3、做一系列独立的贝努里试验,其中每一次出现“成功”的概率为p ( 0<p<1 ) ,出现“失败”的概率为q , q = 1-p 。

如果第n 次试验出现“失败”认为 X(n) 取得数值为零;如果第n 次试验出现“成功”,且接连着前面k 次试验都出现“成功”,而第 n-k 次试验出现“失败”,认为X(n)取值k ,问{X(n) , n =1,2,···}是马尔科夫链吗?试写出其一步转移概率。

解:由已知得:故为马尔科夫链,其一步转移概率为616161616161616161616161616161616161P ={6,,2,1,6/1,,8,7,,0)1,(+++=<++==+i i i j i j i i i j ij n n P 或)1(6,,2,1;6,,2,1,+++=++=n n n j n n n n i {}α,,2,1,0 =E )(0,1;)0(0,1)1,1(0,,1,,2,1101,1,ααααα≠==≠==+-≠===-=-+j P P j P P i i j P q P P P x j j ij i i i i 而时,当 10000000000000001Pp q p q p q ={}{}m m m m m m i n X l n X i n X i n X i n X l n X P ==+=====+)(0)()(,,)(,)(0)(2211 {}{}mm m m m m in X k l n X i n X i n X i n X k l n X P ==+=====+)()()(,,)(,)()(22114、在一个罐子中放入50个红球和50个蓝球。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案一、单项选择题(每题2分,共10分)1. 随机过程的数学定义中,通常需要满足哪些条件?A. 样本空间、概率测度、随机变量B. 样本空间、概率测度、随机函数C. 样本空间、随机变量、随机函数D. 概率测度、随机变量、随机函数答案:B2. 马尔可夫链的无记忆性指的是什么?A. 过程的未来状态仅依赖于当前状态B. 过程的未来状态仅依赖于过去的状态C. 过程的未来状态依赖于当前和过去的状态D. 过程的未来状态依赖于所有历史状态答案:A3. 在随机过程中,如果一个过程的任何有限维分布都是联合正态的,则称该过程为什么?A. 正态过程B. 高斯过程C. 联合正态过程D. 多元正态过程答案:B4. 以下哪个不是平稳随机过程的性质?A. 一阶矩不随时间变化B. 任意两个不同时间点的协方差仅依赖于时间差C. 过程的均值随时间变化D. 过程的自相关函数仅依赖于时间差答案:C5. 随机过程的谱密度函数与自相关函数之间的关系是什么?A. 互为傅里叶变换B. 互为拉普拉斯变换C. 互为Z变换D. 互为梅林变换答案:A二、填空题(每题3分,共15分)1. 如果随机过程的样本路径是连续的,则称该过程为_________。

答案:连续过程2. 随机过程的样本函数是定义在时间轴上的_________。

答案:随机变量3. 对于一个平稳过程,其自相关函数R(τ)仅依赖于时间差τ,而不依赖于绝对时间t,即R(t1, t2) = R(t1 - t2) = R(τ),其中τ = t2 - t1。

这种性质称为_________。

答案:时间平移不变性4. 随机过程的遍历性是指过程的_________等于其统计平均。

答案:时间平均5. 随机过程的遍历性分为_________遍历性和_________遍历性。

答案:强,弱三、简答题(每题10分,共20分)1. 简述什么是泊松过程,并给出其概率质量函数。

答案:泊松过程是一种描述在固定时间或空间间隔内随机事件发生次数的随机过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.Players A and B take turns in answering trivia questions, starting with player A answering the first question. Each time A answers a question, she has probability p 1 of getting it right. Each time B plays, he has probability p 2 of getting it right.(a)If A answers m questions, what is the PMF of the number of questions she gets right?The r.v.is Bin(m,p 1),so the PMF is mkp k 1(1 p 1)m k for k 2{0,1,...,m }.(b)If A answers m times and B answers n times,what is the PMF of the total number of questions they get right (you can leave your answer as a sum)?Describe exactly when/whether this is a Binomial distribution.Let T be the total number of questions they get right.To get a total of k questions right,it must be that A got 0and B got k ,or A got 1and B got k 1,etc.These are disjoint events so the PMF isP (T =k )=k X j =0✓mj ◆p j 1(1 p 1)m j ✓n k j◆p k j 2(1 p 2)n (k j )for k 2{0,1,...,m +n },with the usual convention that n k is 0for k >n .This is the Bin(m +n,p )distribution if p 1=p 2=p ,as shown in class (using the story for the Binomial,or using Vandermonde’s identity).For p 1=p 2,it’s not a Binomial distribution,since the trials have di ↵erent probabilities of success;having some trials with one probability of success and other trials with another probability of success isn’t equivalent to having trials with some “e ↵ective”probability of success.(c)Suppose that the first player to answer correctly wins the game (with no prede-termined maximum number of questions that can be asked).Find the probability that A wins the game.Let r =P (A wins).Conditioning on the results of the first question for each player,we have r =p 1+(1 p 1)p 2·0+(1 p 1)(1 p 2)r,which gives r =p 11 (1 p 1)(1 p 2)=p 1p 1+p 2 p 1p 2.1SI 241 Probability & Stochastic Processes, Fall 2016Homework 3 Solutions随机过程2016作业及答案2.A message is sent over a noisy channel.The message is a sequence x1,x2,...,x n of n bits(x i2{0,1}).Since the channel is noisy,there is a chance tha t any bit might be corrupted,resulting in an error(a0becomes a1or vice versa).Assume that the error events are independent.Let p be the probability that an individual bit has an error(0<p<1/2).Let y1,y2,...,y n be the received message(so y i=x i if there is no error in that bit,but y i=1 x i if there is an error there).To help detect errors,the n th bit is reserved for a parit y check:x n is defined to be 0if x1+x2+···+x n 1is even,and1if x1+x2+···+x n 1is odd.When the message is received,the recipient checks whether y n has the same parit y as y1+y2+···+y n 1. If the parity is wrong,the recipient knows that at least one error occurred;otherwise, the recipient assumes that there were no errors.(a)For n=5,p=0.1,what is the probabilit y that the received message has errors which go undetected?Note that P n i=1x i is even.If the number of errors is even(and nonzero),the errors will go undetected;otherwise,P n i=1y i will be odd,so the errors will be detected.The number of errors is Bin(n,p),so the probability of undetected errors when n=5,p=0.1is✓52◆p2(1 p)3+✓54◆p4(1 p)⇡0.073.(b)For general n and p,write down an expression(as a sum)for the probability that the received message has errors which go undetected.By the same reasoning as in(a),the probability of undetected errors isX k even,k 2✓n k◆p k(1 p)n k.(c)Give a simplified expression,not involving a sum of a large number of terms,for the probabilit y that the received message has errors which go undetected.Hint for(c):Lettinga=X k even,k 0✓n k◆p k(1 p)n k and b=X k odd,k 1✓n k◆p k(1 p)n k,the binomial theorem makes it possible tofind simple expressions for a+b and a b, which then makes it possible to obtain a and b.2Let a,b be as in the hint.Thena +b =X k 0✓n k ◆p k (1 p )n k =1,a b =X k 0✓n k ◆( p )k (1 p )n k =(1 2p )n .Solving for a and b gives a =1+(1 2p )n 2and b =1 (1 2p )n2.Xk even,k 0✓n k ◆p k (1 p )n k =1+(1 2p )n 2.Subtrac ting o ↵the possibility of no errors,we haveX k even,k 2✓n k ◆p k (1 p )n k =1+(1 2p )n 2 (1 p )n .Miracle check :note that letting n =5,p =0.1here gives 0.073,which agrees with (a);letting p =0gives 0,as it should;and letting p =1gives 0for n odd and 1for n even,which agai n makes sense.33.Let X be a r.v. whose possible values are 0, 1, 2,...,with CDF F .In some countries, rather than using a CDF, the convention is to use the function G defined by G (x )=P (X <x ) to specify a distribution. Find a way to convert from F to G , i.e., if F is a known function show how to obtain G (x )for all real x .Write G (x )=P (X x ) P (X = x )=F (x ) P (X = x ).If x is not a nonnegative integer, then P (X = x )=0so G (x )=F (x ). For x a nonnegative integer,P (X = x )=F (x ) F (x 1/2)since the PMF corresponds to the lengths of the jumps in the CDF. (The 1/2was chosen for concreteness; we also have F (x 1/2) = F (x a )for any a 2 (0, 1].)Thus,G (x )=(F (x )if x /2{0,1,2,...}F (x 1/2)if x 2{0,1,2,...}.t More compact ly, we can also write G (x )=lim !x F (t ), where the denotes taking a limit from the left (recall that F is right continuous), and G (x )=F (d x e 1),where d x e is the “ceiling” of x (the smallest integer greater than or equal to x ).4.There are n eggs, each of which hatches a chick with probability p (independently).Eac h of these chicks survives with probability r , independently. What is the distri-bution of the number of chicks that hatch? What is the distribution of the number of chicks that survive? (Give the PMFs; also give the names of the distributions and their parame ters, if they are distributions we have seen in class.)⇤⇥ ©⇤⇥ x ⇤⇥ ⇤⇥ ⇤⇥ ©⇤⇥ ©⇤⇥ x ⇤⇥ ©⇤⇥ ⇤⇥©Let H be the number of eggs that hatch and X be the number of hatchlings that survive.Think of each egg as a Ber noulli trial,where for H we define “success”to mean hatching,while for X we define “success”to mean surviving.For example,in the picture above,where ⇤⇥ ©denotes an egg that hatches with the chick surviving,⇤⇥ x denotes an egg that hatched but whose chick died,and ⇤⇥ denotes an egg that hatch,the events H =7,X =5occurred.By the of the Binomial,H ⇠Bin(n,p ),with PMF P (H =k )= n k p k (1 p )n k for k =0,1,...,n .The eggs independently have probability pr each of hatching a chick that survives.By the story of the Binomial,we have X ⇠Bin(n,pr ),with PMF P (X =k )= n k (pr )k (1 pr )n k for k =0,1,...,n .5.A scientist wishes to study whether men or women are more likely to have a certain disease, or whether they are equally likely. A random sample of m women and n men is gathered, and each person is tested for the disease (assume for this problem that the test is completely accurate). The numbers of women and men in he sa B n(n,w p ho ha He ve re p h e di and seas p e ar are e X unkno and Y wn,re p s and ec w tiv e e r a ly,Y i 2.1 2 e w in ith tereste d ⇠Bi in n(testin g p 1) a the le mp t t X ,m nd ⇠) “null hypothesis” p 1 = p 2.(a) Consider a 2 by 2 ta ble listing with rows corresponding to disease status and columns corresponding to gender, with each entry the count of how many people have that disease status and gender (so m + n is the sum of all 4 entries). Supp ose that it is observed that X + Y = r .The Fisher exact test is based on conditioning on both the row and column sums, so m, n, r are all treated as fixed, and then seeing if the observed value of X is “extreme” compared to this conditional distribution. Assuming the null hypothesis, use Ba yes’ Rule to find the conditional PMF of X given X + Y = r .Is this a distribution we have studied in class? If so, say which (and give its paramet ers).First let us build the 2 ⇥ 2 table (conditioning on the totals m, n, and r ).4Women Men Total Disease x r No Diseasem x r r x +n x m +n r Total n m m +nNext,let us compute P (X =x |X +Y =r ).By Ba yes’rule,P (X =x |X +Y =r )=P (X +Y =r |X =x )P (X =x )P (X +Y =r )=P (Y =r x )P (X =x )P (X +Y =r ).Y Assum Bi i n n (g n,th p e )w nu i l t l h h X ypot inde h p esi e s nde an n d t l of etti Y ng ,s p o =X p +1Y =p 2Bi ,w n(e n h +ave m,X p ).⇠T Bi h n us (,m,p )and ⇠⇠r x p r x p p )r n (1 r +x n m x p x (1 p )m x (1m + n r p )m +n r P (X =x |X +Y =r )== m nx m +r n rx .So the conditional distribution is Hypergeometric with parameters m, n, r.(b) Give an intuitive explanation for the distribution of (a), explaining how this problem relates to other problems we’ve seen, and why p 1 disappears (magica lly?) in the distribution found in (a).This problem has the same structure as the elk (capture-recapture) problem. In the elk problem, we take a sample of elk from a population, where earlier some were tagged, and we want to know the distribution of the number of tagged elk in the sample. By analogy, think of the women as corresponding to tagged elk, and men as corresponding to unta gged elk. Having r people be infected with the disease corresponds to capturing a new sample of r elk the number of women among the r diseased individuals corresponds to the number of tagged elk in the new sample.Under the null hypothesis and given that X + Y = r ,the set of diseased people is equally likely to be any set of r people.It makes sense that the conditional distribution of the number of diseased women does not depend on p ,since once we know tha t X + Y = r ,we can work directly in terms of the fact that we have a population with r diseased and m + n r undiseased people, without worrying about the value of p that originally generated the population characteristics.5。

相关文档
最新文档