数学模型课程设计三答案
数学模型第三版课后答案
《数学建模》习题解答第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学模型第三版课后习题答案.doc
《数学模型》作业解答第七章( 2008 年 12 月 4 日)1.对于节蛛网模型讨论下列问题:( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取决于 y k ,给出稳定平衡的条件,并与节的结果进行比较.( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格析稳定平衡的条件是否还会放宽 .解:( 1)由题设条件可得需求函数、供应函数分别为:yk 1f xk 1x k)(2x k 1h( y k )在 P 0 (x 0 , y 0 )点附近用直线来近似曲线 f , h ,得到y k 1y 0 (xk 1x k x 0 ),2xk 1x 0( y ky 0 ) ,由( 2)得x k 2 x 0( y k 1y 0 )( 1)代入( 3)得xk 2x 0(xk 1xkx 0 )22x k 2 x k 1 x k 2x 0 2x 0对应齐次方程的特征方程为22() 2 8特征根为1, 24y k 和 y k 1 确定 . 试分(1)( 2)(3)当8 时,则有特征根在单位圆外,设8 ,则1,2( ) 2( ) 2 84224 1,212即平衡稳定的条件为2与 P 207的结果一致 .( 2)此时需求函数、供应函数在P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为:y k 1y 0( x k 1 x kx 0 ),( 4)2xk 1x 0( y ky k 1y 0 ) ,( 5)2由( 5)得, (xx 0) β(yyyk 1y 0)( 6 )2 k 3k 2将( 4)代入( 6),得2( x k 3 x 0 )(xk 2xk 1x 0 )(x k 1xkx 0 )224 x k 3x k 2 2 x k 1x k4 x 04x 0对应齐次方程的特征方程为43 220 (7)代数方程( 7 )无正实根,且αβ ,,24不是( 7)的根 . 设( 7)的三个非零根分别为 1, 2, 3,则12341 22 331212 34对( 7)作变换:, 则123q 0,p其中 p1(22 2), q1(833 2 2)412412361q( q ) 2 ( p ) 3q( q )2( p33) 32232 23用卡丹公式:2w 3q( q ) 2 ( p )3 w 2 3q( q ) 2 ( p ) 322322 3 3w23q( q ) 2 ( p )3w 3q( q ) 2 ( p ) 3223223其中 w1i 3 ,2求出 1,2,3 ,从而得到1 ,2 ,3 ,于是得到所有特征根 1的条件 .2.已知某商品在 k 时段的数量和价格分别为 x k 和 y k ,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为y kf (x k ) 和 x k 1g(yky k 1) . 试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件 .解:已知商品的需求函数和供应函数分别为y kf (x k ) 和 x k 1g (yky k 1 ) .2设曲线 f 和 g 相交于点 P 0 (x 0 , y 0 ) ,在点 P 0 附近可以用直线来近似表示曲线f 和g :y k y 0 ( x k x 0 ) ,----------------------( 1)x k1x 0( y ky k 1 y 0 ) , 0--------------------( 2)2从上述两式中消去y k 可得2x k 2xk 1x k 2(1)x 0 , k 1,2, , -----------(3)上述( 3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程 .为了寻求 P 0 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:2 2容易算出其特征根为() 2 8 1,24---------------( 4)当8 时,显然有2( ) 28----------- ( 5)44从而 22,2 在单位圆外.下面设8 ,由 (5) 式可以算出1, 22要使特征根均在单位圆内,即1, 21 ,必须2 .故 P 0 点稳定平衡条件为2 .3. 已知某商品在 k 时段的数量和价格分别为 x k 和 y k ,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为y k 1f (xk1x k) 和 x k 1g ( y k ) . 试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件 .解:已知商品的需求函数和供应函数分别为y k1f ( x k 1x k) 和 x k 1 g( y k ) .2设曲线 f 和 g 相交于点( x 0 , y 0 ),在点 0 附近可以用直线来近似表示曲线f 和g :P Py k 1y 0(xk 12 x kx 0 ) ,0 --------------------( 1)x k1x 0 ( y ky 0 ) ,--- ----------------( 2) 由( 2)得 x k2 x 0( y k1y 0 )--------------------( 3)( 1)代入( 3),可得 x k2x 0( x k1x kx 0 )22x k2x k 1x k 2x 0 2 x 0 , k 1,2, , --------------(4)上述( 4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程 .为了寻求 P 0 点稳定平衡条件,我们考虑( 4)对应的齐次差分方程的特征方程:22容易算出其特征根为() 2 8 1,24---------------( 4)当8 时,显然有2 ( ) 2 8----------- ( 5)4 4从而22, 2 在单位圆外.下面设8 ,由(5) 式可以算出1, 22 要使特征根均在单位圆内,即1, 2 1 ,必须 2 .故 P0点稳定平衡条件为 2 .《数学模型》作业解答第八章( 2008 年 12 月 9 日)1.证明节层次分析模型中定义的n 阶一致阵 A 有下列性质:(1) A 的秩为1,唯一非零特征根为n ;(2) A 的任一列向量都是对应于n 的特征向量.证明:(1)由一致阵的定义知: A 满足a ij a jk a ik , i, j , k 1,2, , n于是对于任意两列i, j ,有a ika jka ij ,k 1,2, ,n . 即i列与j 列对应分量成比例.从而对 A 作初等行变换可得:b11 b12 b1n初等行变换0 0 0A B0 0 0这里 B 0.秩B1 ,从而秩 A 1再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P,使 PA B ,于是c 11 c12c1nPAP 1 BP 1 0 0 0 C0 0 0易知 C的特征根为c11,0, ,0 (只有一个非零特征根).又A ~C ,A 与 C 有相同的特征根,从而 A 的非零特征根为 c 11 ,又 对于任意矩阵有12 nTr Aa11a22ann1 11n . 故 A 的唯一非零特征根为 n .a 1k, a2kT1,2, , n(2)对于 A 的任一列向量, , a nk , k有na 1 jajkna 1kna 1 kj 1 j 1na 2 jajk na2 kna 2 kTn a 1k , a 2kTA a 1k , a 2k , , a nkj 1 j 1, , a nknnna nka njajkankj 1j 1A 的任一列向量 a 1k , a 2k , , a nk T 都是对应于 n 的特征向量 .7. 右下图是 5 位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出 5 位选手的名次 .解:这个 5 阶竞赛图是一个5 阶有向 Hamilton 图 . 其一个有2向 Hamilton 圈为 314523. 所以此竞赛图是双向连通的 .4 5 1 2 32 4 53 11353 1243 14 52等都是完全路径 .此竞赛图的邻接矩阵为0 1 0 1 00 0 1 1 05A1 0 0 040 0 1 0 11 1 1 0 0令 e 1,1,1,1,1 T,各级得分向量为S1Ae 2,2,1,2,3 T,S2AS S 3AS 27,6,4,7,9 T ,S 4AS14,3,2,4,5 T ,313,11,7,13,17 T由此得名次为5, 1( 4), 2,3(选手1和4名次相同).注:给 5 位网球选手排名次也可由计算 A 的最大特征根和对应特征向量S 得到:1.8393,S0.2137,0.1794,0.1162,0.2137,0.2769 T数学模型作业( 12 月 16 日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层越海方案的最优经济效益准则层省收岸间当地建筑时入商业商业就业方案层建桥梁修隧道设渡轮2.简述层次分析法的基本步骤 . 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪 3 个层次?具体内容分别是什么?答:层次分析法的基本步骤为:( 1).建立层次结构模型;( 2).构造成对比较阵;( 3).计算权向量并做一致性检验;( 4).计算组合权向量并做组合一致性检验.对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3 个层次 .目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位 3 等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪 3 个层次?试给出一致性指标的定义以及n 阶正负反阵 A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这 3 个层次;一致性指标的定义为:CIn .n阶正互反阵A 是一致阵的充要条件为:A 的最大特征根n 1=n .第九章( 2008 年 12 月 18 日)1.在 9.1节传送带效率模型中 , 设工人数 n 固定不变 . 若想提高传送带效率D, 一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子, 其它条件不变, 于是每个工人在任何时刻可以同时触到两只钩子, 只要其中一只是空的, 他就可以挂上产品, 这种办法用的钩子数量与第一种办法一样. 试推导这种情况下传送带效率的公式, 从数量关系上说明这种办法比第一种办法好.解: 两种情况的钩子数均为2m .第一种办法是 2m 个位置,单钩放置2m 个钩子;第二种办法是 m 个位置,成对放置 2m 个钩子.① 由 9.1节的传送带效率公式,第一种办法的效率公式为2m 1nD11n2m当n较小, n1时,有2mD2m 1 11 n n 1 1 n 1n2m 8m 24mD 1 E,nE4m② 下面推导第二种办法的传送带效率公式:对于 m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的 m 个钩对.任一只钩对被一名工人接触到的概率是1 ;m 1任一只钩对不被一名工人接触到的概率是1;1, q 1 1m记 p.由工人生产的独立性及事件的互不相容性.得,任一钩对为空m m的概率为 q n,其空钩的数为2m ;任一钩对上只挂上1件产品的概率为npq n 1,其空钩数为 m .所以一个周期内通过的2m 个钩子中,空钩的平均数为2m q n m npq n 1 m 2q n npq n 1于是带走产品的平均数是2m m 2q n npq n 1 ,未带走产品的平均数是n 2m m 2q n npq n 1 )此时传送带效率公式为m 2q n npq n 1 nn 1n 1D ' 2m m 2 2 1 1 1n n m m m ③ 近似效率公式:nn n n 1 1 n n 1 n 2 1 由于 11 1m 2 m2 6 m3m1 n 1n 1 n 1 n 2 11 1m m 2 m2D ' 1 n 1 n 2 6m2当 n 1时,并令 E' 1 D' ,则E'n26m 2④ 两种办法的比较:由上知: En , E' n 26m24mE'/ E 2n ,当 m n 时,2n 1 ,E' E .3m 3m所以第二种办法比第一种办法好.《数学模型》作业解答第九章( 2008 年 12 月 23 日)一报童每天从邮局订购一种报纸,沿街叫卖. 已知每100 份报纸报童全部卖出可获利7 元. 如果当天卖不掉,第二天削价可以全部卖出,但报童每100 份报纸要赔 4 元 . 报童每天售出的报纸数 r 是一随机变量,其概率分布如下表:售出报纸数 r (百份)0 1 2 3 4 5 概率 P(r ) 0. 05试问报童每天订购多少份报纸最佳( 订购量必须是100 的倍数 ) ?解:设每天订购 n 百份纸,则收益函数为f ( r ) 7r ( 4)(n r ) r n 7n r nn收益的期望值为G(n) = (11r 4n) P( r ) + 7n P(r )r 0 r n 1现分别求出n = 0,1,2,3,4,5 时的收益期望值.G(0)=0 ; G(1)= 4 × +7× +7×( +++) =;G(2)= ( 8 0.05 3 0.1 14 0.25 ) 14 (0.35 0.15 0.1) 11.8; G(3)=( 12 0.05 1 0.1 10 0.25 21 0.35 ) 21 (0.15 0.1) 14.4G(4)=( G(5)=16 0.05 5 0.1 6 0.25 17 0.35 28 0.15 ) 28 0.1 13.15 20 0.05 9 0.1 2 0.25 13 0.35 24 0.15 35 0.1 10.25当报童每天订300 份时,收益的期望值最大.数模复习资料第一章1.原型与模型原型就是实际对象. 模型就是原型的替代物. 所谓模型 ,按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象. 如航空模型、城市交通模型等.直观模型如玩具、照片等形象模型如某一试验装置物理模型模型思维模型如某一操作抽象模型符号模型如地图、电路图数学模型2.数学模型对某一实际问题应用数学语言和方法, 通过抽象、简化、假设等对这一实际问题近似刻划所得的数学d 2 x结构 , 称为此实际问题的一个数学模型 . 例如力学中着名的牛顿第二定律使用公式F m dt 2 来描述受力物体的运动规律就是一个成功的数学模型. 或又如描述人口N t 随时间 t 自由增长过程的微分dN t方程rN t .dt3.数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程. 更具体地说 , 数学建模是指对于现实世界的某一特定系统或特定问题, 为了一个特定的目的, 运用数学的语言和方法, 通过抽象和简化 , 建立一个近似描述这个系统或问题的数学结构 ( 数学模型 ), 运用适当的数学工具以及计算机技术来解模型 , 最后将其结果接受实际的检验 , 并反复修改和完善 .数学建模过程流程图为:实际抽象、简化、假设数学地、数值地归结问题确定变量、参数求解模型数学模型估计参数否检验模型是( 用实例或有关知评价、推广并交付使用符合否?产生经济、社会效益识 )4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用5.数学模型的分类数学模型可以按照不同的方式分类, 常见的有:人口模型交通模型环境模型(污染模型)a. 按模型的应用领域分类数学模型生态模型城镇规划模型水资源模型再生资源利用模型b.按建模的数学方法分类初等数学模型几何模型微分方程模型数学模型图论模型组合数学模型概率模型规划论模型描述模型分析模型预报模型c. 按建模目的来分类数学模型优化模型决策模型控制模型d. 层次分析法的基本步骤: 1. 建立层次结构模型2. 构造成对比较阵 3. 计算权向量并作一致性检验 4. 计算组合权向量并作组合一致性检验阶正互反正 A 是一致阵的充要条件为 A 的最大特征值为nf. 正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变. 试构造模型并求解 .解:设椅子四脚连线呈长方形ABCD. AB与 CD的对称轴为x轴,用中心点的转角表示椅子的位置 . 将相邻两脚 A、B与地面距离之和记为 f ( ) ;C、D与地面距离之和记为g ( ) .并旋转 1800 . 于是,设f (0) 0, g(0) 0, 就得到 g 0, f 0.数学模型:设 f 、 g 是0,2 上的非负连续函数. 若0,2 , 有f g 0 , 且 g 0 0, f 0 0, g 0, f 0 , 则0 0,2 , 使f 0g 0 0 .模型求解: 令h( ) f ( ) g( ). 就有h(0) 0,h( ) f ( ) g( ) 0 g( ) 0 .再由 f , g 的连续性 , 得到h 是一个连续函数 . 从而 h 是 0, 上的连续函数. 由连续函数的介值定理:0 0, , 使h 00 .即00,, 使f0g00 .又因为0,2, 有f g0 .故 f0g00 .9.(1)某甲早8: 00 从山下旅店出发,沿一条路径上山,下午5: 00 到达山顶并留宿.次日早 8:00 沿同一路径下山,下午5:00 回到旅店 . 某乙说,甲必在两天中的同一时刻经过路径中的同一地点. 为什么?(2) 37 支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束 . 问共需进行多少场比赛,共需进行多少轮比赛 . 如果是n支球队比赛呢?解:( 1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标,第一天的行程x(t) 可用曲线()表示,第二天的行程x(t) 可用曲线()表示,()()是连续曲线必有交点p0 (t0 , d 0 ),两天都在 t0时刻经过 d0地点.xd方法二:设想有两个人,()一人上山,一人下山,同一天同p0时出发,沿同一路径, 必定相遇 .d0()t早 8t0晚5 方法三:我们以山下旅店为始点记路程, 设从山下旅店到山顶的路程函数为 f (t ) (即t时刻走的路程为 f (t) ) ,同样设从山顶到山下旅店的路函数为g (t) ,并设山下旅店到山顶的距离为 a ( a >0).由题意知: f (8) 0, f (17) a , g (8) a , g(17) 0 .令 h(t) f (t) g(t) ,则有 h(8)f (8) g (8)a 0 , h(17) f (17) g (17 ) a0 ,由于 f (t ) , g (t ) 都是时间 t 的连续函数,因此h(t )也是时间 t 的连续函数,由连续函数的介值定理,t0[8,17] , 使 h(t0 ) 0 ,即 f (t0 )g(t0 ) .( 2)36 场比赛,因为除冠军队外,每队都负一场; 6 轮比赛,因为 2 队赛 1 轮, 4 队赛 2轮,32队赛 5轮. n 队需赛n 1 场,若2k 1 n 2k ,则需赛k 轮.2.已知某商品在k 时段的数量和价格分别为x k和 y k,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为yk 1 f (xk 1xk ) 和 x k1g ( y k ) .试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为y k 1 f ( x k 1xk ) 和 x k 1 g( yk ) .2设曲线 f 和g相交于点 P0 (x0 , y0 ) ,在点 P0 附近可以用直线来近似表示曲线 f 和g:y k 1y0 ( x k 1 x k x0 ) , 0 -------------------- ( 1)2x k 1 x0 ( y k y0 ) , 0 --- ---------------- ( 2)由( 2)得x k 2 x0 ( y k 1 y0 ) -------------------- ( 3)( 1)代入( 3),可得x k 2 x0 (xk 1 x k x0 )22x k 2 xk 1 x k 2x0 2 x0 , k 1,2, , -------------- (4)上述( 4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求 P0点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:2 2 0容易算出其特征根为( ) 2 8( 5)1,2 4 ---------------当8 时,显然有2 ( ) 2 8----------- ( 6)4 4从而 2 2, 2 在单位圆外.下面设8 ,由(5) 式可以算出1, 22 要使特征根均在单位圆内,即1, 2 1,必须 2 .故 P 0 点稳定平衡条件为 2 .3.设某渔场鱼量 x(t ) ( 时刻 t 渔场中鱼的数量 ) 的自然增长规律为:dx(t) rx(1 x )其中 r 为固有增长率 , N` 为环境容许的最大鱼量dth . N . 而单位时间捕捞量为常数( 1).求渔场鱼量的平衡点 , 并讨论其稳定性 ;( 2).试确定捕捞强度 E m , 使渔场单位时间内具有最大持续产量Q m , 并求此时渔场鱼量水平 x *0 .解:( 1) . x(t) 变化规律的数学模型为dx(t )xhdtrx(1)N记f ( x) rx(1 x ) h , 令 rx (1 x) h 0 ,即r x 2rx h 0 ---- ( 1 )N NN4rh4hN1 4h N r 2r (r, ( 1)的解为:x1, 2rNN)2N① 当0 时,( 1)无实根,此时无平衡点;②当0 时,( 1)有两个相等的实根,平衡点为f '(x) r (1x )rx r 2rx , f '( x 0 ) 0N N Nx ) rN 但 xx 0及 x x 0 均有 f ( x) rx(1N 4N x 0.2不能断定其稳定性 .0 ,即 dx 0 x 0不稳定;dt ③ 当 0 时,得到两个平衡点:4h 4h N N 1N N 1rN rN x 1, x 222易知 x 1N x 2Nf ' (x 1 ) 0 , f ' ( x 2 ), 22平衡点 x 1 不稳定 ,平衡点 x 2 稳定 .(2).最大持续产量的数学模型为:max hs.t. f (x) 0即 max hrx (1 x ) , 易得 x 0*N 此时 hrN,但 x 0*N这个平衡点不稳定 .N242要获得最大持续产量,应使渔场鱼量x N , 且尽量接近 N , 但不能等于 N.2 2 2 5.某工厂生产甲、乙两种产品 , 生产每件产品需要原材料、 能源消耗、劳动力及所获利润如下表所示:品种原材料能源消耗(百元)劳动力(人)利润(千元)甲214 4乙362 5 现有库存原材料1400 千克;能源消耗总额不超过2400 百元;全厂劳动力满员为2000 人. 试安排生产任务( 生产甲、乙产品各多少件), 使利润最大 , 并求出最大利润.解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S. 则此问题的数学模型为max S 4x 5ys.t .2x 3 y 1400x 6 y 24004x 2 y 2000x 0, y 0, x, y Z模型的求解:用图解法 . 可行域为:由直线l 1 : 2 x 3 y 1400l2: : x 6 y 2400l 3 : 4 x 2 y 2000及 x 0 , y 0组成的凸五边形区域 .直线 l : 4x 5y C 在此凸五边形区域内平行移动. 易知:当l过l1与l3的交点时, S 取最大值 . 由2 x 3y 1400400, y 200 4 x 2 y解得: x2000Smax 4 400 5 200 2600 (千元).故安排生产甲产品400 件、乙产品 200 件, 可使利润最大 , 其最大利润为2600 千元 .6.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物体积重量利润(立方米 / 箱)(百斤 / 箱)(百元 / 箱)甲 5 2 20乙 4 5 10 已知这两种货物托运所受限制是体积不超过24 立方米,重量不超过13 百斤 . 试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解: 设甲货物、乙货物的托运箱数分别为x1, x2,所获利润为 z .则问题的数学模型可表示为max z 20x1 10 x25x1 4x2 24st 2x1 5x2 13x1 , x2 0, x, y Z这是一个整线性规划问题.用图解法求解 .可行域为:由直线l 1 : 5x 1 4x 2 24l 2 : 2x 1 5x 2 13 及 x 10, x 20 组成直线 l : 20x 1 10x 2c 在此凸四边形区域内平行移动 .x 2l 1易知:当 l 过 l 1 与 l 2 的交点时, z 取最大值l 2x 15x 14x 224x 1 4解得由5x 213x 212x 1lzmax20 4 10 1 90 .7. 深水中的波速 v 与波长 、水深 d 、水的密度和重力加速度g 有关,试用量纲分析方法给出波速 v 的表达式 .解 :设 v ,,d , , g的关系为 f (v, , d , , g ) =0. 其量纲表达式为[ v ]=LM 0T -1 ,0 0, [ d0 0]=L -3, [g0 -2,其中 L ,M ,T 是基本量纲.[]=LM T ]=LMT , [ MT ]=LM T ---------4分量纲矩阵为11 13 1(L )A=0 0 01 0 (M )1 0 02 (T )( v) ( )(d)( ) ( g)齐次线性方程组 Ay=0 ,即y 1y 2 y 3 3y 4y 5y 4- y 1- 2y 5的基本解为 y 1 = (1,1,0,0,1), y 2 = (0, 1,1,0,0)2211由量纲 P i 定理 得v2g 211d2∴ v g1,1( 2),2dv g ( d) ,其中是未定函数 .第二章 (2) (2008年 10 月 9日15. 速度为 v 的风吹在迎风面积为 s 的风车上,空气密度是,用量纲分析方法确定风车获得的功率 P 与 v 、S 、的关系 .解: 设 P 、 v 、 S 、 的关系为 f ( P, v, s, )0 , 其量纲表达式为 :[P]= ML 2T 3 , [ v ]= LT 1 ,[ s ]= L 2 ,[]= ML 3 , 这里 L, M ,T 是基本量纲 .量纲矩阵为:A=齐次线性方程组为:21 2 3 ( L )1 0 0 1 (M )3 10 0(T)(P) (v) (s) (2 y 1 y 2 2y3 3y4 0y 1y 4 03y 1y 2它的基本解为 y ( 1,3 ,1,1)由量纲 P i 定理得P 1v 3 s 11 ,Pv 3s 1 1, 其中 是无量纲常数 .16.雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度 v 的表达式 .解 :设 v ,,, g的关系为 f ( v ,,,g ) =0. 其量 纲表达式为 [ v ]=LM 0T -1 ,-3-2-1 -1-1 -2-2 -2-1-10 -2[ ]=L MT , []=MLT ( LT L ) L =MLL T T=L MT , [ g ]=LM T , 其中 L , M ,T 是基本量纲 .量纲矩阵为13 1 1 (L)11 0 (M) A=1 012(T)(v) ()()(g )齐次线性方程组 Ay=0 ,即y 1 - 3y 2 - y 3 y 4 0 y 2y 3 0 - y 1 - y 3 - 2y 4的基本解为 y=(-3 ,-1 ,1 ,1)由量纲 P i 定理 得v31g .v3g,其中 是无量纲常数.16 * .雨滴的速度 v 与空气密度、粘滞系数 、特征尺寸 和重力加速度g 有关,其中粘滞系数的定义是: 运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比, 比例系数为粘滞系数,用量纲分析方法给出速度 v 的表达式 .解:设 v ,, , , g 的关系为 f (v, , , , g) 0 . 其量纲表达式为 [ v 0 -1 , ]=L -30, -2( -1 -1 )-1 -2 -2 -2 -1-1 , 0 0 , 0 -2]=LM T [ MT [ ]=MLT LT L L =MLL T T=L MT [ ]=LM T[ g ]=LM T 其中 L , M , T 是基本量纲 .量纲矩阵为11 31 1 (L)A=0 11 0 ( M )10 012 (T )(v) ( ) ( ) ( ) ( g)齐次线性方程组 Ay=0 即y 1y 2 3y 3y 4 y 5 0y 3 y 4 0y 1y 4 2 y 5的基本解为y 1 (1,1 ,0,0, 1)22y 2(0,3, 1,1, 1 )2 2得到两个相互独立的无量纲量1v1/ 2g 1 / 223 / 21g 1 / 2即vg 1 ,3 / 2g 1 / 21 1(1,2)0, 得( 21)2. 由 1g (3 / 2g 1 / 2 1 ) ,其中 是未定函数 .20. 考察阻尼摆的周期, 即在单摆运动中考虑阻力, 并设阻力与摆的速度成正比 . 给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期.解:设阻尼摆周期 t ,摆长l ,质量m , 重力加速度g ,阻力系数k 的关系为f (t, l , m, g, k)其量纲表达式为:[ t]L 0 M0T ,[ l ]LM0T0 , [m]L 0MT 0,[ g]LM0T2 ,[k ][ f ][ v]1MLT2( LT1)1L 0MT 1, 其中 L ,M ,T 是基本量纲 .量纲矩阵为0 1 0 1 0 ( L )0 0 1 0 1 (M )A=0 021 (T )1(t ) (l ) ( m) (g) (k )齐次线性方程组y 2 y 4 0y 3y 5 0y 12 y 4y 5的基本解为Y 1 (1, 1 ,0, 1,0)22Y 2 (0,1, 1,1,1)22得到两个相互独立的无量纲量tl1/ 2g 1/ 21l 1/ 2m 1 g 1 / 2 k2∴ tl 1 ,1( 2 ) ,2kl 1 / 2gmg 1/ 2∴ tl ( kl 1/ 2 ) ,其中 是未定函数 .g mg 1 / 2考虑物理模拟的比例模型,设g 和 k 不变,记模型和原型摆的周期、摆长、质量分别为1 /2 t , t ' ; l , l ' ; m , m '.又 tl ( kl1 /2 )g m g当无量纲量ml 时, 就有 tl gl . mlt gll第三章 1( 2008 年 10 月 14 日)1. 在节存贮模型的总费用中增加购买货物本身的费用, 重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解: 设购买单位重量货物的费用为k , 其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:c 1 c 2 rTC(T )krT2 dC c 1 c 2rdT T 22令 dC0 ,解得T *2c1dTc 2 r由 QrT ,得 Q2c 1 r rTc 2与不考虑购货费的结果比较,T、Q的最优结果没有变.2 0 对于允许缺货模型,每天平均费用为:1 c 2Q 2c 3 (rT Q) 2kQC(T,Q)c 12r2rTC c 1 c 2Q 2 c 3 r c 3Q 2 kQ T T 2 2rT 22 2rT 2T 2C c 2Q c 3Q kQ c 3TrT rTCT令, 得到驻点:CQT2c 1 c 2 c 3 k 2rc 2c 3c 2 c 3Q2c 1 r c 3 c 3 k 2 r 2 krc 2 c 2 c 3 c 2 (c 2 c 3 ) c 2c 3与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数 r ,k r .在每个生产周期T内, 开始的一段时间0 t T 0 一边生产一边销售, 后来的一段时间 (T 0t T ) 只销售不生产, 画出贮存量 g(t ) 的图形 . 设每次生产准备费为 c 1 ,单位时间每件产品贮存费为c2,以总费用最小为目标确定最优生产周期,讨论k r 和 k r 的情况.解:由题意可得贮存量g(t ) 的图形如下:gg(t)k rrO n T0 T t (k r )T0 T贮存费为Tc2 lim g( i ) t i c2 0 g(t)dt c22i 1t 0又(k r )T0 r (T T0 )T0 rT , 贮存费变为c2 r (k r )T T k 2k于是不允许缺货的情况下,生产销售的总费用(单位时间内)为C(T ) c1 c2 r ( k r )T 2 c1 r ( k r )T T 2kT T c2 2kdC c1 c2 r (k r ) . dT T 2 2k令dC0 , 得 T2c1k dT c2 r (k r )易得函数 C (T )在 T 处取得最小值,即最优周期为:2c1 k Tr )c2 r ( k当k r时,T 2c1 . 相当于不考虑生产的情况 .c2r当 k r 时,T . 此时产量与销量相抵消,无法形成贮存量.第四章( 2008 年 10 月 28 日)1. 某厂生产甲、乙两种产品, 一件甲产品用A原料1 千克 , B原料5 千克;一件乙产品用A原料2千克, B原料4 千克. 现有A原料 20 千克, B 原料70千克.甲、乙产品每件售价分别为20 元和 30元. 问如何安排生产使收入最大?解:设安排生产甲产品x 件 , 乙产品 y 件,相应的利润为S则此问题的数学模型为:max S=20x+30yx 2y 20. 5x 4 y 70x, y 0, x, y Z这是一个整线性规划问题,现用图解法进行求解可行域为:由直线 l1:x+2y=20, l2:5x+4y=70l2y以及 x=0,y=0 组成的凸四边形区域 .直线 l :20x+30y=c在可行域内l平行移动 .易知:当 l 过l1与l2的交点时,l1x S 取最大值 .x 2y 20解得x 10由4 y 70 y 55x此时 S m ax=2010 30 5 =350(元)2.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物体积重量利润(百斤 / 箱)(百元 / 箱)(立方米 / 箱)甲 5 2 20乙 4 5 10已知这两种货物托运所受限制是体积不超过24 立方米,重量不超过13 百斤 . 试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解: 设甲货物、乙货物的托运箱数分别为x1, x2,所获利润为 z .则问题的数学模型可表示为max z 20x1 10 x25x1 4x2 24st 2x1 5x2 13x1 , x2 0, x, y Z这是一个整线性规划问题.用图解法求解.可行域为:由直线l1 : 5x14x224l 2 : 2x15x213及x10, x20 组成直线l : 20x110x2 c 在此凸四边形区域内平行移动 .x2l1l易知:当 l 过 l 1 与 l 2 的交点时, z 取最大值5x 1 4x 2 24 x 1 4由5x 213解得12x 1x 2zmax20 4 10 1 90.3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉 . 已知每台甲型、 乙型微波炉的销售利润 分别为 3 和 2 个单位 . 而生产一台甲型、乙型微波炉所耗原料分别为 2 和 3 个单位 , 所需工时分别为 4 和 2个单位 . 若允许使用原料为100 个单位 , 工时为 120 个单位 , 且甲型、乙型微波炉产量分别不低于6 台和 12台. 试建立一个数学模型 , 确定生产甲型、乙型微波炉的台数 , 使获利润最大.并求出最大利润 .解:设安排生产甲型微波炉 x 件 , 乙型微波炉 y 件 , 相应的利润为 S. 则此问题的数学模型为:max S=3x +2y2x 3 y 100.4x 2y 120x 6, y 12, x, y Z这是一个整线性规划问题 用图解法进行求解可行域为:由直线 l 1 : 2x+3y=100, l 2 :4x+2y = 120及 x=6,y=12 组成的凸四边形区域 .直线 l : 3x+2y=c 在此凸四边形区域内平行移动. 易知:当 l 过 l 1 与 l 2 的交点时 , S取最大值 .2x 3 y 100由2 y 解得4x 120x 20.y 20S m ax = 3 20 2 20 = 100.第五章 2( 2008 年 11 月 14 日)6. 模仿节建立的二室模型来建立一室模型 (只有中心室) ,在快速静脉注射、 恒速静脉滴注(持续时间为)和口服或肌肉注射 3 种给药方式下求解血药浓度,并画出血药浓度曲线的中心室图形 .解: 设给药速率为 f 0 t ,中心室药量为 x t , 血药浓度为 C t , 容积为 V ,排除速率为常数 k, 则 x / t kx tf 0 t , x t VC t .(1) 快速静脉注射 : 设给药量为 D 0 , 则 f 0 t 0, C 0D 0,解得 C tDe k t .VV(2) 恒速静脉滴注 ( 持续时间为): 设滴注速率为 k 0,则 f 0 tk 0 ,C 00, 解得k 0 1 e kt , 0 t C tVkk 0 1 e kt e k t , t Vk(3) 口服或肌肉注射 :f 0 tk 01 D 0 e k 01t 见5.4节(13)式 ,解得k 01De ktek 01t, kk01C tV k 01 k3 种情况下的血药浓度曲线如kD te kt ,kk01V下:(1)(2)(3)Ot4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为a4. b初始兵力 x0与 y0相同.(1)问乙方取胜时的剩余兵力是多少, 乙方取胜的时间如何确定 .(2)若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型, 讨论如何判断双方的胜负 .解 : 用x t , y t表示甲、乙交战双方时刻t 的士兵人数 , 则正规战争模型可近似表示为:dxaydtdybx, 1dtx 0 x0 , y 0 y0现求 (1) 的解 : (1)0 a的系数矩阵为 Aba 2ab 0. abE A 1,2b1 , 2对应的特征向量分别为2 ,21 1x t 2abt 2abt .1 的通解为C1 1 eC2 1 ey t再由初始条件,得x t x0 y0 e abt x0 y0 e ab t 22 2又由 1 可得dybx . dx ay其解为ay 2bx 2k,而k ay02bx02 3(1)当x t1 0时, y t1 k ay02 bx02y0b 3a a 1 y0 .a 23即乙方取胜时的剩余兵力数为y0 .2x0 abt1x0 abt1 0.又令由()得0,2 y0 e y0 ex t122注意到 x0 y0 2 abt1x0 2 y0. e 2 abt1 3, t1ln 3,得 ex0 .2 y0 4b (2)若甲方在战斗开始后有后备部队以不变的速率r 增援.则dxay rdtdy4bxdtx(0) x0 , y 0 y0由 4 得dx ay r,即 bxdx aydy rdy . 相轨线为 ay 2 2ry bx2 k , dy bx2r 2k ay02 2ry 0 bx.20或 a y r bx2 k. 此相轨线比书图11 中的轨线上移了a ar r 2 r 2b 2a . 乙方取胜的条件为k 0, 亦即 y0 a a x0 a 2.第六章( 2008 年 11 月 20 日)1. 在节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic规律,而单位时间捕捞量为常数 h.(1) 分别就h rN / 4 ,h rN / 4 ,h rN / 4 这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为x t ,则由题设条件知:x t 变化规律的数学模型为dx(t ) xhrx (1 )dt N记 F ( x) rx (1 x ) hN(1).讨论渔场鱼量的平衡点及其稳定性:由 F x 0 ,得rx(1 x) h 0 .N即r x 2 rx h 0 1Nr 2 4rh r (r 4h ) ,N NN 1 4h N(1) 的解为:x1, 2 rN2①当 h rN / 4 ,0,(1) 无实根,此时无平衡点;②当 h rN / 4 ,0 , (1) 有两个相等的实根,平衡点为x0 N. 2x ) rx 2rx, F ' ( x0 )F ' ( x) r (1 r 0 不能断定其稳定性 .N N N但 x x0 及 x x0 均有 F (x)x rNdx0 .x0不稳定;rx (1 ) ,即dtN 4③当 h rN / 4 ,0 时,得到两个平衡点:N 1 4hN 14hN NrNx1 rN ,x22 2易知: x1 N ,x2 N , F ' ( x1 ) 0 , F ' ( x2 ) 02 2平衡点 x1不稳定,平衡点x2稳定.(2)最大持续产量的数学模型为max hs.t. F (x)0即 max h rx (1 x) ,Nh rN / 4h rN / 4h rN / 4rx 1 x / Nx1 N / 2 x2 x。
什么是数学建模课程设计
什么是数学建模课程设计一、课程目标知识目标:1. 理解数学建模的基本概念,掌握数学建模的主要方法。
2. 学会运用数学知识解决实际问题,提高数学应用能力。
3. 了解数学建模在自然科学、社会科学等领域的应用,拓展知识视野。
技能目标:1. 培养学生运用数学语言进行逻辑推理和分析问题的能力。
2. 提高学生运用数学软件和工具进行数据分析和模型构建的技能。
3. 培养学生团队协作和沟通表达能力,提高解决问题的综合素质。
情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,激发学生主动探索的精神。
2. 培养学生面对复杂问题时,保持积极的心态,勇于克服困难。
3. 增强学生的创新意识,培养将数学知识应用于实际问题的责任感。
课程性质分析:本课程为选修课程,旨在提高学生的数学应用能力和综合素质。
通过数学建模的学习,使学生掌握运用数学知识解决实际问题的方法,培养创新意识和团队协作能力。
学生特点分析:本课程面向初中年级学生,学生在数学基础知识和逻辑思维能力方面有一定基础,但对数学建模的了解相对较少。
因此,课程设计需注重激发学生兴趣,引导学生主动参与。
教学要求:1. 注重理论与实践相结合,让学生在实际问题中感受数学建模的魅力。
2. 创设生动活泼的课堂氛围,鼓励学生提问、讨论,培养学生的创新思维。
3. 加强团队合作,提高学生沟通协作能力,使学生在合作中共同成长。
二、教学内容1. 数学建模基本概念:介绍数学建模的定义、意义和分类,使学生了解数学建模的广泛应用。
教材章节:第一章 数学建模简介2. 数学建模方法:讲解线性规划、非线性规划、整数规划等基本建模方法,以及差分方程、微分方程等在数学建模中的应用。
教材章节:第二章 数学建模方法3. 数据分析与处理:学习如何收集数据、整理数据、分析数据,掌握利用数学软件进行数据处理的方法。
教材章节:第三章 数据分析与处理4. 数学建模实例分析:分析实际案例,让学生了解数学建模在自然科学、社会科学等领域的具体应用。
数学模型课程设计捕鱼
数学模型课程设计捕鱼一、课程目标知识目标:1. 理解数学模型在解决实际问题中的应用,掌握构建数学模型的基本方法。
2. 运用所学生物知识,结合数学模型,分析捕鱼问题中的数量关系和变化规律。
3. 能够运用数学模型预测捕鱼问题的解决方案,并解释结果的实际意义。
技能目标:1. 培养学生运用数学知识解决实际问题的能力,提高数学思维和逻辑推理能力。
2. 培养学生运用生物知识分析生态问题的能力,提高跨学科综合分析问题的能力。
3. 提高学生合作探究、讨论交流的能力,培养团队协作精神。
情感态度价值观目标:1. 培养学生热爱科学、探索科学的精神,激发学生学习数学和生物的兴趣。
2. 增强学生的环保意识,让学生认识到保护生态环境的重要性。
3. 培养学生面对问题时,积极思考、主动探究的态度,提高学生的自主学习能力。
课程性质:本课程为跨学科综合实践活动,结合数学和生物知识,通过解决实际问题,培养学生综合运用知识的能力。
学生特点:六年级学生具备一定的数学和生物知识基础,具有较强的探究欲望和合作意识。
教学要求:注重培养学生的动手操作能力、合作交流能力和问题解决能力,将理论知识与实际应用相结合,提高学生的综合素养。
通过本课程的学习,使学生能够将所学知识应用于实际生活,达到学以致用的目的。
二、教学内容本课程以“捕鱼问题”为背景,结合数学和生物教材,设计以下教学内容:1. 数学模型基础知识:- 函数关系:掌握函数的定义,理解自变量与因变量之间的关系。
- 方程与不等式:运用一元一次方程、不等式解决实际问题。
2. 生物知识:- 生态平衡:了解生态系统中各生物之间的相互关系,探讨捕鱼对生态平衡的影响。
- 物种多样性:掌握物种多样性的概念,分析捕鱼对生物多样性的影响。
3. 教学大纲:- 第一阶段:引入捕鱼问题,引导学生思考如何运用数学模型解决问题。
- 第二阶段:学习数学模型基础知识,探讨捕鱼问题中的数量关系。
- 第三阶段:结合生物知识,分析捕鱼对生态平衡和物种多样性的影响。
数学模型课后答案新编完整版
数学模型课后答案新编 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《数学模型》作业答案第二章(1)(2012年12月21日)1.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, 方法一(按比例分配)分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为: 第10个席位:计算Q 值为3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p中选较大者,可使对所有的,i iin p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型.解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ⎰⎰+=ntdn wkn r k vdt 0)(2π《数学模型》作业解答第三章1(2008年10月14日)1. 在节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QC TC, 得到驻点:与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况. 解:由题意可得贮存量)(t g 的图形如下:又 ∴ T =0于是不允许缺货的情况下,生产销售的总费用(单位时间内)为k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,T r k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的.总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t T T t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值.解:按分段价格,单位时间内的销售量为 又 t q t q β+=0)(.于是总利润为=22)(022)(20222011T T t t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- 0,021=∂∂=∂∂p p 令, 得到最优价格为: 在销售期T 内的总销量为 于是得到如下极值问题: 利用拉格朗日乘数法,解得: 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++= 令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克, B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30y. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =70S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为这是一个整线性规划问题. 用图解法求解. 可行域为:由直线1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2y. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s (2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成(1).s s(t) .s(t) .100≤∴单调减少由若σs (2)().00.1-s ,1,1dtdit s s σσσ从而则若 4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而 (1) ()().231000202011y a b y a bx ay akt y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =--.222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),,0t f (1)快速静脉注射: ).0t k e V D-= (2)恒速静脉滴注(持续时间为τ): 设滴注速率为(),00,000==C k t f k ,则解得 (3) 口服或肌肉注射: ()(),解得)式节(见134.5010010t k e D k t f -= 3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e e ba vaw Q v bl a vl β ()10/10==l M w 其中,(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbla eb a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v blee b a v aw Q 1'21'04 4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而 (1) ()().231000202011y a b y a bx ay akt y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 《数学模型》作业解答第六章(2008年11月20日)1.在节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22Nx > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rNh =, 但2*0Nx =这个平衡点不稳定.这是与节的产量模型不同之处. 要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln'=.其中r 和N 的意义与Logistic 模型相同. 设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.由前面的结果可得 h =得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h . 10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x .解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =.Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22Nx ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量2N x,且尽量接近2N ,但不能等于2N. 《数学模型》第七章作业(2008年12月4日)1.对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2.对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为: 在),(000y x P 点附近用直线来近似曲线h f ,,得到由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 对应齐次方程的特征方程为 02 2=++αβαβλλ 特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为: 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则 对(7)作变换:,12αβμλ-= 则其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w p q q p q qμμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件. 2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程: 容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1.证明节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换 B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有 ()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次. 解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的. 等都是完全路径.此竞赛图的邻接矩阵为令()Te 1,1,1,1,1=,各级得分向量为()()T Ae S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==, ()()()T AS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334== 由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.问题要分成哪3答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为当mn 2较小,1 n 时,有 E D -=1 , m n E 4≈ ② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-; 记m q m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为于是带走产品的平均数是 ()122-+-n n npq q m m ,未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- 当1 n 时,并令'1'D E -=,则 226'm n E ≈ ④ 两种办法的比较:由上知:mn E 4≈,226'm n E ≈∴ m n E E 32/'=,当n m 时,132 mn , ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)?解:设每天订购n 百份纸,则收益函数为收益的期望值为G(n) = ∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×+7×+7×(+++)=;G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=;G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14=G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10=当报童每天订300份时,收益的期望值最大.数模复习资料第一章1. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型 2. 数学模型 对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中着名的牛顿第二定律使用公式22dt x d m F =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N 随时间t 自由增长过程的微分方程()()t rN dtt dN =. 3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型c. 按建模目的来分类 数学模型 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧控制模型决策模型优化模型预报模型分析模型描述模型 d.层次分析法的基本步骤:1.建立层次结构模型2.构造成对比较阵3.计算权向量并作一致性检验4.计算组合权向量并作组合一致性检验阶正互反正A 是一致阵的充要条件为A 的最大特征值为nf.正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .模型求解:令)()()(θθθg f h -= .就有,0)0( h 0)(0)()()( ππππg g f h -=-=.再由()()θθg f ,的连续性,得到()θh 是一个连续函数. 从而()θh 是[]π,0上的连续函数.由连续函数的介值定理:()πθ,00∈∃,使()00=θh .即()πθ,00∈∃,使()()000=-θθg f .又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f .9. (1)某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经过路径中的同一地点.为什么?(2)37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是n 支球队比赛呢?解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标,第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,(I )(I I )是连续曲线必有交点),(000d t p ,两天都在0t 时刻经过0d 地点方法二:设想有两个人,I ) 一人上山,一人下山,同一天同 时出发,沿同一路径,必定相遇I )t。
《数学模型(第三版)》习题参考解答
《数学模型(第三版)》习题参考解答一、选择题(一)、单项选择1、数学教学就是数学活动的教学,就是师生之间、学生之间(3)的过程。
①交往互动②共同发展③交往互动与共同发展2、教师必须积极主动利用各种教学资源,创造性地采用教材,学会(2)。
①教教材②用教材教3、算法多样化属学生群体,(2)每名学生把各种算法都学会。
①要求②不要求4、新课程的核心理念就是(3)①联系生活学数学②培养学习数学的爱好③一切为了每一位学生的发展5、根据《数学课程标准》的理念,解决问题的教学必须横跨于数学课程的全部内容中,不再单独发生(3)的教学。
①概念②计算③应用题6、“三维目标”就是指科学知识与技能、(2)、情感态度与价值观。
①数学思考②过程与方法③解决问题7、《数学课程标准》中采用了“经历(体会)、体验(体会)、积极探索”等刻画数学活动水平的(1)的动词。
①过程性目标②知识技能目标8、创建蜕变记录就是学生积极开展(3)的一个关键方式,它能充分反映出来学生发展与进步的历程。
①自我评价②相互评价③多样评价9、学生的数学自学活动应就是一个生动活泼的、主动的和(2)的过程。
①单一②富有个性③被动10、“用数学”的含义就是(2)①用数学学习②用所学数学知识解决问题③了解生活数学11、以下现象中,(d)就是确认的。
a、后天下雪b、明天有人走路c、天天都有人出生d、地球天天都在转动1 2、《标准》精心安排了(b)个自学领域。
a)三个 b)四个 c)五个 d)不确定13、教师由“教书匠”转型为“教育家”的主要条件就是(d)a、坚持学习课程理论和教学理论b、认真备课,认真上课c、经常编写教育教学论文d、以研究者的眼光校对和分析教学理论与教学实践中的各种问题,对自身的行为进行反思14、崭新课程标准通盘考虑了九年的课程内容,将义务教育阶段的数学课程分成(b)个阶段。
a)两个 b)三个 c)四个 d)五个15、以下观点不恰当的就是(d)a)《标准》并不规定内容的呈现顺序和形式b)《标准》倡导以“问题情境——创建模型——表述、应用领域与开拓”的基本模式呈现出科学知识内容c)《标准》努力体现义务教育的普及性、基础性和发展性d)年全国教育工作会议后,制定了中小学各学科的“教学大纲”,以逐步替代原来的“课程标(二)、多项选择1、义务教育阶段的数学课程应当注重彰显(acd),并使数学教育面向全体学生。
数模第三版习题答案解读
《数学模型》作业解答第一章(2008年9月9日)4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .模型求解:令)()()(θθθg f h -= .就有,0)0( h 0)(0)()()( ππππg g f h -=-=.再由()()θθg f ,的连续性,得到()θh 是一个连续函数. 从而()θh 是[]π,0上的连续函数.由连续函数的介值定理:()πθ,00∈∃,使()00=θh .即()πθ,00∈∃,使()()000=-θθg f .又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f .8. 假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,单位时间内人口的增量与)(t x x m -成正比(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果比较.解:现考察某地区的人口数,记时刻t 的人口数为()t x (一般()t x 是很大的整数),且设()t x 为连续可微函数.又设()00|x t x t ==.任给时刻t 及时间增量t ∆,因为单位时间内人口增长量与)(t x x m -成正比, 假设其比例系数为常数r .则t 到t t ∆+内人口的增量为:()()()t t x x r t x t t x m ∆-=-∆+)(. 两边除以t ∆,并令0→∆t ,得到⎪⎩⎪⎨⎧=-=0)0()(x x x x r dtdxm 解为rtm m e x x x t x ---=)()(0如图实线所示,当t 充分大时 m x 它与Logistic 模型相近.0x t9.为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外,还常常需要从侧面 或反面思考.试尽可能迅速回答下面问题:(1) 某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿. 次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经 过路径中的同一地点.为什么?(2) 37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者 进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是n 支球队比赛呢?(3) 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻 不一定相同.甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,仅约10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(4) 某人家住T 市在他乡工作,每天下班后乘火车于6:00抵达T 市车站,他的 妻子驾车准时到车站接他回家,一日他提前下班搭早一班火车于5:30抵T 市车站,随即步行回家,他的妻子象往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常 提前了10分钟.问他步行了多长时间?(5) 一男孩和一女孩分别在离家2 km 和1 km 且方向相反的两所学校上学,每天 同时放学后分别以4 km/h 和2 km/h 的速度步行回家.一小狗以6 km/h 的速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返直至回到家中,问小狗奔波了多少路程?如果男孩和女孩上学时小狗也往返奔波在他们之间,问当他们到达学校时小狗在何处?解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标, 第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,(I )(I I )是连续曲线必有交点),(000d t p ,两天都在0t 时刻经过0d 地点.方法二:设想有两个人, 一人上山,一人下山,同一天同 时出发,沿同一路径,必定相遇. 0d t早8 0t 晚5方法三:我们以山下旅店为始点记路程,设从山下旅店到山顶的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从山顶到山下旅店的路函数为)(t g ,并设山下旅店到山顶的距离为a (a >0).由题意知:,0)8(=f a f =)17(,a g =)8(,0)17(=g .令)()()(t g t f t h -=,则有0)8()8()8(<-=-=a g f h ,0)17()17()17(>=-=a g f h ,由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]17,8[0∈∃t ,使0)(0=t h ,即)()(00t g t f =.(2)36场比赛,因为除冠军队外,每队都负一场;6轮比赛,因为2队赛1轮,4队赛2轮,32队赛5轮. n 队需赛1-n 场,若k k n 221≤- ,则需赛k 轮.(3)不妨设从甲到乙经过丙站的时刻表是8:00,8:10,8:20,…… 那么从乙到甲经过丙站的时刻表应该是8:09,8:19,8:29……(4)步行了25分钟.设想他的妻子驾车遇到他后,先带他前往车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车多跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻应该是5:55.(5)放学时小狗奔跑了3 km .孩子上学到学校时小狗的位置不定(可在任何位置),因为设想放学时小狗在任何位置开始跑,都会与孩子同时到家.之所以出现位置不定的结果,是由于上学时小狗初始跑动的那一瞬间,方向无法确定.10*. 某人第一天上午9:00从甲地出发,于下午6:00到达乙地.第二天上午9:00他又从乙地出发按原路返回,下午6:00回到甲地.试说明途中存在一点,此人在两天中同一时间到达该处.若第二天此人是下午4:00回到甲地,结论将如何?答:(方法一)我们以甲地为始点记路程,设从甲地到乙地的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从乙地到甲地的路函数为)(t g ,并设甲地到乙地的距离为a (a >0).由题意知:,0)9(=f a f =)18(,a g =)9(,0)18(=g . 令)()()(t g t f t h -=,则有0)9()9()9(<-=-=a g f h ,0)18()18()18(>=-=a g f h 由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]18,9[0∈∃t ,使0)(0=t h ,即)()(00t g t f =. 若第二天此人是下午4:00回到甲地,则结论仍然正确,这是因为0)9()9()9(<-=-=a g f h ,0)16()16()16()16(>=-=f g f h .(方法二)此题可以不用建模的方法,而变换角度考虑:设想有两个人,一人从甲地到乙地,另一人从乙地到甲地,同一天同时出发,沿同一路径,必定相遇.若第二天此人是下午4:00回到甲地,则结论仍然正确.《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-TML , [v ]=1-LT,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++030032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(21010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1g m l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rTc T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 rc c T 21*2= ⎩⎨⎧==---22/112/112/12/1ππk g m l g tl由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q CTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆ni Ti i t TT r k c dt t g c t g c 1022022)()()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TT t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β )(2)8322(22022bp a TT t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(m ax 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 925002+-=TdT dC又k T C 10035095025003)(*+⨯+⨯==300+100k k T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域. 直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值. 由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物 体积(立方米/箱)重量 (百斤/箱)利润 (百元/箱)甲 5 2 20 乙4510已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 m ax x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值 由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和32ll1x1l2x个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明:(1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0 .01,1单调减少时当t i dtdis s ∴-σσ.0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β ()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2N x >,且尽量接近2N ,但不能等于2N . 2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h Ex()x f由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定; ③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max Nx rx h -=,易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2<αβ与207P 的结果一致. (2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-=则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y k k k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3)(1)代入(3),可得)2(0102x x x x x k k k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4)上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为 48)(22,1αβαβαβλ-±-= ---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.。
数学模型与优化课程设计
数学模型与优化课程设计一、课程目标知识目标:1. 让学生掌握数学模型的基本构建方法和应用,理解数学模型在解决实际问题中的重要性。
2. 使学生掌握线性规划、整数规划等优化方法的基本原理和求解步骤,具备运用这些方法解决实际问题的能力。
3. 帮助学生理解数学与现实生活的联系,提高运用数学知识分析和解决问题的能力。
技能目标:1. 培养学生运用数学软件或工具构建数学模型,解决实际问题的能力。
2. 培养学生运用优化方法对数学模型进行求解,提高问题求解的效率。
3. 培养学生独立思考和团队协作的能力,提高学生在实际问题中运用数学知识进行创新的能力。
情感态度价值观目标:1. 培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2. 培养学生严谨、务实的科学态度,提高学生面对问题时敢于挑战、勇于探索的精神。
3. 培养学生具备良好的合作精神,学会尊重他人意见,形成积极向上的人际关系。
课程性质分析:本课程为数学模型与优化课程,旨在教授学生运用数学知识和方法解决实际问题。
课程内容与实际生活紧密联系,注重培养学生的实践能力和创新精神。
学生特点分析:学生处于高年级阶段,已具备一定的数学基础和问题解决能力。
在此阶段,学生具有较强的求知欲和自主学习能力,同时具有一定的团队合作意识。
教学要求:1. 结合课本内容,注重理论与实践相结合,提高学生的实际操作能力。
2. 注重启发式教学,引导学生主动思考、探索问题,培养学生的创新意识。
3. 注重教学过程中的师生互动,激发学生的学习兴趣,提高教学效果。
二、教学内容本课程教学内容主要包括以下几部分:1. 数学模型基本概念与构建方法- 理解数学模型的定义及分类- 掌握数学模型构建的基本步骤和方法- 分析实际问题时,能够运用所学知识建立数学模型2. 线性规划- 线性规划的基本概念与理论- 线性规划模型的建立与求解方法- 应用线性规划解决实际问题3. 整数规划- 整数规划的基本概念与特点- 整数规划模型的建立与求解方法- 应用整数规划解决实际问题4. 非线性规划简介- 非线性规划的基本概念与理论- 非线性规划模型的建立与求解方法- 非线性规划在实际问题中的应用案例5. 模型优化方法- 优化方法的基本原理与分类- 常见优化算法及其应用- 优化方法在实际问题中的应用案例教学内容安排与进度:第一周:数学模型基本概念与构建方法第二周:线性规划基本理论与求解方法第三周:线性规划应用案例分析第四周:整数规划基本理论与求解方法第五周:整数规划应用案例分析第六周:非线性规划简介第七周:优化方法及其在实际问题中的应用本教学内容与课本章节紧密关联,注重理论与实践相结合,旨在提高学生运用数学知识解决实际问题的能力。
课程设计答案问题
课程设计答案问题一、教学目标本课程的教学目标是让学生掌握学科基本概念、理论和方法,能够运用所学知识解决实际问题。
具体分为三个维度:1.知识目标:学生能够准确理解并记忆本章节中的关键概念、理论和公式,掌握至少5个核心概念。
2.技能目标:学生能够运用所学理论知识进行问题分析和解决,完成至少3个相关的实践练习。
3.情感态度价值观目标:学生通过课程学习,培养对学科的兴趣和热情,增强对科学研究的认识和尊重。
二、教学内容本课程的教学内容主要包括学科基本理论、核心概念和实际应用案例。
具体安排如下:1.理论部分:详细讲解本章节中的5个核心概念,通过案例和实例帮助学生理解。
2.实践部分:安排3个课后练习,让学生运用所学理论知识进行分析和解题。
3.应用部分:通过分析实际案例,让学生了解所学理论知识在实际问题中的应用。
三、教学方法本课程将采用多种教学方法,包括讲授法、案例分析法和讨论法,以激发学生的学习兴趣和主动性。
1.讲授法:用于讲解基本理论和核心概念,帮助学生建立知识框架。
2.案例分析法:通过分析实际案例,让学生了解理论知识的应用,培养分析问题和解决问题的能力。
3.讨论法:课堂讨论,鼓励学生提出问题、分享观点,增强互动和思考。
四、教学资源为了支持教学内容和教学方法的实施,将准备以下教学资源:1.教材和参考书:选择权威的教材和参考书,作为学生学习的主要资源。
2.多媒体资料:收集与课程相关的视频、音频和图片等资料,丰富教学手段和学生的学习体验。
3.实验设备:根据课程需要,准备相应的实验设备和材料,让学生进行实验操作,增强实践能力。
以上是根据本章节内容和教学目标设计的课程方案,希望能够帮助学生更好地掌握知识,提高解决问题的能力。
五、教学评估本课程的评估方式包括平时表现、作业和考试,旨在全面、客观地评价学生的学习成果。
1.平时表现:通过课堂参与、提问和小组讨论等方式,评估学生的出勤和积极性,占总成绩的20%。
2.作业:布置课后练习和案例分析报告,评估学生对知识的掌握和应用能力,占总成绩的30%。
数学模型 第三版 (姜起源 著) 高等教育出版社 课后答案
ww
该问题不要求对洗衣机的微观机制(物理、 化学方面)深入研究,只需要从宏观层次去把握.
宏观上洗衣的基本原理是用洗涤剂通过漂洗把吸附在衣物上的污物溶于水中,再脱去污水带 走污物;洗衣的过程是通过“加水——漂洗——脱水”程序的反复运行,使残留在衣物的污物 越来越少,直到满意的程度;洗涤剂也是不希望留在衣物上的东西,可将“污物”定义为衣物上
81
m
n 3 ,如: 2
数学模型习题参考解答
A1
A2
A3
A4
A5
A6
A7
A8
A9
每两场比赛相隔场次数
相隔场 次总数
A1 A2
× 36 6 31 11 26 16 21 1
36 × 2 27 7 22 12 17 32
6 2 × 35 15 30 20 25 10
31 27 35 × 3 18 8 13 23
数学模型习题参考解答
综合题目参考答案
1. 赛程安排(2002 年全国大学生数学建模竞赛 D 题) (1)用多种方法都能给出一个达到要求的赛程. (2)用多种方法可以证明 n 支球队“各队每两场比赛最小相隔场次 r 的上界”(如 n =5 时 上界为 1)是
设赛程中某场比赛是 i , j 两队, i 队参加的下一场比赛是 i , k 两队( k ≠ j ),要使各队每 两场比赛最小相隔场次为 r ,则上述两场比赛之间必须有除 i , j , k 以外的 2 r 支球队参赛,于 是 n 2r 3 ,注意到 r 为整数即得 r . 2
(2) 设 定 一 个 座 位 间 隔 l ( 如 0.5m), x 从 0( 或
w.
原有污物与洗涤剂的总和.
(0 0 ~ 20 0 ) 计算 的平均值,得 20 0 时其值最大.
数学模型课程设计-工厂地址选址的数学模型 精品
第一章 问题的描述现代工厂地址的选择,关系到工业布局及经济效益的重大决策,涉及到经济和非经济的多种因素,因此在选择时,应对几个备选的厂址各种不同因素的优劣进行综合平衡,根据各种不同的选择标准,选出最佳厂址。
设有甲、乙、丙三个厂址,估计甲厂年度总支出20001=C 万元,乙厂的年度总支出21002=C 万元,丙厂的年度总支出22003=C 万元,从而来选出最佳厂址。
数学模型(Mathematical Model ),是数学理论与实际问题相结合的一门科学。
它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。
根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。
数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方 程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。
在体育实践中常常提到优秀运动员的数学模型。
2.1 工厂选址的原理首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
数学建模课程设计
数学建模课程设计0840503220 苏阳 0840503224 张明 0840503226 郑景旻影 院 座 位 设 计问题回顾:影院座位的满意程度主要取决于视角α和仰角β,视角是观众眼睛到屏幕上下边缘的视线的夹角,越大越好;仰角是观众眼睛到屏幕上边缘视线与水平线的夹角,太大使人的头部过分上仰,引起不适,一般要求仰角β不超过030;记影院的屏幕高为h ,上边缘距离地面高为H ,影院的地板线通常与水平线有一个倾角θ,第一排和最后一排与屏幕水平距离分别为,d D ,观众的平均座高为c (指眼睛到地面的距离),已知参数h =1.8. H =5, 4.5,19d D ==,c =1.1(单位m)。
求解以下问题:(1) 地板线的倾角010=θ时,求最佳座位的所在位置。
(2) 地板线的倾角θ一般超过020,求使所有观众的平均满意程度最大时的地板线倾角。
(3) 地板线设计成什么形状,可以进一步提高观众的满意程度。
本次课程设计研究了电影院的座位设计问题,根据观众对座位的满意程度主要取决于视角α与仰角β这一前提条件,建立了满意程度最大的相关模型,并进行求解。
问题一,首先建立在满足仰角条件情况下的优化模型,接着通过主观臆断分别对视角和仰角赋权重,对座位进行离散分析,并引入满意度函数建立了离散加权模型,最后求解出当地板线的倾角为 10时,最佳位置距屏幕的水平距离为6.8635米。
问题二,根据问题一中的离散加权模型,将座位看作离散的点,建立满意度函数平均值模型,解得当地板线的倾角为 0543.15时,所有观众的平均满意程度最大。
问题三,在问题二的基础上,为进一步提高观众的满意程度,将地板线设计成折线形状,即相邻两排座位所在的点构成一条直线,且每排座位所在地板线的倾角以 5.2变化,增加到 20后保持不变,第一排抬高2.1米。
在此在此课程设计中作以下假设:1.忽略因视力或其他方面因素影响观众的满意度;2.观众对座位的仰角的满意程度呈线性;3.观众对座位的水平视角的满意程度呈线性;4.最后排座位的最高点不超过屏幕的上边缘;5.相邻两排座位间的间距相等,取为0.8m ;6.对于同一排座位,观众的满意程度相同;7.所有观众的座位等高为平均座高;8.影院的的地板成阶梯状。
数学模型(第三版)课后答案
T*
2c1 k
c2r ( k - r )
(3 分)
① 当 k r 时,得 k r k, 则T *
2c1k
2c1
c2 rk
c2 r
( 1 分)
② 当 k r 时,得 k r 0,则T *
2c1k c2r (k r )
(1 分)
八 、某公司有三个工厂生产某种商品并运往四个调拨站。工厂 1,2,3 每月分别生 产 12、 17、11 批商品,而每一个调拨站每月均需接受 10 批商品。各厂至各调拨站 的运输距离 (公里) 如下表所示。 已知每批商品的运费为 100 元加上每公里 0.50 元。 问应如何调运使总运费最少?
由( * )式可得 f l 2v2 4 l 2 v2
0, 为未定函数 1, 2 , 3 , 其中 4
(* ) 1 , 2, 3 , 为未定函数 。3 分)
六、 建立不允许缺货的存储模型:设生产能力无限,一次性的订货费为
c1 元,每天
每吨货物的储存费为 c2 元,每天货物的需要量为 r ,确定最佳订货周期 T* 和每次订
7
3+3+2+2+2
12
A7
4 13 16 10 19 7
2+2+2+2+2
10
(4 分)
从以上的表格可以看出各参赛队的每两场比赛之间的休息场次是比较均匀的。 (2 分)
三、 假设人口的增长服从这样的规律 : t 时刻的人口为 x(t) , t 时刻的单位时间的增量
与 xm x(t ) 成正比 ( 其中的 xm 为最大人口容量 ), 试建立模型求解并作出解的图形 .
3
xij 10, j 1,2,3,4
数学模型课程设计选题
数学模型课程设计选题一、课程目标知识目标:1. 学生能理解数学模型的基本概念,掌握运用数学模型解决实际问题的基本方法。
2. 学生能运用所学知识,建立简单的数学模型,描述现实生活中的问题。
3. 学生能通过分析数学模型,解释现实问题中的数量关系,提高数学思维能力。
技能目标:1. 学生能够运用数学软件或手工计算,进行数学模型的构建和求解。
2. 学生能够运用所学的数学模型,解决实际生活中的问题,提高解决问题的能力。
3. 学生能够通过小组合作,进行数学模型的讨论和分析,提高团队协作能力。
情感态度价值观目标:1. 学生通过数学模型的学习,培养对数学学科的兴趣和热情。
2. 学生在解决实际问题的过程中,培养勇于探索、积极思考的良好习惯。
3. 学生能够认识到数学在现实生活中的广泛应用,增强数学学习的自信心和责任感。
4. 学生通过小组合作,培养团结协作、互相帮助的精神风貌。
本课程针对学生的年级特点,注重培养学生的动手操作能力和实际应用能力。
在教学过程中,结合学生的认知水平,采用启发式教学,激发学生的学习兴趣。
课程目标具体、可衡量,旨在帮助学生掌握数学模型的基本知识和技能,提高解决实际问题的能力,培养积极的学习态度和价值观。
二、教学内容本章节教学内容主要包括以下几部分:1. 数学模型的基本概念:介绍数学模型的定义、分类及其在现实生活中的应用。
2. 建立数学模型的方法:讲解如何从实际问题中提炼出数学问题,并通过数学语言、符号和图表等方式建立数学模型。
3. 数学模型求解:介绍常用的数学模型求解方法,如方程求解、线性规划、概率统计等。
4. 数学软件应用:引导学生运用数学软件(如MATLAB、Excel等)辅助建立和求解数学模型。
5. 实践案例分析:分析典型的数学模型在实际问题中的应用,如人口增长模型、经济预测模型等。
教学内容与教材关联性如下:1. 教材章节:第五章“数学模型及其应用”2. 教学内容安排:- 第一节:数学模型基本概念- 第二节:建立数学模型的方法- 第三节:数学模型求解- 第四节:数学软件在数学模型中的应用- 第五节:实践案例分析教学进度安排:共计8课时,分配如下:1. 第一节:2课时2. 第二节:2课时3. 第三节:2课时4. 第四节:1课时5. 第五节:1课时教学内容具有科学性和系统性,旨在帮助学生掌握数学模型的相关知识和技能,为解决实际问题打下基础。
数学模型课程设计三答案
课程设计目的:1. 了解线性规划、整数规划、0-1规划、非线性规划的基本内容;2. 掌握MA TLAB 优化工具箱求解各类规划问题;3. 掌握用LINDO 软件求解线性规划问题;4. 掌握用LINGO 软件求解线性规划和非线性规划问题。
课程设计准备:1. 在开始本实验之前,请回顾相关内容;2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。
课程设计内容及要求要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。
1. 任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件,假定这两台车床的可用台数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台数和加工费用如下表。
问怎么样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用一、问题分析:本题要使加工费用最低,需要考虑的约束条件有,车床的可用台数限制和工件必须达到的数量要求,由此建立以下数学模型。
二、模型建立:设机床甲、乙加工工件1,2,3的数量为ij x , (1,2;1,2,3)i j ==111213212223111213212223112112221323min 1391011128.0.4 1.18000.5 1.2 1.39004006005000,(1,2;1,2,3)ij z x x x x x x s tx x x x x x x x x x x x x i j =+++++++≤++≤+=+=+=>==三、模型求解:用MATLAB 软件求解:f=[13 9 10 11 12 8]; %目标函数 A=[0.4 1.1 1 0 0 0;0 0 0 0.5 1.2 1.3]; %不等式约束 B=[800;900];Aeq=[1 0 0 1 0 0;0 1 0 0 1 0;0 0 1 0 0 1]; %等式约束 beq=[400;600;500];vlb = zeros(6,1); %待定参数的上下确界 vub=[];[x,fval] = linprog(f,A,B,Aeq,beq,vlb,vub) %返回最优解x及x处的目标函数值fval得到结果:在甲机床上加工600个工件2,在乙机床上加工400个工件1和500个工件3,最少费用13800元用LINDO 软件求解:min 13x11+9x12+10x13+11x21+12x22+8x23 !需要求解的目标函数 st 0.4x11+1.1x12+x13<=800 !约束条件0.5x21+1.2x22+1.3x23<=900 x11+x21=400 x12+x22=600 x13+x23=500 endgin 6 !定义参数为整数得到结果与MATLAB 中相同,由此说明该结果为最优解。
课程设计科三数学答案
课程设计科三数学答案一、教学目标本课程的教学目标是让学生掌握第三章《代数与函数》的核心概念,提高他们运用数学知识解决实际问题的能力。
具体目标如下:1.知识目标:–了解并掌握代数式的概念及其运算规则;–理解函数的定义及其性质,掌握函数的图像分析方法;–掌握一元一次方程、一元二次方程的解法,并能应用于实际问题。
2.技能目标:–能够运用代数式进行简单的数学表达和计算;–能够绘制函数图像,分析函数的单调性、奇偶性等性质;–能够运用一元一次方程、一元二次方程解决实际问题。
3.情感态度价值观目标:–培养学生对数学的兴趣,提高他们学习数学的积极性;–培养学生团队协作、探讨问题的能力;–培养学生运用数学知识服务社会的意识。
二、教学内容本课程的教学内容主要包括代数式、函数及其性质、方程的解法三部分。
具体安排如下:1.代数式:介绍代数式的概念,掌握代数式的运算规则,包括加减乘除、幂的运算等。
2.函数及其性质:理解函数的定义,掌握函数的图像分析方法,包括单调性、奇偶性、周期性等。
3.方程的解法:学习一元一次方程、一元二次方程的解法,并通过实际问题进行应用。
三、教学方法本课程的教学方法采用讲授法、案例分析法、讨论法相结合。
具体安排如下:1.讲授法:用于讲解代数式、函数及其性质、方程的解法等基本概念和理论。
2.案例分析法:通过分析实际问题,让学生学会运用所学知识解决实际问题。
3.讨论法:学生进行小组讨论,培养团队合作精神和探讨问题的能力。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料、实验设备等。
具体安排如下:1.教材:选用《数学》教科书作为主要教学资源,为学生提供系统的知识体系。
2.参考书:提供《数学巩固与应用》等参考书,帮助学生巩固所学知识,提高解题能力。
3.多媒体资料:制作PPT、教学视频等多媒体资料,丰富教学手段,提高学生学习兴趣。
4.实验设备:配备计算器、白板等实验设备,方便学生进行实验操作和演示。
五、教学评估本课程的教学评估采用多元化评价方式,全面客观地反映学生的学习成果。
《数学建模》课程设计方案0[推荐精品]
《数学建模》课程系统设计方案为了落实教育部批准的《关于广播电视大学开展人才培养模式改革和开放教育试点的报告》的精神,更好地实施“中央广播电视大学开放教育试点理学科数学类数学与应用数学专业(本科)教学计划”,搞好本课程的教学过程管理和教学支持服务工作,实现本专业培养目标,特制定《数学建模》课程设计方案。
一、课程的性质与任务“数学建模”课程是限选课。
但它既不同于必修课,也不同于其它限选课和选修课,而是一门充分应用其它各数学分支的应用类课程,其主要任务不是“学数学”,而是学着“用数学”,是为培养善于运用数学知识建立实际问题的数学模型,从而善于解决实际问题的应用型数学人材服务的。
从这个意义上讲,本课程的开设将对提高广大学生优良的数学素质和出色的工作能力,从而顺利开展中、小学的创新教育和素质教育等诸方面起到重要作用,其发展潜力巨大,前景十分客观。
通过本课程的学习,使学生较为系统的获得利用数学工具建立数学模型的基本知识、基本技能与常用技巧,培养学生的抽象概括问题的能力,用数学方法和思想进行综合应用与分析问题的能力,并着力导引实践—理论—实践的认识过程,培养学生辩证唯物主义的世界观。
二、课程的目的与要求根据整个教学计划的内容安排,以及学生主要是成人、在职、业余学习的特点,本课程将主要介绍初等数学模型,微分方程模型,运筹学模型和概率统计模型这四类常见数学模型中的较基本、较简单的部分,使学生对数学建模的基本想法与做法有一个较全面的初步的了解,为应用所学数学知识解决实际问题奠定一个较好的基础。
1.对相关课程内容的基本要求由于本课程的特点,对学生的基本数学基础有下列要求:熟练掌握常微分方程的基本内容,概率论与统计分析基础,运筹学中的线性规划、目标规划的初步知识,图论基础知识、决策论、存贮论与排队论初步知识。
2.通过本课程的学习,应达到下列基本目标:(1)深化学生对所学数学理论的理解和掌握;(2)使学生了解数学科学的重要性和应用的广泛性,进一步激发学生学习数学的兴趣;(3)熟悉并掌握建立数学模型的基本步骤、基本方法和技巧;(4)培养学生应用数学理论和数学思想方法,利用计算机技术等辅助手段,分析、解决实际问题的综合能力;(5)培养学生的数学应用意识,同时进一步拓宽学生的知识面,培养学生的科学研究能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计目的:1. 了解线性规划、整数规划、0-1规划、非线性规划的基本内容;2. 掌握MA TLAB 优化工具箱求解各类规划问题;3. 掌握用LINDO 软件求解线性规划问题;4. 掌握用LINGO 软件求解线性规划和非线性规划问题。
课程设计准备:1. 在开始本实验之前,请回顾相关内容;2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。
课程设计内容及要求要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。
1. 任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件,假定这两台车床的可用台数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台数和加工费用如下表。
问怎么样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用一、问题分析:本题要使加工费用最低,需要考虑的约束条件有,车床的可用台数限制和工件必须达到的数量要求,由此建立以下数学模型。
二、模型建立:设机床甲、乙加工工件1,2,3的数量为ij x , (1,2;1,2,3)i j ==111213212223111213212223112112221323min 1391011128.0.4 1.18000.5 1.2 1.39004006005000,(1,2;1,2,3)ij z x x x x x x s tx x x x x x x x x x x x x i j =+++++++≤++≤+=+=+=>==三、模型求解:用MATLAB 软件求解:f=[13 9 10 11 12 8]; %目标函数 A=[0.4 1.1 1 0 0 0;0 0 0 0.5 1.2 1.3]; %不等式约束 B=[800;900];Aeq=[1 0 0 1 0 0;0 1 0 0 1 0;0 0 1 0 0 1]; %等式约束 beq=[400;600;500];vlb = zeros(6,1); %待定参数的上下确界 vub=[];[x,fval] = linprog(f,A,B,Aeq,beq,vlb,vub) %返回最优解x及x处的目标函数值fval得到结果:在甲机床上加工600个工件2,在乙机床上加工400个工件1和500个工件3,最少费用13800元用LINDO 软件求解:min 13x11+9x12+10x13+11x21+12x22+8x23 !需要求解的目标函数 st 0.4x11+1.1x12+x13<=800 !约束条件0.5x21+1.2x22+1.3x23<=900 x11+x21=400 x12+x22=600 x13+x23=500 endgin 6 !定义参数为整数得到结果与MATLAB 中相同,由此说明该结果为最优解。
2. 某厂每日8小时的产量不低于1800件,为了进行质量控制,计划聘请两种不同水平的检验员,且每种检验员的日产量不高于1800件。
一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时.检验员每错检一次,工厂要损失2元,为使总检验费用最省,该工厂应聘一级、二级检验员各几名?要求用MATLAB 和LINDO 软件进行求解,并比较其结果。
一、问题分析:本题要达到的目标是使招聘费和损失费的和最低,由题中给出的约束条件可建立数学模型如下。
二、模型建立:设聘请一级、二级检验员人数为x 1,x 2人,则:应给检验员的工资为:121284833224x x x x ⨯⨯+⨯⨯=+因错误造成的损失为:1212(8252%8155%)2812x x x x ⨯⨯⨯+⨯⨯⨯⨯=+1212121212min 322481282581518008251800.81518000,0z x x x x x x x s tx x x =+++⨯⨯+⨯⨯≥⨯⨯≤⨯⨯≤≥≥ 即 12121212min 4036.53459150,0z x x s t x x x x x x =++≥≤≤≥≥三、模型求解:用MATLAB 软件求解:f=[40 36]; %目标函数A=[-5 -3]; %不等式约束 B=[-45];Aeq=[];beq=[]; %该模型没有等式约束 vlb = zeros(2,1); %参数的上下确界 vub=[9,15];[x,fval] = linprog(f,A,B,Aeq,beq,vlb,vub) %返回最优解x及x处的目标函数值fval得到结果只需聘请一级检验员9名,所需最少检验费用为360元。
用LINDO 软件求解:min 40x1+36x2 st 5x1+3x2>=45x1<=9x2<=15 endgin 2得到结果与MATLAB 中相同,从结果看来这样的聘用方案是合理的、最优的。
3. 某储蓄所每天的营业时间为上午9:00到下午17:00,根据经验,每天不同时间段所需要服务员的数量为:储蓄所可以雇佣全时和半时两类服务员,全时服务员每天报酬100元,从上午9:00到下午17:00工作,但中午12:00到下午14:00之间必须安排1小时的午餐时间,;储蓄所每天可以雇用不超过3名的半时服务员,每个半时服务员必须连续工作4小时,报酬为40元。
问:(1)该储蓄所应该如何雇用全时和半时两类服务员? (2)如果不能雇用半时服务员,每天至少增加多少经费?(3)如果雇用半时服务员的数量没有限制,每天可以减少多少经费? 要求用LINDO 和LINGO 软件分别求解,并比较其结果。
1) 雇佣全时和半时两类服务员一、问题分析:该储蓄所雇佣全时和半时服务员,由题知中午有两个小时为全时服务员的午餐时间,所以在这期间必须有半时服务员接替,由各时段服务员的数量需求我们可以建立以下模型。
二、模型建立:设每天雇佣的全时服务员以12:00~13:00为午餐时间的有x 1名,以13:00~14:00为午餐时间的有x 2名;半时服务员从9:00,10:00,11:00,12:00,13:00开始工作的人数分别为y 1,y 2,y 3,y 4,y 5名。
则:储蓄所雇佣服务员的总费用1212345100()40()z x x y y y y y =++++++每个时段的服务员数不少于需求量,且每天半时服务员不超过三名,以此建立模型:12123451211212121232123412345123451245125123451212345min 100()40().434656883,,,,,,0z x x y y y y y s tx x y x x y y x x y y y x y y y y x y y y y x x y y y x x y y x x y y y y y y x x y y y y y =++++++++≥+++≥++++≥++++≥++++≥++++≥+++≥++≥++++≤≥三、模型求解:用LINDO 软件求解:min 100x1+100x2+40y1+40y2+40y3+40y4+40y5 !目标函数st x1+x2+y1>=4 !各时段服务员数量要求x1+x2+y1+y2>=3 x1+x2+y1+y2+y3>=4 x2+y1+y2+y3+y4>=6 x1+y2+y3+y4+y5>=5 x1+x2+y3+y4+y5>=6x1+x2+y4+y5>=8 x1+x2+y5>=8y1+y2+y3+y4+y5<=3 !半时服务员不超过三名 endgin 7 !所有参数为整数 得到结果12451232,5,1,2,0x x y y y y y =======,最小费用为820元。
用LINGO 软件求解:Model :min =100*x1+100*x2+40*y1+40*y2+40*y3+40*y4+40*y5;x1+x2+y1>=4; x1+x2+y1+y2>=3; x1+x2+y1+y2+y3>=4; x2+y1+y2+y3+y4>=6; x1+y2+y3+y4+y5>=5; x1+x2+y3+y4+y5>=6; x1+x2+y4+y5>=8; x1+x2+y5>=8; y1+y2+y3+y4+y5<=3;@gin (x1);@gin (x2);@gin (y1);@gin (y2);@gin (y3);@gin (y4);@gin (y5); end得到结果12245132,5,1,1,1,0x x y y y y y =======,最小费用为820元。
由结果可以看出,用LINDO 和LINGO 求解得到的雇佣方案有所不同,但两种方案所花费的费用相同,因此该储蓄所任意采用其中一种方案雇佣服务员都可以使费用最低。
2) 当不能雇佣半时服务员时,令y 1=y 2=y 3=y 4=y 5=0,LINDO 和LINGO 结果相同,求得最优解为x 1=5,x 2=6,总费用为1100元,比雇佣半时服务员时每天增加了280元。
3) 如果雇佣半时服务员的数量没有限制,即取消123453y y y y y ++++≤的约束,在LINDO 中求得:x 1=x 2=y 2=y 3=0,y 1=4,y 4=2,y 5=8;在LINGO 中求得x 1=x 2=y 2=y 3=y 4=0,y 1=6,y 5=8。
总费用都为560元,每天可以减少费用260元。
4. 投资问题:假设某公司在下一个计划期内可用于投资的总资本为b 万元,可供选择的投资项目共有n 个,分别记为1,2...n ,已知对第j 个项目的投资总额为万元,而收益总额为万元。
请问如何进行投资,才能使利润率(即单位投资可获得的收益)最高?在建立模型以后,请自己赋予题中变量于数据用LINGO 软件进行求解。
一、问题分析:本题要求单位投资的收益最高,约束条件仅有一个,即为总投资额不能超过b 万元。
二、模型建立:设第j 个项目的投资额为x j 万元,则:max .0nj jjjnjjnjjj c x a z xs txbx =≤≥∑∑∑三、模型求解:针对本题,假设b 等于2000万元,共有4个项目,每个项目的利润率c j /a j 分别为23万元、24万元、32万元、36万元。
则, 用LINGO 软件求解: Model :max =(23*x1+24*x2+32*x3+36*x4)/(x1+x2+x3+x4);x1+x2+x3+x4<=2000; end求得结果为:将全部资金投到项目4,其余项目不投,最高利润率为36万元。