圆系方程-高中数学知识点讲解

合集下载

高中数学教师备课必备系列圆与方程专题八 圆系方程及其应用 含解析

高中数学教师备课必备系列圆与方程专题八 圆系方程及其应用 含解析

圆系方程及其应用一.常见的圆系方程有如下几种:222??0)?)(x?a)??(y?b(),b(a为圆心的同心圆系方程:.以12222?0??+Dx?Ey?F?0xEyx??yy+Dx?与圆同心的圆系方程为:220??F+DxC:x??yEy0?l:ax?by?c交点的圆系方程为:与圆2.过直线22??)R?)?0+((ax?byx??yc+Dx?Ey?FABClB,A为公共弦的一系列相交圆,其圆心在(1)当直线交于与圆两点时,圆系中的所有圆是以AB的垂直平分线上;公共弦??b??aED),?M(?ACl时,这时圆系的圆心与圆,切于点(2)当直线22?????bEaE?abD?D),b?(a?(?,?)?CM?OM?OC?(?,?)?(?,?)2222222?n?CM=CMn l)b(a,n?,∴,∴而直线∥的法向量2l?CM ACl的过点,且直线的切线.为圆因此,CMCACA?l与重合.又∵(过切点的半径与切线垂直),∴ACCl圆心都,直线外)与圆内切或外切于点是它们的公切线,由此可知,圆系中的所有圆(除圆CA在直线上.22220??FDx?Ey?F?0C:x?yC:x+?yE+Dx?y交点的圆系方程为:.过两圆与322112112????2222??1?0?Dx?Ey?y+Dx?Ey?F??xF?y?x+.221121??E??DED2211),?M(?,可知,圆心??)?)2(12(1?????(E?E)E?(D?DDDE?)ED1111211222)?(?,?)CM(??,?OM?OC?(??,?)11????)2(1??)?2(12(1)2(1?2)2???EDED2211)]?(OC?OC,?)?C[(??,C)?(??2112?????1122221?M,C,CCC M上.因此,点共线,即圆系的所有圆的圆心都在已知两圆的连心线2112CAB?CC AB C BA,为所有两点时,则,且弦(即连心线与公共弦垂直)(1)当圆与圆相交于2211圆的公共弦;CCCC AAM上,圆系的所有圆都与已(2)当圆与圆内切或外切于的连心线点时,则在过切点2121CC A处内切或外切.及圆知的圆在点21注意:22+Dx?EyxC:??yF?0; 1)此圆系不含圆(2222CC和两圆公共弦所在直线交点的圆,可等价转化为过圆(2)为了避免利用上述圆系方程时讨论圆2122?[(D?D)x?(E?E)y?Dx?Ey?F?(F?F)]?x?y0? :系方程211112211???1??*0F)?)y?(F??(D?D)x?(EE称为根轴方程.时,上述方程(3)特别地,当222111根轴的特点:位于已知两圆外的根轴上的任意一点向圆系的所有圆所作的切线的长都相等.CC ABBA,(*)所在直线的方程;与圆两点时,方程于表示公共弦①当两已知圆21C AA C(*)的公切线方程.②当圆点时,方程与圆内切或外切于表示过(内或外)公切点21A外,公切线上的所有点均具有根轴的性质.这时,除点二.圆系方程在解题中的应用2222?2x?yy?1??y?2?03x0x??y3?3x交点和坐标原点的圆的方程..求经过两圆和例122020?x?2y?x?y?4(2,0)3)BA(?1,?,且过点例2.求与圆切于点的圆的方程.222222?0?3)]?(y200x?y?4x?2y???[(x?1)?(x?1)?(y3)?3)A(??1,,构造圆系为点圆解一:视点422??7x?7y?4x?18y?20?0(2,0)B,∴所求的圆的方程为,可得代入点3A(?1,?3)3x?4y?15?0,与已知圆构造圆系解二:过点的已知圆的切线方程为22?(3x?4y??15)?x0?yy?4x?2?20822??7x?7y?4x?18y?20?0(2,0)B代入点,∴所求的圆的方程为,可得7220?1?y??2x4yxC:?0??2:x?y4l的交点且面积最小的圆的方程.求经过直线与圆C: 3.例??22?0?4?x?y2x?y?1+?2xy?4解一:设圆的方程为,即22???)?0?(1?x)?(4?4)xy?y+2(1+,则1584??2222???????()4144r??(41)?(?)?(?),5544.8222??r?26x?12y?5x37?5y?0. 最小,从而圆的面积最小,故所求圆的方程为:∴当时,5作业:222?x?y4)?B(?1,A(1,1) 1.求与圆的圆的方程.切于点,且过点22220x?y?x?4x?y?10x?3y?6?的交点,且与直线2.求过两圆和相切的圆的方程.221)??R,k?k?10)y10k?20?0(kx??y2?kx?(4中,任意两个圆的位置关系如何?3.圆系一.常见的圆系方程有如下几种:222??0)(???x?a)?(yb)()b(a, 1.以为圆心的同心圆系方程:2222?0??+Dx?EyxDxx?y+?Ey?F?0?y同心的圆系方程为:与圆220?c?axl:?by0?EyC:x?y+Dx??F交点的圆系方程为:与圆2.过直线22??)0?(R???x?y+Dx?EyF+(ax?byc)ABClB,A为公共弦的一系列相交圆,其圆心在两点时,圆系中的所有圆是以与圆交于)当直线(1AB公共弦的垂直平分线上;??b??aED,?M(?)ACl,2(时,这时圆系的圆心切于点)当直线与圆22.?????b?abDD?EaE,?)?((??,?)?(?,?)??(a,b)CM?OM?OC?2222222?n?CM=CMn l)bn?(a,,∴,∴而直线∥的法向量2CM?l ACl的切线.,且直线因此,的过点为圆CA?lCACM重合.与(过切点的半径与切线垂直)又∵,∴CCAl是它们的公切线,外)与圆内切或外切于点圆心都由此可知,圆系中的所有圆(除圆,直线CA上.在直线2222+Dx?Ey?F?0C:x?:xy?y+Dx?Ey?F?0C交点的圆系方程为:.过两圆与311222121????2222??10??Eyy?F??Fx??y?+Dxx?yD+x?E.211122??EE??DD2211,M(??),可知,圆心??)??)2(12(1????(E?E)(D?D?DDE?)EDE1111222211)?(?,?)CM(??,?OM?OC?(?,?)?11????)2(122(1??2(1?2(1)?))2???EDDE2211)]?(OC?OC)?)?(??,?[(?C,?C2121????12211??22M,C,CCC M上.共线,即圆系的所有圆的圆心因此,点都在已知两圆的连心线2211CAB?CCC ABB,A为所有(即连心线与公共弦垂直)相交于两点时,则(1)当圆,且弦与圆2211圆的公共弦;CCCC AAM上,圆系的所有圆都与已内切或外切于在过切点与圆点时,则)当圆(2的连心线2121CC A处内切或外切.及圆知的圆在点21注意:22+Dx?Ey?FC:x??y0;1)此圆系不含圆(2222CC和两圆公共弦所在直线交点的圆)为了避免利用上述圆系方程时讨论圆,可等价转化为过圆(22122?[(D?D)x?(E?E)y?Dx?EyF??(F?F)]?0x?y? :系方程221211111???1??*)F?0)E?Ey?(F?x?(DD)?(称为根轴方程.3()特别地,当时,上述方程211221根轴的特点:位于已知两圆外的根轴上的任意一点向圆系的所有圆所作的切线的长都相等.CC ABBA,(*)所在直线的方程;表示公共弦两点时,方程①当两已知圆与圆于21C AA C(*)的公切线方程.内切或外切于点时,方程表示过(内或外)公切点与圆②当圆21A外,公切线上的所有点均具有根轴的性质.这时,除点二、圆系方程在解题中的应用:2222?2x?y3y?1?3x?y?2?03xx0?y??交点和坐标原点的圆的方程.例1 和.求经过两圆22?4x?2y?20?x0?y A(?1,?3)B(2,0)的圆的方程.,且过点切于点例2.求与圆222222?]?3)0?(?20?y[(x?1)?(y?3)1)?0x??y?4x?2y(x?3)1,A(??视点解一:为点圆,构造圆系422??(2,0)B?4x?18yx??7y20?07,可得,∴所求的圆的方程为代入点3A(?1,?3)3x?4y?15?0,与已知圆构造圆系的已知圆的切线方程为解二:过点22?(3x?4y??20?15)?x0?y??4x2y822??7x?7y?4x?18y?20?0(2,0)B,可得代入点,∴所求的圆的方程为72201?y2?x?C:x4?y?0x4??y?l:2的交点且面积最小的圆的方程.与圆C:例3.求经过直线??22?02x?1+y?4??x?xy?2?4y,即解一:设圆的方程为22???)??40?4)yx??y(1+2(1+)x?(,则1584??2222???????4)r??()(41?)1?(?4)?4(,55448222??r5x?5y?26x?12y?37?0. 最小,从而圆的面积最小,故所求圆的方程为:∴当时,5练习:22?yx2?A(1,1)B(?1,?4)的圆的方程.,且过点切于点1.求与圆2222??2)?1)??y(x(x?1)0?(y?解:设所求的圆方程为29????+29=0154???1,yB(?1,?4)x?,,解得代入,得,将∵圆过点15822???15x?15y?447x??7y0将代回圆系方程,得所求的圆方程为522220?4yxx?y??1x?0?x?3y?6 2.求过两圆相切的圆的方程.和的交点,且与直线?14??222222?x??x?y?00x?y?1?x?y?4x?,即解:设所求的圆的方程为????1122?????1441?12?????4?r???(,0),半径圆心?????????1||1??21?1?????2?6||??|?|232??1?d?(,0)0?y?6x?3圆心的距离到直线??||1?2?13?12???8??3|41|2??rd?0?y?6x?3????相切,∴,即∵所求圆与直线??|?11|1?|1|28??2222220xx?y?yx??1??40?x?y?311?323x∴所求的圆的方程为,??222,0?2?d?r0x?4??xy0y3?6?x?的距离又圆的圆心到直线即11|2?6|3?1220x??xy?4∴圆也符合题意,22220??x??32y?3x3?x110y4x?.∴所求的圆的方程为或22?2kx?(4k?10)y?10k?20?0(k?R,xk?y??1)中,任意两个圆的位置关系如何?3.圆系22?10y?20?2k(x?4y?5)?x0?y解:圆系方程可化为:2x?4y?10?0x?2y?5?0??k?R,k??1∵,??2250,C?0?10?2l:x?4y?5)?x5?(y的半径,故直线∴,即??2222x?y?10y?20?0x?(y?5)?5??到直线易知圆心的距离恰等于圆22?5y?5)(x?02xl:?y??5相切,即上述方程组有且只有一个解,从而圆系方程所表示的与圆任意两个圆有且只有一个公共点,故它们的关系是外切或内切.。

高中圆与方程的总结知识点

高中圆与方程的总结知识点

高中圆与方程的总结知识点一、圆的基本概念1.1. 定义:圆是平面上与一个给定点的距离等于一个常数的点的集合。

1.2. 圆的要素:圆心、半径,圆的圆心记为O,圆的半径记作r。

1.3. 圆的直径:过圆心的两个点之间的线段称为圆的直径,它的长度等于圆的半径的两倍。

1.4. 圆的线段:圆上的一段弧称为圆的线段。

1.5. 圆的弧长:圆的线段的长度。

1.6. 圆的圆周角:圆上的一段的圆弧,其两端点为圆上的两点,则弧所对的圆心角称为圆的圆周角,当圆周角的弧的度数是360度时,这个角也叫圆的周角。

二、圆方程的基本概念2.1. 圆的标准方程:以点(h,k)为圆心,r为半径的圆方程为:(x-h)²+(y-k)²=r²。

2.2. 圆的一般方程:圆的一般方程的一般形式为x²+y²+ax+by+c=0。

三、圆与直线的方程3.1. 圆与坐标轴的交点:圆与x轴的交点(a,0)和与y轴的交点(0,b)。

3.2. 圆与直线的位置关系:圆可能与直线相切、相交或者不相交。

3.3. 圆的切线方程:圆的切线方程要求切点在圆上,与圆的切线垂直于和直径的直线相。

四、圆与圆的方程4.1. 圆的位置关系:两个圆可能相离、外切、内切、相交或者包含。

4.2. 圆的位置关系对应的方程:通过分析圆心之间的距离与半径之间的关系,可以确定两个圆的位置关系。

五、圆的参数化方程5.1. 参数化方程的定义:参数是指由一个或几个变化的量组成的多元函数。

5.2. 圆的参数化方程:圆可以用参数方程表示为:x=r*cos(t),y=r*sin(t)。

六、解题技巧6.1. 圆方程与圆心、半径的关系:根据圆的标准方程,可以直接读出圆心的坐标和半径的值。

6.2. 圆的切线方程:根据圆的切线要求即切点在圆上,利用斜率的关系求出切线的斜率,然后代入切点的坐标得出切线方程。

6.3. 圆与直线的位置关系:通过解方程组,可以得出圆与直线的交点坐标,从而分析它们的位置关系。

高中数学圆与方程知识点

高中数学圆与方程知识点

高中数学圆与方程知识点分析1. 圆的方程:(1)标准方程:222()()x a y b r -+-=(圆心为A(a,b),半径为r )(2)圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D )圆心(-2D ,-2E )半径F E D 42122-+ 2. 点与圆的位置关系的判断方法:根据点与圆心的距离d 与r 在大小关系判断 3. 直线与圆的位置关系判断方法(1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。

d=r 为相切,d>r 为相交,d<r 为相离。

适用于已知直线和圆的方程判断二者关系,也适用于其中有参数,对参数谈论的问题。

利用这种方法,可以简单的算出直线与圆相交时的相交弦的长,以及当直线与圆相离时,圆上的点到直线的最远、最近距离等。

(2)代数法:由直线与圆的方程联立得到关于x 或y 的一元二次方程,然后由判别式△来判断。

△=0为相切,△>0为相交,△<0为相离。

利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。

4.圆与圆的位置关系判断方法(1)几何法:两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:1)当21r r l +>时,圆1C 与圆2C 相离;2)当21r r l +=时,圆1C 与圆2C 外切;3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;4)当||21r r l -=时,圆1C 与圆2C 内切; 5)当||21r r l -<时,圆1C 与圆2C 内含;(2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。

△=0为外切或内切,△>0为相交,△<0为相离或内含。

若两圆相交,两圆方程相减得公共弦所在直线方程。

5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系题型一 求圆的方程例1.求过点A( 2,0),圆心在(3, 2)圆的方程。

圆的方程 知识点总结

圆的方程 知识点总结

圆的方程知识点总结圆是平面上一组距离等于定值的点构成的集合。

圆的方程是描述圆的位置和形状的数学公式。

在平面直角坐标系中,圆的方程通常以(x,y)表示平面上的点,以(r)表示圆的半径。

圆的方程有多种表示形式,包括标准圆的方程和一般圆的方程。

在本文中,我们将讨论这两种表示形式,并就圆的方程的一些重要知识点进行总结。

一、标准圆的方程在平面直角坐标系中,标准圆的方程可以表示为:(x - h)² + (y - k)² = r²其中(h, k)是圆心的坐标,r是圆的半径。

在标准圆的方程中,圆心的坐标是负号,而圆的半径是正号。

例:方程(x - 2)² + (y + 3)² = 4这是一个以(2, -3)为圆心,半径为2的标准圆的方程。

二、一般圆的方程一般圆的方程可以表示为:x² + y² + Dx + Ey + F = 0其中D,E和F是常数,而一般圆的方程的系数则表示圆心的坐标和半径。

在一般圆的方程中,圆心的坐标可以通过系数D和E计算:圆心的横坐标(h) = -D/2圆心的纵坐标(k) = -E/2而圆的半径可以通过系数D,E和F计算:r² = h² + k² - F一般圆的方程可以通过圆心的坐标和半径的公式推导出来。

例:方程x² + y² - 4x + 6y + 12 = 0这是一个以(2, -3)为圆心,半径为2的一般圆的方程。

三、圆的一般方程与标准方程的转换在平面直角坐标系中,标准圆的方程可以通过圆的半径和圆心的坐标得到,而一般圆的方程可以通过圆的半径和圆心的坐标得到。

通过圆心的坐标和半径的公式,我们可以将一般圆的方程转换成标准圆的方程。

同样地,我们也可以将标准圆的方程转换成一般圆的方程。

四、圆的方程的性质1. 圆的方程中,系数D和E总是成对出现,即D和E的系数相等。

2. 圆的半径r永远是正数。

数学高中圆的方程讲解

数学高中圆的方程讲解

数学高中圆的方程讲解
在高中数学中,圆是一个重要的图形。

圆的方程是圆心与半径的函数关系式,常见的圆的方程有一般式、标准式和截距式。

其中,以标准式最为常用。

标准式:设圆心为$(a,b)$,半径为$r$,则圆的方程为
$(x-a)^2+(y-b)^2=r^2$。

根据标准式,我们可以依据圆的性质进行问题的求解。

例如,给定圆心和半径,可以求出圆的方程;给定圆上两点坐标,可以求出圆心和半径;给定圆心和一点坐标,可以求出此点是否在圆上等等。

截距式:设圆心为$(0,0)$,半径为$r$,则圆的方程为
$x^2+y^2=r^2$。

通过截距式,可以依据圆的对称性及其他性质进行问题求解。

除了标准式和截距式外,还有一般式。

一般式是将圆的方程进行形式化处理,得到一般的二次方程。

在一些特殊情况下,一般式会更为方便。

综上所述,高中圆的方程应当熟练掌握,并能够灵活运用。

- 1 -。

高一数学圆与圆方程知识点

高一数学圆与圆方程知识点

高一数学圆与圆方程知识点圆是初中数学学习中的一个重要的几何图形,而高一数学进一步深入了解和学习圆的性质和方程。

下面将介绍高一数学圆与圆方程的相关知识点。

一、圆的相关概念1. 圆的定义圆是平面上一点到另一点距离等于定值的所有点的集合。

2. 圆的元素圆心:圆心是圆上所有点到公共定值的点,通常用字母O表示。

半径:半径是圆心到圆上任意一点的距离,通常用字母r表示。

直径:直径是通过圆心的两个点之间的距离,等于半径的2倍。

二、圆的方程1. 标准方程圆的标准方程是(x-a)²+(y-b)²=r²,其中(a, b)是圆心坐标,r是半径长度。

例如:(x-2)²+(y+3)²=9 表示圆心坐标为(2, -3),半径长度为3的圆。

2. 一般方程圆的一般方程是x²+y²+Ax+By+C=0,其中A,B,C是实数且A²+B²≠0。

要将一般方程转化为标准方程,可以使用配方完成平方的方式。

三、切线和法线1. 切线切线是与圆只有一个交点,并且与圆相切于该点的直线。

切线的斜率等于与圆心连线的斜率的负倒数。

2. 法线法线是与切线垂直的直线,与圆相交于切点。

法线的斜率等于切线的斜率的负倒数。

四、圆与圆的位置关系1. 相交两个圆相交的情况下,有两个交点。

如果两个圆的半径相等,那么交点重合,两个圆是重合的。

如果两个圆的半径不等,那么交点不重合,两个圆是相交的。

2. 相切两个圆外切的情况下,外切点重合,两个圆是相切的。

如果两个圆的半径相等,那么两个圆是内切的。

如果两个圆的半径不等,那么两个圆是外切的。

3. 相离两个圆没有交集,并且没有公共点的情况下,两个圆是相离的。

高一数学圆与圆方程的知识点如上所述,通过了解和掌握这些知识,可以更好地理解和应用圆的性质和方程。

希望本文对你学习圆与圆方程有所帮助。

高中数学-圆与方程

高中数学-圆与方程

高二数学 第2讲 圆与方程第一节 圆的方程知识点一 圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点. (3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.知识点二 点和圆的位置关系如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-= (2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+-> (3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<知识点三 圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E--. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 知识点四 几种特殊位置的圆的方程知识点五 用待定系数法求圆的方程的步骤求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程.知识点六 轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y 之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等. 3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程; (3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答.【典型例题】 类型一 圆的标准方程[例1]求满足下列条件的各圆的方程: (1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上; (3)经过点()5,1P ,圆心在点()8,3C -.[变式1]圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A .(x ―4)2+(y+1)2=10B .(x+4)2+(y―1)2=10C .(x ―4)2+(y+1)2=100D .22(4)(1)x y -++=[例2]求圆心在直线2x -y -3=0上,且过点(5,2)和(3,-2)的圆的方程.[例3]与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为[变式2]求圆心在直线y =-x 上,且过两点A (2,0),B (0,-4)的圆的方程.类型二 圆的一般方程[例1]下列方程能否表示圆?若能表示圆,求出圆心和半径.(1)2x 2+y 2-7y +5=0;(2)x 2-xy +y 2+6x +7y =0;(3)x 2+y 2-2x -4y +10=0;(4)2x 2+2y 2-5x =0.[变式1]下列方程各表示什么图形;①x 2+y 2-4x -2y +5=0;②x 2+y 2-2x +4y -4=0;③220x y ax ++=.[例2]已知直线x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0表示一个圆.(1)求t 的取值范围; (2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.[变式2]下判断方程ax 2+ay 2-4(a -1)x +4y =0(a ≠0)是否表示圆,若表示圆,写出圆心和半径长.[变式3]已知方程0916)41(2)3(22222=++-++-+m y m x m y x 表示一个圆.(1)求实数m 的取值范围; (2)*求圆心C 的轨迹方程.[变式4]方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是( ) A .2a <-或23a >B .203a -<<C .20a -<<D .223a -<< [例3]△ABC 的三个顶点分别为A (-1,5),B (-2,-2),C (5,5),求其外接圆的方程.[变式5]如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.类型三点与圆的位置关系[例]判断点M(6,9),N(3,3),Q(5,3)与圆(x-5)2+(y-6)2=10的位置关系.[变式]已知两点P1(3,8)和P2(5,4),求以线段P1P2为直径的圆的方程,并判断点M(5,3)、N(3,4)、P(3,5)是在此圆上、在圆内、还是在圆外?类型三轨迹方程[例1]已知一曲线是与两个定点O(0,0),A(3,0)距离的比为12的点的轨迹,求这条曲线的方程,并画出曲线.[变式1]如下图,过第一象限的定点C(a,b)作互相垂直的两直线CA、CB,分别交于x轴、y轴的正半轴于A、B两点,试求线段AB的中点M的轨迹方程.[例2]等腰△ABC的底边一个端点B(1,-3),顶点A(0,6),求另一个端点C的轨迹方程,并说明轨迹的形状.[例3]已知定点A(4,0),P点是圆x2+y2=4上一动点,Q点是AP的中点,求Q点的轨迹方程.[变式2]已知定点A(2,0),点Q是圆x2+y2=1上的动点,∠AOQ的平分线交AQ于M,当Q点在圆上移动时,求动点M的轨迹方程.【轨迹方程求法示题】1.(2016•平凉校级模拟)已知点G(5,4),圆C1:(x-1)2+(y-4)2=25,过点G的动直线l与圆C1相交于E、F两点,线段EF的中点为C.求点C的轨迹C2的方程;2.(2016•河北模拟)如图,已知P是以F1(1,0),以4为半径的圆上的动点,P与F2(1,0)所连线段的垂直平分线与线段PF1交于点M.求点M的轨迹C的方程;3.(2016•湖南校级模拟)已知点C(1,0),点A,B是⊙O:x2+y2=9上任意两个不同的点,且满足AC,设M为弦AB的中点.求点M的轨迹T的方程;⋅BC=-),4.(2016•自贡校级模拟)已知△ABC的两个顶点A,B的坐标分别是(0,3,(0,3且AC,BC所在直线的斜率之积等于m(m≠0).求顶点C的轨迹M的方程,并判断轨迹M 为何种曲线.5.(2016春•成都校级月考)设Q、G分别为△ABC的外心和重心,已知A(-1,0),B(1,0),QG∥AB.求点C的轨迹E.6.(2016•成都模拟)已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.7.(2015秋•遂宁期末)已知平面直角坐标系上一动点P(x,y)到点A(-2,0)的距离是点P到点B(1,0)的距离的2倍.(1)求点P的轨迹方程;(2)过点A的直线l与点P的轨迹C相交于E,F两点,点M(2,0),则是否存在直线l,使S△EFM取得最大值,若存在,求出此时l的方程,若不存在,请说明理由.第二节 直线与圆的位置关系知识点一 直线与圆的位置关系1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点. 2.直线与圆的位置关系的判定:(1)代数法:判断直线l 与圆C 的方程组成的方程组是否有解.如果有解,直线l 与圆C 有公共点. 有两组实数解时,直线l 与圆C 相交; 有一组实数解时,直线l 与圆C 相切; 无实数解时,直线l 与圆C 相离. (2)几何法:由圆C 的圆心到直线l 的距离d 与圆的半径r 的关系判断: 当d r <时,直线l 与圆C 相交; 当d r =时,直线l 与圆C 相切; 当d r >时,直线l 与圆C 相离. 要点诠释:(1)当直线和圆相切时,求切线方程,一般要用到圆心到直线的距离等于半径,记住常见切线方程,可提高解题速度;求切线长,一般要用到切线长、圆的半径、圆外点与圆心连线构成的直角三角形,由勾股定理解得.(2)当直线和圆相交时,有关弦长的问题,要用到弦心距、半径和半弦构成的直角三角形,也是通过勾股定理解得,有时还用到垂径定理.(3)当直线和圆相离时,常讨论圆上的点到直线的距离问题,通常画图,利用数形结合来解决.知识点二 圆的切线方程的求法1.点M 在圆上,如图.法一:利用切线的斜率l k 与圆心和该点连线的斜率OM k 的乘积等于1-,即1OM l k k ⋅=-. 法二:圆心O 到直线l 的距离等于半径r .2.点()00,x y 在圆外,则设切线方程:00()y y k x x -=-,变成一般式:000kx y y kx -+-=,因为与圆相切,利用圆心到直线的距离等于半径,解出k .要点诠释:因为此时点在圆外,所以切线一定有两条,即方程一般是两个根,若方程只有一个根,则还有一条切线的斜率不存在,务必要把这条切线补上.常见圆的切线方程:(1)过圆222x y r +=上一点()00,P x y 的切线方程是200x x y y r +=;(2)过圆()()222x a y b r -+-=上一点()00,P x y 的切线方程是()()()()200x a x a y b y b r --+--=.知识点三 求直线被圆截得的弦长的方法1.应用圆中直角三角形:半径r ,圆心到直线的距离d ,弦长l 具有的关系2222l r d ⎛⎫=+ ⎪⎝⎭,这也是求弦长最常用的方法.2.利用交点坐标:若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间的距离公式计算弦长.3.利用弦长公式:设直线:l y kx b =+,与圆的两交点()()1122,,,x y x y ,将直线方程代入圆的方程,消元后利用根与系数关系得弦长:12|l x x =-.知识点四 圆与圆的位置关系1.圆与圆的位置关系:(1)圆与圆相交,有两个公共点;(2)圆与圆相切(内切或外切),有一个公共点; (3)圆与圆相离(内含或外离),没有公共点.2.圆与圆的位置关系的判定:(1)代数法:判断两圆的方程组成的方程组是否有解.有两组不同的实数解时,两圆相交; 有一组实数解时,两圆相切; 方程组无解时,两圆相离. (2)几何法:设1O 的半径为1r ,2O 的半径为2r ,两圆的圆心距为d . 当1212r r d r r -<<+时,两圆相交; 当12r r d +=时,两圆外切; 当12r r d +<时,两圆外离; 当12r r d -=时,两圆内切; 当12r r d ->时,两圆内含. 要点诠释:判定圆与圆的位置关系主要是利用几何法,通过比较两圆的圆心距和两圆的半径的关系来确定,这种方法运算量小.也可利用代数法,但是利用代数法解决时,一是运算量大,二是方程组仅有一解或无解时,两圆的位置关系不明确,还要比较两圆的圆心距和两圆半径的关系来确定.因此,在处理圆与圆的位置关系时,一般不用代数法.3.两圆公共弦长的求法有两种:方法一:将两圆的方程联立,解出两交点的坐标,利用两点间的距离公式求其长. 方法二:求出公共弦所在直线的方程,利用勾股定理解直角三角形,求出弦长. 4.两圆公切线的条数与两个圆都相切的直线叫做两圆的公切线,圆的公切线包括外公切线和内公切线两种. (1)两圆外离时,有2条外公切线和2条内公切线,共4条; (2)两圆外切时,有2条外公切线和1条内公切线,共3条; (3)两圆相交时,只有2条外公切线; (4)两圆内切时,只有1条外公切线; (5)两圆内含时,无公切线. 知识点五 圆系方程1.过直线0Ax By C ++=与圆220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=2.以(),a b 为圆心的同心圆系方程是:()()222(0)x a y b λλ-+-=≠;3.与圆220x y Dx Ey F ++++=同心的圆系方程是220x y Dx Ey λ++++=;4.过同一定点(),a b 的圆系方程是()()2212()()0x a y b x a y b λλ-+-+-+-=.【典型例题】类型一 直线与圆的位置关系[例1]已知直线y =2x +1和圆x 2+y 2=4,试判断直线和圆的位置关系.[例2]求实数m 的范围,使直线30x my -+=与圆22650x y x +-+=分别满足: (1)相交;(2)相切;(3)相离.[变式1]已知直线方程mx -y-m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线 (1)有两个公共点; (2)只有一个公共点; (3)没有公共点.[变式2]已知直线:430--+=l kx y k 与曲线22:68210+--+=C x y x y . (1)求证:不论k 为何值,直线l 和曲线C 恒有两个交点;(2)求当直线l 被曲线C 所截的线段最短时此线段所在的直线的方程.类型二 切线问题[例]过点(7,1)P 作圆2225x y +=的切线,求切线的方程.[变式](1)求圆x 2+y 2=10的切线方程,使得它经过点M ; (2)求圆x 2+y 2=4的切线方程,使得它经过点Q (3,0).类型三 弦长问题[例1]直线l 经过点P (5,5)并且与圆C :x 2+y 2=25相交截得的弦长为l 的方程.[变式1]求经过点P (6,-4),且被定圆x 2+y 2=20截得弦长为的直线的方程.[例2]圆心C在直线l:x+2y=0上,圆C过点M(2,-3),且截直线m:x-y-1=0所得弦长为C 的方程.[例3]已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.[变式2]已知圆C1:x2+y2+2x+6y+9=0和圆C2:x2+y2−4x+2y−4=0.(1)判断两圆的位置关系;(2)求两圆的公共弦所在直线的方程;(3)求两圆公切线所在直线的方程.类型四 圆与圆的位置关系[例1]已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x -2my +m 2-3=0,问:m 为何值时,(1)圆C 1和圆C 2相外切?(2)圆C 1与圆C 2内含?[变式1]当a 为何值时,圆C 1:x 2+y 2-2ax +4y +(a 2-5)=0和圆C 2:x 2+y 2+2x -2ay +(a 2-3)=0相交.[例2]若圆C 1的方程是x 2+y 2-4x -4y +7=0,圆C 2的方程为x 2+y 2-4x -10y +13=0,则两圆的公切线有_____条.[例3]坐标平面内有两个圆x 2+y 2=16和x 2+y 2-6x +8y +24=0,这两个圆的内公切线的方程是________.[变式2]圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-6x +2y +6=0的公切线有且只有_____条. [变式3]两圆4)1()2(22=-+-y x 与9)2()1(22=-++y x 的公切线有( )条. A .1 B .2 C .3 D .4类型五 圆系问题[例1]求过直线2x +y +4=0和圆x 2+y 2+2x -4y +1=0的交点,且满足下列条件之一的圆的方程:(1)过原点;(2)有最小面积.[变式1]求过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,且圆心在直线x -y -4=0上的圆的方程.[例2]已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1,则C 过定点_____. [变式2]对于任意实数λ,曲线(1+λ)x 2+(1+λ)y 2+(6-4λ)x -16-6λ=0恒过定点_____.类型六 最值问题[例1]已知实数x 、y 满足方程x 2+y 2-4x +1=0,求:(1)yx的最大值;(2)y -x 的最小值;(3)22y x +.[例2]已知点P (x ,y )是圆(x -3)2+(y -3)2=4上任意一点,求点P 到直线2x +y +6=0的最大距离和最小距离.[变式1]已知实数x 、y 满足方程x 2+y 2-4x +1=0,求:(1)5-x y的最大值;(2)x y 2-的最小值;(3)22)3()1(++-y x .。

高中数学必修2--第四章《圆与方程》知识点总结与练习知识讲解

高中数学必修2--第四章《圆与方程》知识点总结与练习知识讲解

第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.[题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x2,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2, 且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根.故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255,所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32, 则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2,解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5,则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值; (3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2. (3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:43 3.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0. 因为圆心O 1(0,-1)到直线AB 的距离为 |r 22-12|42= 4-⎝⎛⎭⎫2222=2, 解得r 22=4或r 22=20.故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.。

圆方程的知识点总结

圆方程的知识点总结

圆方程的知识点总结圆方程的一般形式是(x - h)² + (y - k)² = r²,其中(h, k)是圆心的坐标,r是圆的半径。

这个方程描述了平面上的所有满足给定半径和圆心的点。

在本文中,我们将总结圆方程的知识点,包括圆的标准方程、圆心的坐标、半径的计算、以及圆方程的应用和相关问题。

1. 圆的标准方程圆的标准方程是(x - h)² + (y - k)² = r²,其中(h, k)是圆心的坐标,r是圆的半径。

这个方程描述了平面上的所有满足给定半径和圆心的点。

通过这个方程,我们可以很容易地确定圆的位置和形状。

2. 圆心的坐标圆心的坐标(h, k)可以通过观察图形或给定的条件来确定。

在某些情况下,我们可以直接读取出来;在其他情况下,我们需要进行计算或使用相关的定理来确定圆心的坐标。

3. 半径的计算圆的半径r可以通过观察图形或给定的条件来确定。

在某些情况下,我们可以直接读取出来;在其他情况下,我们需要进行计算或使用相关的定理来确定圆的半径。

4. 圆方程的应用圆方程在几何学和代数学中有着广泛的应用。

在几何学中,我们可以使用圆方程来描述和分析圆形的几何性质,比如圆心的位置、半径的长度、以及与其他几何图形的关系。

在代数学中,我们可以使用圆方程来解决与圆相关的代数问题,比如求解圆与直线或另一个圆的交点、进行坐标变换等。

5. 相关问题与圆方程相关的问题有很多种,包括但不限于:求解给定圆的标准方程;确定给定圆心和半径的圆的方程;利用圆方程分析几何问题;求解圆与其他几何图形的交点;求解圆的参数方程等。

总而言之,圆方程是描述圆形的重要数学工具,在几何学和代数学中有着广泛的应用。

通过掌握圆方程的知识点,我们可以更好地理解和分析与圆相关的问题,掌握解题的方法和技巧,为进一步的学习和研究打下坚实的基础。

高中数学圆的方程(基础)知识梳理

高中数学圆的方程(基础)知识梳理

圆的方程【考纲要求】1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,2.能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.3.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;4.能用待定系数法,由已知条件导出圆的方程. 【知识网络】【考点梳理】考点一:圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=.(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.考点二:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E --. 圆的方程圆的一般方程简单应用圆的标准方程点与圆的关系(2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆. 考点三:点和圆的位置关系如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<圆的标准方程与一般方程的转化:标准方程展开配方一般方程.【典型例题】类型一:圆的标准方程例1. 已知圆与y 轴相切,圆心在直线x-3y=0,且这个圆经过点A(6,1),求该圆的方程.【思路点拨】已知圆与y 轴相切,圆心在直线x-3y=0,因此可设圆的标准方程,利用待定系数法解决问题.解析:设圆心为||3a a r a ⎛⎫∴= ⎪⎝⎭,,()2226133111a a a a a ⎛⎫∴-+-= ⎪⎝⎭∴==或 ∴圆心为(3,1)(111,37)∴圆的方程为(x-3)2+(y-1)2=9或(x-111)2+(y-37)2=1112. 总结升华:圆心或半径的几何意义明显,则可设标准方程. 举一反三:【变式1】若圆C 的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,则该圆的标准方程是( )A. 22(2)(1)1x y -+-= B.22(2)(1)1x y -++=C. 22(2)(1)1x y ++-= D. 22(3)(1)1x y -+-=解析:依题意,设圆心坐标为(,1)a ,其中0a >,则有|43|15a -=,由此解得2a =,因此所求圆的方程是22(2)(1)1x y -+-=,选A.类型二:圆的一般方程例2.求过三点A(1,12),B(7,10),C(-9,2)的圆的方程,并求出圆的圆心与半径,作出图形. 【思路点拨】因为圆过三个定点,故可以设圆的一般方程来求圆的方程. 解:设所求的圆的方程为220x y Dx Ey F ++++=,依题意有⎪⎩⎪⎨⎧=++-+=++++=++++.029481,010710049,0121441F E D F E D F E D解得D=-2,E=-4,F=-95.于是所求圆的方程为x 2+y 2-2x-4y-95=0. 将上述方程配方得(x-1)2+(y-2)2=100.于是,圆的圆心D 的坐标为(1,2),半径为10,图形如图所示.总结升华:求过三个定点的圆的方程往往采用待定系数法来求解.利用圆经过不在同一直线上的三点的条件,由待定系数法求出圆的一般式方程,并由此讨论圆的几何性质,这是解题的捷径.对于由一般式给出的圆的方程,研究其几何性质(圆心与半径等)时,常可用配方法或公式法加以求解.如由公式可得10r ==. 举一反三:【变式1】圆与y 轴相切,圆心P 在直线30x y -=上,且直线y x =截圆所得弦长为,求此圆的方程。

圆的标准方程-高中数学知识点讲解

圆的标准方程-高中数学知识点讲解

圆的标准方程1.圆的标准方程【知识点的认识】1.圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆.定点叫做圆心,定长就是半径.2.圆的标准方程:(x﹣a)2+(y﹣b)2=r2(r>0),其中圆心C(a,b),半径为r.特别地,当圆心为坐标原点时,半径为r 的圆的方程为:x2+y2=r2.其中,圆心(a,b)是圆的定位条件,半径r 是圆的定形条件.【解题思路点拨】已知圆心坐标和半径,可以直接带入方程写出,在所给条件不是特别直接的情况下,关键是求出a,b,r 的值再代入.一般求圆的标准方程主要使用待定系数法.步骤如下:(1)根据题意设出圆的标准方程为(x﹣a)2+(y﹣b)2=r2;(2)根据已知条件,列出关于a,b,r 的方程组;(3)求出a,b,r 的值,代入所设方程中即可.另外,通过对圆的一般方程进行配方,也可以化为标准方程.【命题方向】可以是以单独考点进行考查,一般以选择、填空题形式出现,a,b,r 值的求解可能和直线与圆的位置关系、圆锥曲线、对称等内容相结合,以增加解题难度.在解答题中,圆的标准方程作为基础考点往往出现在关于圆的综合问题的第一问中,难度不大,关键是读懂题目,找出a,b,r 的值或解得圆的一般方程再进行转化.例 1:圆心为(3,﹣2),且经过点(1,﹣3)的圆的标准方程是(x﹣3)2+(y+2)2=5分析:设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程.解答:设圆的标准方程为(x﹣3)2+(y+2)2=R2,由圆M 经过点(1,﹣3)得R2=5,从而所求方程为(x﹣3)2+(y+2)2=5,1/ 3故答案为(x﹣3)2+(y+2)2=5点评:本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径.例 2:若圆C 的半径为 1,圆心在第一象限,且与直线 4x﹣3y=0 和x 轴都相切,则该圆的标准方程是()A.(x﹣2)2+(y﹣1)2=1B.(x﹣2)2+(y+1)2=1C.(x+2)2+(y﹣1)2=1D.(x﹣3)2+(y﹣1)2=1分析:要求圆的标准方程,半径已知,只需找出圆心坐标,设出圆心坐标为(a,b),由已知圆与直线 4x﹣3y=0 相切,可得圆心到直线的距离等于圆的半径,可列出关于a 与b 的关系式,又圆与x 轴相切,可知圆心纵坐标的绝对值等于圆的半径即|b|等于半径 1,由圆心在第一象限可知b 等于圆的半径,确定出b 的值,把b 的值代入求出的a 与b 的关系式中,求出a 的值,从而确定出圆心坐标,根据圆心坐标和圆的半径写出圆的标准方程即可.解答:设圆心坐标为(a,b)(a>0,b>0),由圆与直线 4x﹣3y=0 相切,可得圆心到直线的距离d =|4푎―3푏|5=r=1,化简得:|4a﹣3b|=5①,又圆与x 轴相切,可得|b|=r=1,解得b=1 或b=﹣1(舍去),把b=1 代入①得:4a﹣3=5 或 4a﹣3=﹣5,解得a=2 或a =―12(舍去),∴圆心坐标为(2,1),则圆的标准方程为:(x﹣2)2+(y﹣1)2=1.故选:A点评:此题考查了直线与圆的位置关系,以及圆的标准方程,若直线与圆相切时,圆心到直线的距离d 等于圆的半径r,要求学生灵活运用点到直线的距离公式,以及会根据圆心坐标和半径写出圆的标准方程.例 3:圆x2+y2+2y=1 的半径为()A.1 B.2C.2 D.4分析:把圆的方程化为标准形式,即可求出圆的半径.解答:圆x2+y2+2y=1 化为标准方程为x2+(y+1)2=2,2/ 3故半径等于2,故选B.点评:本题考查圆的标准方程的形式及各量的几何意义,把圆的方程化为标准形式,是解题的关键.3/ 3。

高二数学必修二-第四章-圆与圆的方程知识点汇总

高二数学必修二-第四章-圆与圆的方程知识点汇总

高二数学必修二-第四章-圆与圆的方程知识点汇总————————————————————————————————作者:————————————————————————————————日期:第四章 圆 与 方 程★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。

设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内; (2)一般方程022=++++F Ey Dx y x(x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。

(3)求圆的方程的方法:①待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;②直接法:直接根据已知条件求出圆心坐标以及半径长度。

另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。

★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)过圆外一点的切线:设点斜式方程,用圆心到该直线距离=半径,求解k ,①若求得两个不同的解,带入所设切线的方程即可;②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(3) 过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2两圆的位置关系 判断条件 公切线条数外离 d>r1+r2 4条 外切 d=r1+r2 3条 相交 |r1-r2|<d<r1+r2 2条 内切 d=|r1-r2| 1条 内含d<|r1-r2|0条★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

高一数学复习考点知识专题讲解9--- 圆的标准方程

高一数学复习考点知识专题讲解9--- 圆的标准方程

高一数学复习考点知识专题讲解圆的标准方程学习目标 1.掌握圆的定义及标准方程. 2.会用待定系数法求圆的标准方程,能准确判断点与圆的位置关系.知识点一圆的标准方程(1)条件:圆心为C(a,b),半径长为r.(2)方程:(x-a)2+(y-b)2=r2.(3)特例:圆心为坐标原点,半径长为r的圆的方程是x2+y2=r2.知识点二点与圆的位置关系点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2的位置关系及判断方法位置关系利用距离判断利用方程判断点M在圆上|CM|=r (x0-a)2+(y0-b)2=r2点M在圆外|CM|>r (x0-a)2+(y0-b)2>r2点M在圆内|CM|<r (x0-a)2+(y0-b)2<r21.方程(x-a)2+(y-b)2=m2一定表示圆.(×)2.确定一个圆的几何要素是圆心和半径.(√)3.圆(x+1)2+(y+2)2=4的圆心坐标是(1,2),半径是4.(×)4.(0,0)在圆(x-1)2+(y-2)2=1上.(×)一、求圆的标准方程例1 (1)与y 轴相切,且圆心坐标为(-5,-3)的圆的标准方程为________________. 答案 (x +5)2+(y +3)2=25解析 ∵圆心坐标为(-5,-3),又与y 轴相切, ∴该圆的半径为5,∴该圆的标准方程为(x +5)2+(y +3)2=25.(2)以两点A (-3,-1)和B (5,5)为直径端点的圆的标准方程是__________________. 答案 (x -1)2+(y -2)2=25 解析 ∵AB 为直径, ∴AB 的中点(1,2)为圆心,12|AB |=12(5+3)2+(5+1)2=5为半径, ∴该圆的标准方程为(x -1)2+(y -2)2=25. 反思感悟 直接法求圆的标准方程的策略确定圆的标准方程只需确定圆心坐标和半径,常用到中点坐标公式、两点间距离公式,有时还用到平面几何知识,如“弦的中垂线必过圆心”“两条弦的中垂线的交点必为圆心”等. 跟踪训练1 求满足下列条件的圆的标准方程: (1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4). 解 (1)r 2=(2-4)2+(2-0)2=8, ∴圆的标准方程为(x -4)2+y 2=8. (2)设圆心为C (0,b ), 则(3-0)2+(-4-b )2=52, ∴b =0或b =-8,∴圆心为(0,0)或(0,-8), 又r =5,∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25. 二、点与圆的位置关系例2 (1)点P (m 2,5)与圆x 2+y 2=24的位置关系是( ) A .点P 在圆内 B .点P 在圆外 C .点P 在圆上 D .不确定 答案 B解析 由(m 2)2+52=m 4+25>24, 得点P 在圆外.(2)已知点M (5a +1,a )在圆(x -1)2+y 2=26的内部,则a 的取值范围为________________. 答案 [0,1)解析 由题意知⎩⎨⎧a ≥0,(5a +1-1)2+(a )2<26,即⎩⎪⎨⎪⎧a ≥0,26a <26,解得0≤a <1. 反思感悟 判断点与圆位置关系的两种方法(1)几何法:主要利用点到圆心的距离与半径比较大小.(2)代数法:把点的坐标代入圆的标准方程,判断式子两边的大小,并作出判断.跟踪训练2 已知点A (1,2)和圆C :(x -a )2+(y +a )2=2a 2,试分别求满足下列条件的实数a 的取值范围:(1)点A 在圆的内部; (2)点A 在圆上; (3)点A 在圆的外部. 解 (1)因为点A 在圆的内部, 所以(1-a )2+(2+a )2<2a 2,且a 不为0,解得a <-2.5.(2)因为点A 在圆上,所以(1-a )2+(2+a )2=2a 2, 解得a =-2.5.(3)因为点A 在圆的外部,所以(1-a )2+(2+a )2>2a 2, 且a 不为0,解得a >-2.5且a ≠0.待定系数法与几何法求圆的标准方程典例 求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的标准方程. 解 方法一(待定系数法)设圆的标准方程为(x -a )2+(y -b )2=r 2, 则有⎩⎪⎨⎪⎧a 2+b 2=r 2,(1-a )2+(1-b )2=r 2,2a +3b +1=0,解得⎩⎪⎨⎪⎧a =4,b =-3,r =5.∴圆的标准方程是(x -4)2+(y +3)2=25. 方法二 (几何法)由题意知OP 是圆的弦,其垂直平分线为x +y -1=0. ∵弦的垂直平分线过圆心,∴由⎩⎪⎨⎪⎧ 2x +3y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =4,y =-3,即圆心坐标为(4,-3), 半径为r =42+(-3)2=5.∴圆的标准方程是(x -4)2+(y +3)2=25.[素养提升](1)待定系数法求圆的标准方程的一般步骤(2)几何法即是利用平面几何知识,求出圆心和半径,然后写出圆的标准方程.(3)像本例,理解运算对象,探究运算思路,求得运算结果.充分体现数学运算的数学核心素养.1.若某圆的标准方程为(x-1)2+(y+5)2=3,则此圆的圆心和半径长分别为()A.(-1,5),3B.(1,-5), 3C.(-1,5),3 D.(1,-5),3答案 B2.圆心为(1,-2),半径为3的圆的方程是()A.(x+1)2+(y-2)2=9B.(x-1)2+(y+2)2=3C.(x+1)2+(y-2)2=3D.(x-1)2+(y+2)2=9答案 D解析由圆的标准方程得(x-1)2+(y+2)2=9.3.点P(1,3)与圆x2+y2=24的位置关系是()A.在圆外B.在圆内C.在圆上D.不确定答案 B4.圆心在y轴上,半径为1,且过点(1,2)的圆的标准方程是()A.x2+(y-2)2=1 B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1答案 A解析方法一(直接法)设圆的圆心为C(0,b),则(0-1)2+(b-2)2=1,∴b=2,∴圆的标准方程是x2+(y-2)2=1.方法二(数形结合法)作图(如图),根据点(1,2)到圆心的距离为1易知,圆心为(0,2),故圆的标准方程是x2+(y-2)2=1.5.若点P(5a+1,12a)在圆(x-1)2+y2=1的外部,则a的取值范围为__________.答案a>113或a<-113解析∵P在圆外,∴(5a+1-1)2+(12a)2>1,169a2>1,a2>1169,∴a>113或a<-1 13.1.知识清单:(1)圆的标准方程.(2)点和圆的位置关系.2.方法归纳:直接法、几何法、待定系数法.3.常见误区:几何法求圆的方程出现漏解情况.1.圆心为(3,1),半径为5的圆的标准方程是() A.(x+3)2+(y+1)2=5C .(x -3)2+(y -1)2=5D .(x -3)2+(y -1)2=25 答案 D2.圆(x -3)2+(y +2)2=13的周长是( ) A.13π B .213π C .2π D .23π 答案 B解析 由圆的标准方程可知,其半径为13,周长为213π.3.已知点A (3,-2),B (-5,4),以线段AB 为直径的圆的标准方程是( ) A .(x -1)2+(y +1)2=25 B .(x +1)2+(y -1)2=25 C .(x -1)2+(y +1)2=100 D .(x +1)2+(y -1)2=100 答案 B解析 由题意得圆心坐标为(-1,1),半径r =12|AB |=12(3+5)2+(-2-4)2=5,所以圆的标准方程是(x +1)2+(y -1)2=25.故选B.4.若点A (a +1,3)在圆C :(x -a )2+(y -1)2=m 外,则实数m 的取值范围是( ) A .(0,+∞) B .(-∞,5) C .(0,5) D .[0,5] 答案 C解析 由题意,得(a +1-a )2+(3-1)2>m ,即m <5,又易知m >0,所以0<m <5,故选C.5.已知一圆的圆心为点A (2,-3),一条直径的端点分别在x 轴和y 轴上,则圆的标准方程为( ) A .(x +2)2+(y -3)2=13 B .(x -2)2+(y +3)2=13 C .(x -2)2+(y +3)2=52答案 B解析 如图,结合圆的性质可知,原点在圆上,圆的半径为r =(2-0)2+(-3-0)2=13. 故所求圆的标准方程为 (x -2)2+(y +3)2=13.6.若点P (-1,3)在圆x 2+y 2=m 2上,则实数m =________. 答案 ±2解析 ∵P 点在圆x 2+y 2=m 2上, ∴(-1)2+(3)2=4=m 2, ∴m =±2.7.圆(x -3)2+(y +1)2=1关于直线x +y -3=0对称的圆的标准方程是________________. 答案 (x -4)2+y 2=1解析 设圆心A (3,-1)关于直线x +y -3=0对称的点B 的坐标为(a ,b ), 则⎩⎪⎨⎪⎧b +1a -3·(-1)=-1,a +32+b -12-3=0,解得⎩⎪⎨⎪⎧a =4,b =0,故所求圆的标准方程为(x -4)2+y 2=1.8.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以点C 为圆心,5为半径的圆的标准方程是________________.解析 将直线方程整理为(x +1)a -(x +y -1)=0, 可知直线恒过点(-1,2),从而所求圆的标准方程为(x +1)2+(y -2)2=5.9.已知圆C 过点A (3,1),B (5,3),圆心在直线y =x 上,求圆C 的标准方程. 解 设圆心C (a ,a ),半径为r ,则⎩⎪⎨⎪⎧(a -3)2+(a -1)2=r 2,(a -5)2+(a -3)2=r 2, 解得⎩⎪⎨⎪⎧a =3,r =2,∴圆C 的标准方程为(x -3)2+(y -3)2=4. 10.已知点A (-1,2)和B (3,4).求: (1)线段AB 的垂直平分线l 的方程; (2)以线段AB 为直径的圆的标准方程. 解 由题意得线段AB 的中点C 的坐标为(1,3). (1)∵A (-1,2),B (3,4), ∴直线AB 的斜率k AB =4-23-(-1)=12.∵直线l 垂直于直线AB , ∴直线l 的斜率k l =-1k AB =-2,∴直线l 的方程为y -3=-2(x -1), 即2x +y -5=0. (2)∵A (-1,2),B (3,4),∴|AB |=(3+1)2+(4-2)2=20=25, ∴以线段AB 为直径的圆的半径r =12|AB |= 5.又圆心为C (1,3),∴所求圆的标准方程为(x-1)2+(y-3)2=5.11.已知圆心在x轴上的圆C经过A(3,1),B(1,5)两点,则C的标准方程为()A.(x+4)2+y2=50 B.(x+4)2+y2=25C.(x-4)2+y2=50 D.(x-4)2+y2=25答案 A解析根据题意,设圆的圆心C的坐标为(m,0),若圆C经过A(3,1),B(1,5)两点,则有(3-m)2+1=(m-1)2+25,解得m=-4,即圆心C为(-4,0),则圆的半径r=|CA|=(3+4)2+1=50,则圆C的标准方程为(x+4)2+y2=50,故选A.12.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程为()A.x+y-2=0 B.x-y+2=0C.x+y-3=0 D.x-y+3=0答案 D解析圆x2+(y-3)2=4的圆心坐标为(0,3).因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l的方程是y-3=x-0,化简得x-y+3=0.13.已知直线(3+2λ)x+(3λ-2)y+5-λ=0恒过定点P,则与圆C:(x-2)2+(y+3)2=16有公共的圆心且过点P的圆的标准方程为()A.(x-2)2+(y+3)2=36B.(x-2)2+(y+3)2=25C.(x-2)2+(y+3)2=18D.(x-2)2+(y+3)2=9答案 B解析 由(3+2λ)x +(3λ-2)y +5-λ=0,得(2x +3y -1)λ+(3x -2y +5)=0,则⎩⎪⎨⎪⎧ 2x +3y -1=0,3x -2y +5=0,解得⎩⎪⎨⎪⎧x =-1,y =1,即P (-1,1). ∵圆C :(x -2)2+(y +3)2=16的圆心坐标是(2,-3),∴|PC |=(-1-2)2+(1+3)2=5,∴所求圆的标准方程为(x -2)2+(y +3)2=25,故选B.14.已知点P (x ,y )在圆x 2+y 2=1上,则(x -1)2+(y -1)2的最大值为__________.答案 1+ 2解析 (x -1)2+(y -1)2的几何意义是圆上的点P (x ,y )到点(1,1)的距离,因此最大值为2+1.15.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的标准方程为______________. 答案x 2+(y +1)2=1解析 由已知圆(x -1)2+y 2=1,设其圆心为C 1,则圆C 1的圆心坐标为(1,0),半径长r 1=1.设圆心C 1(1,0)关于直线y =-x 对称的点的坐标为(a ,b ),即圆心C 的坐标为(a ,b ),则⎩⎨⎧b a -1·(-1)=-1,-a +12=b 2,解得⎩⎪⎨⎪⎧a =0,b =-1. 所以圆C 的标准方程为x 2+(y +1)2=1.16.已知圆C 1:(x +3)2+(y -1)2=4,直线l :14x +8y -31=0,求圆C 1关于直线l 对称的圆C 2的标准方程.解 设圆C 2的圆心坐标为(m ,n ).因为直线l 的斜率k =-74,圆C 1:(x +3)2+(y -1)2=4的圆心坐标为(-3,1),半径r =2, 所以,由对称性知⎩⎪⎨⎪⎧ n -1m +3=47,14×-3+m 2+8×1+n 2-31=0,解得⎩⎪⎨⎪⎧ m =4,n =5.所以圆C 2的标准方程为(x -4)2+(y -5)2=4.。

圆的方程的知识点总结

圆的方程的知识点总结

圆的方程的知识点总结圆的方程是平面几何中的重要概念之一,掌握了圆的方程的知识,可以帮助我们描述和解决许多与圆相关的几何问题。

在此,我将总结圆的方程的相关知识点。

1. 圆的定义和性质:圆是由平面上所有与一个给定点的距离相等的点组成的集合。

在圆中,以圆心为中心,任取圆上一点,该点到圆心的距离称为半径,圆的边界称为圆周,圆周上的任意弧称为圆弧。

2. 圆的一般方程:圆的一般方程形式为(x-a)² + (y-b)² = r²,其中(a, b)为圆心的坐标,r为圆的半径。

这个方程表达了平面上所有满足该方程的点构成的集合为一个圆。

3. 圆的标准方程:根据一般方程,可以进一步将圆的方程转化为标准方程形式。

当圆心在原点(0,0)时,圆的一般方程为 x² + y² = r²,即(x-0)² + (y-0)² = r²,简化为 x² + y² = r²。

这被称为圆的标准方程。

4. 圆心半径方程:当已知圆心坐标和半径时,可以利用圆心半径方程求得圆的方程。

圆心半径方程为 (x-a)² + (y-b)² = r²,其中(a, b)为圆心的坐标,r为圆的半径。

5. 圆的参数方程:圆的参数方程是描述圆上每一个点的坐标,通常用参数θ表示。

对于圆心在坐标原点(0,0),半径为r的圆,其参数方程为 x = r * cosθ,y = r * sinθ。

通过不同的θ值,可以得到圆上的所有点。

6. 点到圆的距离:对于给定平面上的一点P(x,y),到圆心(a,b)的距离可以通过勾股定理求得,即d = √((x-a)² + (y-b)²)。

当d等于圆的半径时,该点在圆上;当d小于圆的半径时,该点在圆内;当d大于圆的半径时,该点在圆外。

7. 判定圆内外的方法:通过将点P(x,y)代入圆的方程 (x-a)² + (y-b)² = r²,可以判断点P的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆系方程
1.圆系方程
【知识点的知识】
所谓圆系方程指的是所有的圆都有相同的圆心,但圆的半径不同的圆的总和,还可以是圆的半径相同,但圆心
不同,我们把满足这两种情况的圆的总和就叫做圆系方程;除了圆系,还有直线系(过某一定点)等等.
【例题解析】
例:已知圆系方程x2+y2+2kx+(4k+10)y+5k2+20k=0(k∈R),是否存在斜率为 2 的直线l 被圆系方程表示的任意一圆截得的弦长是定值45?如果存在,试求直线l 的方程;如果不存在,请说明理由.
解:假设存在满足条件的直线方程为y=2x+m,
圆的方程配方可得:(x+k)2+(y+2k+5)2=25.
所以圆心到直线的距离d =1
5|―2푘+2푘+5+푚|=
|5+푚|

5
|5+푚|
由垂径定理可得:(2=52―(25)2,
5)
解得m=0 或m=﹣10,
故存在满足条件的直线方程,方程为y=2x 或y=2x﹣10.
这个题可以看出,遇到圆系方程的题,只需知道其概念就可以了,关键还是看圆心、半径、圆心到直线的距离这三个因素,常用的方法就是待定系数法.
【考点分析】
本考点也是在初中就已经学过,对于高考来说,算是个冷门,但也偶尔会考,还是希望大家了解这些基本的概念,争取不漏死角.
1/ 1。

相关文档
最新文档