七年级数学期末复习培优提高训练(四)
北师大版2020七年级数学下册期末模拟测试题4(培优 附答案)
北师大版2020七年级数学下册期末模拟测试题4(培优 附答案) 1.下列长度的三条线段能组成三角形的是( ) A .3, 4, 6B .6, 9,17C .5, 12, 18D .2, 2, 42.如图,将一副直角三角板摆放,点C 在EF 上,AC 经过点D ,已知∠A =∠EDF =90°,AB =AC ,∠E =30°,∠BCE =40°,则∠CDF =( )A .20oB .25oC .30oD .35o3.如图,直线AB 、CD 相交于点O ,OE CD ⊥,垂足为O ,若射线OF 在AOE ∠的内部,EOF 25∠=︒,2AOF BOD 3∠∠=,则BOC ∠的度数为( )A .120︒B .135︒C .141︒D .145︒4.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°5.如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=22°,那么∠2的度数是( )A .21°B .22°C .23°D .25°6.泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B 是观察点,船A 在B 的正前方,过B 作AB 的垂线,在垂线上截取任意长BD ,C 是BD 的中点,观察者从点D 沿垂直于BD 的DE 方向走,直到点E 、船A 和点C 在一条直线上,那么△ABC ≌△EDC ,从而量出DE 的距离即为船离岸的距离AB ,这里判定△ABC ≌△EDC 的方法是( )A .SASB .ASAC .AASD .SSS7.下列四个算式中,可以直接用平方差公式进行计算的是( ) A .(﹣a +b )(﹣a ﹣b ) B .(2a +b )(a ﹣2b ) C .(a ﹣b )(b ﹣a )D .(a +b )(﹣a ﹣b )8.如图,点E, F 在直线AC 上,DF=BE , ∠AFD=∠CEB,下列条件中不能判断△ADF ≌△CBE 的是( )A .∠D=∠B B .AD=CBC .AE=CFD .AD// BC9.如图,把△ABC 纸片沿DE 折叠,当A 落在四边形BCDE 内时,则∠A 与∠1+∠2之间有始终不变的关系是( )A .∠A =∠1+∠2B .2∠A =∠1+∠2C .3A =∠1+∠2D .3∠A =2(∠1+∠2)10.下列运算正确的是( ) A .3a 2b 5ab +=B .325a a a ⋅=C .824a a a ⋅=D .236(2a )6a =-11.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=60°,则∠3=____.12.用简便方法计算:20192-2019×38+361=________.13.在Rt ABC ∆中,90C ∠=°,10AC cm =,5BC cm =,某线段PQ AB =, P ,Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP =__________.时,才能使ABC∆和APQ ∆全等.14.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连接BF ,CE .下列说法:①△BDF ≌△CDE ;②CE=BF ; ③BF ∥CE ;④△ABD 和△ACD 周长相等.其中正确的有___________(只填序号)15.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.16.已知|x-2|+y 2+2y+1=0,则x y 的值为__________________17.“国际半程马拉松”的赛事共有三项:A .“半程马拉松”、B .“10公里”、C .“迷你马拉松”.小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.小明和小刚被分配到不同项目组的概率______;18.如图,已知△ABC ≌△DEC ,∠E =40°,∠ACB=110°,则∠D 的度数为________.19.如图所示,是一块三角形木板,量的100A ∠=o ,40B ∠=o 则这块三角形木板的另外一个角的度数是___.20.若a m =4,a n =8,则a m +n =_____.21.已知ABC V 中,90BAC ∠=o ,AB AC =,点D 为直线BC 上的一动点(点D 不与点B 、C 重合),以AD 为边作ADE V ,使90DAE ∠=o ,AD AE =,连接CE . 发现问题:如图1,当点D 在边BC 上时,()1请写出BD 和CE 之间的位置关系为______,并猜想BC 和CE 、CD 之间的数量关系:______. 尝试探究:()2如图2,当点D 在边BC 的延长线上且其他条件不变时,()1中BD 和CE 之间的位置关系、BC 和CE 、CD 之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由; 拓展延伸:()3如图3,当点D 在边CB 的延长线上且其他条件不变时,若6BC =,2CE =,求线段ED 的长.22.已知,点D 和三角形ABC 在同一平面内.(1)如图1,点D 在BC 边上,DE BA P 交AC 于E ,DF CA ∥交AB 于F .若o(2)如图2,点D 在BC 的延长线上,DF CA ∥,EDF A ∠=∠,证明:DE BA P . (3)点D 是三角形ABC 外部的任意一点,过D 作DE BA P 交直线AC 于E ,DF CA ∥交直线AB 于F ,直接写出EDF ∠与A ∠的数量关系(不需证明).23.(1)操作思考:如图1,在平面直角坐标系中,等腰Rt △ACB 的直角顶点C 在原点,将其绕着点O 旋转,若顶点A 恰好落在点(1,2)处.则①OA 的长为 ;②点B 的坐标为 (直接写结果);(2)感悟应用:如图2,在平面直角坐标系中,将等腰R t △ACB 如图放置,直角顶点 C (-1,0),点A (0,4),试求直线AB 的函数表达式;(3)拓展研究:如图3,在平面直角坐标系中,点B (4;3),过点B 作BA ⊥y 轴,垂足为点A ;作BC ⊥x 轴,垂足为点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上一动点.问是否存在以点P 为直角顶点的等腰R t △APQ ,若存在,请求出此时P 的坐标,若不存在,请说明理由.24.如图,长方形ABCD 表示一块草地,点E ,F 分别在边AB 、CD 上,BF ∥DE ,四边形EBFD 是一条水泥小路,若AD =12米,AB =7米,且AE ∶EB =5∶2,求草地的面积.25.已知:如图,AC ∥DF ,直线AF 分别直线BD 、CE 相交于点G 、H ,∠1=∠2,求证:∠C=∠D .解:∵∠1=∠2(已知)∠1=∠DGH (_________________) ∴∠2=__________(______________) ∴BD ∥CE (________________) ∴∠C= ________(_______________) 又∵AC ∥DF∴∠D=∠ABG (________________) ∴∠C=∠D (________________)26.已知△ABC 三边长分别为4,2a +1,7,求a 的取值范围. 27.(1)02201820181( 3.14)(0.5)()(3)3π---+⨯-; (2)(﹣3a )2•(a 2)3÷a 3.28.先化简再求值:x²(x-1)- x (x²+x-1),其中x=1参考答案1.A【解析】【分析】根据三角形的三边关系:三角形任意两边的和大于第三边进行分析判断.【详解】A、3+4=7>6,能组成三角形;B、9+6<17,不能组成三角形;C、5+12<18,不能够组成三角形;D、2+2=4,不能组成三角形.故选A.【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.B【解析】【分析】由AB=AC,∠A=90°,根据等腰直角三角形的性质可得∠ACB=45°,即可求得∠ACE=85°,又因∠ACE=∠F+∠CDF,∠F=60°,由此可得∠CDF=25°.【详解】∵AB=AC,∠A=90°,∴∠ACB=45°,∵∠BCE=40°,∴∠ACE=85°,∵∠ACE=∠F+∠CDF,∠F=60°,∴∠CDF=25°,故选B.【点睛】本题考查了三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C【解析】【分析】由ED⊥CD可得∠EOC=∠EOD=90°,根据对顶角的定义可得∠AOC=∠BOD,根据∠AOC+∠AOF+∠EOF=∠EOC=90°,即可求出∠AOC的度数,利用邻补角的定义即可求出∠BOC的度数.【详解】∵ED⊥CD,∴∠EOC=∠EOD=90°,∵∠AOC=∠BOD,∠AOF=23∠BOD,∠EOF=25°,∴∠AOC+∠AOF+∠EOF=∠EOC=90°∴∠AOC+23∠AOC+25°=90°,∴∠AOC=39°,∴∠BOC=180°-∠AOC=180°-39°=141°,故选C.【点睛】本题考查了垂直的定义、对顶角的性质及角的和差运算,认真观察图形是解题关键. 4.C【解析】【分析】本题先运用邻补角定义,得到∠BAC的度数,然后根据平行得到结果.【详解】解:∵∠BAE=50°,∴∠BAC=180°-50°=130°,∵AB CD∥,∴∠ACD=∠BAC=130°.故选择:C.【点睛】本题考查了平行线的性质和邻补角的定义,解题的关键是熟练运用平行线的性质.5.C【解析】【分析】直接利用平行线的性质,求得∠AFE的度数,进而结合等腰直角三角形的性质得出答案.【详解】如图,∵AB∥CD,∴∠AFE=∠2,∵∠GFE=45°,∠1=22°,∴∠AFE=23°,∴∠2=23°,故选:C.【点睛】此题考查平行线的性质,等腰直角三角形的性质,正确运用平行线的性质是解题关键.6.B【解析】【分析】根据题目确定出△ABC和△EDC全等的条件,然后根据全等三角形的判定方法解答即可;【详解】∵C是BD的中点,∴BC=DC,∵AB⊥BD,DE⊥BD,∴∠ABC=∠EDC=90°,∵在△ABC和△EDC中,90ABC EDC BC DCACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△EDC (ASA ), ∴DE =AB . 故选:B . 【点睛】本题主要考查了全等三角形的应用,掌握全等三角形的应用是解题的关键. 7.A 【解析】 【分析】根据平方差公式的结构特点“两数之和与两数之差的乘积等于这两数的平方差”,对各项分析判断即可. 【详解】解:A 、(﹣a +b )(﹣a ﹣b )=(﹣a )2﹣b 2=a 2﹣b 2,符合平方差公式的结构特点,正确; B 、(2a +b )(a ﹣2b ),不是相同的两个数的和与差的积,不符合平方差公式的结构特点,错误;C 、(a ﹣b )(b ﹣a ),两项互为相反数,不符合平方差公式的结构特点,错误;D 、(a +b )(﹣a ﹣b ),两项互为相反数,不符合平方差公式的结构特点,错误; 故选:A . 【点睛】本题考查的是平方差公式的结构特点,熟记公式的结构是解题的关键. 8.B 【解析】 【分析】已知条件有一角和一边,可采用ASA 、AAS 或SAS 判定全等,据此逐项判断即可. 【详解】A. ∠D=∠B ,与已知条件组合可用ASA 判定△ADF ≌△CBE ,不符合题意;B. AD=CB ,与已知条件组合为“SSA ”,不能判定△ADF ≌△CBE ,符合题意;C. 由AE=CF 可得AF=CE ,与已知条件组合可用SAS 判定△ADF ≌△CBE ,不符合题意;D. 由AD// BC可得∠A=∠C,与已知条件组合可用AAS判定△ADF≌△CBE,不符合题意;故选B.【点睛】本题考查全等三角形的判定,熟练掌握判定定理是关键.9.B【解析】【分析】本题问的是关于角的问题,当然与折叠中的角是有关系的,∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)在△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2)则2∠A=∠1+∠2,故选择B项.【点睛】本题考查折叠和三角形内角和的性质,解题的关键是掌握折叠的性质.10.B【解析】【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.考查合并同类项,同底数幂的乘法和幂的乘方,解题关键是熟记运算法则.11.100°【解析】【分析】根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答.【详解】如图所示:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=60°+40°=100°.故答案是:100°.【点睛】考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.12.4000000【解析】【分析】运用完全平方公式进行计算即可.【详解】20192-2019×38+361=20192-2×2019×19+192=(2019-19)2=4000000.故答案为:4000000.【点睛】本题考查了完全平方公式.13.5㎝或10㎝【解析】本题要分情况讨论:①Rt△ABC≌Rt△QPA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△ABC≌Rt△PQA,此时AP=AC,P、C重合.【详解】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,当P运动到AP=BC时,在Rt△ABC和Rt△QPA中PQ AB AP BC=⎧⎨=⎩,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;当P运动到与C点重合时,在Rt△ABC和Rt△QPA中PQ AB AP AC=⎧⎨=⎩,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=10cm.故答案为:5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.14.①②③【解析】【分析】根据AD是中线可知BD=CD,结合题意从而可证△BDF≌△CDE,继而可知CE=BF,BF∥CE,由于△ABC的两边AB与AC不一定相等,可判断△ABD和△ACD周长相等的对错,进而可以得出答案.【详解】∵AD 是△ABC 的中线,∴BD=CD在△BDF 和△CDE 中BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CDE (SAS )故①正确;∵△BDF ≌△CDE∴BF=CE ,∠FBD=∠ECD故②正确;∵∠FBD=∠ECD∴BF ∥CE (内错角相等两直线平行)故③正确;∵△ABC 中AB 和AC 不一定相等∴△ABD 和△ACD 周长不一定相等故④错误;综上,答案为①②③.【点睛】本题考查的是中线的性质,三角形全等的判定与性质和平行线的判定,能够根据中线得出BD=CD 证得△BDF ≌△CDE 是解题的关键.15.1.3-【解析】【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 16.12. 【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】解:由题意得,|x-2|+(y+1)2=0,则x-2=0,y+1=0,解得,x=2,y=-1, 则y 1x 2= 故答案为:12 . 【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.17.23; 【解析】【分析】利用树状图法列出所有的分配情况,再看小明和小刚被分配到不同项目组的情况,根据概率公式求解即可.【详解】解:画树状图如图所示:由图可知,共有9种情况,其中小明和小刚被分配到不同项目组有6种情况,根据概率公式,则可知小明和小刚被分配到不同项目组的概率是:61 =93.【点睛】本题考查了求概率的方法,熟练应用树状图法或列表法求出所求情况数和总情况数是解题的关键.18.30°【解析】【分析】根据全等三角形的性质得到∠DCE=∠ACB=110°,然后利用三角形内角和定理求∠D即可. 【详解】解:∵△ABC≌△DEC,∠E=40°,∴∠DCE=∠ACB=110°,∴∠D=180°-∠E-∠DCE=180°-40°-110°=30°,故答案为:30°.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知三角形内角和为180°是解题关键. 19.40【解析】【分析】直接根据三角形内角和定理解答即可.【详解】∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°−∠A−∠B=180°−100°−40°=40°故答案为:40°【点睛】此题考查三角形内角和定理,难度不大20.32【解析】【分析】根据同底数幂的乘法,底数不变指数相加计算.【详解】解:∵a m =4,a n =8,∴a m +n =a m ×a n =4×8=32. 故答案为:32【点睛】题考查同底数幂的乘法,一定要记准法则才能做题.21.(1)BD CE ⊥;BC CD CE =+;(2)BD CE ⊥成立,数量关系不成立,关系为BC=CE-CD ;(3)DE =【解析】【分析】()1根据条件AB AC =,BAC 90∠=o ,AD AE =,DAE 90∠=o ,判定ABD V ≌()ACE SAS V ,即可得出BD 和CE 之间的关系,根据全等三角形的性质,即可得到CE CD BC +=;()2根据已知条件,判定ABD V ≌()ACE SAS V,得出BD CE =,再根据BD BC CD =+,即可得到CE BC CD =+;()3根据条件判定ABD V ≌()ACE SAS V ,得出BD CE =,在Rt DCE V 中,由勾股定理得22222DE DC CE 8268=+=+=,即可解决问题.【详解】()1如图1,BAC DAE 90∠∠==o Q ,BAD CAE ∠∠∴=,在ABD V 和ACE V中, AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V, BD CE ∴=,B ACE 45∠∠==o ,BCE 454590∠∴=+=o o o ,即BD CE ⊥;由①可得,ABD V ≌ACE V, BD CE ∴=,BC BD CD CE CD ∴=+=+,故答案为BD CE ⊥,BC CD CE =+;()2BD CE ⊥成立,数量关系不成立,关系为BC CE CD =-.理由:如图2中,由()1同理可得,BAC DAE 90∠∠==o Q ,∴BAC CAD DAE CAD ∠∠∠∠+=+即BAD CA ∠∠=E ,∴在ABD V 和ACE V中, AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V, BD CE ∴=,ACE ABC ∠∠=,AB AC =Q ,ABC ACB 45∠∠∴==o ,BD BC CD ∴=+,即CE BC CD =+,ACE ACB 90∠∠+=o ,BC CE CD ∴=-;BD CE ⊥;()3如图3中,由()1同理可得,BAC DAE 90∠∠==o Q ,BAC BAE DAE BAE ∠∠∠∠∴-=-,即BAD EAC ∠∠=,易证ABD V ≌()ACE SAS V, BD CE 2∴==,ACE ABD 135∠∠==o ,CD BC BD BC CE 8∴=+=+=,∵ACB 45∠=oDCE 90∠∴=o ,在Rt DCE V 中,由勾股定理得22222DE DC CE 8268=+=+=,DE ∴=【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.解题时注意:全等三角形的对应边相等.22.(1)85o ;(2)见解析;(3)EDF A ∠=∠或180EDF A ∠+∠=o【解析】【分析】根据题意可知:(1)通过DE BA P 得到两同位角A DEC ∠=∠,DF CA ∥得到两内错角DEC EDF ∠=∠,然后等量代换.(2)通过延长BA ,构造出新的角BGD ∠,再用等量代换找到内错角EDF BGD ∠=∠,从而证明直线平行.(3)直线BA 与直线AC 相交分成四部分,分别考虑这四部分且在三角形ABC 外部的点,可知只有EDF A ∠=∠或180EDF A ∠+∠=o 这两种情况.【详解】(1)∵DE BA P ,DF CA ∥,∴A DEC ∠=∠,DEC EDF ∠=∠,∵85EDF ∠=o ,∴85A EDF ∠=∠=o ;(2)证明:如图1,延长BA 交DF 于G .∵DF AC P ,∴BAC BGD ∠=∠.又∵EDF BAC ∠=∠,∴EDF BGD ∠=∠.∴DE BA P .(3)EDF A ∠=∠或180EDF A ∠+∠=o证明如下:①按题意画出图形如上所示:因为DF AE ∥,DE AF P所以四边形AEDF 是平行四边形(两组对边平行的四边形是平行四边形) 所以EDF A ∠=∠(平行四边形对角相等)②按题意画出图形如上所示:因为DF AE ∥,DE AF P所以四边形AEDF 是平行四边形(两组对边平行的四边形是平行四边形)所以 EDF FAE ∠=∠(平行四边形对角相等)又因为180FAE BAC ∠+∠=o所以180EDF BAC ∠+∠=o BAC ∠即为原图中的A ∠BAC ∠即为原图中的A ∠,即180EDF A ∠+∠=o故答案为EDF A ∠=∠或180EDF A ∠+∠=o【点睛】本题运用到两直线平行内错角相等,内错角相等两直线平行的知识点。
2020-2021学年苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(有答案)
2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷一、选择题1、下列方程中,是一元一次方程的是( )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +94、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( )A .2B .﹣2C .1D .﹣15、解方程4x -2=3-x 的正确顺序是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .47、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,则该方程的解是___ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC .x +x +1964=xD .x +x +1964=3x10、有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②;③;④40m+10=43m+1,其中正确的是( )A .①②B .②④C .②③D .③④ 二、填空题 11、若关于x 的方程32-m x ﹣3m +6=0是一元一次方程,则这个方程的解是12、代数式2a+1与1﹣a 互为相反数,则a=13、在有理数范围内定义运算“☆”,其规则是a ☆b =a3-b .若x ☆2与4☆x 的值相等,则x 的值是______ 14、小华同学在解方程5x ﹣1=( )x+3时,把“( )”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=15、已知与互为倒数,则x 等于 16、一辆慢车从A 地开往300 km 外的B 地,同时,一辆快车从B 地开往A 地,已知慢车速度为40 km/h ,快车速度是慢车速度的1.5倍,它们出发 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a △b =ab ﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x +1)=1,则x =三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲 乙进价(元/件) 22 30售价(元/件) 29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?2020-2021苏科版七年级数学上册第4章一元一次方程 章末培优训练卷(答案)一、选择题1、下列方程中,是一元一次方程的是(B )A .3x +2y =0 B.x 4=1 C.2x -1=1 D .3x 2-5=x +2 2、下列方程中,解为x=1的是( D )A .x ﹣1=﹣1B .﹣2x=C . x=﹣2D .2x ﹣1=13、下列等式变形错误的是( )A .由5x ﹣7y =2,得﹣2﹣7y =5xB .由6x ﹣3=x +4,得6x ﹣3=4+xC .由8﹣x =x ﹣5,得﹣x ﹣x =﹣5﹣8D .由x +9=3x ﹣1,得3x ﹣1=x +9解:∵5x ﹣7y =2,∴﹣2﹣7y =﹣5x ,∴选项A 符合题意;∵6x ﹣3=x +4,∴6x ﹣3=4+x ,∴选项B 不符合题意;∵8﹣x =x ﹣5,∴﹣x ﹣x =﹣5﹣8,∴选项C 不符合题意;∵x +9=3x ﹣1,∴3x ﹣1=x +9,∴选项D 不符合题意.故选:A .4、若关于x 的一元一次方程1﹣=的解是x=2,则a 的值是( ) A .2 B .﹣2 C .1D .﹣1 解:将x=2代入方程可得:1﹣=,解得:a=﹣2,故选:B .5、解方程4x -2=3-x 的正确顺序是( C )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A .①②③B .③②①C .②①③D .③①②6、若x =2是关于x 的一元一次方程ax ﹣2=b 的解,则3b ﹣6a +2的值是( )A .﹣8B .﹣4C .8D .4解:将x =2代入一元一次方程ax ﹣2=b 得2a ﹣b =2∵3b ﹣6a +2=3(b ﹣2a )+2∴﹣3(2a ﹣b )+2=﹣3×2+2=﹣4即3b ﹣6a +2=﹣4故选:B .7、已知关于x 的方程3243a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解, 则该方程的解是___x=2827_________ 8、图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是____1000____cm 3.9、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x 元,则可列方程为( )A .x +x +1964=xB .x +x +1964=xC.x+x+1964=x D.x+x+1964=3x解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.10、有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是(D)A.①②B.②④C.②③D.③④二、填空题11、若关于x的方程32mx﹣3m+6=0是一元一次方程,则这个方程的解是解:∵关于x的方程3x m﹣2﹣3m+6=0是一元一次方程,∴m﹣2=1,解得:m=3,此时方程为3x﹣9+6=0,解得:x=1,故答案为:x=112、代数式2a+1与1﹣a互为相反数,则a= ﹣213、在有理数范围内定义运算“☆”,其规则是a☆b=a3-b.若x☆2与4☆x的值相等,则x的值是__52____14、小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=解:设()处的数字为a,根据题意,把x=2代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为x=.故答案为:.15、已知与互为倒数,则x等于解:根据题意得:•=1,去分母得:3(x﹣2)=24,即x﹣2=8,解得:x=10,故答案为:1016、一辆慢车从A地开往300 km外的B地,同时,一辆快车从B地开往A地,已知慢车速度为40 km/h,快车速度是慢车速度的1.5倍,它们出发2或4h 后两车相距100 km.17、某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排 5名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套18、规定“△”是一种新的运算法则,满足:a△b=ab﹣3b示例:4△(﹣3)=4×(﹣3)﹣3×(﹣3)=﹣12+9=3.若﹣3△(x+1)=1,则x=解:根据题中的新定义得:﹣3(x+1)﹣3(x+1)=1,去括号得:﹣3x﹣3﹣3x﹣3=1,移项合并得:﹣6x=7,解得:x=﹣,故答案为:﹣三、解答题19、解下列方程:(1)4x -3(20-x)=3; (2)3x -14-5x -76=1; (3)x 0.2-1=2x -0.80.3.解:(1)去括号,得4x -60+3x =3.移项,得4x +3x =3+60.合并同类项,得7x =63.方程两边同除以7,得x =9.(2)去分母,得3(3x -1)-2(5x -7)=1×12.去括号,得9x -3-10x +14=12.移项,得9x -10x =12+3-14.合并同类项,得-x =1.方程两边同除以-1,得x =-1.(3)方程变形,得10x 2-1=20x -83. 去分母,得15x -3=20x -8.移项,得15x -20x =-8+3.合并同类项,得-5x =-5.方程两边同除以-5,得x =1.20、甲、乙两人同时从A 地出发去B 地,甲骑自行车,速度为10km/h ,乙步行,速度为6km/h ,当甲到达B 地时,乙距B 地还有8km ,问:甲走了多少时间?A 、B 两地的距离是多少?解:设甲从A 地到达B 地走了x 小时,则甲走了10xkm,乙走了6xkm,根据题意可得,10x -6x =8 解得 x =2 则 10x =20(km )答:甲走了2小时,A 、B 两地的距离为20km21、甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x (x >4000)元.(1)分别用含有x 的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x =6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x 为何值时,在甲、乙两家商场购买所付的费用相同?解:(1)甲商场的费用为:4000+(x -4000)80%=0.8x +800(元);乙商场的费用为:3000+(x -3000)90%=0.9x +300(元).(2)当x =6000时,甲商场的费用为:0.8+800=5600(元);当x =6000时,乙商场的费用为:0.9+300=5700(元).由5600,所以在甲商场购买更优惠.(3)由题意得0.8x +800=0.9x +300,解得x =5000.答:当x 为5000元时,在甲、乙两家商场购买所付的费用相同.22、学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.解:(1)设每套课桌椅的成本为x 元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x ,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.23、某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.。
人教版 七年级数学上册 第4章 几何图形初步 培优训练(含答案)
人教版七年级数学第4章几何图形初步培优训练一、选择题1. 如图所示的几何体属于球的是()2. 下列各选项中,点A,B,C不在同一直线上的是 ()A.AB=5 cm,BC=15 cm,AC=20 cmB.AB=8 cm,BC=6 cm,AC=10 cmC.AB=11 cm,BC=21 cm,AC=10 cmD.AB=30 cm,BC=16 cm,AC=14 cm3. 图中的几何体的面数是()A.5B.6C.7D.84. 如图所示的几何体是由一些小正方体组成的,那么从左面看这个几何体得到的图形是()5. 分别从正面、左面、上面看如图所示的立体图形,得到的平面图形都一样的是()A.①②B.①③C.②③D.①④6. [2019·北京一模]下列几何体中,是圆锥的为()7. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB8. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b9. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°10. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④二、填空题11. 如图是由若干个大小相同的小正方体堆砌而成的立体图形,那么从正面、左面及上面看所得到的平面图形中面积最小的是从________面看得到的平面图形.12. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.13. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.14. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.15. 图中可用字母表示出的射线有条.16. 如图4,O是直线AB上的一点,OC,OD,OE是从点O引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=°.三、作图题17. 如图①②,画出绕虚线旋转一周得到的立体图形.18. 如图①,正方体的下半部分涂上了黑色油漆,在如图②所示的正方体的展开图中把刷油漆的部分涂黑(图②中涂黑部分是正方体的下底面).四、解答题19. 小明和小亮在讨论“射击时为什么枪管上要有准星?”这一问题.小明说:“过两点有且只有一条直线,所以枪管上要有准星.”小亮说:“若将人眼看成一点,准星看成一点,目标看成一点,这不就有三点了吗?不是三点确定一条直线吗?”你认为他们两个谁的说法正确?20. 如图,下列各几何体的表面中包含哪些平面图形?21. 计算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.22. 如图①是一张长为4 cm,宽为3 cm的长方形纸片,将该长方形纸片分别绕长、宽所在的直线旋转一周(如图②③),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.23. 如图,已知∠AOD=150°.(1)如图(a),∠AOC=∠BOD=90°,则∠BOC的余角是°,∠BOC=°.(2)如图(b),已知∠AOB与∠BOC互为余角.①若OB平分∠AOD,求∠BOC的度数;②若∠COD是∠BOC的4倍,求∠BOC的度数.人教版七年级数学第4章几何图形初步培优训练-答案一、选择题1. 【答案】B2. 【答案】B[解析] 选项B中,因为AB=8 cm,BC=6 cm,AC=10 cm,所以AB+BC≠AC.所以选项B符合题意.3. 【答案】B[解析] 图中几何体是五棱锥,有5个侧面和1个底面,共有6个面.4. 【答案】A5. 【答案】A[解析] 分别从正面、左面、上面看球,得到的平面图形都是圆;分别从正面、左面、上面看正方体,得到的平面图形都是正方形.6. 【答案】D7. 【答案】B8. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.9. 【答案】C[解析] 如图,若OC在∠AOB内部,则∠BOC1=∠AOB-∠AOC1=70°-42°=28°;若OC在∠AOB外部,则∠BOC2=∠AOB+∠AOC2=70°+42°=112°.10. 【答案】A二、填空题11. 【答案】左[解析] 该几何体从正面看是由5个小正方形组成的平面图形;从左面看是由3个小正方形组成的平面图形;从上面看是由5个小正方形组成的平面图形,故面积最小的是从左面看得到的平面图形.12. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.13. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同14. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.15. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.16. 【答案】60[解析] 设∠1=x°,则∠2=2x°,∠3=3x°.依题意,得x+2x+3x=180,解得x=30,所以∠4=4x°=120°,∠5=180°-120°=60°.三、作图题17. 【答案】解:如图所示:18. 【答案】解:如图所示.四、解答题19. 【答案】解:小明的说法正确,小亮的说法不正确.如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,目标必须在人眼与准星确定的直线上,换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=41°39'-32°5'31″=9°33'29″.22. 【答案】解:绕长方形的长所在的直线旋转一周得到的圆柱的底面半径为3 cm,高为4 cm,体积为π×32×4=36π(cm3).绕长方形的宽所在的直线旋转一周得到的圆柱的底面半径为4 cm,高为3 cm,体积为π×42×3=48π(cm3).因此绕长方形的宽所在的直线旋转一周得到的圆柱的体积大.23. 【答案】解:(1)因为∠AOC=∠BOD=90°,所以∠BOC+∠AOB=90°,∠BOC+∠COD=90°.所以∠BOC的余角是∠AOB和∠COD.因为∠AOD=150°,∠AOC=90°,所以∠COD=60°.因为∠BOD=90°,所以∠BOC=30°.故答案为60,30.(2)①因为∠AOB与∠BOC互为余角,所以∠AOC=∠AOB+∠BOC=90°.因为OB平分∠AOD,所以∠AOB=∠AOD=×150°=75°.所以∠BOC=∠AOC-∠AOB=90°-75°=15°.②由①知∠AOC=90°.因为∠COD=∠AOD-∠AOC=150°-90°=60°,且∠COD是∠BOC的4倍,所以∠BOC=15°.。
初中数学 人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(四)
人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(四)1.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.在数轴上若点A、B分别表示有理数a、b,在数轴上A、B两点之间的距离AB=|a﹣b|.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示﹣3和2的两点之间的距离是;数轴上表示x和﹣3两点之间的距离是;(2)若a表示一个有理数,则|a+4|+|a﹣2|有最小值吗?若有,请求出最小值;若没有,请说明理由;(3)当a=时,|a+4|+|a﹣1|+|a﹣2|的值最小,最小值是.2.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|也可理解为5、0在数轴上对应的两点之间的距离.类似的,|5﹣3|表示5与3之差的绝对值,也可理解为5与3两数在数轴上所对应的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示数x的点之间的距离一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上表示数a的点与表示﹣2的点之间的距离表示为;(2)数轴上点P表示的数是2,P、Q两点的距离为3,则点Q表示的数是;(3)a、b、c、d在数轴上的位置如图所示,若|a﹣d|=12,|b﹣d|=7,|a﹣c|=9,则|b﹣c|等于.3.我们知道,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A.B,分别用a,b表示,那么A.B两点之间的距离为AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A、B之间的距离是(列式表示),如果|AB|=2,那么x的值为;(3)写出|x+1|+|x+2|的最小值是.4.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为﹣20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.5.已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点的左边,距离原点8个单位长度,点B在原点的右边.(Ⅰ)求点A,点B对应的数;(Ⅱ)数轴上点A以每秒1个单位长度出发向左移动,同时点B以每秒3个单位长度的速度向左移动,在点C处追上了点A,求点C对应的数.(Ⅲ)已知在数轴上点M从点A出发向右运动,速度为每秒1个单位长度,同时点N从点B出发向右运动,速度为每秒2个单位长度,设线段NO的中点为P(O为原点),在运动的过程中,线段的值是否变化?若不变,请说明理由并求其值;若变化,请说明理由.6.一只电子跳蚤在数轴上左右跳动,最开始在数轴上的位置记为A,按如下指令运动:第一次向右跳动一格到A1.第二次在第一次的基础上向左跳动两格到A2.第三次在第二次的基础上向右跳动三格到A3.第四次在第三次的基础上向左跳动四格到A4,以此类推(1)若点A0表示原点,则跳动 10次后到点A10,它的位置在数轴上表示的数是.若每跳一格用时一秒,则跳动10次后到点A10,共用去时间是秒.(2)若跳动100次后到点A100,且所表示的数恰好是50,试求电子跳蚤的A初始位置所表示的数A.7.已知在数轴l上,一动点Q从原点O出发,沿直线l以每秒钟2个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…(1)求出5秒钟后动点Q所处的位置;(2)如果在数轴l上还有一个定点A,且A与原点O相距20个单位长度,问:动点Q 从原点出发,可能与点A重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.8.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)若点A表示数﹣2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时A、B两点间的距离为多少?9.如图,点A、B、C在数轴上表示的数分别是1、﹣1、﹣2,E是线段BC的中点,点P从点A出发,向左运动,速度是每秒0.3个单位,设运动的时间是t秒.(1)点E表示的数是;(2)在t=3,t=4这两个时间中,使点P更接近原点O的时间是哪一个?(3)若点P分别在t=8,t=n两个不同的位置时,到点E的距离完全一样,求n的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子的值可以体现点M和点N之间距离的远近,这个式子的值越小,两个点的距离越近.10.根据下面给出的数轴,解答下面的问题:(1)请根据图中A、B两点的位置,分别写出它们所表示的有理数(点B在﹣3和﹣2的正中间):A:;B:.(2)观察数轴,与点B的距离为4个单位的点表示的数是.(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.(4)若数轴上M、N两点之间的距离为2018个单位(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:,N:.参考答案1.解:(1)﹣3和2的两点之间的距离是|2﹣(﹣3)|=5;数轴上表示x和﹣3两点之间的距离是|x﹣3|;故答案为:5,|x﹣3|;(2)当﹣4≤a≤2时存在最小值,且最小值=(a+4)+(2﹣a)=6;(3)当a=1时,|a+4|+|a﹣1|+|a﹣2|=5+0+1=6.故当a=1时,|a+4|+|a﹣1|+|a﹣2|的值最小,最小值为6.故答案为1,6.2.解:(1)根据题意,得:|3﹣2|=1,|a﹣(﹣2)|=|a+2|,故答案为:1,|a+2|;(2)设点Q表示的点为x,根据题意,得:|x﹣2|=3,∴x﹣2=3,或x﹣2=﹣3,解得:x=5或x=﹣1,故答案为:5或﹣1;(3)根据题意,可知:,①﹣③,得:d﹣c=3④,④﹣③,得:b﹣c=﹣4,∴|b﹣c|=4,故答案为:4.3.解:(1)根据题意,得:|﹣2﹣(﹣5)|=|﹣2+5|=3,|1﹣(﹣3)|=|1+3|=4,故答案为:3,4;(2)根据题意,得AB的距离为:|x﹣(﹣1)|=|x+1|,∵|AB|=2,∴|x+1|=2,即x+1=2或x+1=﹣2,解得:x=1或x=﹣3,故答案为:|x+1|,1或﹣3;(3)当x>﹣1时,|x+1|+|x+2|=x+1+x+2=2x+3>1,当﹣2≤x≤﹣1时,|x+1|+|x+2|=﹣x﹣1+x+2=1,当x<﹣2时,|x+1|+|x+2|=﹣x﹣1﹣x﹣2=﹣2x﹣3>1,综上所述,|x+1|+|x+2|的最小值为1,故答案为:1.4.解:(1)∵P是AB的中点,A、B所对应的数值分别为﹣20和40.∴点P应该位于点A的右侧,和点A的距离是30,而点A位于原点O的左侧,距离为20 ∴点P位于原点的右侧,和原点O的距离为10.(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度).故P点所运动的路程是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中7.5≤t≤15,P点经过t秒钟后,在数轴上对应的数值为3t﹣35;③存在.点P接触到点A后调转方向,向B运动时,假设P为AB的中点,由题意,3t﹣35=,解得t=.∴满足条件的t的值为.5.(Ⅰ)解:∵点A在原点的左边,距离原点8个单位长度,∴点A表示的数为﹣8,而|AB|=28,且B在原点的右边,∴点B表示的数为20.即A、B点对应的数分别为﹣8,20.(Ⅱ)解:由题意可设经过x秒后,点B在C处追上了点A,列方程得3x﹣x=28解得x=14因此C点在A点向左14个单位处,即﹣8﹣14=﹣22故C点表示的数为﹣22.(Ⅲ)解:设运动时间为t秒,则NO=20+2t,AM=t,OB=20而P为线段NO的中点,所以OP=(20+2t)=10+t于是故该线段的值不随时间变化而变化,为常数6.解:(1)∵在数轴原点上第一次向右跳动一格,到数1;第二次在第一次基础上向左跳两格,到数﹣1;第三次在第二次的基础上向右跳动三格;第四次在第三次的基础上向左跳四格,∴它跳10次后,它的位置在数轴上表示的数=0+1﹣2+3﹣4+5﹣6+7﹣8+9﹣10=﹣5.答:它跳10次后,它的位置在数轴上表示的数是﹣5;电子跳蚤跳10次所跳过的格数=1+2+3+4+5+6+7+8+9+10=55,∵它每跳一格用时1秒,∴它跳10次共用去的时间=55×1=55秒.答:它每跳一格用时1秒,它跳10次共用去55秒.故答案为﹣5,55;表示的数为a,则a+1﹣2+3﹣4+…+99﹣100=50.(2)设A∴a+(1﹣2)+(3﹣4)+…+(99﹣100)=50.∴a﹣50=50.∴a=100.表示的数是100.∴点A7.解:(1)∵2×5=10,∴点Q走过的路程是1+2+3+4=10,Q处于:1﹣2+3﹣4=4﹣6=﹣2;(2)①当点A在原点右边时,设需要第n次到达点A,则=20,解得n=39,∴动点Q走过的路程是1+|﹣2|+3+|﹣4|+5+…+|﹣38|+39,=1+2+3+ (39)==780,∴时间=780÷2=390秒(6.5分钟);②当点A原点左边时,设需要第n次到达点A,则=20,解得n=40,∴动点Q走过的路程是1+|﹣2|+3+|﹣4|+5+…+39+|﹣40|,=1+2+3+ (40)==820,∴时间=820÷2=410秒(6分钟).8.解:(1)若点A表示数﹣2,将A点向右移动5个单位长度,那么终点B表示的数是3,此时A,B两点间的距离是5.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是2;此时A,B两点间的距离是1.故答案为3,5,2,1;(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时终点B表示的数为m+n﹣t此时A、B两点间的距离为:AB=|(m+n﹣t)﹣m|=|n﹣t|9.解:(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是,符号是“﹣”,故答案是:﹣.(2)当t=3,t=4时 0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t =3时,点P的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=4时,点P 的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t﹣0.3.(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是﹣1.6.此时点P到点A距离是2.6个单位长度,所以r=2.6÷0.3=8.故答案是8(4)根据数轴上两点间的距离公式点M和N的距离等于|m﹣n|,故答案是|m﹣n|.10.解:(1)A:1,B:﹣2.5;(2)在B的左边时,﹣2.5﹣4=﹣6.5,在B的右边时,﹣2.5+4=1.5,所表示的数是﹣6.5或1.5;(3)设点B对应的数是x,则=,解得x=0.5.所以,点B与表示数0.5的点重合;(4)∵M、N两点之间的距离为2018,∴MN==1009,对折点为=﹣1,∴点M为﹣1﹣1009=﹣1010,点N为﹣1+1009=1008.故答案为:(1)1,﹣2.5;(2)﹣6.5或1.5;(3)0.5;(4)﹣1010,1008.。
2022-2023学年浙江七年级数学上学期阶段性复习精练(浙教版)专题4-3 代数式(培优篇)
专题4.3 代数式(培优篇)专项练习一、单选题1.用同样多的钱,买一等毛线,可以买3千克;买二等毛线,可以买4千克,如果用买a 千克一等毛线的钱去买二等毛线,可以买( )A .43a 千克B .34a 千克C .73a 千克D .74a 千克 2.当1x =-时,3238ax bx -+的值为18,则1282b a -+的值为( )A .40B .42C .46D .563.当x =(4x 3﹣1997x ﹣1994)2001的值为( ) A .1 B .﹣1 C .22001 D .﹣22001 4.合并同类项m-3m 5m-7m -2019m ++⋅⋅⋅的结果为( )A .0B .-1009mC .-1010mD .以上答案都不对 5.观察算式,探究规律:当n =1时,S 1=13=1=12;当n =2时,S 2=13+23=9=32 ;当n =3时,S 3=13+23+33=36=62;当n =4时,S 4=13+23+33+43=100=102;…那么S n 与n 的关系为( )A .14n 4+12n 3B .14n 4+12n 2C .14n 2(n +1)2D .12n(n +1)26.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下: 若输入的值为π,则10y 的值为( )A .2562551ππ+B .5125111ππ+C .102410231ππ+D .204820471ππ+ 7.把所有偶数从小到大排列,并按如下规律分组:第1组: 2,4第2组: 6,8,10,12第3组: 14,16,18,20,22,24第4组: 26,28,30,32,34,36,38,40……现有等式A m =(i ,j )表示正偶数m 是第i 组第j 个数(从左往右数),如A 10=(2,3),则A 2020=( )A .(31,63)B .(32,18)C .(32,19)D .(31,41)8.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个9.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如记1123(1)n k k n n ==+++⋅⋅⋅+-+∑,3()(3)(4)()nk x k x x x n =+=++++⋅⋅⋅++∑;已知[]22()(1)22nk x k x k x x m =+-+=++∑,则m+n 的值是( )A .-40B .-5C .-6D .5二、填空题 10.观察下列单项式:x,-3x 2,5x 3,-7x 4,9x 5,…按此规律,可以得到第2010个单项式是______.第n 个单项式怎样表示________.11.已知28x y +=,7xy =,那么整式321xy x y --+的值为_________.12.阅读下列运算程序,探究其运算规律:a b t =※,且()()1312a b t a b t +=--=+※,※,若2010220=※,则120※等于________. 13.370.1250.2548x x -+-合并同类项后是________. 14.若(x -1)4(x+2)5=a 0+a 1x+a 2x 2+…+ a 9x 9,求:a 1+a 3+a 5+a 7+a 9=________.15.已知P =xy ﹣5x +3,Q =x ﹣3xy +1,若无论x 取何值,代数式2P ﹣3Q 的值都等于3,则y =_____.16.若2520x x -+=,则3227112020x x x --+的值为_________________.17.已知(x +1)2021=a 0+a 1x 1+a 2x 2+a 3x 3+…+a 2021x 2021,则a 2+a 4+…+a 2018+a 2020=_____. 18.如图,将正整数按下图所示规律排列下去,若用有序数对(,)n m 表示n 排从左到右第m 个数.如(4,3)表示9,则(2020,8)表示__________. 19.如图,把五个长为b 、宽为a (b a >)的小长方形,按图1和图2两种方式放在一个宽为m 的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为1C ,图2中阴影部分的周长为2C ,若大长方形的长比宽大()6a -,则21C C -的值为______.20.在数学兴趣小组活动中,小明为了求2341111122222n ++++⋯+的值,在边长为1的正方形中,设计了如图所示的几何图形.则(1)23411112222+++的值为_____________ (2)2341111122222n ++++⋯+的值为____________(结果用含n 式子表示). 三、解答题21.计算与化简:(1)3557()()()212212-+-++- (2)2201723(1)9(3)-+⨯--÷- (3)224()2(2)m n n m ++- (4)222252(3)ab a b a b ab ⎡⎤-+-⎣⎦22.已知多项式2212A x my =+-,236B nx y =-+.(1)若2(2)|3|0m n ++-=,化简A B -; (2)若A B +的结果中不含有2x 项以及y 项,求m n mn ++的值.23.已知x 、y 为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※(─4)的值;(2)求〔1※4〕※(-2)的值;(3)探索a ※(b +c )与a ※b +a ※c 的关系,并用等式把它们表达出来.24.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.元旦打折方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(x >20).(1)若该客户按方案一购买,需付款 元(用含x 的代数式表示).若该客户按方案二购买,需付款 元.(用含x 的代数式表示)(2)若x 等于30,通过计算说明此时按哪种方案更合算.(3)当x =30,你能给出一种更为省钱的购买方案吗?25.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯.将以上三个等式的两边分别相加,得: 111111223344556++++⨯⨯⨯⨯⨯. (1)直接写出计算结果:111111223344556++++⨯⨯⨯⨯⨯=________. (2)计算:1111122334(1)n n ++++⨯⨯⨯⨯+. (3)猜想并直接写出:1111133557(21)(21)n n ++++⨯⨯⨯-⨯+=________.(n 为正整数) 26.一个多项式的次数为m ,项数为n ,我们称这个多项式为m 次多项式或者m 次n 项式,例如:322523x y x y xy -+为五次三项式,222232x y xy x -++为二次四项式.(1)22333243xy x y x y -+-+为________次________项式.(2)若关于x 、y 的多项式232A ax xy x =-+,242B bxy x y =-+,已知23A B -中不含二次项,求a+b 的值.(3)已知关于x 的二次多项式,()()3223325a x x x b x x x -++++-在2x =时,值是17-,求当2x =-时,该多项式的值.27.按如下规律摆放五角星: (1)填写下表:(2)直接写出第20个图案的五角星个数为______.(3)若按上面的规律继续摆放,是否存在某个图案,其中恰好含有2019个五角星? (4)计算前20个五角星图案中五角星的总个数.28.小明同学在写作业时,不小心将一滴墨水滴在卷子上,遮住了数轴上134-和94之间的数据(如图),设遮住的最大整数是a ,最小整数是b . (1)求23b a -的值.(2)若211132m a a =--,211423n b b =-++,求()()2222352mn m m mn m mn ⎡⎤-----+⎣⎦的值.参考答案1.A【解析】设买1千克的一等毛线花x 元钱,买1千克的二等毛线花y 元钱,根据题意得: 3x=4y ,则43x y =,故买a 千克一等毛线的钱可以买二等毛线43x y =a .故选A .点睛:先设出买1千克的一等毛线花的钱数和买1千克的二等毛线花的钱数,列出一等毛线和二等毛线的关系,再乘以a 千克即可求出答案.2.B【分析】把1x =-代入3238x bx -+计算结果18,变形后得2310a b -+=,整体代入1282b a -+计算即可.解:当1x =-时,323823818ax bx a b -+=-++=,所以2310a b -+=,所以81240a b -+=,则128240242b a -+=+=,故选:B .【点拨】本题考查了已知字母数值,求代数式的值,整体代换求值,掌握整体代换求值是解题的关键.3.B【分析】由题意得(2x−1)2=1994,得到4x 2−4x -1993=0,将原式转化为(4x 3−4x−1993x−1993−1)2001=[x(4x 2−4x−1993)+(4x 2−4x−1993)−1]2001的值,再将4x 2−4x +1=1994代入可得出答案.解:※x =, ※(2x−1)2=1994,※4x 2−4x +1=1994,※4x 2−4x -1993=032001(419971994)x x --32001(44199319931)x x x =----222001[(441993)(441993)1]x x x x x =--+--- =2001(1)-=-1故选:B .【点拨】本题难度较大,需要对要求的式子进行变形,同学们要学会转化的思想,这是数学上很重要的一种思想.4.C【分析】m 与-3m 结合,5m 与-7m 结合,依此类推相减结果为-2m ,得到505对-2m,再进行计算,即可得到结果,解:m-3m 5m-7m -2019m ++⋅⋅⋅=-2m -2m -2m...-2m=-2m×505=1010m即答案为C.【点拨】本题考查了合并同类项,弄清式子的规律确定-2m 的个数是解答本题的关键. 5.C【解析】观察以上结果,1=1,3=1+2,6=1+2+3,10=1+2+3+4,所以S n =(1+2+3+4+⋯⋯+n)2=(n(n+1)2)2= 14n 2(n +1)2。
七年级数学培优补差工作计划(5篇)
七年级数学培优补差工作计划提高优生的自主和自觉学习能力,进一步巩固并提高中等生的学习成绩,帮助后进生取得适当进步,让后进生在教师的辅导和优生的帮助下,逐步提高学习成绩,并培养较好的学习习惯,形成语文基本能力。
培优计划要落到实处,发掘并培养一批语文尖子,挖掘他们的潜能,从培养语文能力入手,训练良好学习习惯,从而形成较扎实的基础和阅读写话能力,并能协助老师进行辅差活动,提高整个班级的语文素养和语文成绩。
制定目标:在这个学期的培优辅差活动中,培优对象能按照计划提高读、说、写的综合语文能力,成绩稳定在____分左右,并协助老师实施辅差工作,帮助后进生取得进步。
辅差对象能按照老师的要求做好,成绩有一定的提高,特别是应对语文考试的能力。
制定内容:培优主要是继续提高学生的阅读能力和写话能力。
介绍或推荐适量课外阅读,让优生扩大阅读面,摄取更多课外知识,尤其是散文化倾向方面,多给他们一定的指导,以期在写作中能灵活运用,提高写话水平,定时安排一定难度的练习任务要求他们完成,全面提高语文能力。
辅差的内容是教会学生敢于做题,会做题,安排比较基础的内容让他们学习,写话至少能写得出,可先布置他们摘抄。
仿写,后独立完成,保证每个后进生有话可说,有文可写。
训练后进生的口头表达能力,堂上创造情境,让后进生尝试说、敢于说、进而争取善于说。
主要措施:l.课外辅导,利用课余时间。
2.采用一优生带一后进生的一帮一方式。
3.请优生介绍学习经验,后进生加以学习。
4.课堂上创造机会,用优生学习思维、方法来影响后进生。
5.对后进生实施多读多写措施;对优生适当增加读写难度,并安排课外作品阅读,不断提高阅读和写作能力。
6.采用激励机制,对后进生的每一点进步都给予肯定,并鼓励其继续进取;在优生中树立榜样,给机会表现,调动他们的学习积极性和成功感。
7.充分了解后进生现行学习方法,给予正确引导,朝正确方向发展,保证后进生改善目前学习差的状况,提高学习成绩。
七年级数学期末复习培优提高训练(四)
)
A. 237600毫升 B. 2.376×105毫升 C. 23.8×104毫升
D. 237.6×103毫升
4、甲从A出发向北偏东45度走到点B,乙从点A出发向北偏西30度走到点C ,
则∠BAC等于
()
A、15度 B、75度 C、105度 D、135度
5、规定a b= a, ,b则(6 4)○3等于 ab
七年级数学期末复习培优提高训练(四) (2020-2021学年)
1、下列说法错误的是
( )
A. 0是绝对值最小的有理数 C. 若|x|=|-4|, 那么x=-4
B. 如果x的相反数是-5, 那么x=5 D. 任何非零有理数的平方都大于0
2、如图, 点C在线段AB上, E是AC中点, D是BC中点, 若ED=6, 则线段AB的长为( )
6 (元)
24 a 8 a 解这个方程, 得x=19.2
答: 零售票应按每张19.2元定价, 才符合要求
小结
1.注重备课。要结合课本和教参,完善每一节课的教学内容,对其重新进行审视,将其取舍、增补、 校正、拓展,做到精通教材、驾奴教材,做最好的准备。
参考答案
37 1、C ;2、C;3、B ;4、B;5、A;6、(1) 4
(2)-3;7、x=-2;8、(1)白炽灯(2)节能灯
(3)1000小时; 9、解: 设总票数为a张, 六月份零售票应按每张x元定价.
3
2
a
2a
12 2 a 24 a
五月份: 团体票售出票数为: 5 3 5 ;票款收入为:
A. 6
B. 8
C. 12
D. 16
3、我国是一个严重缺水的国家, 大家应倍加珍惜水资源, 节约用水. 据测试, 拧不紧的水龙头每秒钟会滴
人教版数学初中七年级上期末几何培优提升训练(线与角动点问题)
人教版数学七年级上期末几何培优提升训练(线与角动点问题)一、线段动点1. 【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则 A ,B 两点之间的距离AB=|a -b |,线段AB 的中点表示的数为2a b 【问题情境】如图,数轴上点A 表示的数为-2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).【综合运用】(1)填空:①A 、B 两点间的距离AB= ________,线段AB 的中点表示的数为________ ; ②用含t 的代数式表示:t 秒后,点P 表示的数为 ________;点Q 表示的数为________.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,PQ=12AB ; (4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.2. 操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示_______的点重合;操作二:(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示数________的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.3.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:________ ;用含t的代数式表示点P和点C的距离:PC=________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动的过程中有________ 处相遇,相遇时t=________ 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)4.如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A与点B的距离是2,记作AB=2,以下类同,BC=3,设点A,B,C所对应数的和是p.(1)若以B为原点,则点A所对应的数为_______,点C所对应的数为_______,p的值为_______;若以C为原点,则p的值为_______ ;(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值;在此基础上,将原点O 向右移动a(a>0)个单位,则p的值为_______;(用含a的式子表示)(3)若原点O在点B与C之间,且CO=2,则p=_______;若原点O从点C出发沿着数轴向左运动,当p=5.5时,求CO的值.二、角度运动1.如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________.(直接写出结果);(3)在(2)的条件下,将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.2.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD 同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB 与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.3.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.4. 已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=28°,则∠BOE=________°;(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的关系是否仍然成立?如成立,请说明理由.(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD+∠AOF= 12(∠BOE-∠BOD)?若存在,请求出∠BOD的度数;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找准你真正的位置。
初中数学七年级数学期末复习培优提高训练8 .docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:小明从A处向北偏东方向走10m到达B处,小亮也从A处出发向南偏西方向走15m到达C处,则BAC的度数为度。
试题2:平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=_____.试题3:某水果公司以2元/千克的单价新进了10000千克柑橘,为了合理定出销售价格,水果公司需将运输中损坏的水果成本折算到没有损坏的水果售价中.销售人员从柑橘中随机抽取若干柑橘统计柑橘损坏情况,结果如下表.如果公司希望全部售完这批柑橘能够获得5000元利润,那么在出售柑橘时,每千克大约定价元.柑橘质量(千克)50 200 500损坏的质量(千克) 5.50 19.42 51.54试题4:计算2a-3(a-b)的结果是()A.-a-3b B.a-3b C.a+3b D.-a+3b试题5:汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷米,根据题意,列出方程为()A.B.C.D.试题6:有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价降价20%以96元出售,很快就卖掉了.则这次生意的赢亏情况为()A.亏4元 B.亏24元 C.赚6元 D.不亏不赚.试题7:计算(-10)3+;试题8:解方程:。
试题9:某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。
其它主要参考数据如下:运输工具途中平均速度(千米/时)运费(元/千米)装卸费用(元)火车100 15 2000汽车80 20 900(1)如果选择汽车的总费用比选择火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答。
2020-2021学年苏科版七年级数学上册第4章4.3用方程解决问题(4) 同步培优训练卷
2020-2021学年苏科版七年级数学上册第4章4.3用方程解决问题(4)同步培优训练卷一、填空题1、甲乙两站相距360千米,一列快车由甲站开出,每小时行驶72千米;一列慢车由乙站开出,每小时行驶48千米。
(1)两车同时出发相向而行,若设两车行驶x小时相遇,则快车行驶的路程是,慢车行驶的路程是。
由题意可列方程为(2)两车同时出发同向而行(快车在后、慢车在前), 若设行驶x小时快车追上慢车,可列方程为2、(1)A、B两地相距skm,甲、乙两人分别从A、B两地相向而行直至相遇,甲的行程为甲S,乙的行程为乙S,则s、s甲、s乙三者之间的关系是;(2)A、B两地相距S km,甲、乙两人分别从A、B两地同向行进(乙在前,甲在后),当甲追上乙时,甲的行程为s甲,乙的行程为s乙,则s、s甲、s乙三者之间的关系是;(3)A、B两地相距400 km,一列慢车从A地出发,速度为80 km/h,一列快车从B地出发,速度为120km/h.若两车同时出发,相向而行x h相遇,则由题意列出的方程是;若两车相向而行,慢车出发1 h后,快车出发,快车经过x h和慢车相遇,则由题意列出的方程是3、一架飞机在两城市在两城市之间飞行,顺风需55分钟,逆风需1小时,已知风速是20千米/时,则两城市之间的距离是4、一列火车长240米,速度为60千米/时,一辆越野车的速度为80千米/时,当火车前进时,越野车与火车同向而行,由列车尾追至火车头需___ ___秒(越野车车身长不计)二、解答题5、小明每天早上要在6:50之前赶到学校上学,一天,小明以5千米/时的速度出发,24分钟后,小明的爸爸发现他忘了带语文书,于是爸爸立即骑自行车以15千米/时的速度追上去,并且在途中追上了他。
爸爸追上小明用了多少时间?问题1:这个情境中的已知量有;未知量有问题2:这个情境中的等量关系是完成解答过程:解:24分钟= 小时,设爸爸追上小明用了x小时。
由题意得:6、某公路上A、B两个车站相距108km,某日16时整,甲、乙两辆汽车分别从A、B两站同时出发,相向而行,已知甲车速度为45km/h,乙车速度为36km/h,则两车在什么时间相遇?在什么时间两车距离18km?7、A、B两地相距450km ,甲乙两车分别从A、B两地同时出发,相向而行。
第四章整式培优训练试题人教版2024—2025学年七年级数学上册
第四章整式培优训练试题人教版2024—2025学年七年级数学上册(一)整式的加减例1.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1B.﹣2x2+5x+1C.8x2﹣5x+1D.2x2﹣5x﹣1笔记:变式1.一个多项式加上2x2﹣4x﹣3得x2﹣3x,则这个多项式为.变式2.一个多项式与单项式﹣4x的差等于3x2﹣2x﹣1,那么这个多项式为.例2.若长方形的周长为6m,一边长为m+n,则另一边长为()A.3m+n B.2m+2n C.m+3n D.2m﹣n笔记:变式1.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A.4a+5b B.a+b C.a+5b D.a+7b例3.某同学做了一道数学题:“已知两个多项式为A,B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B的值应该是()A.4x﹣3y B.﹣5x+3y C.﹣2x+y D.2x﹣y笔记:变式1.某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.变式2.小明在一次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab ﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.变式3.小刚在计算一个多项式A减去多项式2b2﹣3b﹣5时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)求这个多项式A;(2)求出这两个多项式运算的正确结果;(3)当b=﹣1时,求(2)中结果的值.(二)整体代入例1.已知2x﹣3y=6,则7﹣6x+9y的值为()A.25B.﹣25C.11D.﹣11笔记:变式1.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10变式2.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.6变式3.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1B.2C.5D.7例2.若代数式x﹣2y=3,则代数式2(x﹣2y)2+4y﹣2x+1的值为()A.7B.13C.19D.25笔记:变式1.已知x+y=3,xy=1,则代数式(5x+3)﹣(2xy﹣5y)的值为.变式2.若x+y=3,xy=2,则(x+2)+(y﹣2xy)=.变式3.已知y=3xy+x,求代数式=.变式4.已知a+b=4,ab=﹣2,求代数式(2a﹣5b﹣2ab)﹣(a﹣6b﹣ab)的值.例3.若a﹣b=2,b﹣c=﹣5,则a﹣c=.笔记:变式1.如果m和n互为相反数,则化简(3m﹣2n)﹣(2m﹣3n)的结果是()A.﹣2B.0C.2D.3变式2.若a与b互为相反数,m和n互为倒数,则=.练习1.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.6练习2.已知1﹣a2+2a=0,则的值为()A.B.C.1D.5练习3.若x2+4x﹣4=0,则7﹣8x﹣2x2的值等于.练习4.若x=2y+3,则代数式3x﹣6y+1的值是.练习5.如果2x2﹣3x的值为﹣1,则6x﹣4x2+3的值为.练习6.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.练习7.若2m+n=3,则代数式6﹣2m﹣n的值为.练习8.已知a2+3a=2,则3a2+9a+1的值为.练习9.若x2﹣2x﹣2=0,则3x2﹣6x的值是.练习10.若a﹣5b=3,则17﹣3a+15b=.练习11.若a﹣2b=3,则9﹣2a+4b的值为.练习12.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.练习13.已知x2+2x﹣1=0,则3x2+6x﹣2=.练习14.我们知道,2x+3x﹣x=(2+3﹣1)x=4x,类似地,我们也可以将(a+b)看成一个整体,则2(a+b)+3(a+b)﹣(a+b)=(2+3﹣1)(a+b)=4(a+b).整体思想是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请根据上面的提示和范例,解决下面的题目:(1)把(x﹣y)2看成一个整体,求将2(x﹣y)2﹣5(x﹣y)2+(x﹣y)2合并的结果;(2)已知2m﹣n=4,求8m﹣6n+5的值;(3)已知a﹣2b=﹣5,b﹣c=﹣2,3c+d=6,求(a+3c)﹣(2b+c)+(b+d)的值.(三)绝对值化简例1.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.笔记:变式1.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.变式2.如果a<2,那么|﹣1.5|+|a﹣2|等于.变式3.已知有理数a、b、c在数轴上对应点的位置如图所示.解答下列各题:(1)判断下列各式的符号(填“>”或“<”)a﹣b0,b﹣c0,c﹣a0,b+c0(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.变式4.如图,已知a、b、c在数轴上的位置,求|b+c|﹣|a﹣b|﹣|c﹣b|的值.。
(必考题)初中数学七年级下期末(提高培优)
一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( ) A .1600名学生的体重是总体 B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本3.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-4.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°5.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( ) A .8374x yx y+=⎧⎨+=⎩B .8374x yx y -=⎧⎨-=⎩C .8374x yx y+=⎧⎨-=⎩D .8374x yx y-=⎧⎨+=⎩6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折D .9折7.2-的相反数是( ) A .2-B .2C .12D .12-8.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣39.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm10.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A .≥-1B .>1 C.-3<≤-1 D .>-311.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.23D.3212.不等式组3(1)112123x xx x-->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是()A.B.C.D.13.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)14.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B的坐标为( ) A .()5,2-B .()2,5-C .()5,2-D .()2,5--15.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2 二、填空题16.27的立方根为 .17.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.18.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________19.化简(2-1)0+(12)-2-9+327-=________________________. 20.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .21.3的平方根是_________.22.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y尺.可列方程组为__________.23.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____. 参赛者 答对题数 答错题数 得分 A 19 1 112 B 18 2 104 C 17 3 96 D10104024.结合下面图形列出关于未知数x ,y 的方程组为_____.25.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.三、解答题26.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 27.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.28.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.29.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元. (1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?30.解不等式组:5(1)21111(3)32x x x x +>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.A3.C4.B5.D6.B7.B8.B9.C10.A11.A12.B13.A14.A15.D二、填空题16.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算17.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=18.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=419.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键20.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D21.【解析】试题解析:∵()2=3∴3的平方根是故答案为:22.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程23.【解析】【分析】设答对1道题得x分答错1道题得y分根据图表列出关于x和y的二元一次方程组解之即可【详解】解:设答对1道题得x分答错1道题得y分根据题意得:解得:答对13道题打错7道题得分为:13×624.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组25.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC沿BC方向平移2个单位得到△DEF∴AD=CF=1AC=DF∴四边形ABFD三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.∵表示2,5的对应点分别为C,B,∴CB=5-2,∵点C是AB的中点,则设点A的坐标是x,则x=4-5,∴点A表示的数是4-5.故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.4.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.5.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.6.B解析:B【解析】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.7.B解析:B 【解析】 【分析】根据相反数的性质可得结果. 【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .8.B解析:B 【解析】 【详解】把11x y =⎧⎨=-⎩代入方程组231ax by ax by +=⎧⎨-=⎩得:231a b a b -=⎧⎨+=⎩,解得:4313a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2. 故选B.9.C解析:C 【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.10.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A11.A解析:A【解析】分析:由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DEABDS A D AD S ''=(),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DEABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.12.B解析:B【解析】【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.【详解】解:3(1)112123x xx x-->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x<2,解不等式②得:x≥-1,在数轴上表示解集为:,故选:B.【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.13.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.14.A解析:A【解析】【分析】先根据点B所在的象限确定横纵坐标的符号,然后根据点B与坐标轴的距离得出点B的坐标.【详解】∵点B 在第四象限内,∴点B 的横坐标为正数,纵坐标为负数∵点B 到x 轴和y 轴的距离分别是2、5∴横坐标为5,纵坐标为-2故选:A【点睛】本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的: 第一象限内,则横坐标为正,纵坐标为正;第二象限内,则横坐标为负,纵坐标为正;第三象限内,则横坐标为负,纵坐标为负;第四象限内,则横坐标为正,纵坐标为负.15.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题16.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算17.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=解析:48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=48(cm2)故答案为48 cm2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.18.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,19.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键解析:-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.详解:原式=1+4-3-3=-1.故答案为:-1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.20.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.21.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:22.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩,故答案为:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.23.【解析】【分析】设答对1道题得x分答错1道题得y分根据图表列出关于x和y的二元一次方程组解之即可【详解】解:设答对1道题得x分答错1道题得y分根据题意得:解得:答对13道题打错7道题得分为:13×6解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩ , 解得:62x y =⎧⎨=-⎩, 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.24.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组解析:250325x y x y +=⎧⎨=+⎩. 【解析】【分析】根据图形列出方程组即可.【详解】由图可得250325x y x y +=⎧⎨=+⎩. 故答案为250325x y x y +=⎧⎨=+⎩. 【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组.25.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF 然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC 沿BC 方向平移2个单位得到△DE F ∴AD=CF=1AC=DF ∴四边形ABFD解析:10【解析】【分析】根据平移的性质可得AD=CF=1,AC=DF ,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC 沿BC 方向平移2个单位得到△DEF ,∴AD=CF=1,AC=DF ,∴四边形ABFD 的周长=AB+(BC+CF )+DF+AD=AB+BC+AC+AD+CF ,∵△ABC 的周长=8,∴AB+BC+AC=8,∴四边形ABFD 的周长=8+1+1=10.故答案为10.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题26.952m ≤≤ 【解析】【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m +⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解, 因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤.本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.27.(1)A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2)最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.【解析】【分析】(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,根据题目中的等量关系:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a、b为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组为:3217 2318 x yx y+=⎧⎨+=⎩解得34 xy=⎧⎨=⎩答:1辆A型车辆装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b-∵a、b都是整数∴92ab=⎧⎨=⎩或55ab=⎧⎨=⎩或18ab=⎧⎨=⎩答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A型车1辆,B型车8辆,最少租车费为2120元.此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解. 28.(1)C(0,2),D(4,2),S 四边形ABDC =8;(2)M(0,4)或(0,-4);(3)∠CPA= ∠BAP+∠DCP 或∠CPA= ∠BAP-∠DCP .【解析】【分析】(1)由题意根据非负数的性质求出A 、B 坐标,进而分析得出C 、D 坐标,继而即可求出四边形ABDC 的面积;(2)由题意可知以AB 为底边,设点M 到AB 的距离为h 即三角形MAB 的高,求得h 的值即可得出点M 的坐标;(3)根据题意分当点P 在线段BD 上时以及当点P 在BD 延长线上时,利用平行线的性质进行分析即可.【详解】解: (1)由()()22130a b ++-=得a=-1,b=3,则A(-1,0),B(3,0),∵点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,如图,∴C(0,2),D(4,2),∴S 四边形ABDC =AB×OC=4×2=8. (2)存在.设点M 到AB 的距离为h ,S △MAB =12×AB×h=2h , 由S △MAB =S 四边形ABDC ,得2h=8,解得h=4,可知这样的M 点在y 轴上有两个,∴M(0,4)或(0,-4).(3) ①当点P 在线段BD 上时:∠CPA=∠DCP+∠BAP ,理由如下:过P 点作PE ∥AB 交OC 与E 点,∵AB∥CD, PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA=∠CPE+∠APE,∴∠CPA=∠DCP+∠BAP;②当点P在BD延长线上时:∠CPA= ∠BAP-∠DCP,理由如下:过P点作PE∥AB,∵AB∥CD,PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA= ∠APE-∠CPE。
【解析版】初中数学七年级下期末复习题(培优)
一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .602.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( )A .1B .0C .-2D .-13.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒4.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多5.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3B .﹣5C .1或﹣3D .1或﹣56.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩7.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( ) A .4cmB .2cm ;C .小于2cmD .不大于2cm8.不等式组1212x x +>⎧⎨-≤⎩的解集是( )A .1x <B .x ≥3C .1≤x ﹤3D .1﹤x ≤39.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3210.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .911.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <612.若0a <,则下列不等式不成立的是( ) A .56a a +<+B .56a a -<-C .56a a <D .65a a< 13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,014.过一点画已知直线的垂线,可画垂线的条数是( ) A .0B .1C .2D .无数15.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2 二、填空题16.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论: ①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降 ③音乐手机4月份的销售额比3月份有所下降 ④今年1-4月中,音乐手机销售额最低的是3月 其中正确的结论是________(填写序号).17.不等式71x ->的正整数解为:______________. 18.a 的平方根是3±,则a =_________19.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____. 20.64的立方根是_______.21.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.22.3a ,小数部分是b 3a b -=______.23.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.24.若a,b均为正整数,且a>7,b<32,则a+b的最小值是_______________. 25.已知a>b,则﹣4a+5_____﹣4b+5.(填>、=或<)三、解答题26.七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:(1)一共有多少名学生参与了本次问卷调查;(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.27.我市盘山、黄崖关长城、航母公园三景区是人们节假日游玩的热点景区.某中学对七年级(1)班学生今年暑假到这三景区游玩的计划做了全面调查,调查分四个类别,A游三个景区;B:游两个景区;C:游一个景区;D:不到这三个景区游玩.根据调查的结果绘制了不完全的条形统计图和扇形统计图(如图①、图②)如下,请根据图中所给的信息,解答下列问题:(1)求七年级(1)班学生人数;(2)将条形统计图补充完整;(3)求扇形统计图中表示“B类别”的圆心角的度数;(4)若该中学七年级有学生520人,求计划暑假选择A、B、C三个类别出去游玩的学生有多少人?28.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 29.在边长为1的小正方形网格中,△AOB 的顶点均在格点上. (1)B 点关于y 轴的对称点坐标为______ ;(2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后对应点P 1的坐标为______ .30.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.B4.C5.A6.D7.D8.D9.A10.B11.B12.C13.B14.B15.D二、填空题16.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额17.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为1234518.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义19.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a 的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(20.【解析】【分析】根据立方根的定义即可求解【详解】∵43=64∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义解题的关键是熟知立方根的定义21.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过22.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为123.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=824.4【解析】【分析】先估算的范围然后确定ab的最小值即可计算a+b的最小值【详解】∵<<∴2<<3∵a>a为正整数∴a的最小值为3∵<<∴1<<2∵b<b为正整数∴b的最小值为1∴a+b的最小值为3+25.<【解析】【分析】根据不等式的基本性质即可解决问题【详解】解:∵a>b∴﹣4a <﹣4b∴﹣4a+5<﹣4b+5故答案为<【点睛】本题考查不等式的基本性质应用不等式的性质应注意的问题:在不等式的两边都三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.2.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.3.B解析:B【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案. 【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒ ∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补), ∴318018074106BAC ∠=︒-∠=︒-︒=︒, 故选B . 【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.4.C解析:C 【解析】 【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.5.A解析:A 【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=, ∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1, ∴方程组的解为11x y =⎧⎨=⎩. 故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.7.D解析:D 【解析】 【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案. 【详解】当PC ⊥l 时,PC 是点P 到直线l 的距离,即点P 到直线l 的距离2cm ,当PC 不垂直直线l 时,点P 到直线l 的距离小于PC 的长,即点P 到直线l 的距离小于2cm ,综上所述:点P 到直线l 的距离不大于2cm , 故选:D . 【点睛】考查了点到直线的距离,利用了垂线段最短的性质.8.D解析:D 【解析】 【分析】 【详解】解:1212x x +>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3, 所以解集为:1<x≤3;故选D .9.A解析:A【解析】分析:由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DEABDS A D AD S ''=(),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DEABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.10.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.11.B解析:B【解析】【分析】【详解】∵12,∴3<m <4,故选B .【点睛】的取值范围是解题关键.12.C解析:C【解析】【分析】直接根据不等式的性质进行分析判断即可得到答案.【详解】A .0a <,则a 是负数,56a a +<+可以看成是5<6两边同时加上a ,故A 选项成立,不符合题意;B .56a a -<-是不等式5<6两边同时减去a ,不等号不变,故B 选项成立,不符合题意;C .5<6两边同时乘以负数a ,不等号的方向应改变,应为:56a a >,故选项C 不成立,符合题意;D .65a a<是不等式5<6两边同时除以a ,不等号改变,故D 选项成立,不符合题意. 故选C .【点睛】本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.14.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.15.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题16.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额解析:④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为:④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键. 17.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x 的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1-x>-6,x<6,∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.18.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】,∵9的平方根为3,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.19.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.20.【解析】【分析】根据立方根的定义即可求解【详解】∵43=64∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义解题的关键是熟知立方根的定义解析:【解析】【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4此题主要考查立方根的定义,解题的关键是熟知立方根的定义.21.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩ 【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==. 故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.22.【解析】【详解】若的整数部分为a 小数部分为b∴a=1b=∴a -b==1故答案为1解析:【解析】【详解】a ,小数部分为b ,∴a =1,b1,-b1)=1.故答案为1.23.100【解析】【分析】根据对顶角相等求出∠AOC 再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA 平分∠COE ∴∠AOE=∠AOC=40°∴∠COE=8【解析】【分析】根据对顶角相等求出∠AOC,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.24.4【解析】【分析】先估算的范围然后确定ab的最小值即可计算a+b的最小值【详解】∵<<∴2<<3∵a>a为正整数∴a的最小值为3∵<<∴1<<2∵b<b为正整数∴b的最小值为1∴a+b的最小值为3+解析:4【解析】【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】∴2<3,∵a,a为正整数,∴a的最小值为3,∴1<2,∵b,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.25.<【解析】【分析】根据不等式的基本性质即可解决问题【详解】解:∵a >b∴﹣4a<﹣4b∴﹣4a+5<﹣4b+5故答案为<【点睛】本题考查不等式的基本性质应用不等式的性质应注意的问题:在不等式的两边都解析:<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.三、解答题26.(1)200;(2)见解析,36°;(3)120【解析】【分析】(1)从两个统计图可得,“小说”的有80人,占调查人数的40%,可求出调查人数;(2)求出“科普常识”人数,即可补全条形统计图:)样本中,“其它”的占调查人数的20200,因此圆心角占360°的,10%,可求出度数;(3)样本估计总体,样本中“科普常识”占30%,估计总体400人的30%是喜欢“科普常识”的人数.【详解】(1)80÷40%=200人,答:一共有200名学生参与了本次问卷调查;(2)200×30%=60人,补全条形统计图如图所示:360°×20200=36°,(3)400×30%=120人,答:该年级有400名学生喜欢“科普常识”的学生有120人.【点睛】本题考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.27.(1)七年级(1)班有学生40人;(2)补图见解析;(3)108°;(4)计划暑假选择A 、B 、C 三个类别出去游玩的学生有325人.【解析】【分析】(1)根据统计图中的数据可以求得七年级(1)班的学生人数;(2)根据(1)中的结果和统计图中的数据可以求得选择B 的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得扇形统计图中表示“B 类别”的圆心角的度数;(4)根据统计图中的数据可以求得计划暑假选择A 、B 、C 三个类别出去游玩的学生有多少人.【详解】(1)8÷20%=40(人), 即七年级(1)班有学生40人;(2)选择B 的学生有:40﹣8﹣5﹣15=12(人),补全的条形统计图如下;(3)扇形统计图中表示“B 类别”的圆心角的度数是:360°×1240=108°; (4)520×401540=325(人), 答:计划暑假选择A 、B 、C 三个类别出去游玩的学生有325人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.28.952m ≤≤ 【解析】【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m +⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解, 因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤. 【点睛】 本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.29.(1)(﹣3,2)(2)见解析(3)(a ﹣3,b+2)【解析】试题分析:(1)根据坐标系可得B 点坐标,再根据关于y 轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A 、B 、C 三点平移后的对应点位置,然后再连接即可;(3)根据△AOB 的平移可得P 的坐标为(a ,b ),平移后横坐标﹣3,纵坐标+2.解:(1)B 点关于y 轴的对称点坐标为(﹣3,2),故答案为(﹣3,2);(2)如图所示:(3)P 的坐标为(a ,b )平移后对应点P 1的坐标为(a ﹣3,b+2).故答案为(a ﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.30.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【解析】【分析】(1)根据题意过点A 作平行线AD//MN ,证出三条直线互相平行并由平行得出与ACM ∠和ABP ∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN ∠=∠; (3)根据题意设MCA ACE ECD x ∠=∠=∠=,由(1)列出关系式2702CFB x ∠=︒-和11352CGB x ∠=︒-,解出方程进而得出结论. 【详解】 证明:(1)过点A 作平行线AD//MN ,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.。
最新北师大版七年级下册数学培优训练第四章三角形 3探索三角形全等的条件 第3课时
3探索三角形全等的条件第3课时(打“√”或“×”)1.两个等边三角形一定全等.(×)2.两边及其夹角相等的两个三角形全等.(√)3.两边及其一边的对角相等的两个三角形全等.(×)4.有两边和一角相等的两个三角形全等.(×)·知识点1“SAS”判定三角形全等1.(概念应用题)如图,在△ABC中,AD平分∠BAC,且AE=AF,则可直接用“SAS”判断的是(C)A.△ABD≌△ACD B.△BDE≌△CDFC.△ADE≌△ADF D.△ABD≌△ABC2.(2021·福州台江区模拟)如图,已知AB=DB,BC=BE,∠1=∠2,由这三个条件,就可得出△ABE≌△DBC,依据的判定方法是(B)A.SSS B.SAS C.ASA D.AAS3.(2021·三明永安模拟)如图,已知AO=CO,若以“SAS”为依据证明△AOB≌△COD,还要添加的条件是__BO=DO__.·知识点2三角形全等判定方法的综合应用4.如图,在△ABC和△DEC中,已知AB=DE,∠B=∠E,添加一个条件,不能判定△ABC≌△DEC的是(D)A.∠ECB=∠DCA B.BC=EC C.∠A=∠D D.AC=DC5.(教材开发P104习题T1变式)如图,已知AO平分∠DAE,AD=AE,AB=AC,图中全等三角形有(D)A.1对B.2对C.3对D.4对6.(2021·漳州期中)如图,已知CA=CD,CB=CE,请你添加一个条件,使得△ABC≌△DEC,这个条件可以是__AB=DE(∠ACB=∠DCE或∠ECB=∠DCA)__(只需填写一个).7.(2021·百色中考)如图,点D,E分别是AB,AC的中点,BE,CD相交于点O,∠B=∠C,BD=CE.求证:(1)OD=OE;(2)△ABE≌△ACD.【解析】见全解全析1.(2021·福州鼓楼区质检)如图,已知AB=AC,∠DAB=∠DAC,那么判定△ABD≌△ACD的依据是(D)A.SSS B.AAS C.ASA D.SAS2.(2021·福州台江区期中)如图,CD∥BE,点C是AB的中点,不能使△ACD≌△CBE 的是(B)A.CD=BE B.AD=CE C.∠A=∠BCE D.∠D=∠E 3.(2021·泉州惠安期末)如图,已知AB=CD,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是(C)A.∠M=∠N B.MB=ND C.AM=CN D.AM∥CN 4.(2021·漳州漳浦期中)如图,在△ABC和△DEF中,点B,F,C,D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是(D)A.∠B=∠E B.AC=DF C.∠ACD=∠BFE D.BC=EF 5.(2021·齐齐哈尔中考)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是__∠B=∠E或∠C=∠D或AB=AE__.(只需写出一个条件即可)6.(2021·龙岩漳平期末)如图,在△ADC与△BDC中,∠1=∠2,加上一个条件__AD =BD__,则可用SAS判定△ADC≌△BDC.7.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【证明】∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE 与△CBF 中,⎩⎪⎨⎪⎧AB =CB ∠ABE =∠CBF BE =BF,∴△ABE ≌△CBF (SAS).8.如图,在△ABC 和△DEF 中,边AC ,DE 交于点H ,AB ∥DE ,AB =DE ,BE =CF .(1)若∠B =55°,∠ACB =100°,求∠CHE 的度数.(2)求证:△ABC ≌△DEF .【解析】见全解全析9.如图(1),AB =7 cm ,AC ⊥AB ,BD ⊥AB 垂足分别为A ,B ,AC =5 cm.点P 在线段AB 上以2 cm/s 的速度由点A 向点B 运动,同时点Q 在射线BD 上运动.它们运动的时间为t (s)(当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC ⊥AB ,BD ⊥AB ”改为“∠CAB =∠DBA ”,点Q 的运动速度为x cm/s ,其它条件不变,当点P ,Q 运动到某一处时有△ACP 与△BPQ 全等,求出相应的x 的值.【解析】(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°,∵当t =1时,AP =BQ =2,∴BP =5,∴BP =AC ,在△ACP 和△BPQ 中⎩⎪⎨⎪⎧AP =BQ ∠A =∠B AC =BP,∴△ACP ≌△BPQ (SAS),∴∠C =∠BPQ ,∵∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ ;(2)①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,可得:5=7-2t ,2t =xt 解得:x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,可得:5=xt ,2t =7-2t解得:x =207 ,t =74 .综上所述,当△ACP 与△BPQ 全等时,x 的值为2或207 .常见的全等三角形变换类型(1)平移型:如图所示,将△ACE 沿直线AC 平行移动AB 的长度,得到△BDF ,则△ACE ≌ △BDF .(2)旋转型:如图①,将△ABC 绕点A 旋转一定的角度得到△ADE ,则△ABC ≌△ADE . 如图②,将△OAB 绕点O 旋转180°得到△ODC ,则△OAB ≌△ODC .(3)翻折型:如图③,将△ABC 沿直线AB 翻折,得到△ABD, 则△ABC ≌△ABD .如图④,将△ABD 翻折得到△ACE ,这两个三角形的∠A 重合,则△ABD ≌△ACE .。
湘教版数学七年级下册期末知识点复习+各章节培优题
七年级下册总复习第一章二元一次方程【知识点归纳】1.含有个未知数,并且项的次数都是的方程叫做二元一次方程。
2.把个含有未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来组成的方程组,叫做二元一次方程组。
3.在一个二元一次方程组中,使每一个方程两边的值都的一组未知数的值,叫做这个二元一次方程组的解。
4.由二元一次方程组中的一个方程的某一个未知数用含有的代数式表示,再代入另一方程,便得到一个一元一次方程。
这种解方程组的方法叫做消元法,简称代入法。
5.两个二元一次方程中同一未知数的系数或时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程。
这种解方程组的方法叫做消元法,简称加减法。
6.列二元一次方程组解决实际问题的关键是寻找。
【典型例题】1.已知方程组,甲同学正确解得,而乙同学粗心,把c给看错了,解得,求abc的值.2.已知关于x,y的方程组的解是,求关于x,y的方程组的解.3.先阅读,然后解方程组.解方程组时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得这种方法被称为“整体代入法”.请用这样的方法解方程组.4.阅读下列解方程组的方法,然后回答问题. 解方程组解:由①﹣②得2x +2y=2即x +y=1③ ③×16得16x +16y=16④ ②﹣④得x=﹣1,从而可得y=2 ∴方程组的解是.(1) 请你仿上面的解法解方程组.(2)猜测关于x 、y 的方程组的解是什么,并利用方程组的解加以验证.5.南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A 、B 两个园区,已知A 园区为矩形,长为(x +y )米,宽为(x ﹣y )米;B 园区为正方形,边长为(x +3y )米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11x ﹣y )米,宽减少(x ﹣2y )米,整改后A 区的长比宽多350米,C D 投入(元/平方米) 13 16 收益(元/平方米)1826且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?7.小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?第二章整式的乘法【知识点归纳】1.同底数幂相乘,不变,相加。
七年级数学上册培优强化训练4新人教版
七年级数学上册培优强化训练4新人教版1﹨某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家 〖 〗 A 不赔不赚 B 赚了10元 C 赚了8元 D 赚了32元2﹨如图,B是线段AD的中点,C是BD上一点则下列结论中错误的是 〖 〗 A BC=AB-CD B BC= 〖AD-CD〗C BC= 〖AD-CD〗 D BC=AC-BD3﹨如图,甲﹨乙两所学校,其中男女生情况可见下列统计图,甲学校有1000人,乙有1250人,则 〖 〗 A 甲校的女生比乙校的女生多B 甲校的女生比乙校的女生少C 甲校与乙校的女生一样多D 甲校与乙校男生共是2250人甲校 乙校4﹨甲从A 出发向北偏东45度走到点B ,乙从点A 出发向北偏西30度走到点C , 则∠BAC 等于 〖 〗 A 15度 B 75度 C 105度 D 135度5﹨规定a○b = , 则〖6○4〗○3等于 〖 〗A4 B 13 C 15 D 30 6﹨〖-2007〗÷2007×〖3427 +198〗×〖2.15-2203〗=______________. 7﹨已知(a-3〗2+|b+6|=0,则方程ax=b 的解为_________________.8﹨七年级一班部分同学参加全国“希望杯”数学邀请赛,取得了优异成绩,指导教师统计DA 1212a b a b+-所有参赛同学的成绩〖成绩为整数,满分150分〗并绘制了统计图,如下图所示〖注:图中各组中不包含最高分〗请回答:〖1〗该班参加本次竞赛同学有多少人?〖2〗如果成绩在90分以上同学获奖,那么该班参赛同学获奖率是多少?〖3〗参赛同学有多少人及格?人数分数9﹨小明想在两种灯中选购一种,其中一种是10瓦〖即0.01千瓦〗的节能灯,售价50元,另一种是100瓦〖即0.1千瓦〗的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同〖3000小时内〗节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时〖1〗照明时间500小时选哪一种灯省钱?〖2〗照明时间1500小时选哪一种灯省钱?〖3〗照明多少时间用两种灯费用相等?〖本大题10分〗其实并不难!数学培优强化训练〖四〗答案1﹨某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家〖 B 〗A 不赔不赚 B 赚了10元 C 赚了8元 D 赚了32元2﹨如图,B是线段AD的中点,C是BD上一点则下列结论中错误的是〖 C 〗 A BC=AB-CD B BC= 〖AD-CD〗C BC=〖AD-CD〗 D BC=AC-BD 3﹨如图,甲﹨乙两所学校,其中男女生情况可见下列统计图,甲学校有1000人,乙有1250人,则〖 C 〗A 甲校的女生比乙校的女生多B 甲校的女生比乙校的女生少C 甲校与乙校的女生一样多D 甲校与乙校男生共是2250人甲校 乙校4﹨甲从A 出发向北偏东45度走到点B ,乙从点A 出发向北偏西30度走到点C ,则∠BAC 等于〖 B 〗A 15度 B 75度 C 105度 D 135度5﹨规定a○b= ,则〖6○4〗○3等于〖 A 〗 A4 B 13 C 15 D 306﹨〖-2007〗÷2007×〖3427 +198〗×〖2.15-2203〗=______________.0 7﹨已知(a-3〗2+|b+6|=0,则方程ax=b 的解为_________________. x=-28﹨七年级一班部分同学参加全国“希望杯”数学邀请赛,取得了优异成绩,指导教师统计所有参赛同学的成绩〖成绩为整数,满分150分〗并绘制了统计图,如下图所示〖注:图中各组中不包含最高分〗请回答:〖1〗该班参加本次竞赛同学有多少人?〖2〗如果成绩在90分以上同学获奖,那么该班参赛同学获奖率是多少?1212a ba b +-〖3〗参赛同学有多少人及格?人数分数25. 〖1〗20人〖2〗55% 〖3〗11人9﹨小明想在两种灯中选购一种,其中一种是10瓦〖即0.01千瓦〗的节能灯,售价50元,另一种是100瓦〖即0.1千瓦〗的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同〖3000小时内〗节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时〖1〗照明时间500小时选哪一种灯省钱?〖2〗照明时间1500小时选哪一种灯省钱?〖3〗照明多少时间用两种灯费用相等?〖本大题10分〗26.〖1〗白炽灯〖2〗节能灯〖3〗1000小时。
(必考题)初中数学七年级下期末经典复习题(提高培优)
一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm2.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°3.已知关于x 的不等式组{x >1x <m的解中有3个整数解,则m 的取值范围是( ) A .3<m≤4 B .4≤m<5 C .4<m≤5 D .4≤m≤54.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b5.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==6.10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间7.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°8.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°9.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( ) A .﹣2B .2C .3D .﹣311.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°12.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.13.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1) 14.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行15.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一B .二C .三D .四二、填空题16.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________17.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为_____.18.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.19.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____.20.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.21.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________.22.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.23.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____.参赛者答对题数答错题数得分A191112B182104C17396D10104024.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=_____.25.如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于8,则四边形ABFD的周长等于_______.三、解答题26.七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:(1)一共有多少名学生参与了本次问卷调查;(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.27.为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本学校对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).态度频数(人数)频率非常喜欢 5 0.05喜欢 0.35一般 50 n不喜欢 10合计 m l(1) 在上面的统计表中m=,n=.(2) 请你将条形统计图补充完整;(3) 该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?28.某校在“传承经典”宣传活动中,计划采用四种形式:A-器乐,B-舞蹈,C-朗诵,D-唱歌.每名学生从中选择并且只能选择一种自己最喜欢的形式,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人,补全条形统计图;(2)求扇形统计图中“B-舞蹈”项目所对应扇形的圆心角度数;(3)该校共有1200名学生,请估计选择最喜欢“唱歌”的学生有多少人? 29.若关于x,y 的方程组2431(1)3mx ny x y x y nx m y +=-=⎧⎧⎨⎨+=+-=⎩⎩与有相同的解.(1)求这个相同的解; (2)求m 、n 的值. 30.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒(已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b (已知),得13∠=∠( ).3∴∠=________(等量代换).【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.D 2.A 3.C 4.D 5.A 6.B 7.B8.B9.D10.B11.D12.D13.C14.A15.B二、填空题16.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键17.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<418.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=19.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为320.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-21.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程22.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点23.【解析】【分析】设答对1道题得x分答错1道题得y分根据图表列出关于x和y的二元一次方程组解之即可【详解】解:设答对1道题得x分答错1道题得y分根据题意得:解得:答对13道题打错7道题得分为:13×624.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x的值是40或80点睛:本题考查了两条25.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC沿BC方向平移2个单位得到△DEF∴AD=CF=1AC=DF∴四边形ABFD三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26. 故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.A解析:A 【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒ .故选A.3.C解析:C 【解析】 【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m 的范围即可. 【详解】不等式组解集为1<x <m ,由不等式组有3个整数解,且为2,3,4,得到4<m≤5, 故选C . 【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.5.A解析:A 【解析】 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩.故选A . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.B解析:B 【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.7.B解析:B 【解析】 【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案. 【详解】由题意可得:∠EDF=45°,∠ABC=30°, ∵AB ∥CF ,∴∠ABD=∠EDF=45°, ∴∠DBC=45°﹣30°=15°. 故选B. 【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.8.B解析:B 【解析】分析:先根据平行线的性质得出∠2+∠BAD =180°,再根据垂直的定义求出∠2的度数. 详解:∵直线a ∥b ,∴∠2+∠BAD =180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°. 故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.9.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.10.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.11.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A,B,C成立的条件题目并没有提供,而D选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.12.D解析:D【解析】解:A .应为两点之间线段最短,故本选项错误;B .应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C .应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D .在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D .13.C解析:C【解析】分析:让A 点的横坐标减3,纵坐标加2即为点B 的坐标.详解:由题中平移规律可知:点B 的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B 的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加. 14.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.15.B解析:B【解析】【分析】由点P 在x 轴上求出a 的值,从而得出点Q 的坐标,继而得出答案.【详解】∵点P (a ,a-1)在x 轴上,∴a-1=0,即a=1,则点Q 坐标为(-1,2),∴点Q 在第二象限,故选:B .【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.二、填空题16.6【解析】【分析】把x 与y 的值代入方程组求出a 的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x 与y 的值代入方程组求出a 的值,代入原式计算即可求出值.【详解】解:把21x y =⎧⎨=-⎩,代入得239a -=, 解得:6a =故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.17.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<4解析:4a <【解析】3+=1,33x y a x y +⎧⎨+=⎩①② 由①+②得4x+4y=4+a , x+y=1+4a , ∴由x+y<2,得 1+4a <2,即4a <1, 解得,a<4.故答案是:a<4.18.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=解析:48cm 2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=48(cm 2)故答案为48 cm 2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.19.3【解析】解:由题意可得:①-②得:4m+2n=6故2m +n=3故答案为3 解析:3【解析】解:由题意可得:3731m n n m +=⎧⎨-=⎩①②,①-②得:4m +2n =6,故2m +n =3. 故答案为3. 20.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-解析:822x <≤【解析】【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x>8;综上可得:8<x≤22.故答案为:8<x≤22.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.21.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩,故答案为:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.22.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】 本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.23.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6 解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩, 解得:62x y =⎧⎨=-⎩, 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.24.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x 的值是40或80点睛:本题考查了两条解析:40或80【解析】当这两个角是对顶角时,(2x -10) =(110-x ),解之得x =40;当这两个角是邻补角时,(2x -10) +(110-x ) =180,解之得x =80;∴x的值是40或80.点睛:本题考查了两条直线相交所成的四个角之间的关系及分类讨论的数学思想,两条直线相交所成的四个角或者是对顶角的关系,或者是邻补角的关系,明确这两种关系是解答本题的关键.25.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC沿BC方向平移2个单位得到△DEF∴AD=CF=1AC=DF∴四边形ABFD解析:10【解析】【分析】根据平移的性质可得AD=CF=1,AC=DF,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10.故答案为10.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题26.(1)200;(2)见解析,36°;(3)120【解析】【分析】(1)从两个统计图可得,“小说”的有80人,占调查人数的40%,可求出调查人数;(2)求出“科普常识”人数,即可补全条形统计图:)样本中,“其它”的占调查人数的20,因此圆心角占360°的,10%,可求出度数;200(3)样本估计总体,样本中“科普常识”占30%,估计总体400人的30%是喜欢“科普常识”的人数.【详解】(1)80÷40%=200人,答:一共有200名学生参与了本次问卷调查;(2)200×30%=60人,补全条形统计图如图所示:360°×20200=36°,(3)400×30%=120人,答:该年级有400名学生喜欢“科普常识”的学生有120人.【点睛】本题考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.27.(1) 100,0.5;(2)见解析;(3) 480人.【解析】【分析】(1)根据频数和频率的定义,即可判断;(2)计算出喜欢的人数,补全统计图即可;(3)用样本估计总体的思想,即可解决问题.【详解】解:(1)由题意抽取的总人数为m人.∴5m=0.05,解得m=100,n=50100=0.5,故答案为100,0.5(2)喜欢的人数为100×0.35=35,条形图如图所示,(3) 1200(0.050.35)480⨯+=(人),所以估计爱好足球运动(包括喜欢和非常喜欢)的学生有480人.【点睛】考查条形统计图、频数分布表、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题.28.(1)100,见解析;(2)72︒;(3)480人【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)根据扇形统计图中的数据可以求得“舞蹈”所对应的扇形的圆心角度数;(3)根据统计图中的数据可以估计该校1200名学生中有多少学生最喜欢唱歌.【详解】解:(1)本次调查的学生共有:30÷30%=100(人);故答案为:100;(2)10030104020---=(人)2036072100︒⨯=︒(3)401200480100⨯=(人)【点睛】此题考查条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.29.(1)21x y =⎧⎨=-⎩;(2)m=6,n=4 【解析】【分析】先解关于x,y 的方程组,再代入其他方程,再解关于m,n 的方程组.【详解】解:(1)由13x y x y +=⎧⎨-=⎩得, 21x y =⎧⎨=-⎩, (2)把21x y =⎧⎨=-⎩代入含有m,n 的方程,得 224213m n n m -=⎧⎨-+=⎩, 解得64m n =⎧⎨=⎩ 【点睛】本题考核知识点:解方程组.解题关键点:熟练解方程组.30.对顶角相等;50︒;等式性质;两直线平行,内错角相等;50︒【解析】【分析】直接利用平行线的性质结合等式的性质分别填空得出答案.【详解】∵∠1与∠2是对顶角(已知),∴∠1=∠2(对顶角相等).∵∠1+∠2=100°(已知),∴2∠1=100°(等量代换),∴∠1=50°,∵a ∥b (已知),∴∠1=∠3(两直线平行,内错角相等)∴∠3=50°(等量代换).故答案为:对顶角相等;50°;两直线平行,内错角相等;50°.【点睛】此题主要考查了平行线的性质以及等式的性质,正确掌握相关性质是解题关键.。
人教版中学七年级数学下册期末解答题培优题及答案
人教版中学七年级数学下册期末解答题培优题及答案一、解答题1.(1)如图1,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm;(2)若一个圆的面积与一个正方形的面积都是22πcm,设圆的周长为C圆.正方形的周长为C正,则C圆______C正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm,李明同学想沿这块正方形边的方向裁出一块面积为2740cm的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?2.如图1,用两个边长相同的小正方形拼成一个大的正方形.(1)如图2,若正方形纸片的面积为12dm,则此正方形的对角线AC的长为 dm.(2)如图3,若正方形的面积为162cm,李明同学想沿这块正方形边的方向裁出一块面积为122cm的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由.3.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35-的点,并比较它们的大小.4.如图,用两个面积为2200cm的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm?5.如图用两个边长为18cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.二、解答题6.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.7.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.8.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;(2)如图2,∠BMH和∠HND的角平分线相交于点E.①请直接写出∠MEN与∠MHN的数量关系:;②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)9.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A射出的光束自AM顺时针旋转至AN便立即回转,灯B射出的光束自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A射出的光束转动的速度是a︒/秒,灯B射出的光束转动的速度是b︒/秒,且a、b满足20a b a b(-++-=.假定这一带水域两岸河堤是平行的,即//34)PQ MN,且∠=︒.45BAN(1)求a、b的值;(2)如图2,两灯同时转动,在灯A射出的光束到达AN之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?10.如图,已知直线//AB 射线CD ,110CEB ∠=︒.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧. ①求PCG ∠的度数;②若30EGC ECG ∠-∠=︒,求CPQ ∠的度数.(不能使用“三角形的内角和是180︒”直接解题)(2)在点P 的运动过程中,是否存在这样的偕形,使:3:2EGC EFC ∠∠=?若存在,直接写出CPQ ∠的度数;若不存在.请说明理由.三、解答题11.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系.12.已知:直线1l ∥2l ,A 为直线1l 上的一个定点,过点A 的直线交 2l 于点B ,点C 在线段BA 的延长线上.D ,E 为直线2l 上的两个动点,点D 在点E 的左侧,连接AD ,AE ,满足∠AED =∠DAE .点M 在2l 上,且在点B 的左侧.(1)如图1,若∠BAD =25°,∠AED =50°,直接写出∠ABM 的度数 ;(2)射线AF 为∠CAD 的角平分线.① 如图2,当点D 在点B 右侧时,用等式表示∠EAF 与∠ABD 之间的数量关系,并证明; ② 当点D 与点B 不重合,且∠ABM +∠EAF =150°时,直接写出∠EAF 的度数 .13.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,EF ∥MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出∠PAF 、∠PBN 和∠APB 之间的数量关系; (问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线m ∥n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动.①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设∠ADP =∠α,∠BCP =∠β.则∠CPD ,∠α,∠β之间有何数量关系?请说明理由;②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD ,∠α,∠β之间的数量关系.14.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.15.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论.四、解答题16.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分∠EDB①若∠BAC =100°,∠C =30°,则∠AFD = ;若∠B =40°,则∠AFD = ; ②试探究∠AFD 与∠B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,∠BDE 的角平分线所在直线与射线AG 交于点F 试探究∠AFD 与∠B 之间的数量关系,并说明理由17.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN 与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)18.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)19.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=1(∠ACD-∠ABD)2∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.20.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、解答题1.(1);(2)<;(3)不能,理由见解析 【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析 【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】解:(1)∵小正方形的边长为1cm , ∴小正方形的面积为1cm 2, ∴两个小正方形的面积之和为2cm 2, 即所拼成的大正方形的面积为2 cm 2, 设大正方形的边长为x cm , ∴22x = , ∴x∴; (2)设圆的半径为r , ∴由题意得22r ππ=, ∴r =∴=22C r π=圆 设正方形的边长为a ∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下: ∵正方形的面积为900cm 2, ∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4, ∴设长方形纸片的长为5x ,宽为4x , 则54740x x ⋅=, 整理得:237x =,∴22(5)252537925900x x ==⨯=>, ∴22(5)30x >, ∴530x >,∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.2.(1);(2)不能,理由见解析 【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:解析:(1)2)不能,理由见解析 【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】解:(1)∵正方形纸片的面积为21dm , ∴正方形的边长1AB BC dm ==, ∴AC =.(2)不能;根据题意设长方形的长和宽分别为3xcm 和2xcm . ∴长方形面积为:2?312x x =,解得:x =∴长方形的长边为.∵4, ∴他不能裁出. 【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.3.(1);(2)①见解析;②见解析, 【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.4.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 5.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为3:2,且面积为30cm 2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,2+2=36(cm 2),所以大正方形的边长为6cm ,设截出的长方形的长为3b cm ,宽为2b cm ,则6b 2=30,所以b =5(取正值), 所以3b =35=45>36,所以不能截得长宽之比为3:2,且面积为30cm 2的长方形纸片.【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.二、解答题6.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CFDE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒, 又BGD MGH MGD CGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩, 45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.7.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.8.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.9.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t 的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t 的值,进而求出的度数;(3)根据灯B 的解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.10.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数; ②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20° 解析:(1)①35°;(2)55°;(2)存在,52.5︒或7.5︒【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =20°,再根据PQ ∥CE ,即可得出∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=12(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=12∠FCQ=12∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∠FCQ=62.5°,∴∠PCQ=12∴∠CPQ=∠ECP=62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.三、解答题11.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A -∠DCM =30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l ∥AB ,利用平行线的性质(两直线平行内错角相等)将所求的角∠M 与已知角∠A 、∠C 的数量关系联系起来,从而求得∠M 的度数.12.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1)125︒;(2)①2ABD EAF ∠=∠,见解析;②30或110︒【分析】(1)由平行线的性质可得到:DEA EAN =∠∠,MBA BAN =∠∠,再利用角的等量代换换算即可;(2)①设EAF α∠=,AED=DAE=β∠∠,利用角平分线的定义和角的等量代换表示出ABD ∠对比即可;②分类讨论点D 在B 的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在1l 上有一点N 在点A 的右侧,如图所示:∵12//l l∴DEA EAN =∠∠,MBA BAN =∠∠∴50AED DAE EAN ==︒∠=∠∠∴255050125BAN BAD DAE EAN =++=︒+︒+︒=︒∠∠∠∠125BAM =︒∠(2)①2ABD=EAF ∠∠.证明:设EAF α∠=,AED=DAE=β∠∠.∴+=+FAD EAF DAE αβ=∠∠∠.∵AF 为CAD ∠的角平分线,∴22+2CAD FAD αβ==∠∠.∵12l l ,∴EAN=AED=β∠∠.∴2+22CAN CAD DAE EAN αβββα=--=--=∠∠∠∠.∴=22ABD CAN EAF α∠∠==∠.②当点D 在点B 右侧时,如图:由①得:2ABD EAF ∠=∠又∵180ABD ABM +=︒∠∠∴2180ABM EAF +=︒∠∠∵150ABM EAF ∠+∠︒=∴18015030EAF =︒-︒=︒∠当点D 在点B 左侧,E 在B 右侧时,如图:∵AF 为CAD ∠的角平分线 ∴12DAF CAD =∠∠∵12l l∴AED NAE =∠∠,CAN ABE =∠∠∵DAE AED NAE ==∠∠∠ ∴11()22DAE DAE NAE DAN =+=∠∠∠∠ ∴11()(360)22EAF DAF DAE CAD DAN CAN =+=+=︒-∠∠∠∠∠∠ 11802ABE =︒-∠ ∵180ABE ABM +=︒∠∠∴11180(180)9022EAF ABM ABM =︒-︒-=︒+∠∠∠ 又∵150EAF ABM +=︒∠∠∴1190(150)16522EAF EAF EAF =︒+⨯︒-=︒-∠∠∠ ∴110EAF =︒∠当点D 和F 在点B 左侧时,设在2l 上有一点G 在点B 的右侧如图:此时仍有12DAE DAN =∠∠,12DAF CAD =∠∠ ∴11(360)1802211180(180)9022EAF DAE DAF CAN ABG ABM ABM =+=︒-=︒-=︒-︒-=︒+∠∠∠∠∠∠∠ ∴110EAF =︒∠综合所述:30EAF ∠=︒或110︒【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.13.(1)∠PAF +∠PBN +∠APB =360°;(2)①,见解析;②或【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠解析:(1)∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,见解析;②CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠PBN +∠CPB =180°,即有∠PAF +∠PBN +∠APB =360°;(2)①过P 作PE ∥AD 交ON 于E ,根据平行线的性质,可得到EPD α∠=∠,CPE β∠=∠,于是CPD αβ∠=∠+∠;②分两种情况:当P 在OB 之间时;当P 在OA 的延长线上时,仿照①的方法即可解答.【详解】解:(1)∠PAF +∠PBN +∠APB =360°,理由如下:作PC ∥EF ,如图1,∵PC ∥EF ,EF ∥MN ,∴PC ∥MN ,∴∠PAF +∠APC =180°,∠PBN +∠CPB =180°,∴∠PAF +∠APC +∠PBN +∠CPB =360°,∴∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,理由如下:如答图,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠+∠②当P 在OB 之间时,CPD αβ∠=∠-∠,理由如下:如备用图1,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠-∠;当P 在OA 的延长线上时,CPD βα∠=∠-∠,理由如下:如备用图2,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD βα∠=∠-∠;综上所述,∠CPD ,∠α,∠β之间的数量关系是CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.14.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠, 11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学期末复习培优提高训练(四)
1、下列说法错误的是 ( )
A. 0是绝对值最小的有理数
B. 如果x 的相反数是-5, 那么x=5
C. 若|x|=|-4|, 那么x=-4
D. 任何非零有理数的平方都大于0
2、如图, 点C 在线段AB 上, E 是AC 中点, D 是BC 中点, 若ED=6, 则线段AB 的长为( )
A. 6
B. 8
C. 12
D. 16
3、我国是一个严重缺水的国家, 大家应倍加珍惜水资源, 节约用水. 据测试, 拧不紧的水龙头每秒钟会滴下2滴水, 每滴水约0.05毫升. 若每天用水时间按2小时计算, 那么一天中的另外22小时水龙头都在不断的滴水. 请计算, 一个拧不紧的水龙头, 一个月(按30天计算)浪费水__________(用科学计数法表示).( )
A. 237600毫升
B. 2.376×105毫升
C. 23.8×104毫升
D. 237.6×103
毫升 4、甲从A 出发向北偏东45度走到点B ,乙从点A 出发向北偏西30度走到点C ,
则∠BAC 等于 ( )
A、15度 B、75度 C、105度 D、135度
5、规定a○b= , ,则(6○4)○3等于 ( )
A、4 B、13 C、15 D、30
6、(1)|5|)2()2
13(4322-+---+-= (2)|3||3
12|75.0)431()3(2-÷-⨯⨯-÷-= 7、已知(a -3)2+|b+6|=0,则方程ax=b 的解为_________________.
8、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时
(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?
(3)照明多少时间用两种灯费用相等?(本大题10分)
a b a b +-
9、某音乐厅五月初决定在暑假期间举办学生音乐会, 入场券分为团体票和零售票, 其中团体票占总票数的32, 若提前购票, 则给予不同程度的优惠, 在五月份内, 团体票每张12元, 共售出团体票数的53, 零售票每张16元, 共售出零售票数的一半; 如果在六月份内, 团体票按每张16元出售, 并计划在六月份内售出全部余票, 那么零售票应按每张多少元才能使这两个月的票价收入持平?
参考答案
1、C ;
2、C ;
3、B ;
4、B ;
5、A ;
6、(1)4
37 (2)-3;7、x=-2;8、(1)白炽灯(2)节能灯(3)1000
小时;
9、解: 设总票数为a 张, 六月份零售票应按每张x 元定价.
五月份: 团体票售出票数为: a 52a 3253=⨯;票款收入为: a 5
24a 5212=⨯(元);零售票售出票数为: a 61a 3121=⨯;票款收入为: a 3
8a 6116=⨯(元) 六月份: 团体票所剩票数为:
a 154a 3252=⨯;可收入: a 1564a 15416=⨯(元);零售票所剩票数为: a 61a 3121=⨯;可收入: ax 6
1x a 61=•(元) 由题意, 得ax 6
1a 1564a 38a 524+=+. 解这个方程, 得x=19.2 答: 零售票应按每张19.2元定价, 才符合要求。