能被2整除的数的特征

合集下载

能被特殊数整除的特征

能被特殊数整除的特征

能被特殊数‎整除的特征‎1、能被2整除‎的数的特征‎。

如果一个数‎能被2整除‎,那么这个数‎末尾上的数‎为偶数,“0”、“2”、“4”、“6”、“8”。

2、能被3整除‎的数的特征‎。

如果一个数‎能被3整除‎,那么这个数‎所有数位上‎数字的和是‎3的倍数。

例如:225能被‎3整除,因为2+2+5=9,9是3的倍‎数,所以225‎能被3整除‎。

3、能被4整除‎的数的特征‎。

如果一个数‎的末尾两位‎能被4整除‎,这个数就能‎被4整除。

例如:15692‎512能不‎能被4整除‎呢?因为156‎92512‎的末尾两位‎12,能被4整除‎,所以156‎92512‎能被4整除‎。

4、能被5整除‎的数的特征‎。

若一个数的‎末尾是0或‎5则这个数‎能被5整除‎。

5、能被7整除的数的‎特征。

方法一:若一个整数‎的个位数字‎截去,再从余下的‎数中,减去个位数‎的2倍,如果差是7‎的倍数,则原数能被‎7整除。

如果差太大‎或心算不易‎看出是否是‎7的倍数,就需要继续‎上述「截尾、倍大、相减、验差」的过程,直到能清楚‎判断为止。

例如,判断133‎是否是7 的倍数的过‎程如下:13-3×2=7,所以133‎是7的倍数‎;又例如判断‎6139是‎否7的倍数‎的过程如下‎:613-9×2=595 ,59-5×2=49,所以613‎9是7的倍数‎,以此类推。

方法二:如果一个多‎位数的末三‎位数与末三‎位以前的数‎字所组成的‎数的差,是7的倍数‎,那么这个数‎就能被7整‎除。

例如:28067‎8末三位数‎是678,末三位以前‎数字所组成‎的数是28‎0,679-280=399,399能被‎7整除,因此280‎679也能‎被7整除。

方法三:首位缩小法‎,减少7的倍‎数。

例如,判断452‎669能不‎能被7整除‎,45266‎9-42000‎0=32669‎,只要326‎69能被7‎整除即可。

可对326‎69继续,32669‎-28000‎=4669,4669-4200=469,469-420=49,49当然被‎7整除所以4526‎69能被7‎整除。

【数学】能被2、3、4、5、7、8、9、11、13、17、19、25、125整除的数的特征★★

【数学】能被2、3、4、5、7、8、9、11、13、17、19、25、125整除的数的特征★★

【数学】能被2、3、4、5、7、8、9、11、13、17、19、25、125整除的数的特征★★能被2整除的数的特征:个位上是偶数,能被3或9整除的数的特征:所有位数的和是3或9的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)能被4或25整除的数的特征:如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数的特征:个位上的数为0或5,能被6整除的数的特征:既能被2整除也能被3整除能被7整除的数的特征:若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

这种方法叫“割减法”.此法还可简化为:从一个数减去7的10倍、20倍、30倍、……到余下一个100以内的数为止,如果余数能被7整除,那么,这个数就能被7整除.能被8或125整除的数的特征:如果一个数的末三位数能被8或125整除,那么,这个数就一定能被8或125整除.例如: 9864=9×1000+86472375=72×1000+375由于8与125相乘的积是1000,1000能被8或125整除,那么,1000的倍数也必然能被8或125整除.因此,如果一个数末三位数能被8或125整除,这个数就一定能被8或125整除.9864的末三位数是864,864能被8整除,9864就一定能被8整除.72375的末三位数是375,375能被125整除,72375就一定能被125整除。

能被2、3、5、7、11、13、17、19整除的数的特征

能被2、3、5、7、11、13、17、19整除的数的特征

【数学】能被2、3、5、7、11、13、17、19整除的数的特征★★能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。

即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止。

如果余数能被11整除,那么,原来这个数就一定能被11整除。

又如:判断583能不能被11整除。

用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除。

能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

如:判断1284322能不能被13整除。

128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。

能被2、3、5、7、9、11、13、17、19整除的数的特征

能被2、3、5、7、9、11、13、17、19整除的数的特征

能被2、3、5、7、9、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

能被9整除的数的特征是所有位数的和是9的倍数能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

奇位数字的和9+6+8=23偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

如:判断1284322能不能被13整除。

128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。

【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

】例1:判断1059282是否是7的倍数?例2:判断3546725能否被13整除?能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

能被2、3、4、5、6、7、8、9等数整除的数的特征讲解学习

能被2、3、4、5、6、7、8、9等数整除的数的特征讲解学习

能被2、3、4、5、6、7、8、9等数整除的数的特征能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被2、3、4、5、7、8、9、11、13、17、19、25、125整除的数的特征

能被2、3、4、5、7、8、9、11、13、17、19、25、125整除的数的特征

【数学】能被2、3、4、5、7、8、9、11、13、17、19、25、125整除的数的特征能被2整除的数的特征:个位上是偶数,能被3或9整除的数的特征:所有位数的和是3或9的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)能被4或25整除的数的特征:如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数的特征:个位上的数为0或5,能被6整除的数的特征:既能被2整除也能被3整除能被7整除的数的特征:若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

这种方法叫“割减法”.此法还可简化为:从一个数减去7的10倍、20倍、30倍、……到余下一个100以内的数为止,如果余数能被7整除,那么,这个数就能被7整除.能被8或125整除的数的特征:如果一个数的末三位数能被8或125整除,那么,这个数就一定能被8或125整除.例如: 9864=9×1000+86472375=72×1000+375由于8与125相乘的积是1000,1000能被8或125整除,那么,1000的倍数也必然能被8或125整除.因此,如果一个数末三位数能被8或125整除,这个数就一定能被8或125整除.9864的末三位数是864,864能被8整除,9864就一定能被8整除.72375的末三位数是375,375能被125整除,72375就一定能被125整除。

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

能被2整除的数的特征

能被2整除的数的特征

.2整除的数的特征:①能被包含两方面的意义:一方面,个”的整数.“特征4个位数字是0、2、、6、8整除的数,0)的整数,必能被2整除;另一方面,能被2位数字是偶数(包括下面含义相似。

“特征”其个位数字只能是偶数(包括0). 。

0或5整除的数的特征:②能被5个位是各个数位数字之和能被3(或)整除。

9③能被3(或9)整除的数的特征:)整除。

例如:末两位数能被4(或25)整除的数的特征④能被4(或25:又与25的倍数.100是4与25的倍数,所以1800是41864=1800+64,因为不能的倍数,所以1864251864,所以能被4整除.但因为64不是因为4|64.整除被25)整除。

例如:末三位数能被1258(或⑤能被8(或125)整除的数的特征:1258与的倍数,所以1000是8与12529000是+29375=29000375,因为.能被125整除又因为125|375,所以29375.的倍数这个整数的奇数位上的数字之和与偶数位上的数字⑥能被11整除的数的特征:之和的差(大减小)是11的倍数。

这个数奇数位上的数字之这九位数能否被11整除?解:123456789例如:判断2025—24+=20.因为,+和是97+5+3+1=25偶数位上的数字之和是8+6+的因数。

再例如:判不是1234567895不是11的倍数,所以11=5,又因为的倍数?是否是11断13574)+3)-(75解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4++1 11的倍数。

因此13574是11=0.因为0是任何整数的倍数,所以|0.一个整数的末三位数与末三位以前的数整除的数的特征:)11或13⑦能被7(1059282(11)整除。

例如:判断或13字所组成的数之差(以大减小)能被7,7771059-282=因为把7的倍数?解:1059282分为1059和282两个数.是否是3546725再例如:判断1059282|1059282.因此是7的倍数。

数学能被2、3、3、5、7等数整除的数的特征

数学能被2、3、3、5、7等数整除的数的特征

【数学】能被2、3、4、5、7、8、9、11、13、17、19、25、125整除的数的特征★★能被2整除的数的特征:个位上是偶数,能被3或9整除的数的特征:所有位数的和是3或9的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)能被4或25整除的数的特征:如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与7 5均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数的特征:个位上的数为0或5,能被6整除的数的特征:既能被2整除也能被3整除能被7整除的数的特征:若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

这种方法叫“割减法”.此法还可简化为:从一个数减去7的10倍、20倍、30倍、……到余下一个100以内的数为止,如果余数能被7整除,那么,这个数就能被7整除.能被8或125整除的数的特征:如果一个数的末三位数能被8或125整除,那么,这个数就一定能被8或125整除.例如: 9864=9×1000+86472375=72×1000+375由于8与125相乘的积是1000,1000能被8或125整除,那么,1 000的倍数也必然能被8或125整除.因此,如果一个数末三位数能被8或125整除,这个数就一定能被8或125整除.9864的末三位数是864,864能被8整除,9864就一定能被8整除.7 2375的末三位数是375,375能被125整除,72375就一定能被12 5整除。

五年级奥数-②数的整除(2)

五年级奥数-②数的整除(2)

数的整除(2)(4.9)姓名_______________数的整除特征:①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。

因为0是任何整数的倍数,所以11|0。

因此13574是11的倍数。

例如:判断1059282是否是7的倍数?解:把1059282分为1059和282两个数。

因为1059-282=777,又7|777,所以7|1059282。

因此1059282是7的倍数。

例如:判断3546725能否被13整除?解:把3546725分为3546和725两个数.因为3546-725=2821。

再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.例1、36、60、87、95、104、123、235、396、432、505、606、712、918这些数中。

能被2整除的数有________________________________________;是3的倍数的有_________________________________;5的倍数有____________________________。

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

?能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如:832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,???????????? 如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

能被235整除的数的特征

能被235整除的数的特征
能被2整除的数的特征: 个位数字是0、2、4、6、8的数。
能被3整除的数的特征: 各位数字之和是3的倍数的数。
能被5整除的数的特征: 个位数字是0、5的数。
能同时Байду номын сангаас2、5整除的数的特征: 个位数字是0的数。
CHENLI
1
偶数:能被2整除的数叫偶数。
奇数:不能被2整除的数叫奇数。 小数的基本性质: 小数的末尾添上0或者去掉0,小数的 大小不变。
CHENLI
2
分数的基本性质:
分数的分子和分母同时乘以或除以同一个数 (0除外),分数的大小不变。
比的基本性质:
比的前项和后项同时乘以或除以同一个数(0除 外),比值不变。 商不变规律:
在除法里,被除数和除数同时扩大(或缩小) 相同的倍数(0除外),商不变。
CHENLI
3

能被23456789等数整除的数的特征讲解学习

能被23456789等数整除的数的特征讲解学习

能被23456789等数整除的数的特征讲解学习被2、3、4、5、6、7、8、9等数整除的数具有以下特征:1.能被2整除:一个数能被2整除,意味着它是偶数。

偶数的特点是个位数字可以是0、2、4、6或82.能被3整除:一个数能被3整除,意味着它的各位数字之和能被3整除。

例如,27是3的倍数,因为2+7=9,而9能被3整除。

3.能被4整除:一个数能被4整除,意味着它的末两位能被4整除。

例如,236可以被4整除,因为36能够整除44.能被5整除:一个数能被5整除,意味着它的个位数字是0或5、例如,75能够被5整除。

5.能被6整除:一个数能被6整除,意味着它能被2和3同时整除。

因此,它必须是一个偶数且各位数字之和能被3整除。

6.能被7整除:一个数能被7整除的特征比较复杂,但是以下特征可以帮助判断:将这个数的个位数字翻倍,然后从原数中减去翻倍后的个位数字。

如果所得的差能被7整除,则原数能被7整除。

例如,196是7的倍数,因为19-2×6=19-12=77.能被8整除:一个数能被8整除,意味着它的末三位能被8整除。

例如,520可以被8整除,因为520是8的65倍。

8.能被9整除:一个数能被9整除,意味着它的各位数字之和能被9整除。

例如,81是9的倍数,因为8+1=9综上所述,一个数能被2、3、4、5、6、7、8、9整除的特征可以通过前述规则判断。

这些规则不仅在数学学科中有应用,还在解决实际问题、判断数字的性质和特征等方面起着重要的作用。

为了提高对这些规则的熟悉程度,可以进行练习和应用这些规则解决具体问题的实践。

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c 整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数,百位、十位和个位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

能被2整除的数的特征

能被2整除的数的特征

能被2整除的数的特征
能被2整除的数是整数中最简单的一类数,这类数的特征十分明显,以下是它们的几个特点:
1. 归为偶数
所有能被2整除的数都被归为偶数。

偶数是指可以被2整除的整数,也就是满足2n(n为自然数)的所有整数。

2. 最低位为0
由于2是一个偶数,它的最低位一定是0。

因此,我们可以通过观察一个数的最低位是否为0来判断它是否能被2整除。

3. 可以用整数相除来判断
当一个整数能够被2整除时,这意味着它可以被2整除而没有余数。

也就是说,这个整数可以被另一个整数2整除,结果是一个整数。

因此,我们可以通过用一个数除以2并观察其余数是否为0来判断它是否能被2整除。

4. 与其他偶数性质相同
所有偶数的性质都与能被2整除的数的性质相同。

例如,它们都可以
被分解为两个因子的乘积,其中一个因子是2,另一个因子是一个整数。

总结一下,能被2整除的数的特征包括:归为偶数、最低位为0、可
以用整数相除来判断,以及与其他偶数性质相同。

这些特征都十分明显,容易理解和操作,使能被2整除的数成为整数中最简单的一类数。

能被2整除的自然数的正规式

能被2整除的自然数的正规式

1、能被2整除的数,它们的个位数一定是2的倍数,个位可以是“0,2,4,6,8”。

2、能被3整除的数,它们所有数字相加的和,一定是3的倍数。

3、能被5整除的数,它们的个位数一定是“0”或“5”。

4、能被7整除的数,末三位以前的数与末三位以后的差(或反过来)。

同能被11,13整除的数的特征。

5、能被9整除的数,它们所有数字相加的和,一定是9的倍数。

6、能被11整除的数,若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

7、能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

能被2整除的数的特征

能被2整除的数的特征

①能被2整除数特征:个位数字是0、2、4、6、8整数.“特征”包含两方面意义:一方面,个位数字是偶数(包括0)整数,必能被2整除;另一方面,能被2整除数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除数特征:个位是0或5。

③能被3(或9)整除数特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除数特征:末两位数能被4(或25)整除。

例如:1864=1800+64,因为100是4及25倍数,所以1800是4及25倍数.又因为4|64,所以1864能被4整除.但因为64不是25倍数,所以1864不能被25整除.⑤能被8(或125)整除数特征:末三位数能被8(或125)整除。

例如:29375=29000+375,因为1000是8及125倍数,所以29000是8及125倍数.又因为125|375,所以29375能被125整除.⑥能被11整除数特征:这个整数奇数位上数字之和及偶数位上数字之和差(大减小)是11倍数。

例如:判断123456789这九位数能否被11整除?解:这个数奇数位上数字之和是9+7+5+3+1=25,偶数位上数字之和是8+6+4+2=20.因为25—20=5,又因为5不是11倍数,所以11不是123456789因数。

再例如:判断13574是否是11倍数?解:这个数奇数位上数字之和及偶数位上数字和差是:(4+5+1)-(7+3)=0.因为0是任何整数倍数,所以11|0.因此13574是11倍数。

⑦能被7(11或13)整除数特征:一个整数末三位数及末三位以前数字所组成数之差(以大减小)能被7(11或13)整除。

例如:判断1059282是否是7倍数?解:把1059282分为1059和282两个数.因为1059-282=777,又7|777,所以7|1059282.因此1059282是7倍数。

再例如:判断3546725能否被13整除?解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.1 / 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级第十册数学
《能被2、5整除的数的特征》




姓名:李宗艳学历:本科单位:颍东区枣庄镇枣庄中心学校
通迅地址:皖颍东区枣庄镇枣庄中心学校
时间:2006年3月22日
一、教学内容:五年级数学P54-55
练习十二页1-4
二、教学目的:
1、理解并掌握能被2、5整除的数的特征。

2、能根据特征熟练地判断一个数是否能被2、5整除。

3、培养学生观察分析能力,提高思维的水平。

三、教具准备:数字卡片
四、教学过程:
1、师生交流导入新课。

2、师生共研。

①能被2整除的数的特征
A、出示运算图×2
12
24
36
B、引导学生分析48
510
得出:右边的数612
都是2的倍数714
都能被2整除816
918
1020
1122
C、引导学生观察
分析得出这些数的个位数字是2、4、6、8、0,凡是个位上是2、4、6、8、0的数都能被2整除。

D、游戏巩固
②奇数和偶数的概念
判断:个数不是奇数就是偶数()
一个自然数不是奇数就是偶数()
A、引入:板书按规律填数奇数1357……
偶数2468……
B、揭示概念:
C、小结自然数列
③能被5整除的数的特征
A、出示运算图×5
15
210
315
420
525
B、引导学生观察,学生会很快发现个位上的数字不是0就是5。

C、让学生得出结论:个位上是0或者5的数,都能被5整除。

D、即时巩固
④既能被2又能被5整除的数的特征
A、出示运算图,引导学生观察1×10
学生很快发现个位上的数字是0,2×20
3×30
4×40
B、即时巩固:
C、师小结(略)
D、巩固练习:
①判断下列各数是奇数还是偶数
5277124501317042866003
②按要求写数:能被2整除的最大二位数
最小四位数
能被5整除的最小三位数
最大四位数
③能同时被2、5整除的数最大二位数。

相关文档
最新文档