高一数学函数模型及其应用练习题2

合集下载

人教版高一数学上册练习册答案:第三章函数的应用

人教版高一数学上册练习册答案:第三章函数的应用

人教版高一数学上册练习册答案:第三章函数的应用【导语】我们学会忍受和承担。

但我们心中永远有一个不灭的心愿。

是雄鹰,要翱翔羽天际!是骏马,要驰骋于疆域!要堂堂正正屹立于天地!努力!坚持!拼搏!成功!一起来看看无忧考网高一频道为大家准备的《人教版高一数学上册练习册答案:第三章函数的应用》吧,希望对你的学习有所帮助!31函数与方程311方程的根与函数的零点1.A.2.A.3.C.4.如:f(a)f(b)≤0.5.4,254.6.3.7.函数的零点为-1,1,2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.(1)设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在(0,1)内恰有一个零点.∴f(0)・f(1)=-1×(2a-1-1)<0,解得a>1.(2)∵在[-2,0]上存在x0,使f(x0)=0,则f(-2)・f(0)≤0,∴(-6m-4)×(-4)≤0,解得m≤-23.10.在(-2,-15),(-05,0),(0,05)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,可以证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)・f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.所以方程3x=2-xx+1在(0,1)内必有一个实数根.312用二分法求方程的近似解(一)1.B.2.B.3.C.4.[2,25].5.7.6.x3-3.7.1.8.提示:先画一个草图,可估计出零点有一个在区间(2,3)内,取2与3的平均数25,因f(25)=025>0,且f(2)<0,则零点在(2,25)内,再取出225,计算f(225)=-04375,则零点在(225,25)内.以此类推,最后零点在(2375,24375)内,故其近似值为24375.9.14375.10.14296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-05)=-0125<0,f(-075)=0078125>0,x2∈(-075,-05),又∵f(-0625)=0005859>0,∴x2∈(-0625,-05).又∵f(-05625)=-005298<0,∴x2∈(-0625,-05625),由|-0.625+0.5625|<0.1,故x2=-0.5625是原方程的近似解,同理可得x3=15625.312用二分法求方程的近似解(二)1.D.2.B.3.C.4.1.5.1.6.26.7.a>1.8.画出图象,经验证可得x1=2,x2=4适合,而当x<0时,两图象有一个交点,∴根的个数为3.9.对于f(x)=x4-4x-2,其图象是连续不断的曲线,∵f(-1)=3>0,f(2)=6>0,f(0)<0,∴它在(-1,0),(0,2)内都有实数解,则方程x4-4x-2=0在区间[-1,2]内至少有两个实数根.10.m=0,或m=92.11.由x-1>0,3-x>0,a-x=(3-x)(x-1),得a=-x2+5x-3(1134或a≤1时无解;a=134或1 32函数模型及其应用3.2.1几类不同增长的函数模型1.D.2.B.3.B.4.1700.5.80.6.5.7.(1)设一次订购量为a时,零件的实际出厂价恰好为51元,则a=100+60-510.02=550(个).(2)p=f(x)=60(062-x50(10051(x≥550,x∈N*).8.(1)x年后该城市人口总数为y=100×(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万).(3)设x年后该城市人口将达到120万人,即100×(1+1.2%)x=120,x=log1.012120100=log1.0121.2=lg1.2lg1.012≈15(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x∈[0,9].∴y=110(9-x)+25x=110(-x+4x+9)=110[-(x-2)2+13],∴当x=2,即x=4时,ymax=1.3.所以,投入甲商品5万元、乙商品4万元时,能获得利润1.3万元.10.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0≤x≤a,①8+b(x-a)+c,x>a.②由题意知033=8+(22-a)b+c,∴b=2,2a=c+19.③再分析1月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,2a=c+17与③矛盾,∴a≥9.1月份的付款方式应选①式,则8+c=9,c=1,代入③,得a=10.因此a=10,b=2,c=1.(第11题)11.根据提供的数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,过了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后慢”的规律.观察这条遗忘曲线,你会发现,学到的知识在一天后,如果不抓紧复习,就只剩下原来的13.随着时间的推移,遗忘的速度减慢,遗忘的数量也就减少.因此,艾宾浩斯的实验向我们充分证实了一个道理,学习要勤于复习,而且记忆的理解效果越好,遗忘得越慢.322函数模型的应用实例1.C.2.B.3.C.4.2400.5.汽车在5h内行驶的路程为360km.6.10;越大.7.(1)15m/s.(2)100.8.从2015年开始.9.(1)应选y=x(x-a)2+b,因为①是单调函数,②至多有两个单调区间,而y=x(x-a)2+b可以出现两个递增区间和一个递减区间.(2)由已知,得b=1,2(2-a)2+b=3,a>1,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=12,f(3)=9p+3q+r=13,解得p=-005,q=035,r=07,∴f(4)=-005×42+035×4+07=13,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=12,g(3)=ab3+c=13,解得a=-08,b=05,c=14,∴g(4)=-08×054+14=135,经比较可知,用y=-08×(05)x+14作为模拟函数较好.11.(1)设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=1.2(万只),所以f(2)・g(2)=31.2(万只),故第二年养鸡场的个数是26个,全县养鸡31.2万只.(2)由f(n)・g(n)=-45n-942+1254,得当n=2时,[f(n)・g(n)]max=31.2.故第二年的养鸡规模,共养鸡31.2万只.单元练习1.A.2.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A.10.D.11.±6.12.y=x2.13.-3.14.y3,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,5.5],第三次为[1,3.25],第四次为[2.125,3.25],第五次为[2.125,2.6875],所以存在实数解在[2,3]内.(第16题)16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在017.两口之家,乙旅行社较优惠,三口之家、多于三口的家庭,甲旅行社较优惠.18.(1)由题意,病毒总数N关于时间n的函数为N=2n-1,则由2n-1≤108,两边取对数得(n-1)lg2≤8,n≤27.6,即第一次最迟应在第27天时注射该种药物.(2)由题意注入药物后小白鼠体内剩余的病毒数为226×2%,再经过n天后小白鼠体内病毒数为226×2%×2n,由题意,226×2%×2n≤108,两边取对数得26lg2+lg2-2+nlg2≤8,得x≤6.2,故再经过6天必须注射药物,即第二次应在第33天注射药物.19.(1)f(t)=300-t(0≤t≤200),2t-300(200(2)设第t天时的纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-1200t2+12t+1752(0≤t≤200),-1200t2+72t-10252(20087.5可知,h(t)在区间[0,300]上可以取得值100,此时t=50,即从2月1日开始的第50天时,西红柿纯收益.20.(1)由提供的数据可知,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a・bt,Q=a・logbt中的任何一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格提供的数据不吻合.所以选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到150=2500a+50b+c,108=12100a+110b+c,150=62500a+250b+c.解得a=1200,b=-32,c=4252.∴描述西红柿种植成本Q与上市时间t的关系的函数为:Q=1200t2-32t+4252.(2)当t=150时,西红柿种植成本最低为Q=100(元/100kg).综合练习(一)1.D.2.D.3.D.4.A.5.B.6.D.7.D.8.D.9.B.10.B.11.{x|x≤5且x≠2}.12.1.13.4.14.0.15.10.16.0.8125.17.4.18.{-6,-5,-4,-3,-2,-1,0}.19.(1)略.(2)[-1,0]和[2,5].20.略.21.(1)∵f(x)的定义域为R,设x10.∴f(x1)-f(x2)<0,即f(x1)(2)∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=-a+12x+1,解得a=12.∴f(x)=12-12x+1.∵2x+1>1,∴0<12x+1<1,∴-1<-12x+1<0,∴-12综合练习(二)1.B.2.B.3.D.4.A.5.A.6.C.7.A.8.A.9.B.10.B.11.log20.3<20.3.12.-2.13.-4.14.8.15.P=12t5730(t>0).16.2.17.(1,1)和(5,5).18.-2.19.(1)由a(a-1)+x-x2>0,得[x-(1-a)]・(x-a)<0.由2∈A,知[2-(1-a)]・(2-a)<0,解得a∈(-∞,-1)∪(2,+∞).(2)当1-a>a,即a<12时,不等式的解集为A={x|a12时,不等式的解集为A={x|1-a20.在(0,+∞)上任取x10,x2+1>0,所以要使f(x)在(0,+∞)上递减,即f(x1)-f(x2)>0,只要a+1<0即a<-1,故当a<-1时,f(x)在区间(0,+∞)上是单调递减函数.21.设利润为y万元,年产量为S百盒,则当0≤S≤5时,y=5S-S22-0.5-0.25S=-S22+4.75S-0.5,当S>5时,y=5×5-522-0.5-0.25S=12-0.25S,∴利润函数为y=-S22+4.75S-0.5(0≤S≤5,S∈N*),-0.25S+12(S>5,S∈N*).当0≤S≤5时,y=-12(S-4.75)2+10.78125,∵S∈N*,∴当S=5时,y有值1075万元;当S>5时,∵y=-0.25S+12单调递减,∴当S=6时,y有值1050万元.综上所述,年产量为500盒时工厂所得利润.22.(1)由题设,当0≤x≤2时,f(x)=12x・x=12x2;当2-(x-3)2+3(212(x-6)2(4≤x≤6).(2)略.。

2020-2021高中数学人教版第一册学案:4.5.1 函数的零点与方程的解含解析

2020-2021高中数学人教版第一册学案:4.5.1 函数的零点与方程的解含解析

2020-2021学年高中数学新教材人教A版必修第一册学案:4.5.1 函数的零点与方程的解含解析4.5函数应用(二)【素养目标】1.结合学过的函数图象,了解函数零点与方程解的关系.(直观想象,数学抽象)2.结合具体连续函数及其图象的特点,了解函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.(逻辑推理,数学运算)3.理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.在实际情境中,会选择合适的函数模型刻画现实问题的变化规律.(数学建模)【学法解读】本节在学习中首先利用方程的解引出函数的零点,体现数学素养中的数学抽象,再把函数的零点、方程的解与函数的图象与x轴交点横坐标三者统一,结合函数的图象及性质会判断函数零点问题,对函数的实际应用问题,学生应学会对问题进行分析,灵活运用所学过的数学知识,建立“量”与“量"之间的函数关系,把实际问题转化为函数问题,通过对函数问题的解决达到解决实际问题的目的.4。

5。

1函数的零点与方程的解必备知识·探新知基础知识知识点1函数的零点(1)函数f(x)的零点是使f(x)=0的__实数x__。

(2)函数的零点、函数的图象、方程的根的关系.思考1:(1)函数的零点是点吗?(2)函数的零点个数、函数的图象与x轴的交点个数、方程f(x)=0根的个数有什么关系?提示:(1)不是,是使f(x)=0的实数x,是方程f(x)=0的根.(2)相等.知识点2函数的零点存在定理(1)条件:函数y=f(x)在区间[a,b]上的图象是__连续不断的曲线__,f(a)f(b)〈0;(2)函数y=f(x)在区间(a,b)上有零点,即存在c∈(a,b)使f(c)=0,这个c也就是f(x)=0的根.思考2:(1)函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,f(a)f(b)<0时,能否判断函数在区间(a,b)上的零点个数?(2)函数y=f(x)在区间(a,b)上有零点,是不是一定有f(a)f(b)〈0?提示:(1)只能判断有无零点,不能判断零点的个数.(2)不一定,如f(x)=x2在区间(-1,1)上有零点0,但是f(-1)f(1)=1×1=1>0.基础自测1.函数f(x)=4x-6的零点是(C)A.错误!B.(错误!,0)C.错误!D.-错误![解析]令4x-6=0,得x=错误!,∴函数f(x)=4x-6的零点是错误!.2.(2020·广州荔湾区高一期末测试)函数f(x)=x-2+log2x,则f(x)的零点所在区间为(B)A.(0,1)B.(1,2)C.(2,3) D.(3,4)[解析]f(1)=-1+log21=-1,f(2)=log22=1,∴f(1)·f(2)<0,故选B.3.若函数f(x)=x2+2x+a没有零点,则实数a的取值范围是(B)A.a<1 B.a>1C.a≤1D.a≥1[解析]函数f(x)=x2+2x+a没有零点,即方程x2+2x+a=0没有实数根,所以Δ=4-4a<0,得a>1.4.二次函数y=ax2+bx+c中,a·c<0,则函数有__2__个零点.[解析] 令ax 2+bx +c =0,Δ=b 2-4ac ,∵a ·c 〈0,∴b 2-4ac >0,∴方程ax 2+bx +c =0有两个不相等实根,∴二次函数y =ax 2+bx +c (a ·c 〈0)有2个零点.5.求下列函数的零点.(1)f (x )=x 2-5x -6;(2)f (x )=x 3-7x +6;(3)f (x )=(12)x -4;(4)f (x )=ln x -1。

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。

高一数学几类不同增长的函数模型2(2019年8月整理)

高一数学几类不同增长的函数模型2(2019年8月整理)
函数模型及其应用
3.2.1 几类不同增长的函数模型二
我们知道,对数函数 y log a x (a 1),指 数函数 y a x (a 1)与幂函数 y xn (n 0) 在区间(0,)上都是增函数。从上述两个例子可以 看到,这三类函数的增长是有差异的。那么,这种 差异的具体情况到底怎样呢?
下面,我们不妨先以 y 2x , y x2 , y log 2 x
函数为例进行探究。
;网站制作: ;
见待亚於简雍 孙乾等 秋七月 贾子放外 咸使闻知 闾里敬而爱之 先帝在时 时酒泉黄华 张掖张进各据其郡 初 隆上疏切谏曰 盖 天地之大德曰生 逵以丧祖父去官 或饰真以雠伪 不能羁也 省云中 定襄 五原 朔方郡 犹可怀也 而后宫之中坐食者万有馀人 权令将军贺齐督糜芳 刘邵等袭蕲春 攸 曰 天下方有事 豫悉见诸系囚 颜良 文丑临阵授首 世人未有及之者也 原心可恕 四月甲申 足下相为观察 又先遣郃督步卒五千於前通路 与魏雍州刺史王经战于洮西 太子谓彰曰 卿新有功 谲诈相雄 於是差次舅氏亲疏高下 决芍陂 得以假授诸魁帅 与其郡人陈恭共起兵於朗陵 后刘珍 刘毅等作 《汉记》 诸宫人伺其昏卧 不过汉时一大郡 可一战而禽也 五年 事临垂克 当吐二升馀脓血讫 县中素闻其名 建衡二年卒 皆以事实 唯陛下察之 丁壮者得尽地力 其声均清浊多不如法 随例罢 可为伤恨 公征孙权 洪水为害 董卓之乱 从者欲捶之 谦退守郯 母恚欲罚之 拜招使持节护鲜卑校尉 比 使往来 外讬助国讨备 欲令居官者久於其职 马无所食 襄阳宜城人也 昔桓王创基 年未三十 拜范建威将军 犹复如此 宜时遣使厚遗答谢 日有蚀之 莫多饮酒 坐毕归 所以更相谤讪 会为叛夷所害 远来相就 谮害袁夫人等甚众 权乘骏马越津桥得去 广陵东阳人也 与训书曰 省表 及淮阳 东平王 当 破臂作创 帝之幸郭元后也 帝已遣使赐

函数模型的应用 高一数学

函数模型的应用  高一数学
数模型、反比例函数模型、指数函数模型、对数函数模型.
2.与指数函数有关的函数模型:y=kax+b(k≠0,a>0,且a≠1)
与对数函数有关的函数模型:y=klogax+b(k≠0,a>0,且a≠1).
二、解决函数实际应用问题的基本步骤
解决函数实际应用问题的一般步骤
(1)设恰当的变量:研究实际问题中的变量之间的关系,并用x,y
剂量服用,据监测:服药后每毫升血液中的含药量y(单位:微克)
与时间t(单位:小时)之间近似满足曲线如图所示.
(1)写出服药后y与t之间的函数解析式y=f(t);
(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治
疗有效.求服药一次后治疗有效的时间.
解:(1)当 0≤t<1 时,y=4t;
的打“×”.
(1)银行利率、细胞分裂等增长率问题可以用指数型函数模
型来表述.( √ )
(2)在函数建模中,散点图可以帮助我们选择恰当的函数模型.
( √ )
(3)当自变量在不同的范围下,对应关系不同时,可以选择分段
函数模型.( √ )
合作探究·释疑解惑
探究一 与指数函数有关的函数模型的应用
【例1】 某医药研究所开发了一种新药,假设成年人按规定的
相差0.16;
对于选项B,当x=1时,y=0.3;当x=2时,y=0.8;当x=3时,y=1.5,相差
较大,不符合题意;
对于选项C,当x=1,2时,符合题意;当x=3时,y=0.8,与0.76相差
0.04,与选项A比较,更符合题意;
对于选项D,当x=1时,y=0.2;当x=2时,y=0.45;当x=3
表示问题中的变量.
(2)建立函数模型:将y表示为x的函数,写出y关于x的解析式,并

人教版高中数学高一下册选择性必修第二册《等比数列的应用及性质》第二课时专项突破练习

人教版高中数学高一下册选择性必修第二册《等比数列的应用及性质》第二课时专项突破练习

第2课时 等比数列的应用及性质学习目标 1.理解复利计算方法,能解决存款利息的有关计算方法.2.通过建立数列模型并应用数列模型解决生活中的实际问题. 3.理解等比数列的常用性质.4.掌握等比数列的判断及证明方法.知识点一 实际应用题常见的数列模型1.储蓄的复利公式:本金为a 元,每期利率为r ,存期为n 期,则本利和y =a (1+r )n .2.总产值模型:基数为N ,平均增长率为p ,期数为n , 则总产值y = N (1 + p )n .知识点二 等比数列的常用性质设数列{a n }为等比数列,则:(1)若k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(2)若m ,p ,n 成等差数列,则a m ,a p ,a n 成等比数列.(3)在等比数列{a n }中,连续取相邻k 项的和(或积)构成公比为q k (或2k q )的等比数列.(4)若{a n }是等比数列,公比为q ,则数列{λa n }(λ≠0),{1a n},{a 2n }都是等比数列,且公比分别是q ,1q,q 2.(5)若{a n },{b n }是项数相同的等比数列,公比分别是p 和q ,那么{a n b n }与{a n b n}也都是等比数列,公比分别为pq 和pq.1.某细菌培养过程中,每15分钟分裂1次,经过2小时,这种细菌由1个繁殖成( )A .64 B .128 C .256 D .255答案 C解析 某细菌培养过程中,每15分钟分裂1次,经过2小时,共分裂8次,所以经过2小时,这种细菌由1个繁殖成28=256.2.已知{a n },{b n }都是等比数列,那么( )A .{a n +b n },{a n b n }都一定是等比数列B .{a n +b n }一定是等比数列,但{a n b n }不一定是等比数列C .{a n +b n }不一定是等比数列,但{a n b n }一定是等比数列D .{a n +b n },{a n b n }都不一定是等比数列答案 C解析 当两个数列都是等比数列时,这两个数列的和不一定是等比数列,比如取两个数列是互为相反数的数列,两者的和就不是等比数列.两个等比数列的积一定是等比数列.3.某储蓄所计划从2018年底起,力争做到每年的吸蓄量比前一年增加8%,则到2021年底该储蓄所的吸蓄量比2018年的吸蓄量增加( )A .24% B .32%C .1.083-1 D .1.084-1答案 C解析 设2018年储蓄量为a ,根据等比数列通项公式得2019年储蓄量为a (1+0.08)=1.08a ,2020年储蓄量为a (1+0.08)(1+0.08)=1.082a ,2021年储蓄量为a (1+0.08)(1+0.08)(1+0.08)=1.083a ,所以2021年底该储蓄所的吸蓄量比2018年的吸蓄量增加了1.083a -aa=1.083-1.4.已知等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比是( )A.32 B.2 C .2 D .22答案 C解析 奇数项之积为2,偶数项之积为64,得a 1a 3a 5a 7a 9=2,a 2a 4a 6a 8a 10=64,则a 2a 4a 6a 8a 10a 1a 3a 5a 7a 9=q 5=32,则q =2.一、数列的实际应用例1 某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度贬值.(1)用一个式子表示n (n ∈N *)年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?解 (1)从第一年起,每年车的价值(万元)依次设为:a 1,a 2,a 3,…,a n ,由题意,得a 1=13.5,a 2=13.5(1-10%),a 3=13.5(1-10%)2,….由等比数列的定义,知数列{a n }是等比数列,首项a 1=13.5,公比q =1-10%=0.9,∴a n =a 1·q n -1=13.5×0.9n -1.∴n 年后车的价值为a n +1=(13.5×0.9n )万元.(2)由(1)得a5=a1·q4=13.5×0.94≈8.9(万元),∴用满4年时卖掉这辆车,大概能得到8.9万元.反思感悟 等比数列实际应用问题的关键是:建立数学模型即将实际问题转化成等比数列的问题,解数学模型即解等比数列问题.跟踪训练1 有纯酒精a(a>1)升,从中取出1升,再用水加满,然后再取出1升,再用水加满,如此反复进行,则第九次和第十次共取出纯酒精________升.答案 (1-1a)8(2-1a)解析 由题意可知,取出的纯酒精数量是一个以1为首项,1-1a为公比的等比数列,即:第一次取出的纯酒精为1升,第二次取出的为1-1a(升),第三次取出的为(1-1a)2升,…,第n次取出的纯酒精为(1-1a)n-1升,则第九次和第十次共取出纯酒精数量为a9+a10=(1-1a)8+(1-1a)9=(1-1a)8(2-1a)(升).二、等比数列的性质及其应用例2 已知{a n}为等比数列.(1)等比数列{a n}满足a2a4=12,求a1a23a5;(2)若a n>0,a5a7+2a6a8+a6a10=49,求a6+a8;(3)若a n>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.解 (1)在等比数列{a n}中,∵a2a4=1 2,∴a23=a1a5=a2a4=1 2,∴a1a23a5=1 4 .(2)由等比中项,化简条件得a26+2a6a8+a28=49,即(a6+a8)2=49,∵a n>0,∴a6+a8=7.(3)由等比数列的性质知a5a6=a1a10=a2a9=a3a8=a4a7=9,∴log3a1+log3a2+...+log3a10=log3(a1a2.. (10)=log3[(a1a10)(a2a9)(a3a8)(a4a7)(a5a6)]=log395=10.反思感悟 利用等比数列的性质解题(1)基本思路:充分发挥项的“下标”的指导作用,分析等比数列项与项之间的关系,选择恰当的性质解题.(2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.跟踪训练2 (1)公比为32的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16等于( ) A.4 B.5 C.6 D.7答案 B解析 因为a3a11=16,所以a27=16.又因为a n>0,所以a7=4,所以a16=a7q9=32,即log2a16=5.(2)已知在各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6=________.答案 52解析 方法一 因为{a n}是等比数列,所以a1a7=a24,a2a8=a25,a3a9=a26.所以a24·a25·a26=(a1a7)·(a2a8)·(a3a9)=(a1a2a3)·(a7a8a9)=5×10=50.因为a n>0,所以a4a5a6=52.方法二 因为a1a2a3=(a1a3)a2=a2·a2=a32=5,所以a2=1 3 5.因为a7a8a9=(a7a9)a8=a38=10,所以a8=13 10.同理a 4a 5a 6=a 35=()()3111332233222528=510=50a a a ⎛⎫=⋅ ⎪⎝⎭三、等比数列的判定与证明例3 已知S n 是数列{a n }的前n 项和,且S n =2a n +n -4.(1)求a 1的值;(2)若b n =a n -1,试证明数列{b n }为等比数列.(1)解 因为S n =2a n +n -4,所以当n =1时,S 1=2a 1+1-4,解得a 1=3.(2)证明 因为S n =2a n +n -4,所以当n ≥2时,S n -1=2a n -1+n -1-4,S n -S n -1=(2a n +n -4)-(2a n -1+n -5),即a n =2a n -1-1,所以a n -1=2(a n -1-1),又b n =a n -1,所以b n =2b n -1,且b 1=a 1-1=2≠0,所以数列{b n }是以2为首项,2为公比的等比数列.反思感悟 判断一个数列是等比数列的常用方法(1)定义法:若数列{a n }满足a n +1a n =q (n ∈N *,q 为常数且不为零)或a na n -1=q (n ≥2,且n ∈N *,q为常数且不为零),则数列{a n }是等比数列.(2)通项公式法:若数列{a n }的通项公式为a n =a 1q n -1(a 1≠0,q ≠0),则数列{a n }是等比数列.(3)等比中项法:若a 2n +1=a n a n +2(n ∈N *且a n ≠0),则数列{a n }为等比数列.(4)构造法:在条件中出现a n +1=ka n +b 关系时,往往构造数列,方法是把a n +1+x =k (a n +x )与a n +1=ka n +b 对照,求出x 即可.跟踪训练3 (1)已知各项均不为0的数列{a n }中,a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数成等差数列,证明:a 1,a 3,a 5成等比数列.证明 由已知,有2a 2=a 1+a 3,①a 23=a 2·a 4,②2a 4=1a 3+1a 5.③由③得2a 4=a 3+a 5a 3·a 5,∴a 4=2a 3·a 5a 3+a 5.④由①得a 2=a 1+a 32.⑤将④⑤代入②,得a 23=a 1+a 32·2a 3·a 5a 3+a5.∴a 3=(a 1+a 3)a 5a 3+a 5,即a 3(a 3+a 5)=a 5(a 1+a 3).化简,得a 23=a 1·a 5.又a 1,a 3,a 5均不为0,∴a 1,a 3,a 5成等比数列.(2)已知数列{a n }是首项为2,公差为-1的等差数列,令b n =1,2na ⎛⎫⎪⎝⎭求证数列{b n }是等比数列,并求其通项公式.解 依题意a n =2+(n -1)×(-1)=3-n ,于是b n =(12)3-n .而b n +1bn =(12)2-n(12)3-n=(12)-1=2.∴数列{b n }是首项为14,公比为2的等比数列,通项公式为b n =14·2n -1=2n -3.1.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( )A.32 B.23 C .-23 D.23或-23答案 C解析 因为a 4=a 2·q 2,所以q 2=a 4a 2=818=49.又因为a 1<0,a 2>0,所以q<0.所以q=-2 3 .2.在等比数列{a n}中,若a2a3a6a9a10=32,则a29a12的值为( ) A.4 B.2 C.-2 D.-4答案 B解析 由a2a3a6a9a10=(a2a10)·(a3a9)·a6=a56=32=25,得a6=2,则a29a12=a6a12a12=a6=2.3.已知各项均为正数的等比数列{a n}中,lg(a3a8a13)=6,则a1·a15的值为( ) A.100 B.-100C.10 000 D.-10 000答案 C解析 ∵lg(a3a8a13)=lg a38=6,∴a38=106,∴a8=102=100.∴a1a15=a28=10 000.4.(多选)在等比数列{a n}中,3a1,12a3,2a2成等差数列,则a2 020-a2 021a2 018-a2 019等于( )A.-3 B.-1 C.1 D.9答案 CD解析 由3a1,12a3,2a2成等差数列可得a3=3a1+2a2,即a1q2=3a1+2a1q,∵a1≠0,∴q2-2q-3=0.解得q=3或q=-1.∴a2 020-a2 021a2 018-a2 019=a2 020(1-q)a2 018(1-q)=a2 020a2 018=q2=9或1.5.某工厂2020年1月的生产总值为a万元,计划从2020年2月起,每月生产总值比上一个月增长m%,那么到2021年8月底该厂的生产总值为_____________万元.答案 a(1+m%)19解析 设从2020年1月开始,第n个月该厂的生产总值是a n万元,则a n+1=a n+a n m%,∴a n+1a n=1+m%.∴数列{a n}是首项a1=a,公比q=1+m%的等比数列.∴a n=a(1+m%)n-1.∴2021年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).1.知识清单:(1)等比数列的实际应用.(2)等比数列的常用性质.(3)等比数列的判定和证明.2.方法归纳:方程和函数思想.3.常见误区:不注重运用性质,使解题过程烦琐或者性质运用不正确而出错.1.已知等比数列{a n },a 1=1,a 3=19,则a 5等于( )A .±181B .-181 C.181 D .±12答案 C解析 根据等比数列的性质可知a 1a 5=a 23⇒a 5=a 23a1=181.2.在等比数列{a n }中,a 2a 3a 4=1,a 6a 7a 8=64,则a 5等于( )A .2 B .-2 C .±2 D .4答案 A解析 由等比数列的性质可得,a 2a 3a 4=a 3=1,a 6a 7a 8=a 37=64,∴a 3=1,a 7=4,∴a 25=a 3a 7=4,易知a 5与a 3和a 7同号,∴a 5=2.3.设各项均为正数的等比数列{a n }满足a 4a 8=3a 7,则log 3(a 1a 2·…·a 9)等于( )A .38 B .39 C .9 D .7答案 C解析 因为a 4a 8=a 5a 7=3a 7且a 7≠0,所以a 5=3,所以log 3(a 1a 2·…·a 9)=log 3a 95=log 339=9.4.已知等比数列{a n }的公比q =-13,则a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8等于( )A .-13B .-3 C.13 D .3答案 B解析 因为a 2+a 4+a 6+a 8=q (a 1+a 3+a 5+a 7),所以a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8=1q=-3.5.(多选)设{a n }是等比数列,有下列四个命题,其中正确的是( )A .{a 2n }是等比数列B .{a n a n +1}是等比数列C.{1a n}是等比数列D .{lg|a n |}是等比数列答案 ABC解析 由{a n }是等比数列可得a na n -1=q (q 为定值,n >1).A 中,a 2na2n -1=(a n a n -1)2=q 2为常数,故A 正确;B 中,a n a n +1a n -1a n =a n +1a n -1=q 2,故B 正确;C 中,1a n 1an -1=a n -1a n =1q 为常数,故C 正确;D 中,lg|a n |lg|a n -1|不一定为常数,故D 错误.6.已知在等比数列{a n }中,a 3=3,a 10=384,则该数列的通项公式a n =________.答案 3×2n -3解析 由已知得a 10=a 3·q 7=3·q 7=384,所以q 7=128=27,故q =2.所以a n =a 3·q n -3=3×2n -3.7.已知数列{a n }为等比数列,且a 3+a 5=π,则a 4(a 2+2a 4+a 6)=________.答案 π2解析 因为数列{a n }为等比数列,且a 3+a 5=π,所以a 4(a 2+2a 4+a 6)=a 4a 2+2a 24+a 4a 6=a 23+2a 3a 5+a 25=(a3+a5)2=π2.8.在数列{a n}中,a2=32,a3=73,且b n=na n+1,若{b n}是等比数列,则数列{b n}的公比是________,a n=________.答案 2 2n-1 n解析 因为在数列{a n}中,a2=32,a3=73,且数列{na n+1}是等比数列,2a2+1=3+1=4,3a3+1=7+1=8,所以数列{na n+1}是首项为2,公比为2的等比数列,所以na n+1=2n,解得a n=2n-1 n.9.已知数列{a n}是等比数列,a3+a7=20,a1a9=64,求a11的值.解 ∵{a n}为等比数列,∴a1·a9=a3·a7=64.又∵a3+a7=20,∴a3=4,a7=16或a3=16,a7=4.①当a3=4,a7=16时,a7a3=q4=4,此时a11=a3q8=4×42=64.②当a3=16,a7=4时,a7a3=q4=14,此时a11=a3q8=16×(14)2=1.10.已知数列{a n}为等比数列.(1)若a n>0,且a2a4+2a3a5+a4a6=36,求a3+a5的值;(2)若数列{a n}的前三项和为168,a2-a5=42,求a5,a7的等比中项.解 (1)∵a2a4+2a3a5+a4a6=36,∴a23+2a3a5+a25=36,即(a3+a5)2=36,又∵a n>0,∴a3+a5=6.(2)设等比数列{a n}的公比为q,∵a2-a5=42,∴q≠1.由已知,得Error!∴Error!解得Error!若G是a5,a7的等比中项,则有G2=a5·a7=a1q4·a1q6=a21q10=962×(12)10=9,∴a5,a7的等比中项为±3.11.设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1等于( )A.2 B.-2C.12D.-12答案 D解析 因为{a n}是首项为a1,公差为-1的等差数列,所以S n=na1+12n·(n-1)·(-1),由S1,S2,S4成等比数列可知S2=S1·S4,代入可得(2a1-1)2=a1·(4a1-6),解得a1=-1 2 .12.等比数列{a n}是递减数列,前n项的积为T n,若T13=4T9,则a8a15等于( ) A.±2 B.±4 C.2 D.4答案 C解析 ∵T13=4T9,∴a1a2...a9a10a11a12a13=4a1a2 (9)∴a10a11a12a13=4.又∵a10·a13=a11·a12=a8·a15,∴(a8·a15)2=4,∴a8a15=±2.又∵{a n}为递减数列,∴q>0,∴a8a15=2.13.在等比数列{a n}中,若a7=-2,则此数列的前13项之积等于________.答案 -213解析 由于{a n}是等比数列,∴a1a13=a2a12=a3a11=a4a10=a5a9=a6a8=a27,∴a1a2a3…a13=(a27)6·a7=a137,而a7=-2.∴a 1a 2a 3…a 13=(-2)13=-213.14.已知等比数列{a n }满足a 2a 5=2a 3,且a 4,54,2a 7成等差数列,则a 1a 2a 3·…·a n 的最大值为________.答案 1 024解析 因为等比数列{a n }满足a 2a 5=2a 3,且a 4,54,2a 7成等差数列,所以Error!解得a 1=16,q =12,所以a n =16×(12)n -1=25-n ,所以a 1a 2a 3·…·a n =24+3+2+…+(5-n )=2922,n n-+所以当n =4或n =5时,a 1a 2a 3·…·a n 取最大值,且最大值为210=1 024.15.在等比数列{a n }中,若a 7a 11=6,a 4+a 14=5,则a 20a 10=________.答案 23或32解析 ∵{a n }是等比数列,∴a 7·a 11=a 4·a 14=6,又a 4+a 14=5,∴Error!或Error!∵a 14a 4=q 10,∴q 10=32或q 10=23.而a 20a 10=q 10,∴a 20a 10=23或32.16.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:{a n -23}是等比数列;(3)当a 1=76时,求数列{a n }的通项公式.(1)解 根据根与系数的关系,得Error!代入题设条件6(α+β)-2αβ=3,得6a n +1a n -2a n =3.所以a n +1=12a n +13.(2)证明 因为a n +1=12a n +13,所以a n +1-23=12(a n -23).若a n =23,则方程a n x 2-a n +1x +1=0,可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0,所以a n ≠23,即a n -23≠0.所以数列{a n -23}是以12为公比的等比数列.(3)解 当a 1=76时, a 1-23=12,所以数列{a n -23}是首项为12,公比为12的等比数列.所以a n -23=12×(12)n -1=(12)n ,所以a n =23+(12)n ,n ∈N *即数列{a n }的通项公式为a n =23+(12)n ,n ∈N *.。

高一数学函数图像试题答案及解析

高一数学函数图像试题答案及解析

高一数学函数图像试题答案及解析1.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图像,当时,图像是二次函数图像的一部分,其中顶点,过点;当时,图像是线段,其中,根据专家研究,当注意力指数大于62时,学习效果最佳.(1)试求的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.【答案】(1);(2)老师在时段内安排核心内容,能使得学生学习效果最佳.【解析】(1)这是分段函数的解析式的求解问题,采用分段求解的方法:在时,该图像是二次函数的图像,设这个二次函数的顶点式方程即,由点,可求出的值;在时,由点可求出直线的方程,最后写出函数的解析式即可;(2)求解不等式即或即可得到老师安排核心内容的时间段.试题解析:(1)当时,设 1分因为这时图像过点,代入得所以 3分当时,设,过点得,即 6分故所求函数的关系式为 7分(2)由题意得或 9分得或,即 11分则老师就在时段内安排核心内容,能使得学生学习效果最佳 12分.【考点】1.函数的实际应用问题;2.分段函数解析式的求解问题;3一次函数与二次函数的图像与性质;4.一次不等式与二次不等式.2.已知函数,不等式对任意实数恒成立,则的最小值是 .【答案】【解析】由分析可知要想恒成立,只能,因为,所以最小值为【考点】函数图像绝,对值不等式3.对于函数,下列结论中正确的是:()A.当上单调递减B.当上单调递减C.当上单调递增D.上单调递增【答案】A【解析】因为,所以当时,则,又,所以在区间上单调递减.【考点】分段函数的性质和图象.4.函数的图象的大致形状是A. B. C. D.【答案】C【解析】由题意函数可化为,又,故当时,函数为增函数,且,那么可排除B、D选项;而当时,函数为减函数,且.所以正确答案为C.【考点】1.分段函数;2.函数单调性、图像.5.若函数的图象不经过第二象限,则有A.B.C.D.【答案】B【解析】指数函数过定点,函数过定点如图所示,图象不过第二象限则,,故选:B.【考点】指数函数的图像6.同时满足以下三个条件的函数是()①图像过点;②在区间上单调递减③是偶函数.A.B.C.D.【答案】C【解析】选项A中,函数对称轴为x=-1,所以不是偶函数,排除A;选项B中,函数在区间上单调递增,排除B;选项D中,函数图像不过点,排除D.故选择C.【考点】函数的图像和性质.7.已知且,函数与在同一坐标系下的图象大致是【答案】B【解析】因为指数函数与单调性一样,则指数函数与单调性相反;又因为对数函过,所以过;故选B.【考点】指数函数与对数函数图像过定点及他们的单调性.8.已知定义域为R的函数f(x)在区间(8,+∞)上为减函数,且函数y=f(x+8)为偶函数,则A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10)【答案】D.【解析】本题主要弄清楚函数与的图象之间的关系.函数的图象向左平移8个单位,得到函数的图象,反之,函数的图象可以看作是由函数的图象向右平移8个单位得到的.函数为偶函数,它的图象关于轴对称,因此函数的图象关于直线对称,∴,,再由于函数在为减函数,故正确答案为D.【考点】函数的图象及其对称性.9.已知函数的图象如图1,函数的图象如图2,则函数的图象大致是()【答案】A【解析】根据题意,结合已知函数值的符号来判定函数在原点附近,y轴的右侧函数值为正数,可知排除D,B然后在y轴的左侧,根据函数值的符号复数,可知排除C,,故选A.【考点】函数图像点评:主要是考查了函数图像的运用,属于基础题。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.已知,函数.若,则()A.B.C.D.【答案】A.【解析】首先由可得,,即①;然后根据可得,,即②.最后将①代入②可得,,即,故应选A.【考点】二次函数的求值.2.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知函数().(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.【答案】(1)证明详见解析,在是减函数,在是增函数;(2).【解析】(1)根据函数单调性的定义进行证明即①设;②作差:;③因式分解到最简;④根据条件判定符号;⑤作出结论,经过这五步即可证明在单调递减,同理可证在是增函数,最后由奇函数的性质得出;在是减函数,在是增函数;(2)先将“对任意,总存在,使得成立”转化为“函数在区间的值域包含了在区间的值域”,分别根据函数的单调性求出这两个函数的值域,最后由集合的包含关系即可得到的取值范围.试题解析:(1)证明:当时①设是区间上的任意两个实数,且,则∵,∴,∴,即∴在是减函数 4分②同理可证在是增函数 5分综上所述得:当时,在是减函数,在是增函数 6分∵函数是奇函数,根据奇函数图像的性质可得当时,在是减函数,在是增函数 8分(2)∵() 8分由(1)知:在单调递减,单调递增∴, 10分又∵在单调递减∴由题意知:于是有:,解得 12分.【考点】1.函数的单调性与最值;2.函数的奇偶性;3.函数的值域.5.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4【答案】D【解析】由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.【考点】1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.6.关于的方程恰有个不同的实根,则的取值范围是________.【答案】【解析】设,,若有解,则须,即,当时,只有两解,当时,只有3个解,当时,都有四个不同的实数解,先将方程转化为,则要使关于的方程恰有8个根,则关于的二次方程在内有两个不等的正实根,记,则须有即,解之得.【考点】1.函数与方程;2.二次方程根的分布问题.7.定义在区间上的奇函数为增函数,偶函数在上图象与的图象重合.设,给出下列不等式,其中成立的是( )①②③④A.①④B.②③C.①③D.②④【答案】C【解析】因为,定义在区间上的奇函数为增函数,偶函数在上图象与的图象重合.即偶函数在上是增函数,在是减函数。

高一数学目录-人教版

高一数学目录-人教版

第一章第一章 集合与函数概念集合与函数概念 1.1 集合集合1.2 函数及其表示函数及其表示 1.3 函数的基本性质函数的基本性质 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 基本初等函数(Ⅰ)基本初等函数(Ⅰ) 2.1 指数函数指数函数 2.2 对数函数对数函数 2.3 幂函数幂函数 小结小结 复习参考题复习参考题第三章第三章 函数的应用函数的应用 3.1 函数与方程函数与方程 3.2 函数模型及其应用函数模型及其应用 实习作业实习作业 小结小结 复习参考题复习参考题 必修一必修一第一章第一章 集合与函数概念集合与函数概念 1.1 集合集合1.2 函数及其表示函数及其表示 1.3 函数的基本性质函数的基本性质实习作业实习作业 小结小结复习参考题复习参考题第二章第二章 基本初等函数(Ⅰ)基本初等函数(Ⅰ) 2.1 指数函数指数函数 2.2 对数函数对数函数 2.3 幂函数幂函数 小结小结 复习参考题复习参考题第三章第三章 函数的应用函数的应用 3.1 函数与方程函数与方程 3.2 函数模型及其应用函数模型及其应用 实习作业实习作业 小结小结 复习参考题复习参考题 必修二必修二第一章第一章 空间几何体空间几何体 1.1 空间几何体的结构空间几何体的结构1.2 空间几何体的三视图和直观图空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积空间几何体的表面积与体积 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系置关系2.2 直线、直线、平面平行的判定及其性平面平行的判定及其性质2.3 直线、直线、平面垂直的判定及其性平面垂直的判定及其性质 小结小结 复习参考题复习参考题第三章第三章 直线与方程直线与方程3.1 直线的倾斜角与斜率直线的倾斜角与斜率 3.2 直线的方程直线的方程3.3 直线的交点坐标与距离公式直线的交点坐标与距离公式 小结小结 复习参考题复习参考题 必修三必修三第一章第一章 算法初步算法初步 1.1 算法与程序框图算法与程序框图 1.2 基本算法语句基本算法语句 1.3 算法案例算法案例 阅读与思考阅读与思考 割圆术割圆术 小结小结 复习参考题复习参考题第二章第二章 统计统计2.1 随机抽样随机抽样阅读与思考阅读与思考 一个著名的案例一个著名的案例阅读与思考阅读与思考 广告中数据的可靠性广告中数据的可靠性 阅读与思考阅读与思考 如何得到敏感性问题的诚实反应的诚实反应2.2 用样本估计总体用样本估计总体 阅读与思考阅读与思考 生产过程中的质量控制图制图2.3 变量间的相关关系变量间的相关关系 阅读与思考阅读与思考 相关关系的强与弱相关关系的强与弱 实习作业实习作业 小结小结 复习参考题复习参考题第三章第三章 概率概率3.1 随机事件的概率随机事件的概率阅读与思考阅读与思考 天气变化的认识过程天气变化的认识过程 3.2 古典概型古典概型 3.3 几何概型几何概型阅读与思考阅读与思考 概率与密码概率与密码 小结小结 复习参考题复习参考题 必修四第一章 三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式1.4 三角函数的图象与性质 1.5 函数y=Asin (ωx+ψ) 1.6 三角函数模型的简单应用 小结 复习参考题第二章 平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算 2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积 2.5 平面向量应用举例 小结 复习参考题第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换 小结 复习参考题 必修五必修五第一章第一章 解三角形解三角形1.1 正弦定理和余弦定理正弦定理和余弦定理探究与发现探究与发现 解三角形的进一步讨论1.2 应用举例应用举例阅读与思考阅读与思考 海伦和秦九韶海伦和秦九韶 1.3 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 数列数列2.1 数列的概念与简单表示法数列的概念与简单表示法 阅读与思考阅读与思考 斐波那契数列斐波那契数列 阅读与思考阅读与思考 估计根号下2的值的值 2.2 等差数列等差数列2.3 等差数列的前n 项和项和 2.4 等比数列等比数列2.5 等比数列前n 项和项和 阅读与思考阅读与思考 九连环九连环 探究与发现探究与发现 购房中的数学购房中的数学 小结小结 复习参考题复习参考题第三章第三章 不等式不等式3.1 不等关系与不等式不等关系与不等式 3.2 一元二次不等式及其解法一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性规划问题的线性规划问题阅读与思考阅读与思考 错在哪儿错在哪儿信息技术应用 用Excel解线性规信息技术应用划问题举例划问题举例3.4 基本不等式基本不等式小结小结复习参考题复习参考题必修三实用性和适用性在高一作用不大,所以高一上学期学必修一二,下学期学必修四五,跳过必修三学期学必修四五,跳过必修三。

2023版高考数学一轮总复习第二章函数2.7函数的应用第2课时函数模型及其应用课件

2023版高考数学一轮总复习第二章函数2.7函数的应用第2课时函数模型及其应用课件

70 ≈100r.
若 r=3%,f(x)≥2a,则 x 的最小整数值为
()
A. 22
B. 25
C. 23
D. 24
解:依题意可得
a(1+3%)x≥2a,即
ln2
0.693
x≥ln(1+3%)≈ 3%
15≈1007×03%=730≈23.
2. 三种函数模型性质比较
性质
在(0,+∞) 上的单调性
增长速度
图象的 变化
y=ax(a>1)
增函数
越来越快 随 x 值增大,
图象与 y 轴 接近平行
函数 y=logax(a>1)
增函数
越来越慢 随 x 值增大,
图象与 x 轴 接近平行
y=xn(n>0) 增函数
相对平稳 随 n 值变 化而不同
3. 用函数建立数学模型解决实际问题的基本过程 (1)分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”或其他); (2)根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题; (3)通过运算、推理求解函数模型; (4)用得到的函数模型描述实际问题的变化规律、解决有关问题.
利息与本金加在一起作为本金,再计算下一期利息. 假设最开始本金f(x).

f(x)≥2a,则
a(1+r)x≥2a,解得
ln2 x≥ln(1+r).
银行业中经常
使用“70 原则”,因为 ln2≈0. 693 15,而且当 r 比较小时,ln(1+r)≈r,所以ln(l1n+2 r)≈0.69r3 15
≈3α3,则 r 的近似值为
()
A.
MM21R
B.
2MM21R
C. 3 3MM12R

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.函数的定义域是()A.(-,-1)B.(1,+)C.(-1,1)∪(1,+)D.(-,+)【答案】C.【解析】出现在对数的真数位置,故>0,即,又出现在分式的分母上,故≠0,即,要使式子有意义,则这两者同时成立,即且,用区间表示即为(-1,1)∪(1,+).要使式子有意义,则,解得且,故选C.【考点】函数的定义域求法,对数函数的定义域2.已知函数,满足.(1)求常数c的值;(2)解关于的不等式.【答案】(1) ;(2) .【解析】(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.试题解析:(1)∵,即,解得. 5分(2)由(1)得,由,得当时,,解得; 9分当时,,解得. 12分∴不等式的解集为. 13分【考点】1.函数求值;2.利用指数函数性质解简单指数不等式;3.分类整合思想.3.函数,满足,则的值为()A.B. 8C. 7D. 2【答案】B【解析】因为,函数,所以,,10,又,故,8,选B。

【考点】函数的概念,函数的奇偶性。

点评:简单题,此类问题较为典型,基本方法是通过研究,发现解题最佳途径。

4.已知函数,,(1)若为奇函数,求的值;(2)若=1,试证在区间上是减函数;(3)若=1,试求在区间上的最小值.【答案】(1)(2)利用“定义法”证明。

在区间上是减函数(3) 若,由(2)知在区间上是减函数,在区间上,当时,有最小值,且最小值为2。

【解析】(1)当时,,若为奇函数,则即,所以(2)若,则=设为, =∵∴,∴>0所以,,因此在区间上是减函数(3) 若,由(2)知在区间上是减函数,下面证明在区间上是增函数.设 , =∵,∴∴所以,因此在区间上上是增函数因此,在区间上,当时,有最小值,且最小值为2【考点】函数的奇偶性、单调性及其应用点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称。

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析1.下列函数中,图象如图的函数可能是().A.y=x3B.y=2x C.y=D.y=log2x【答案】C【解析】由图像可知,函数的定义域为,且过点;而选项A:的定义域为,选项B:的定义域为,选项C:的定义域为,且过点,选项D:的定义域为;故选C.考点:函数的图像.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.设= .【答案】【解析】因为所以【考点】分段函数求值4.下列各组函数表示同一函数的是()A.B.C.D.【答案】C【解析】排除,因为三个选项中两个函数的定义域各不相同,故C正确。

【考点】函数的三要素。

5.已知函数的对应关系如下表,函数的图像是如下图的曲线,其中则的值为()A.3B.2C.1D.0【答案】B【解析】由的图像与的对应关系表可知,,所以,故选B.【考点】1.函数及其表示;2.复合函数的求值问题.6.已知函数(1)若,求的值;(2)求的值.【答案】(1)1;(2)1006【解析】(1)因为.所以可以计算出的值为1,即表示两个自变量的和为1的函数值的和为1.(2)由(1)可知两个自变量的和为1的函数值的和为1.所以令…①.利用倒序又可得到…②.所以由①+②可得2S=2012.所以S=1006.试题解析:. 5分(2). 10分【考点】1.函数的表示法.2.倒序求和法.7.下列各个对应中,构成映射的是()【答案】B【解析】按照映射的定义,A中的任何一个元素在集合B中都有唯一确定的元素与之对应.在选项A中,前一个集合中的元素2在后一个集合中没有元素与之对应,故不符合映射的定义;在选项C中,前一个集合中的元素2在后一集合中有2个元素和它对应,也不符合映射的定义;在选项D中,前一个集合中的元素1在后一集合中有2个元素和它对应,也不符合映射的定义;只有选项B满足映射的定义,【考点】映射概念.8.某公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和最小,则应购买________次.【答案】10【解析】先设此公司每次都购买x吨,利用函数思想列出一年的总运费与总存储费用之和,再结合基本不等式得到一个不等关系即可求得最小值.公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好与每次的购买吨数的数值相等(单位:万元),要使一年的总运费与总存储费用之和y=2x+,当且仅当x=10时取得最小值,故答案为10.【考点】函数最值的应用点评:本题主要考查了函数最值的应用,以及函数模型的选择与应用和基本不等式的应用,考查应用数学的能力,属于基础题.9.下列所示的四幅图中,可表示为y=f(x)的图像的只可能是()【答案】D【解析】在函数中,取集合A中的任何一个元素x,都能在集合B中找个唯一一个元素y与之对应,选项D具有这样的特点,而其他选项没有。

函数模型及其应用-2018-2019学年高一数学人教版必修1必刷题

函数模型及其应用-2018-2019学年高一数学人教版必修1必刷题

函数模型及其应用-2018-2019学年高一数学人教版必修1必刷题1.一个模具厂一年中12月份的产量是1月份产量的m倍,那么该模具厂这一年中产量的月平均增长率是A.m11B.m12C. 1 D. 1【答案】D2.某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x的函数关系式为A.y=0.2x(0≤x≤4 000)B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000)D.y=0.1x+1 200(0≤x≤4 000)【答案】C【解析】由题意得y=0.3(4 000-x)+0.2x=-0.1x+1 200.故选C.3.某城市出租汽车的收费标准是:起步价为6元,行程不超过2千米者均按此价收费;行程超过2千米,超过部分按3元/千米收费(不足1千米按1千米计价);另外,遇到堵车或等候时,汽车虽没有行驶,但仍按6分钟折算1千米计算(不足1千米按1千米计价).陈先生坐了一趟这种出租车,车费24元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程的取值范围是A.[5,6)B.(5,6]C.[6,7)D.(6,7]【答案】B【解析】若按x千米(x∈Z)计价,则6+(x-2)×3+2×3=24,得x=6.故实际行程应属于区间(5,6].故选B.4.y1=2x,y2=x2,y3=log2x,当2<x<4时,有A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y1【答案】B【解析】在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.故选B.5.有一组实验数据如下表所示:下列所给函数模型较适合的是A.y=log a x(a>1)B.y=ax+b(a>1)C.y=ax2+b(a>0)D.y=log a x+b(a>1)【答案】C6.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为【答案】D【解析】设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),函数为对数函数,所以函数y=f(x)的图象大致为D中图象,故选D.7.某厂日产手套总成本y(元)与手套日产量x(副)的函数解析式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为A.200副B.400副C.600副D.800副【答案】D【解析】由5x+4 000≤10x,解得x≥800,即日产手套至少800副时才不亏本.故选D.8.四人赛跑,假设他们跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x【答案】D9.下列函数中随x 的增大而增大且速度最快的是 A .y =1100e xB .y =100ln xC .y =x 100D .y =100·2x【答案】A【解析】指数爆炸式形如指数函数.又e>2,∴1100e x 比100·2x增大速度快.10.下列函数中,随着x 的增大,增长速度最快的是A .y =50B .y =1 000xC .y =2x -1D .y =11 000ln x 【答案】C【解析】指数函数模型增长速度最快,故选C .11.已知A ,B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (小时)的函数解析式是 A .x =60tB .x =150-50tC .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150-50t ,t >3.5D .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150,2.5<t ≤3.5150-t -,3.5<t ≤6.5【答案】D【解析】显然出发、停留、返回三个过程中行车速度是不同的,故应分三段表示函数.故选D . 12.以下是三个变量y 1,y 2,y 3随变量x 变化的函数值表:其中,关于x 呈指数函数变化的函数是________. 【答案】y 113.某工厂8年来某种产品的总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年后产量保持不变. 其中说法正确的序号是________. 【答案】②③【解析】由t ∈[0,3]的图象联想到幂函数y =x α(0<α<1),反映了C 随时间的变化而逐渐增长但速度越来越慢.由t ∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确. 14.若a >1,n >0,那么当x 足够大时,a x ,x n,log a x 的大小关系是________.【答案】a x >x n>log a x【解析】∵a >1,n >0,∴函数y 1=a x ,y 2=x n,y 3=log a x 都是增函数.由指数函数、对数函数、幂函数的变化规律可知,当x 足够大时,a x >x n >log xa .15.函数y =x 2与函数y =x ln x 在区间(1,+∞)上增长较快的一个是________.【答案】y =x 2【解析】当x 变大时,x 比ln x 增长要快,∴x 2要比x ln x 增长的要快.16.在不考虑空气阻力的情况下,火箭的最大速度v 米/秒和燃料的质量M 千克、火箭(除燃料外)的质量m 千克的函数关系式是v =2 000·ln(1+Mm).当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒. 【答案】e 6-1【解析】当v =12 000时,2 000·ln(1+M m )=12 000,∴ln (1+M m )=6,∴M m=e 6-1.17.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,则现在价格为8100元的计算机15年后的价格应降为________元.18.如图所示,折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (分钟)之间的函数关系图象,根据图象填空:(1)通话2分钟,需付的电话费为________元; (2)通话5分钟,需付的电话费为________元;(3)如果t ≥3,则电话费y (元)与通话时间t (分钟)之间的函数关系式为________. 【答案】(1)3.6 (2)6 (3)y =1.2t (t ≥3) 【解析】(1)由图象可知,当t ≤3时,电话费都是3.6元. (2)由图象可知,当t =5时,y =6,即需付电话费6元.(3)当t ≥3时,y 关于x 的图象是一条直线,且经过(3,3.6)和(5,6)两点,故设函数关系式为y =kt +b ,则⎩⎪⎨⎪⎧3k +b =3.6,5k +b =6,解得⎩⎪⎨⎪⎧k =1.2,b =0.故y 关于t 的函数关系式为y =1.2t (t ≥3).19.今有一组实验数据如下:现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是A .v =log 2tB .v =log 12tC .v =t 2-12D .v =2t -2【答案】C【解析】从表格中看到此函数为单调增函数,排除B ,增长速度越来越快,排除A 和D ,故选C . 20.一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由红变绿,汽车以1米/秒2的加速度匀加速开走,那么 A .人可在7秒内追上汽车B .人可在10秒内追上汽车C .人追不上汽车,其间距最少为5米D .人追不上汽车,其间距最少为7米21.三个变量y 1,y 2,y 3,随着变量x 的变化情况如下表:则关于x 分别呈对数函数、指数函数、幂函数变化的变量依次为 A .y 1,y 2,y 3 B .y 2,y 1,y 3 C .y 3,y 2,y 1 D .y 1,y 3,y 2【答案】C22.下面对函数f (x )=12log x 、g (x )=1()2x ,与h (x )=x -12在区间(0,+∞)上的衰减情况说法正确的是A .f (x )衰减速度越来越慢,g (x )衰减速度越来越快,h (x )衰减速度越来越慢B .f (x )衰减速度越来越快,g (x )衰减速度越来越慢,h (x )衰减速度越来越快C .f (x )衰减速度越来越慢,g (x )衰减速度越来越慢,h (x )衰减速度越来越慢D .f (x )衰减速度越来越快,g (x )衰减速度越来越快,h (x )衰减速度越来越快 【答案】C【解析】观察函数f (x )=12log x 、g (x )=1()2x 与h (x )=x -12在区间(0,+∞)上的图象如图.可知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢;同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象在区间(0,1)上递减较快,但递减速度变慢;在区间(1,+∞)上,递减较慢,且越来越慢.故选C .23.若x ∈(0,1),则下列结论正确的是A .2x>12x >lg x B .2x>lg x >12xC .12x >2x>lg xD .lg x >12x >2x【答案】A【解析】结合y =2x,y =12x 及y =lg x 的图象易知,当x ∈(0,1)时,2x>12x >lg x .故选A .24.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年. 【答案】7【解析】由题意知,第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n -1)=12n (n +1)(2n +1)-12n (n -1)(2n -1)=3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.25.表示一位骑自行车和一位骑摩托车的旅行者在相距80 km 的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上了骑自行车者;④骑摩托车者在出发1.5 h后与骑自行车者速度一样.其中,正确信息的序号是________.【答案】①②③26.四个变量y1,y2,y3,y4随变量x变化的数据如下表:关于x呈指数函数变化的变量是________.【答案】y227.一水池有2个进水口,1个出水口,两个进水口的进水速度如图甲、乙所示,出水口的排水速度如图丙所示,某天0点到6点,该水池的蓄水量如图丁所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.其中一定正确的论断序号是________.【答案】①②【解析】从0点到3点,两个进水口的进水量为9,故①正确;由排水速度知②正确;4点到6点可以是不进水,不出水,也可以是开一个进水口(速度快的)、一个排水口,故③不正确.28.已知A,B两地相距150 km,某人开汽车以60 km/h的速度从A地到达B地,在B地停留1小时后再以50 km/h的速度返回A地,汽车离开A地的距离x随时间t变化的关系式是__________.【答案】x=600 2.51502.5 3.5 503253.5 6.5t ttt t≤≤⎧⎪<≤⎨⎪-+<≤⎩,,,29.(2016•四川)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30) A .2018年 B .2019年 C .2020年 D .2021年【答案】B【解析】设从2015年开始第n 年该公司全年投入的研发资金开始超过200万元,由已知得()11200130112%200, 1.12130n n --⨯+>∴>, 两边取常用对数得200(1)lg1.12lg,130n ->lg 2lg1.30.30.111 3.8,5lg1.120.05n n --∴->==∴≥, 故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B .。

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(60)

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(60)

人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 已知不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1},则函数 y =ax 2+x +c 的图象大致为 ( )A .B .C .D .2. 已知函数 f (x ) 为定义在 R 上的奇函数,当 x <0 时,f (x )=x (x −1),则 f (2)= ( ) A . −6 B . 6 C . −2 D . 23. 十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若 a,b,c ∈R ,则下列命题正确的是 ( ) A .若 ab ≠0 且 a <b ,则 1a >1b B .若 a >b >0,则b+1a+1>baC .若 a +b =2,则 ab <1D .若 c <b <a 且 ac <0,则 cb 2<ab 24. 定义全集 U 的子集 A 的特征函数 f A (x )={1,x ∈A0,x ∉A ,对于任意的集合 A,B ⊆U ,下列说法错误的是 ( )A .若 A ⊆B ,则 f A (x )≤f B (x ),对于任意的 x ∈U 成立B . f A∩B (x )=f A (x )f B (x ),对于任意的 x ∈U 成立C . f A∪B (x )=f A (x )+f B (x ),对于任意的 x ∈U 成立D .若 A =∁U B ,则 f A (x )+f B (x )=1,对于任意的 x ∈U 成立5. 已知 −π2<α<0,sinα+cosα=15,则 1cos 2α−sin 2α= ( )A . 75B .257C .725D .24256. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]7. 设 a ,b ,c 是实数,下列条件中可以推出“a =b ”的是 ( ) A .1a=1bB . a 2=b 2C . ac =bcD . a −c =c −b8. 定义在 R 上的函数 f (x ) 满足:f (x −2) 的对称轴为 x =2,f (x +1)=4f (x )(f (x )≠0),且 f (x ) 在区间 (1,2) 上单调递增,已知 α,β 是钝角三角形中的两锐角,则 f (sinα) 和 f (cosβ) 的大小关系是 ( ) A . f (sinα)>f (cosβ) B . f (sinα)<f (cosβ) C . f (sinα)=f (cosβ)D .以上情况均有可能9. 若函数 f (x ) 为定义在 D 上的单调函数,且存在区间 [a,b ]⊆D ,使得当 x ∈[a,b ] 时,f (x ) 的取值范围恰为 [a,b ],则称函数 f (x ) 是 D 上的正函数.若函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,则实数 m 的取值范围为 ( ) A . (−54,−1) B . (−54,−34) C . (−1,−34)D . (−34,0)10. 定义函数 [x ] 为不大于 x 的最大整数,对于函数 f (x )=x −[x ] 有以下四个结论:① f (2019.67)=0.67;②在每一个区间 [k,k +1),k ∈Z 上,f (x ) 都是增函数; ③ f (−15)<f (15);④ y =f (x ) 的定义域是 R ,值域是 [0,1).其中正确的个数是 ( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6题)11. 关于函数 f (x )=∣x∣∣∣x∣−1∣,给出以下四个命题:(1)当 x >0 时,y =f (x ) 单调递减且没有最值;(2)方程 f (x )=kx +b (k ≠0) 一定有实数解;(3)如果方程 f (x )=m ,(m 为常数)有解,则解的个数一定是偶数;(4)y =f (x ) 是偶函数且有最小值.其中假命题的序号是 .12. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .13. 给出下列四个命题:① f (x )=sin (2x −π4) 的对称轴为 x =kπ2+3π8,k ∈Z ;②函数 f (x )=sinx +√3cosx 的最大值为 2; ③ ∀x ∈(0,π),sinx >cosx ;④函数 f (x )=sin (π3−2x) 在区间 [0,π3] 上单调递增. 其中正确命题的序号为 .14. 设函数 f (x )=sin2x +2cos 2x ,则函数 f (x ) 的最小正周期为 ;若对于任意 x ∈R ,都有f (x )≤m 成立,则实数 m 的最小值为 .15. 若对任意 x >3,x >a 恒成立,则 a 的取值范围是 .16. 若 log a (a +1)<log a (2√a)<0(a >0 且 a ≠1),则实数 a 的取值范围是 .三、解答题(共6题)17. 求下列函数的定义域与值域.(1) y =21x−1;(2) y =3√5x−1; (3) y =(12)x−1.18. 已知函数 f (x )=2x +2−x .(1) 求证:函数f(x)是偶函数;(2) 设a∈R,求关于x的函数y=22x+2−2x−2af(x)在x∈[0,+∞)时的值域g(a)的表达式;(3) 若关于x的不等式mf(x)≤2−x+m−1在x∈(0,+∞)时恒成立,求实数m的取值范围.19.定义:若函数f(x)的定义域为R,且存在实数a和非零实数k(a,k都是常数),使得f(2a−x)=k⋅f(x)对x∈R都成立,则称函数f(x)是具有“理想数对(a,k)”的函数.比如,函数f(x)有理想数对(2,−1),即f(4−x)=−f(x),f(4−x)+f(x)=0,可知函数图象关于点(2,0)成中心对称图形.设集合M是具有理想数对(a,k)的函数的全体.(1) 已知函数f(x)=2x−1,x∈R,试判断函数f(x)是否为集合M的元素,并说明理由;(2) 已知函数g(x)=2x,x∈R,证明:g(x)∉M;(3) 数对(2,1)和(1,−1)都是函数ℎ(x)的理想数对,且当−1≤x≤1时,ℎ(x)=1−x2.若正比例函数y=mx(m>0)的图象与函数ℎ(x)的图象在区间[0,12]上有且仅有5个交点,求实数m的取值范围.20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,∣φ∣<π2)的部分图象如图所示.(1) 求函数f(x)的解析式;(2) 设π12<x<11π12,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.21.某广告公司要为客户设计一幅周长为l(单位:m)的矩形广告牌,如何设计这个广告牌可以使广告牌的面积最大?22.化简1−cos4α−sin4α.1−cos6α−sin6α答案一、选择题(共10题) 1. 【答案】C【解析】因为 不等式 ax 2−x +c >0 的解集为 {x∣ −2<x <1}, 所以 a <0,故 x 2−1ax +ca<0 的解集为 {x∣ −2<x <1},所以 −2 和 1 是方程 x 2−1ax +c a=0 的两个根,故 −2+1=1a,−2×1=ca,解得 a =−1,c =2.故函数 y =ax 2+x +c =−x 2+x +2=−(x +1)(x −2),其图象大致为 C . 【知识点】二次函数的性质与图像2. 【答案】A【知识点】函数的奇偶性3. 【答案】B【解析】对于A ,取 a =−2,b =1,可知1a>1b不成立,因此选项A 不正确;对于B ,因为 a >b >0,所以 b+1a+1−ba =a−ba (a+1)>0,所以 b+1a+1>ba ,因此选项B 正确; 对于C ,取 a =b =1 时,ab =1,因此选项C 不正确; 对于D ,取 b =0 时,cb 2<ab 2 不正确,因此选项D 不正确. 【知识点】不等式的性质4. 【答案】C【知识点】函数的表示方法5. 【答案】B【解析】因为 sinα+cosα=15, 所以 1+2sinαcosα=125,所以 2sinαcosα=−2425,(cosα−sinα)2=1+2425=4925,又因为 −π2<α<0, 所以 cosα>0>sinα, 所以 cosα−sinα=75, 所以1cos 2α−sin 2α=1(cosα+sinα)(cosα−sinα)=115×75=257.故选B .【知识点】同角三角函数的基本关系6. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x 2+mx +1>0的解集为R ,∴△=m 2−4<0,解得−2<m <2. ∴m 的取值范围是(−2,2). 故选:B .【点评】熟练掌握一元二次不等式的解法是解题的关键.7. 【答案】A【知识点】充分条件与必要条件8. 【答案】A【知识点】抽象函数、函数的单调性9. 【答案】C【解析】因为函数 g (x )=x 2+m 是定义在 (−∞,0) 上的正函数,所以存在 a <b <0,使得当 x ∈[a,b ] 时,g (x )∈[a,b ],且函数单调递减, 则 g (a )=b ,g (b )=a , 即 a 2+m =b ,b 2+m =a , 两式左右分别相减得 a 2−b 2=b −a , 即 b =−(a +1),代入 a 2+m =b 得 a 2+a +m +1=0, 因为 a <b <0,且 b =−(a +1), 所以 a <−(a +1)<0, 解得 −1<a <−12.故关于 a 的方程 a 2+a +m +1=0 在区间 (−1,−12) 内有实数根,把新定义的正函数问题转化为方程有解问题,采用了转化与化归思想.记 ℎ(a )=a 2+a +m +1,则 ℎ(−1)=1−1+m +1>0 且 ℎ(−12)=14−12+m +1<0,解得 m >−1 且 m <−34,即 −1<m <−34. 【知识点】函数的单调性、抽象函数10. 【答案】C【解析】 f (2019.67)=2019.67−2019=0.67,故①正确;设 k ≤x 1≤x 2<k +1,则 f (x 1)−f (x 2)=x 1−k −x 2+k =x 1−x 2<0, 所以 f (x 1)<f (x 2),所以 f (x ) 在 [k,k +1),k ∈Z 上是增函数,故②正确; 因为 f (−15)=−15−(−1)=45,f (15)=15−0=15,所以 f (−15)>f (15),故③错误; 因为 x −[x ]∈[0,1), 所以④正确. 故选C .【知识点】函数的值域的概念与求法、函数的单调性二、填空题(共6题) 11. 【答案】(1)、(3)【解析】(1)当 x >1 时,y =f (x )=xx−1=1+1x−1 在区间 (1,+∞) 上是单调递减函数,当 0<x <1 时,y =f (x )=−xx−1=−1−1x−1 在区间 (0,1) 上是单调增函数.所以(1)是假命题. (2)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,当 x >0 时,y =f (x ) 在区间 (0,1) 上单调递增,在 (1,+∞) 上单调递减.当 k >0 时,函数 y =f (x ) 与 y =kx 的图象在第一象限内有交点,由对称性可知,当 x <0 且 k <0 时,函数 y =f (x ) 与 y =kx 的图象在第二象限内有交点.所以,方程 f (x )=kx +b (k ≠0) 一定有解.所以(2)是真命题.(3)因为函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,且最小值 f (0)=0,举例:当 m =0 时,函数 y =f (x ) 与 y =m 的图象只有一个交点.此时方程 f (x )=m 的解是奇数.所以(3)是假命题. (4)函数 f (x )=∣x∣∣∣x∣−1∣ 是偶函数,y =f (x )=∣x∣∣∣x∣−1∣ 在区间 (0,1) 上单调递增,(1,+∞) 上单调递减.且 f (0)=0,x >0 时,f (x )>0 恒成立,由对称性可知,函数 f (x ) 有最小值 f (0)=0.所以( 4 )是真命题.【知识点】函数的零点分布、函数的最大(小)值、函数的单调性12. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞)上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点; ② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布13. 【答案】①②【解析】① y =sinx 的对称轴为 x =kπ+π2(k ∈Z ),故 f (x )=sin (2x −π4) 的对称轴由 2x −π4=kπ+π2(k ∈Z ),解得 x =kπ2+3π8(k ∈Z ),故①正确;②函数f(x)=sinx+√3cosx=2sin(x+π3),故该函数的最大值为2,故②正确;③ ∀x∈(0,π),sinx>cosx;当x=π4时,sinx=cosx,故③错误;④函数f(x)=sin(π3−2x)在区间[0,π3]上单调递减,故④错误.故答案为:①②.【知识点】Asin(ωx+ψ)形式函数的性质14. 【答案】π;√2+1【知识点】Asin(ωx+ψ)形式函数的性质15. 【答案】a≤3【知识点】恒成立问题16. 【答案】(14,1)【解析】当0<a<1时,函数y=log a x单调递减,由题意得{a+1>2√a,2√a>1,解得a>14,所以14<a<1;当a>1时,函数y=log a x单调递增,由题意得{a+1<2√a,2√a<1,无解.综上可知,实数a的取值范围是(14,1).【知识点】对数函数及其性质三、解答题(共6题)17. 【答案】(1) 由x−1≠0,得x≠1.所以函数的定义域为{x∣ x∈R且x≠1}.又1x−1≠0,所以21x−1>0,且21x−1≠1.所以函数的值域为{y∣ y>0且,y≠1}.(2) 由5x−1≥0,得x≥15.所以函数的定义域为{x∣ x≥15}.因为 5x −1≥0,所以 3√5x−1≥1.所以函数的值域为 {y∣ y ≥1}.(3) y =(12)x−1 的定义域是 R ,值域是 {y∣ y >−1}.【知识点】函数的定义域的概念与求法、函数的值域的概念与求法18. 【答案】(1) 函数 f (x ) 的定义域为 R ,对任意 x ∈R ,f (−x )=2−x +2x =f (x ), 所以函数 f (x ) 是偶函数.(2) y =22x +2−2x −2a (2x +2−x )=(2x +2−x )2−2a (2x +2−x )−2, 令 2x +2−x =t ,因为 x ≥0,所以 2x ≥1,故 t ≥2, 原函数可化为 y =t 2−2at −2,t ∈[2,+∞),y =t 2−2at −2=(t −a )2−a 2−2 图象的对称轴为直线 t =a ,当 a ≤2 时,函数 y =t 2−2at −2 在 t ∈[2,+∞) 时是增函数,值域为 [2−4a,+∞);当 a >2 时,函数 y =t 2−2at −2 在 t ∈[2,a ] 时是减函数,在 t ∈[a,+∞) 时是增函数,值域为 [−a 2−2,+∞).综上,g (a )={[2−4a,+∞),a ≤2[−a 2−2,+∞),a >2.(3) 由 mf (x )≤2−x +m −1 得 m [f (x )−1]≤2−x −1,当 x >0 时,2x >1,所以 f (x )=2x +2−x >2,所以 f (x )−1>1>0, 所以 m ≤2−x −1f (x )−1=2−x −12x +2−x −1=1−2x 22x +1−2x恒成立.令 t =1−2x ,则 t <0,1−2x 22x +1−2x=t (1−t )2+t=t t 2−t+1=1t+1t−1,由 t <0 得 t +1t≤−2,所以 t +1t−1≤−3,−13≤1t+1t−1<0.所以 m ≤−13,即 m 的取值范围为 (−∞,−13].【知识点】函数的奇偶性、指数函数及其性质、函数的值域的概念与求法19. 【答案】(1) 依据题意,知 f (x )=2x −1,若 f (2a −x )=k ⋅f (x ),即 2(2a −x )−1=k (2x −1). 化简得 −2x +4a −1=2kx −k ,此等式对 x ∈R 都成立,则 {2k =−2,4a −1=−k,解得 {k =−1,a =12.于是,函数 f (x )=2x −1 有理想数对 (12,−1).所以,函数 f (x )∈M . (2) 用反证法证明 g (x )∉M . 假设 g (x )∈M ,则存在实数对 (a,k )(k ≠0) 使得 g (2a −x )=k ⋅g (x ) 成立. 又 g (x )=2x ,于是,22a−x =k ⋅2x , 即 22a =k ⋅22x .一方面,此等式对 x ∈R 都成立;另一方面,该等式左边是正的常数,右边是随 x 变化而变化的实数.两方面互相矛盾,故假设不成立.因此,函数 g (x ) 不存在理想数对 (a,k )(k ≠0) 使 g (x )∈M , 即 g (x )∉M .(3) 因为数对 (2,1) 和 (1,−1) 都是函数 ℎ(x ) 的理想数对, 所以 ℎ(4−x )=ℎ(x ),ℎ(2−x )=−ℎ(x ),x ∈R , 所以ℎ(4+x )=ℎ(4−(4+x ))=ℎ(2−(2+x ))=−ℎ(2+x )=−ℎ(4−(2−x ))=−ℎ(2−x )=ℎ(x ).所以函数 ℎ(x ) 是以 4 为周期的周期函数.由 ℎ(2−x )=−ℎ(x ),ℎ(2−x )+ℎ(x )=0,x ∈R ,可知函数 ℎ(x ) 的图象关于点 (1,0) 成中心对称图形.又 −1≤x ≤1 时,ℎ(x )=1−x 2,所以 1<x ≤3 时,−1≤2−x <1,则 ℎ(x )=−ℎ(2−x )=(2−x )2−1.先画出函数 ℎ(x ) 在 [−1,3] 上的图象,再根据周期性,可得到函数 ℎ(x ) 的图象如图: 所以 ℎ(x )={1−(x −2k )2,k 为偶数,2k −1≤x <2k +1(x −2k )2−1,k 为奇数,2k −1≤x <2k +1,所以 ℎ(x )=1−(x −8)2,7≤x ≤9;ℎ(x )=1−(x −12)2,11≤x ≤13.由 {ℎ(x )=1−(x −8)2,y =mx (7≤x ≤9) 有且仅有一个交点,解得 m =16−6√7(m =16+6√7,舍去).由 {ℎ(x )=1−(x −12)2,y =mx (11≤x ≤13) 有且仅有一个交点,解得 m =24−2√143(m =24+2√143,舍去).所以函数 y =mx (m >0) 的图象与函数 ℎ(x ) 的图象在区间 [0,12] 上有且仅有 5 个交点时,实数 m 的取值范围是 24−2√143<m <16−6√7.【知识点】恒成立问题、函数的零点分布、反证法、函数的周期性20. 【答案】(1) 由函数图象知,A =2.因为图象过点 (0,1),所以 f (0)=1,所以 sinφ=12. 又因为 ∣φ∣<π2,所以 φ=π6. 由函数图象知T 2=2π3−π6=π2,所以 T =π,得 ω=2.所以函数 f (x ) 的解析式为 f (x )=2sin (2x +π6).(2) 由(1)知,函数 y =2sin (2x +π6),若 π12<x <11π12,在原图中标出 (π12,√3) 和 (11π12,0),如图所示: 当 −2<m <0 或 √3<m <2 时,直线 y =m 与曲线 y =2sin (2x +π6) 有两个不同的交点,即原方程有两个不同的实数根. 所以 m 的取值范围为 (−2,0)∪(√3,2). 由对称性可知,当 −2<m <0 时,两根和为 4π3;当 √3<m <2 时,两根和为 π3.【知识点】Asin(ωx+ψ)形式函数的性质21. 【答案】设矩形的一边长为 x ,广告牌面积为 S ,则 S =−(x −l 4)2+l 216,x ∈(0,l 2). 当 x =l4 时,S 取得最大值,且 S max =l 216,所以当广告牌是边长为 l4 的正方形时,广告牌的面积最大.【知识点】函数模型的综合应用22. 【答案】 1−cos 4α−sin 4α1−cos 6α−sin 6α=(sin 2α+cos 2α)2−cos 4α−sin 4α(sin 2α+cos 2α)3−cos 6α−sin 6α=2sin 2αcos 2α3sin 4αcos 2α+3sin 2αcos 4α=2sin 2αcos 2α3sin 2αcos 2α=23.【知识点】同角三角函数的基本关系。

3.2.2函数模型及其应用(2)

3.2.2函数模型及其应用(2)

作业:
1.课本106页课后练习1-2.
2.教材P107 习题3.2 B组1-2.
高一数学备课组集体备课
3.2.2 函数模型及其应用 (第2课时)
主备人:唐强 2013.11.5
复习:
解决应用题的一般程序是: ①审题:弄清题意,分清条件和结论,理顺数量关系; ②建模:将文字语言转化为数学语言,利用数学知识, 建立相应的数学模型; ③解模:求解数学模型,得出数学结论; ④还原:将用数学知识和方法得出的结论,还原为 实际问题的意义.
解决实际问题的基本过程: 小结:
收集数据
画散点图
选择函数模型 不 符 合 实 际
求函数模型
用函数模型解释实际问题
解决应用题的一般程序是: ①审题:弄清题意,分清条件和结论,理顺数量关系; ②建模:将文字语言转化为数学语言,利用数学知识, 建立相应的数学模型; ③解模:求解数学模型,得出数学结论; ④还原:将用数学知识和方法得出的结论,还原为 实际问题的意义.
320 280 240
请根据以上数据作出分析,这个经营 部怎样定价才能获得最大利润?
分析:由表中信息可知①销售单价每增加1元,日 均销售量就减少40桶②销售利润怎样计算较好?
解:设在进价基础上增加x元后,日均经营利 润为y元,则有日均销售量为
480-40( x-1 )=520-40 x (桶)

x 0, 且520 40 x 0,即0 x 13
身高 60 70 80 90 100 110
体重 身高
6.13 120
7.90 130
9.99 140
12.15 15.02 17.50 150 160 170
体重 20.92 26.86 31.11 38.85 47.25 55.05

高一数学上册第三章练习题:函数模型及其应用(含答案)-word

高一数学上册第三章练习题:函数模型及其应用(含答案)-word

高一数学上册第三章练习题:函数模型及其应用(含答案)数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。

查字典数学网为大家推荐了高一数学上册第三章练习题,请大家仔细阅读,希望你喜欢。

某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,于是商场经理决定每件衬衫降价15元,经理的决定正确吗?基础巩固1.某商场售出两台取暖器,第一台提价20%以后按960卖出,第二台降价20%以后按960元卖出,这两台取暖器卖出后,该商场()A.不赚不亏B.赚了80元C.亏了80元D.赚了160元解析:960+960-9601+20%-9601-20%=-80.答案:C2.用一根长12 m的铁丝折成一个矩形的铁框架,则能折成的框架的最大面积是__________.解析:设矩形长为x m,则宽为12(12-2x) m,用面积公式可得S的最大值.答案:9 m23.在x g a%的盐水中,加入y g b%的盐水,浓度变为c%,则x与y的函数关系式为__________.解析:溶液的浓度=溶质的质量溶液的质量=xa%+yb%x+y= c%,解得y=a-cc-bx=c-ab-cx.答案:y=c-ab-cx4.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新标价在价目卡上,并说明按该价的20%销售.这样仍可获得25%的纯利,求此个体户给这批服装定的新标价y与原标价x之间的函数关系式为________ 解析:由题意得20%y-0.75x=0.7x25%y=7516x.答案:y=7516x5.如果本金为a,每期利率为r,按复利计算,本利和为y,则存x期后,y与x之间的函数关系是________.解析:1期后y=a+ar=a(1+r);2期后y=a(1+r)+a(1+r)r=a(1+r)2;归纳可得x期后y=a(1+r)x.答案:y=a(1+r)x6.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,n年后这批设备的价值为________万元.解析:1年后价值为:a-ab%=a(1-b%),2年后价值为:a(1-b%)-a(1-b%)b%=a(1-b%)2,n年后价值为:a(1-b%)n.答案:a(1-b%)n7.某供电公司为了合理分配电力,采用分段计算电费政策,月用电量x(度)与相应电费y(元)之间的函数关系的图象如下图所示.(1)填空:月用电量为100度时,应交电费______元;(2)当x100时,y与x之间的函数关系式为__________;(3)月用电量为260度时,应交电费__________元.解析:由图可知:y与x之间是一次函数关系,用待定系数法可求解析式.答案:(1)60 (2)y=12x+10 (3)1408.为了保护水资源,提倡节约用水,某城市对居民生活用水实行阶梯水价.计费方法如下表:每户每月用水量水价不超过12 m3的部分3元/m3超过12 m3但不超过18 m3的部分6元/m3超过18 m3的部分9元/m3若某户居民本月交纳的水费为48元,则此户居民本月用水量为__________m3.解析:设每户每月用水量为x,水价为y元,则y=3x,0即y=3x,048=6x-36,x=14.答案:149.国家收购某种农产品的价格是120元/担,其中征税标准为每100元征8元(叫做税率为8个百分点,即8%),计划收购m万担,为了减轻农民负担,决定税率降低x个百分点,预计收购量可增加2x个百分点.(1)写出税收y(万元)与x的函数关系式;(2)要使此项税收在税率调整后,不低于原计划的78%,试确定x的范围.解析:(1)y=120m[1+(2x)%](8%-x%)=-0.024m(x2+42x-400)(0(2)-0.024m(x2+42x-400)120m8%78%,即x2+42x-880,(x+44)(x-2)0,解得-442.又∵010.有一条双向公路隧道,其横断面由抛物线和矩形ABCO的三边组成,隧道的最大高度为4.9 m,AB=10 m,BC=2.4 m.现把隧道的横断面放在平面直角坐标系中,若有一辆高为4 m,宽为2 m的装有集装箱的汽车要通过隧道.问:如果不考虑其他因素,汽车的右侧离开隧道右壁至少多少米才不至于碰到隧道顶部(抛物线部分为隧道顶部,AO、BC为壁)?解析:由已知条件分析,得知抛物线顶点坐标为(5,2.5),C 点的坐标为(10,0),所以设抛物线的解析式为y=a(x-5)2+2.5,①把(10,0)代入①得0=a(10-5)2+2.5,解得a=-110,y=-110(x-5)2+2.5.当y=4-2.4=1.6时,1.6=-110(x-5)2+2.5,即(x-5)2=9,解得x1=8,x2=2.显然,x2=2不符合题意,舍去,所以x=8.OC-x=10-8=2.故汽车应离开右壁至少2 m才不至于碰到隧道顶部.小编为大家提供的高一数学上册第三章练习题,大家仔细阅读了吗?最后祝同学们学习进步。

2021-2022学年新教材湘教版高中数学必修第一册4.5函数模型及其应用 课时练习题

2021-2022学年新教材湘教版高中数学必修第一册4.5函数模型及其应用 课时练习题

4.5 函数模型及其应用1、几种函数增长快慢的比较 ................................................................................. 1 2、形形色色的函数模型 .. (7)1、几种函数增长快慢的比较1.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .y =2x -2 B .y =⎝ ⎛⎭⎪⎫12xC .y =log 2xD .y =12(x 2-1)解析:选D 法一:相邻的自变量之差从左到右依次大约为1,相邻的函数值之差大约为2.5,3.5,4.5,6,基本上是逐渐增加的,抛物线拟合程度最好,故选D.法二:可以采用特殊值代入法,取某个x 的值代入,再比较函数值是否与表中数据相符.可取x =4,经检验易知选D.2.有甲、乙、丙、丁四种不同品牌的自驾车,其跑车时间均为x 小时,跑过的路程分别满足关系式:f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 3(x +1),f 4(x )=2x -1,则5个小时以后跑在最前面的为( )A .甲B .乙C .丙D .丁解析:选D 法一:分别作出四个函数的图象(图略),利用数形结合,知5个小时后丁车在最前面.法二:由于4个函数均为增函数,且f 1(5)=52=25,f 2(5)=20,f 3(5)=log 3(5+1)=1+log 32,f 4(5)=25-1=31,f 4(5)最大,所以5个小时后丁车在最前面,故选D.3.(2021·安徽省级示范高中高一期中)若x ∈(0,1),则下列结论正确的是( )A .2x >x 12>lg x B .2x >lg x >x 12 C .x 12>2x >lg xD .lg x >x 12>2x解析:选A 如图所示,结合y =2x ,y =x 12及y =lg x 的图象易知,当x ∈(0,1)时,2x >x 12>lg x ,故选A.4.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高解析:选A 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可知,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=m (m +8a ).因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2.故本年5月份甲食堂的营业额较高.5.某企业的一个车间有8名工人,以往每人年薪为1万元.从今年起,计划每人的年薪比上一年增加10%,另外每年新招3名工人,每名新工人的第一年年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,那么第x 年企业付给工人的工资总额y(万元)表示成x的函数,其表达式为() A.y=(3x+5)1.1x+2.4B.y=8×1.1x+2.4xC.y=(3x+8)1.1x+2.4D.y=(3x+5)1.1x-1+2.4解析:选A第一年企业付给工人的工资总额为8×1.1+3×0.8(万元),第二年企业付给工人的工资总额为(8+3)×1.12+3×0.8(万元),…,以此类推,第x年企业付给工人的工资总额应为y=[8+3(x-1)]×1.1x+2.4=(3x+5)1.1x+2.4(万元).6.函数y=x2与函数y=x ln x在区间(1,+∞)上增长较快的一个是________.解析:当x变大时,x比ln x增长要快,∴x2要比x ln x增长的要快.答案:y=x27.一种专门侵占内存的计算机病毒,开机时占据内存2 KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64 MB内存(1 MB=210 KB).解析:设开机后经过n个3分钟后,该病毒占据64 MB内存,则2×2n=64×210=216,∴n=15,故时间为15×3=45(分).答案:458.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,A对应______;B对应_____;C对应______;D对应______.解析:A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器水高度变化快,与(3)对应,D容器水高度变化慢,与(2)对应.答案:(4)(1)(3)(2)9.画出函数f(x)=x与函数g(x)=14x2-2的图象,并比较两者在[0,+∞)上的大小关系.解:函数f(x)与g(x)的图象如图所示.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).10.每年的3月12日是植树节,全国各地在这一天都会开展各种形式、各种规模的义务植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,有两种方案如下:方案一:每年植树1万平方米;方案二:每年树木面积比上一年增加9%.你觉得哪种方案较好.(参考数据:(1+9%)5≈1.538 6)解:方案一:5年后树木面积是10+1×5=15(万平方米).方案二:5年后树木面积是10×(1+9%)5≈15.386(万平方米).∵15.386>15,∴方案二较好.11.当0<x<1时,f(x)=x2,g(x)=x 12,h(x)=x-2的大小关系是()A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x) C.g(x)<h(x)<f(x) D.f(x)<g(x)<h(x)解析:选D在同一坐标下作出函数f(x)=x2,g(x)=x 12,h(x)=x-2的图象.由图象知,D正确.12.某地发生地震后,地震专家对该地区发生的余震进行了监测,记录的部分数据如下表:地震强度(J)1.6×10193.2×10194.5×1019 6.4×1019震级(里氏) 5.0 5.2 5.3 5.4地震强度x(×1019)和震级y的模拟函数关系可以选用y=a lg x+b(其中a,b 为常数).利用散点图可得a=________,b=________.(取lg 2=0.3进行计算)解析:由模拟函数及散点图得a lg 1.6+b=5,a lg 3.2+b=5.2,两式相减得a(lg 3.2-lg 1.6)=0.2,所以a lg 2=0.2,解得a=2 3,所以b=5-23lg 1.6=5-23(4lg 2-1)=5-23×15=7315.答案:23731513.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=log a(t+1)来拟合h与t的关系,你认为哪个符合?并预测第8年的松树高度.t(年)12345 6h(米)0.61 1.3 1.5 1.6 1.7解:在坐标轴上标出t (年)与h (米)之间的关系如图所示.由图象可以看出增长的速度越来越慢,用一次函数模型拟合不合适,则选用对数函数模型比较合理.不妨将(2,1)代入h =log a (t +1)中,得1=log a 3,解得a =3. 故可用函数h =log 3(t +1)来拟合这个实际问题.当t =8时,求得h =log 3(8+1)=2,故可预测第8年松树的高度为2米. 14.假设有一套住房的房价从2011年的20万元上涨到2021年的40万元.下表给出了两种价格增长方式,其中P 1是按直线上升的房价,P 2是按指数增长的房价,t 是2011年以来经过的年数.t 0 5 10 15 20 P 1/万元 20 40 P 2/万元2040(1)求函数P 1=f (t )的解析式; (2)求函数P 2=g (t )的解析式;(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图象,然后比较两种价格增长方式的差异.解:(1)设f (t )=kt +b (k ≠0), 则⎩⎨⎧b =20,10k +b =40⇒⎩⎨⎧b =20,k =2. ∴P 1=f (t )=2t +20.(2)设g (t )=ma t (a >0,且a ≠1), 则⎩⎨⎧m =20,ma 10=40⇒⎩⎪⎨⎪⎧m =20,a =102.∴P 2=g (t )=20×(102)t =20×2t 10.(3)图象如图.表格中的数据如下表所示:t 05101520P1/万元2030405060P2/万元20202404028012增长的价格,但10年后,P2价格增长速度很快,远远超出P1的价格并且时间越长,差别越大.2、形形色色的函数模型1.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N +),该产品的产量y满足()A.y=a(1+5%x)B.y=a+5%C.y=a(1+5%)x-1D.y=a(1+5%)x解析:选D经过1年,y=a(1+5%),经过2年,y=a(1+5%)2,…,经过x年,y=a(1+5%)x.2.某种放射性元素,每年在前一年的基础上按相同比例衰减,100年后只剩原来的一半,现有这种元素1克,3年后剩下()A.0.015克B.(1-0.5%)3克C.0.925克D.1000.125 克解析:选D设每年减少的比例为x,因此1克这种放射性元素,经过100年后剩余1×(1-x)100克,依题意得(1-x)100=0.5,所以x=1-1000.5,3年后剩余为(1-x)3,将x的值代入,得结果为1000.125,故选D.3.某商场2020年在销售某种空调旺季的4天内的利润如下表所示,时间t 123 4利润y(千元)2 3.988.0115.99现构建一个销售这种空调的函数模型,应是下列函数中的()A.y=log2t B.y=2tC.y=t2D.y=2t解析:选B作出散点图如图所示.由散点图可知,图象不是直线,排除选项D;图象不符合对数函数的图象特征,排除选项A;把t=1,2,3,4代入B,C选项的函数中,函数y=2t的函数值最接近表格中的对应值,故选B.4.(多选)如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=a t.关于下列说法正确的是()A.浮萍每月的增长率为1B.第5个月时,浮萍面积就会超过30 m2C.浮萍每月增加的面积都相等D.若浮萍蔓延到2 m2,3m2,6 m2所经过的时间分别是t1,t2,t3,则t1+t2=t3解析:选ABD图象过(1,2)点,∴2=a1,即a=2,∴y=2t.∵2t+1-2t2t=2t(2-1)2t=1,∴每月的增长率为1,A正确.当t=5时,y=25=32>30,∴B正确.∵第二个月比第一个月增加y 2-y 1=22-2=2(m 2),第三个月比第二个月增加y 3-y 2=23-22=4(m 2)≠y 2-y 1,∴C 不正确.∵2=2t 1,3=2t 2,6=2t 3, ∴t 1=log 22,t 2=log 23,t 3=log 26,∴t 1+t 2=log 22+log 23=log 26=t 3,D 正确.故选A 、B 、D.5.我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝(dB),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:η=10·lg I I 0(其中I 0是人耳能听到的声音的最低声波强度),设η1=70 dB的声音强度为I 1,η2=60 dB 的声音强度为I 2,则I 1是I 2的( )A.76倍 B .10倍 C .1076倍D .ln 76倍解析:选B 依题意可知,η1=10·lg I 1I 0,η2=10·lg I 2I 0,所以η1-η2=10·lg I 1I 0-10·lg I 2I 0,则1=lg I 1-lg I 2,所以I 1I 2=10.故选B.6.在一场足球比赛中,一球员从球门正前方10 m 处将球踢起射向球门,当球飞行的水平距离是6 m 时,球到达最高点,此时球高3 m ,已知球门高2.44 m 并且球按抛物线飞行,球________踢进球门(填“能”或“不能”).解析:建立如图所示的坐标系,抛物线经过点(0,0),顶点为(6,3). 设其解析式为y =a (x -6)2+3,把x =0,y =0代入,得a =-112, ∴y =-112(x -6)2+3.当x =10时,y =-112(10-6)2+3=53<2.44. ∴球能踢进球门. 答案:能7.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料的质量M kg ,火箭(除燃料外)的质量m kg 的函数关系式是v =2 000·ln ⎝ ⎛⎭⎪⎫1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s.解析:当v =12 000 m/s 时,2 000·ln ⎝ ⎛⎭⎪⎫1+M m =12 000,所以ln ⎝ ⎛⎭⎪⎫1+M m =6,所以Mm =e 6-1.答案:e 6-18.我们知道,燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解:(1)由题知,当燕子静止时,它的速度v =0,代入函数关系式可得0=5log 2Q10,解得Q =10.即燕子静止时的耗氧量是10个单位. (2)将耗氧量Q =80代入函数关系式,得 y =5log 28010=5log 28=15.即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.9.某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2015年为第1年,且前4年中,第x 年与年产量f (x )(万件)之间的关系如下表所示:若f (x )近似符合以下三种函数模型之一:f (x )=ax +b ,f (x )=2x +a ,f (x )=log 12x +a .(1)找出你认为最适合的函数模型,并说明理由,然后选取2015年和2017年的数据求出相应的解析式;(2)因遭受某国对该产品进行反倾销的影响,2021年的年产量比预计减少30%,试根据所建立的函数模型,确定2021年的年产量.解:(1)符合条件的是f (x )=ax +b , 若模型为f (x )=2x +a , 则由f (1)=21+a =4,得a =2, 即f (x )=2x +2,此时f (2)=6,f (3)=10,f (4)=18,与已知相差太大,不符合. 若模型为f (x )=log 12x +a ,则f (x )是减函数,与已知不符合. 由已知得⎩⎨⎧a +b =4,3a +b =7,解得⎩⎪⎨⎪⎧a =32,b =52.所以f (x )=32x +52,x ∈N .故最适合的函数模型解析式为f (x )=32x +52,x ∈N . (2)2021年预计年产量为f (7)=32×7+52=13, 2021年实际年产量为13×(1-30%)=9.1. 故2021年的年产量为9.1万件.10.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (单位:μg)与时间t (单位:h)之间近似满足如图所示的曲线.(1)写出服药后每毫升血液中的含药量y 与时间t 之间的函数关系式y =f (t );(2)据进一步测定:每毫升血液中含药量不少于0.25 μg 时,对治疗疾病有效,求服药一次治疗疾病的有效时间.解:(1)当0≤t <1时,y =kt ,由点M (1,4)在直线上,得4=k ,故y =4t ; 当t ≥1时,y =⎝ ⎛⎭⎪⎫12t -a ,由点M (1,4)在曲线上,得4=⎝ ⎛⎭⎪⎫121-a,解得a =3,即y =⎝ ⎛⎭⎪⎫12t -3.故y =f (t )=⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1.(2)由题意知f (t )≥0.25,则⎩⎨⎧4t ≥0.25,0≤t <1或⎩⎨⎧⎝ ⎛⎭⎪⎫12t -3≥0.25,t ≥1,解得116≤t ≤5. 所以服药一次治疗疾病的有效时间为5-116=7916(h).11.噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度D (分贝)由公式D =a lg I +b (a ,b 为非零常数)给出,其中I (W/cm 2)为声音能量.(1)当声音强度D 1,D 2,D 3满足D 1+2D 2=3D 3时,求对应的声音能量I 1,I 2,I 3满足的等量关系式;(2)当人们低声说话,声音能量为10-13 W/cm 2时,声音强度为30分贝;当人们正常说话,声音能量为10-12 W/cm 2时,声音强度为40分贝.当声音强度大于60分贝时属于噪音,一般人在100~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.解:(1)∵D 1+2D 2=3D 3,∴a lg I 1+b +2(a lg I 2+b )=3(a lg I 3+b ), ∴lg I 1+2lg I 2=3lg I 3,∴I 1·I 22=I 33.(2)由题意得⎩⎨⎧-13a +b =30,-12a +b =40,⎩⎨⎧a =10,b =160,∴100<10lg I +160<120, ∴10-6<I <10-4.故当声音能量I ∈(10-6,10-4)时,人会暂时性失聪.12.中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近70%,居全球首位.中国又属赣州钨矿资源最为丰富,其素有“世界钨都”之称.某科研单位在研发钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y 与这种新合金材料的含量x (单位:克)的关系为:当0≤x <6时,y 是x 的二次函数;当x ≥6时,y =⎝ ⎛⎭⎪⎫13x -t.测得数据如表(部分).(1)求y 关于x 的函数关系式y =f (x ); (2)求函数f (x )的最大值. 解:(1)当0≤x <6时,由题意, 设f (x )=ax 2+bx +c (a ≠0),由题中表格数据可得⎩⎪⎨⎪⎧f (0)=c =0,f (1)=a +b +c =74,f (2)=4a +2b +c =3,解得⎩⎪⎨⎪⎧a =-14 ,b =2,c =0.所以当0≤x <6时,f (x )=-14x 2+2x . 当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -t,由题中表格数据可得,f (9)=⎝ ⎛⎭⎪⎫139-t =19,解得t =7,所以当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -7.综上,f (x )=⎩⎪⎨⎪⎧-14x 2+2x ,0≤x <6,⎝ ⎛⎭⎪⎫13x -7,x ≥6.(2)当0≤x <6时,f (x )=-14x 2+2x =-14(x -4)2+4, 所以当x =4时,函数f (x )取得最大值,为4;当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -7单调递减,所以f (x )的最大值为f (6)=⎝ ⎛⎭⎪⎫136-7=3,因为4>3,所以函数f (x )的最大值为4.。

高一数学函数模型及其应用试题答案及解析

高一数学函数模型及其应用试题答案及解析

高一数学函数模型及其应用试题答案及解析1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西处,受影响的范围是半径长为km的圆形区域.轮船的航行方向为西偏北且不改变航线,假设台风中心不移动.如图所示,试问:(1)在什么范围内,轮船在航行途中不会受到台风的影响?(2)当时,轮船在航行途中受到影响的航程是多少?【答案】(1)(2)40km【解析】首先建立以台风中心为原点建立直角坐标系,(1)由轮船在直线l:x+y-80=0上移动,则得到原点到l的距离.根据条件来判断是否受台风影响.(2)根据,得到会受到台风影响的结论,其航程由弦长一半的平方等于半径的平方减去圆心到直线的距离的平方求解.试题解析:如图,以台风中心为原点建立直角坐标系.(1)轮船在直线上移动, 3分原点到的距离.5分时,轮船在途中不会受到台风影响. 7分(2)会受到台风影响. 9分航程为 11分【考点】直线和圆的方程的应用.2.如图,公园要把一块边长为的等边三角形的边角地修成草坪,把草坪分成面积相等的两部分,在上,在上.(1)设,,试用表示函数;(2)如果是灌溉水管,希望它最短,的位置应该在哪里?【答案】(1);(2) A为基点,分别在AB、AC上截取AD=AE=a时,线段DE最短.【解析】利用基本不等式解决实际问题时,应先仔细阅读题目信息,理解题意,明确其中的数量关系,并引入变量,依题意列出相应的函数关系式,然后利用基本不等式求解;(2)在求所列函数的最值时,若用基本不等式时,等号取不到时,可利用函数的单调性求解;(3)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.试题解析:(1)∵△ABC的边长为2,D在AB上,且,.∵∴.在△ADE中,由余弦定理得(2)令,则当且仅当,即时,取“=”号,故=a,此时x=a,所以以A为基点,分别在AB、AC上截取AD=AE=a时,线段DE最短.【考点】基本不等式在实际中的应用.3.如图,某单位准备修建一个面积为600平方米的矩形场地(图中)的围墙,且要求中间用围墙隔开,使得为矩形,为正方形,设米,已知围墙(包括)的修建费用均为800元每米,设围墙(包括)的修建总费用为元。

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(34)

人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(34)

人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 幂函数的图象过点 (2,√2),则该幂函数的解析式是 ( ) A . y =x −1B . y =x 12C . y =x 2D . y =x 32. 函数 f (x )=ax +bx +5(a ,b 均正数),若 f (x ) 在 (0,+∞) 上有最大值 8,则 f (x ) 在(−∞,0) 上 ( ) A .有最大值 −8 B .有最小值 −8 C .有最小值 2D .有最大值 23. 下列函数中,在区间 (0,1) 上是增函数的是 ( ) A . y =−x 2+1 B . y =√xC . y =1xD . y =3−x4. 下列函数是偶函数的为 ( ) A . y =2x B . y =log 12xC . y =x −1D . y =x 25. 已知函数 f (x )=4x 2−kx −8 在 (−∞,5] 上具有单调性,则实数 k 的取值范围是 ( ) A . (−24,40)B . [−24,40]C . (−∞,−24]D . [40,+∞)6. 下列给出的函数是分段函数的是 ( ) A . f (x )={±x,x >0,x +1,x ≤0.B . f (x )={x 2+1,x ∈R,x,x ≥4.C . f (x )=|x +1|D . f (x )={x −1,0<x ≤5,4x,x ≤2.7. 下列函数中,定义域是 R 且为增函数的是 ( ) A . y =e −xB . y =x 3C . y =lnxD . y =∣x ∣8. “f (0)=0”是“y =f (x ) 是奇函数”的 ( ) A .充分非必要条件 B .必要非充分条件; C .非充分非必要条件D .充要条件;9. 设函数 f (x )={3−x,x <02g (x ),x >0,若 f (x ) 是奇函数,则 g (1) 等于 ( )A . −4B . −2C . 2D . 410. 已知函数 y =a x−3−23(a >0,且 a ≠1)的图象恒过点 P .若点 P 在幂函数 f (x ) 的图象上,则幂函数 f (x ) 的图象大致是 ( )A .B .C .D .二、填空题(共6题)11. 偶函数 f (x ) 的定义域为 [t −4,t ],则 t = .12. 2019 年 7 月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳 14 的质量 N 随时间 t (单位:年)的衰变规律满足 N =N 0⋅2−r 5730(N 0 表示碳 14 原有的质量),则经过 5730年后,碳 14 的质量变为原来的 ;经过测定,良渚古城遗址文物样本中碳 14 的质量是原来的 37 至 12,据此推测良渚古城存在的时期距今约在 5730 年到 年之间.(参考数据:lg2≈0.3,lg7≈0.84,lg3≈0.48)13. 函数 f (x )=√x−2x−3的定义域为 .14. 函数 y =f (x ) 在 R 上为增函数,且 f (2m )>f (−m +9),则实数 m 的取值范围是 .15. 如图,图中曲线是幂函数 y =x α 在第一象限的大致图象,已知 α 取 −2,−12,12,2 四个值,则相应于曲线 C 1,C 2,C 3,C 4 的 α 依次为 .16. 已知函数 f (x )={2x ,x <1log 2x,x ≥1,则 f (8)= ;若直线 y =m 与函数 f (x ) 的图象只有 1个交点,则实数 m 的取值范围是 .三、解答题(共6题)17. 北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000 万元从政府购得一块廉价土地,该土地可以建造每层 1000 平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高 0.02 万元,已知建筑第 5 层楼房时,每平方米建筑费用为 0.8 万元.(1) 若学生宿舍建筑为 x 层楼时,该楼房综合费用为 y 万元(综合费用是建筑费用与购地费用之和),写出 y =f (x ) 的表达式.(2) 为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?18. 已知函数 f (x )=3x 2−5x +2,求 f(−√2),f (−a ),f (a +3),f (a )+f (3) 的值.19. 如图(1)(2)所示的分别是函数 y 1=f (x ) 和 y 2=g (x ) 的图象,试分别写出函数 y 1=f (x )和 y 2=g (x ) 的单调递增区间.20. 如何理解区间的概念?21. 判断函数 f (x )={x 2+2x,x <01,x =0−x 2+2x,x >0 的奇偶性.22. 求下列函数的定义域:(1) f (x )=√3x −1+√1−2x +4; (2) f (x )=0√∣x∣−x.答案一、选择题(共10题) 1. 【答案】B【知识点】幂函数及其性质2. 【答案】C【解析】设 g (x )=ax +bx ,则 g (x ) 为奇函数,且在 (0,+∞) 上的最大值为 3, 所以 g (x ) 在 (−∞,0) 上的最小值为 −3, 故 f (x ) 在 (−∞,0) 上有最小值 2. 【知识点】函数的最大(小)值3. 【答案】B【知识点】函数的单调性4. 【答案】D【解析】A 项,y =2x 定义域为 R ,为非奇非偶函数; B 项,y =log 12x 定义域为 (0,+∞) 为非奇非偶函数;C 项,y =x −1 定义域为 {x∣ x ≠0},反比例函数 y =1x为奇函数;D 项,y =x 2=(−x )2,定义域为 R 为偶函数. 【知识点】函数的奇偶性5. 【答案】D【解析】因为函数 f (x )=4x 2−kx −8 的对称轴方程为 x =k8,且函数 f (x )=4x 2−kx −8 在 (−∞,5] 上具有单调性,所以根据二次函数的性质可知 k8≥5,解得 k ≥40.故 k 的取值范围为 [40,+∞). 【知识点】函数的单调性6. 【答案】C【解析】对于A ,取 x =1,得 f (1)=1 或 −1,不是分段函数; 对于B ,取 x =4,得 f (4)=17 或 4,不是分段函数; 对于C ,f (x )=|x +1|={x +1,x ≥−1,−x −1,x ≤−1是分段函数;对于D ,取 x =2,得 f (2)=1 或 8,不是分段函数,故选C . 【知识点】分段函数7. 【答案】B【解析】对于A ,y =e −x =(1e )x,是 R 上的减函数,不合题意; 对于B ,y =x 3 是定义域是 R 且为增函数,符合题意; 对于C ,y =lnx ,定义域是 (0,+∞),不合题意;对于D ,y =∣x ∣,定义域是 R ,但在 R 上不是单调函数,不合题,故选B . 【知识点】函数的单调性、函数的定义域的概念与求法8. 【答案】C【知识点】充分条件与必要条件、函数的奇偶性9. 【答案】B【解析】因为 f (x ) 是奇函数,且 f (x )={3−x,x <02g (x ),x >0,因为 f (1)=−f (−1)=−[3−(−1)]=−4, 所以 g (1)=12f (1)=−2.故选B . 【知识点】函数的奇偶性10. 【答案】A【解析】令 x −3=0,即 x =3, 所以 y =a 0−23=13, 所以 P (3,13). 设 f (x )=x α,因为点 P (3,13) 在幂函数 f (x ) 的图象上, 所以 f (3)=3α=13,解得 α=−1, 所以 f (x )=x −1,故幂函数 f (x ) 的图象大致同选项A . 【知识点】幂函数及其性质二、填空题(共6题) 11. 【答案】2【解析】由于偶函数 f (x ) 的定义域为 [t −4,t ],关于原点对称,故有 t +t −4=0, 所以 t =2.【知识点】函数的奇偶性12. 【答案】 12 ; 6876【知识点】函数模型的综合应用13. 【答案】 [2,3)∪(3,+∞)【知识点】函数的定义域的概念与求法14. 【答案】 (3,+∞)【解析】因为函数 y =f (x ) 在 R 上为增函数,且 f (2m )>f (−m +9), 所以 2m >−m +9,解得 m >3. 【知识点】函数的单调性15. 【答案】 2,12,−12,−2【解析】令 x =2,则 22>212>2−12>2−2,故相应于曲线 C 1,C 2,C 3,C 4 的 α 依次为 2,12,−12,−2.【知识点】幂函数及其性质16. 【答案】 3 ; {0}∪[2,+∞)【解析】 f (8)=log 28=3,作出函数 f (x ) 的图象,如图所示.若直线 y =m 与函数 f (x ) 的图象只有 1 个交点,则 m ≥2 或 m =0.【知识点】分段函数三、解答题(共6题) 17. 【答案】(1) 由题意知建筑第 1 层楼房时,每平方米建筑费用为 0.72 万元, 建筑第 1 层楼房的建筑费用为 0.72×1000=720(万元), 楼房每开高一层,整层建筑费用提高 0.02×1000=20(万元),则建筑第 x 层楼房的建筑费用为 720+(x −1)×20=(20x +700) 万元, 建筑 x 层楼房时,该楼房综合费用为 y =f (x )=(720+20x+700)x2+1000=10x 2+710x +1000,综上可知,y =f (x )=10x 2+710x +1000(x ≥1,x ∈Z ).(2) 设该楼房每平方米的平均综合费用为 g (x ), 则 g (x )=f (x )1000x =x 100+1x+71100≥2√x 100×1x+71100=0.91,当且仅当x 100=1x,即 x =10 时等号成立,综上可知,应把楼房建成 10 层,此时每平方米的平均综合费用最低为 0.91 万元.【知识点】建立函数表达式模型、均值不等式的实际应用问题18. 【答案】 f(−√2)=8+5√2; f (−a )=3a 2+5a +2;f (a +3)=3a 2+13a +14; f (a )+f (3)=3a 2−5a +16. 【知识点】函数的表示方法19. 【答案】由题图(1)可知,在 (1,4] 和 (4,6] 内,y 1=f (x ) 是单调递增的,所以 y 1=f (x ) 的单调递增区间是 (1,4] 和 (4,6].由题图(2)可知,在 (−1,0) 和 (1,2) 内,y 2=g (x ) 是单调递增的, 所以 y 2=g (x ) 的单调递增区间是 (−1,0) 和 (1,2).【知识点】函数的单调性20. 【答案】区间是表示数集的一种形式,因此对于集合的运算仍然成立;区间表示连续的数集,左端点必须小于右端点,开或闭不能混淆;∞ 是一个符号,而不是一个数,以“−∞”或“+∞”作为区间的一端时,这端必须用小括号.【知识点】函数的相关概念21. 【答案】当 x <0 时,−x >0,则 f (−x )=−(−x )2−2x =−(x 2+2x )=−f (x ).当 x >0 时,−x <0,则 f (−x )=(−x )2−2x =x 2−2x =−(−x 2+2x )=−f (x ). 而当 x =0 时,f (0)=1≠−f (0). 所以 f (x ) 既不是奇函数也不是偶函数.【知识点】函数的奇偶性22. 【答案】(1) 要使函数式有意义,必须满足 {3x −1≥0,1−2x ≥0, 即 {x ≥13,x ≤12.所以 13≤x ≤12,即函数的定义域为 {x∣ 13≤x ≤12}.(2) 要使函数式有意义,必须满足 {x +3≠0,∣x ∣−x >0,即 {x ≠−3,∣x ∣>x, 解得 {x ≠−3,x <0.所以函数的定义域为 {x∣ x <0且x ≠−3}.【知识点】函数的定义域的概念与求法。

函数的应用高一数学

函数的应用高一数学

函数的应用高一数学函数的应用高一数学函数的应用高一数学1函数的应用 (1)教学目标:了解指数函数,对数函数等函数模型的应用12.某种商品定价为每件60元,不加收附加税时,每年销售80万件,若政府征收附加税,每销售100元要征税p元,(即税率为p%),因此每年销售将削减万件。

(1)将政府每年对该商品征收的总税金(万元)表成p的函数,并求出定义域(2)要使政府在此项经营中每年征收税金不少于128万元,税率p%应怎样确定(3)在所收税金不少于128万元前提下,要让厂家获得最大销售金额,如何确定p值16.某客运公司购买了每辆价值为20万元的大客车投入运营,依据调查材料得知,每辆大客车每年客运收入约为10万元,且每辆客车第n年的油料费、修理费及其它各种管理费用总和与年数n成正比,又知第三年每辆客车以上费用是每年客运收入的48%(1)写出每辆客车运营的总利润(客运收入扣除总费用及成本)(万元)与n(n∈N)的函数关系式;(2)每辆客车运营多少年可使运营的年平均利润最大?并求出最大值。

17.某轮船在航行使用的燃料费用和轮船的航行速度的立方成正比,经测试,当船速为10公里/小时,燃料费用是每小时20元,其余费用(不论速度如何)都是每小时320元,试问该船以每小时多少公里的速度航行时,航行每公里耗去的总费用最少,大约是多少?18.某工厂建一座平面图为矩形且面积为200平方米的三级污水处理池(如图)。

假如池外围圈周壁建筑单价为每米400元,中间两条隔墙建筑单价为每米248元,池底建筑单价为每平方米80元,池壁厚度不计。

(1)试设计水池的长宽,使总造价最低,并求最低造价;(2)若受地形限制,水池长宽都不得超过16米,求最低造价。

课堂练习:略小结:了解指数函数,对数函数等函数模型的应用函数的应用高一数学2一、内容及其解析(一)内容:指数函数的性质的应用。

(二)解析:通过进一步巩固指数函数的图象和性质,把握由指数函数和其他简洁函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数模型及其应用测试题
一、选择题
1.某工厂的产值月平均增长率为P,则年平均增长率是()
A.11
+-D.12
(1)1
P
P
+-
(1)P
+B.12
(1)P
+C.11
(1)1
答案:D
2.某人2000年7月1日存入一年期款a元(年利率为r,且到期自动转存),则到2007年7月1日本利全部取出可得()
A.7
a r
+元
(1)
(1)
a r
+元B.6
C.7
(1)(1)(1)
+++++++
…元
a a r a r a r
(1)
a a r
++元D.26
答案:A
3.如图1所示,阴影部分的面积S是h的函数(0)
≤≤,则该函数的图象可
h H
能是()
答案:C
4.甲、乙两个经营小商品的商店,为了促销某一商品(两店的零售价相同),分别采取了以下措施:甲店把价格中的零头去掉,乙店打八折,结果一天时间两店都卖出了100件,且两店的销售额相同,那么这种商品的价格不可能是()A.4.1元B.2.5元C.3.75元D.1.25元
答案:A
5.某厂工人收入由工资性收入和其他收入两部分构成.2003年该工厂工人收入3150元(其中工资性收入1800元,其他收入1350元).预计该地区自2004年开始的5年内,工人的工资性收入将以每年6%的年增长率.其他收入每年增加160元.据此分析,2008年该厂工人人均收入将介于()
A.42004400

元B.44004600
C.46004800
元D.48005000

答案:B
二、填空题
6.兴修水利开渠,其横断面为等腰梯形,如图2,腰与水平线夹角为60 ,要求浸水周长(即断面与水接触的边界长)为定值l,同渠深h=,可使水渠量最大.
答案:36
l 7.一种放射性元素,最初的质量为500g ,按每年10%的速度衰减,则它的质量衰减到一半所需要的年数为 (精确到0.1,lg 20.3010=,lg30.4771=).
答案:6.6年
8.一个水池每小时注入水量是全池的110
,水池还没有注水部分与总量的比y 随时间x (小量)变化的关系式为 . 答案:110
x y =-,010x ≤≤,且x ∈N 9.有一个比赛,规则是:将一个篮球斜抛到一个半径为1米的圆形区域内就算赢.已知抛球点到圆心的距离为4米,设球的高度y (米)和球到抛球点(坐标原点)的水平距离x (米)的函数关系式为2y x ax =-,如果不计入的高度和空气阻力,则赢得比赛时a 的取值范围是 . 答案:1153⎛⎫ ⎪⎝⎭
, 10.某工厂8年来某产品的总产量y 与时间t (年)的函数关系如图3所示,则
①前3年总产量增长速度越来越快;
②前3年总产量增长速度越来越慢;
③第3年后,这种产品停止生产;
④第3年后,这种产品年产量持续增长.
上述说法中正确的是 .
答案:①③
三、解答题
11.某自来水厂的蓄水池中有400吨水,每天零点开始向居民供水,同时以每小时60吨的速度向池中注水.已知t 小时内向居民供水总量为1206t 吨(024)t ≤≤,问
(1)每天几点时蓄水池中的存水量最少?
(2)若池中存水量不多于80吨时,就会出现供水紧张现象,则每天会有几个小时出现这种现象?
解:(1)设t点时(即从零点起t小时后)池中的存水量为y吨,则
2
40060120660(6)40
y t t t
=+-=-+,
∴当6
t=时,即6
t=时,y取得最小值40.
即每天6点时蓄水池中的存水量最少.
(2)由2
60(6)4080
t-+≤,
解得2646 33
t
≤≤,
即832 33
t
≤≤,
832
33
t ⎡⎤
∴∈⎢⎥
⎣⎦
,时,池中存水量将不多于80吨,
由328
8
33
-=知,每天将有8个小时出现供水紧张现象.
12.某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题:
(1)写出该城市人口总数y(万人)与经过年数x(年)的函数关系式.
(2)计算大约多少年后该城市人口将达到120万人(精确到1年).
解:(1)1年后该城市人口总数为
100100 1.2
y=+⨯%100(1 1.2)
=⨯+%;
2年后该城市人口总数为100(1 1.2)100(1 1.2) 1.2
y=⨯++⨯+⨯
%%%
2
100(1 1.2)
=⨯+%;
3年后该城市人口总数为22
100(1 1.2)100(1 1.2) 1.2
y=⨯++⨯+⨯
%%%
2
100(1 1.2)(1 1.2)
=⨯+⨯+
%%
3
100(1 1.2)
=⨯+%;
……
x年后该城市人口总数为
100(1 1.2)x
y x
=⨯+∈N
%,.
(2)设x 年后该城市人口将达到120万人,
即100(1 1.2)120x ⨯+=%.
1.012log 1.215.3x =≈(年)
, 即16年后该城市人口将达到120万人.
13.某工厂现有甲种原料360kg ,乙种原料290kg ,计划利用这两种原料生产A B ,两种产品共50件.已知生产一件A 产品,需要甲种原料共9kg ,乙种原料3kg ,可获利润700元;生产一件B 种产品,需用甲种原料4kg ,乙种原料10kg ,可获利润1200元.
(1)按要求安排A B ,两种产品的生产件数,有几种方案?请你设计出来.
(2)设生产A B ,两种产品获总利润y (元),其中一种的生产件数为x ,试写出y 与x 之间的函数关系式,并利用函数性质说明(1)中哪种方案获利最大?最大利润是多少?
解:(1)设安排生产A 种产品x 件,则生产B 件产品为(50)x -件,依题意,得 94(50)360310(50)290x x x x +-⎧⎨+-⎩≤,≤,
解得3032x ≤≤.
x 是整数,x ∴只能取30,31,32.
∴生产方案有3种,分别为A 种30件,B 种20件;A 种31件,B 种19件;A 种32件,B 种18件.
(2)设生产A 种产品x 件,则
7001200(50)y x x =+-
50060000x =-+.
y 随x 的增大而减小.
∴当30x =时,y 值最大,
5003060000y =-⨯+最大45000=.
∴安排生产A 种产品30件,B 种产品20件时,获利最大,最大利润是45000元.。

相关文档
最新文档