微积分学
零基础微积分入门基本教程
![零基础微积分入门基本教程](https://img.taocdn.com/s3/m/03925461ff4733687e21af45b307e87101f6f8ed.png)
零基础微积分入门基本教程1 前言微积分是数学中的一门重要学科,可以用来研究变化率和极值等问题。
在高等数学中,微积分是必修课程。
然而,对于零基础的学生来说,学习微积分可能会显得困难和枯燥。
因此,本文将提供一个基础的入门教程,以帮助零基础的学生理解微积分的概念和应用。
2 微积分的定义微积分主要分为微分和积分两个部分。
微分可以用来研究函数的变化率,积分可以用来计算曲线下面的面积。
具体来说,微积分可以用以下公式表示:微分:dy/dx=f’(x)积分:∫f(x)dx其中,f’(x)表示函数f(x)在x点的导数,∫f(x)dx表示f(x)在积分区间上的面积或整体。
3 基础概念微积分中有许多基础概念,其中包括:导数:导数表示函数在某一点处的变化率,是微积分中的重要概念之一。
极值:极值是函数的最大值或最小值,可以通过导数的概念来计算。
积分:积分可以用来计算函数在一定区间上的面积,也可以用来计算反常积分和定积分等。
4 应用微积分在实际中有许多应用,其中包括:物理:微积分在物理学中是必不可少的,可以用来研究物体在空间中的运动轨迹。
工程:微积分在工程学中也可以发挥重要的作用,可以用来研究建筑物的结构和稳定性等问题。
经济学:微积分在经济学中也有许多应用,可以用来研究经济数据的变化规律和趋势。
5 结论微积分是一门重要的数学学科,可以用来研究变化率和极值等问题。
然而,对于零基础的学生来说,学习微积分可能会显得困难和枯燥。
因此,建议学生在学习微积分之前,要先掌握一些基础概念和方法,逐步提高自己的学习能力。
同时,学生应该注重理论的学习和实践的应用,通过多方面的学习和实践,来提高自己的微积分水平。
极限,导数,微分,积分
![极限,导数,微分,积分](https://img.taocdn.com/s3/m/625a4c801b37f111f18583d049649b6648d7093e.png)
极限,导数,微分,积分
极限、导数、微分和积分是微积分学中的重要概念和工具。
它们在数学和物
理学等多个领域中起着至关重要的作用。
本文将介绍这些概念的含义和应用,并
探讨它们之间的关系。
正文
一、极限
极限是微积分学中的基本概念,用于描述函数在某一点的趋势。
当自变量逐渐接近某一特定值时,函数的取值是否趋近于某个确定的常数。
极限可以用于计算函数的连续性、收敛性以及一些数列和级数的求和等问题。
二、导数
导数是描述函数变化率的概念。
它表示函数在某一点的切线斜率。
导数可以用于求解函数的最值、判断函数的增减性以及描述物理学中的速度、加速度等概念。
三、微分
微分是导数的一种表示方式,也是微积分的重要组成部分。
微分可以理解为函数在某一点附近的局部线性近似。
通过微分可以求解函数的极值点、最大值和最小值等问题。
四、积分
积分是导数的逆运算,用于求解函数曲线下的面积。
积分可以用
于计算函数的定积分和不定积分,求解曲线的长度、质量、重心等问题。
极限、导数、微分和积分之间有着密切的联系。
导数可以通过极限来定义,微分可以通过导数来计算,积分则是微分的逆运算。
这些概念共同构成了微积分学的基础理论,为解决实际问题提供了强大的工具。
总结:
极限、导数、微分和积分是微积分学中的重要概念和工具。
它们通过描述函数的趋势、变化率以及曲线下的面积等,为数学和物理学等领域提供了强大的计算工具。
这些概念之间存在着紧密的联系,相互补充、相互推导,共同构成了微积分学的核心内容。
微积分学的发展史
![微积分学的发展史](https://img.taocdn.com/s3/m/d4a88f5424c52cc58bd63186bceb19e8b9f6ec43.png)
微积分学的发展史微积分学是数学的一个重要分支,它研究变量在某一变化过程中的变化规律,广泛应用于物理学、工程学、经济学等领域。
本文将回顾微积分学的发展历程,从其历史起源到现代应用,以便更好地理解这一重要学科。
微积分学起源于17世纪,当时科学家们开始研究物体的运动规律,例如物体的速度、加速度等。
这些研究需要数学工具来分析变化过程,于是微积分学应运而生。
微积分的最初发展由牛顿和莱布尼兹两大巨头分别独立给出,他们从不同的角度解决了微积分的基本问题。
牛顿是一位著名的物理学家,他在研究力学的过程中创立了微积分学。
他将物体的运动规律表示为数学方程,然后通过求解这些方程来获得物体的运动轨迹和性质。
这种做法为微积分学提供了重要的物理背景和实践应用,推动了微积分学的发展。
莱布尼兹是一位杰出的数学家,他在研究代数和几何的过程中独立发展出了微积分学。
他将数学中的无限小量、极限等概念引入微积分学,为微积分学提供了更为严格和系统的数学基础。
莱布尼兹的贡献为微积分学在数学领域的发展和应用打下了坚实的基础。
笛卡尔是一位杰出的哲学家和数学家,他在研究几何学的过程中提出了笛卡尔引理,为微积分学提供了重要的哲学基础。
该引理表明,几何图形可以由其元素之间的关系来确定,这种思想为微积分学中极限、导数等概念的形成提供了重要的启示。
欧拉是一位杰出的数学家和物理学家,他在研究力学和流体力学的过程中提出了欧拉公式,为微积分学在物理学领域的应用提供了重要的工具。
该公式可以用以描述物体在受力作用下的运动规律,为微积分学在物理学中的应用提供了重要的实例。
现代微积分学已经发展成为一门极其重要的学科,它在物理学、工程学、经济学等领域都有广泛的应用。
例如,在物理学中,微积分可以描述物体的运动规律、电磁场、引力场等;在工程学中,微积分可以用于优化设计、控制工程、计算机图形学等;在经济学中,微积分可以用于预测市场趋势、金融风险管理、人口模型等。
随着科学技术的发展,微积分学的应用前景将更加广阔。
大学微积分课件(PPT幻灯片版)pptx
![大学微积分课件(PPT幻灯片版)pptx](https://img.taocdn.com/s3/m/4de83fa1162ded630b1c59eef8c75fbfc77d942b.png)
高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
大学微积分的知识点汇总
![大学微积分的知识点汇总](https://img.taocdn.com/s3/m/e5fe181e814d2b160b4e767f5acfa1c7ab008249.png)
大学微积分的知识点汇总微积分是数学中的一门重要学科,也是大学数学课程中的一部分。
它主要包括微分学和积分学两个方面。
微分学研究函数的变化率和曲线的切线问题,而积分学研究函数与曲线的面积、体积以及累积等问题。
本文将从微分学和积分学两个方面对大学微积分的知识点进行汇总。
一、微分学1.函数的极限函数的极限是微积分的基本概念之一。
它描述了函数在某一点或正无穷、负无穷处的变化趋势。
例如,当自变量趋近于某一值时,函数的取值是否趋近于一个确定的值。
2.导数导数是函数在某一点的变化率。
它表示了函数在该点的切线的斜率。
导数可以用来解释函数的变化趋势,并且可以通过导数的性质求得函数的极值点和拐点等重要信息。
3.微分微分是导数的另一种形式。
它可以用来表示函数在某一点附近的变化情况。
微分可以用来近似计算函数的值,例如在物理学中的位移和速度之间的关系。
4.高阶导数高阶导数是导数的再次求导。
它描述了函数变化率的变化率。
高阶导数可以用来研究函数的凹凸性和函数曲线上的拐点。
二、积分学1.定积分定积分是对函数在一定区间上的面积进行求解。
它可以用来解决曲线下面积、体积、平均值等问题。
定积分可以通过定义求解,也可以通过积分的性质和定理进行计算。
2.不定积分不定积分是定积分的逆运算。
它可以用来求解函数的原函数。
不定积分可以通过积分表、基本积分公式和换元积分法等方法进行计算。
3.反常积分反常积分是对无界区间上的函数进行积分。
由于函数在无穷远处可能趋于无穷或趋于零,因此需要对反常积分进行特殊处理。
常见的反常积分有瑕积分和无穷积分。
4.积分应用积分的应用非常广泛。
它可以用来计算曲线的弧长、质心和转动惯量等物理量。
在经济学中,积分可以用来计算总收益、总成本和总利润等经济指标。
以上是大学微积分的知识点汇总。
微分学和积分学是微积分的两个重要方面,它们在数学和其他学科中有着广泛的应用。
掌握微积分的知识将有助于解决实际问题和深入理解数学的本质。
希望本文对你在学习微积分过程中有所帮助。
数学分析高等数学微积分基本定理及公式
![数学分析高等数学微积分基本定理及公式](https://img.taocdn.com/s3/m/a640d46db5daa58da0116c175f0e7cd1842518f4.png)
数学分析高等数学微积分基本定理及公式微积分的基本定理是微积分学中最基础、最重要的定理之一,可以说是微积分的核心。
该定理由牛顿、莱布尼茨以及斯托克斯等人独立发现,奠定了微积分学的基础。
微积分的基本定理可以分为两个部分:微积分基本定理第一部分,也称为牛顿—莱布尼茨公式,描述了积分和导数之间的关系;微积分基本定理第二部分,也称为斯托克斯公式,描述了曲线积分和曲面积分之间的关系。
下面将对这两个部分进行详细介绍。
微积分基本定理第一部分,牛顿—莱布尼茨公式,可以简洁地表示为:∫[a,b] f(x)dx = F(b) - F(a)其中,f(x)为连续函数,F(x)为其原函数,[a,b]代表积分区间。
该公式说明了连续函数的不定积分可以通过求原函数在积分区间端点处取值之差来计算。
这个公式也可以用来计算定积分,即通过求被积函数的原函数在积分区间端点处的值之差来计算定积分的值。
微积分基本定理第二部分,斯托克斯公式,可以简洁地表示为:∫∫(S) ∇ × F · ds = ∫(C) F · dr其中,∇ × F为矢量场F的旋度,S为曲面,C为曲线,ds为曲面元素,dr为曲线元素。
该公式说明了矢量场的曲面积分可以通过计算该矢量场的旋度沿曲线的环路积分来求得。
这个公式还可以推广到高维空间中的曲面和曲线。
值得注意的是,微积分基本定理的条件之一是函数的连续性。
如果函数在积分区间内存在间断点,那么微积分基本定理并不成立,必须通过其他方法来计算积分值。
总之,微积分基本定理是微积分学中的核心定理,它将微分学和积分学相统一,为计算和应用微积分提供了有力的工具。
通过这个定理,我们可以方便地计算积分,并且利用其在各种实际问题中解决数学和物理问题。
3.5_微积分学基本原理
![3.5_微积分学基本原理](https://img.taocdn.com/s3/m/fedafee201f69e3142329475.png)
1.
例
1
1 1
1 x2
d
x
arctan x
1 1
arctan1 arctan(1)
.
2
例
4 cos 2x d
0
x
1 sin 2
2x
4 0
1 (sin 2
2
4
sin 0)
1. 2
问题的关键是如何求一个 函数的原函数.
14
例
设f
(
x)
2x, 5,
0 x 1, 求 2 f ( x)dx. 1 x 2, 0
dx 0
dx 0
e x2 2x e x3 3 x 2
9
1 et2dt
例
lim
x0
cos x
x2
分析 这是 0 型不定式, 应用L’Hospital法则 0
解 d 1 et2dt d cos x et2dt
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x
11
x
C F(a),
a f (t)dt F ( x) C
bx f (t )dt F ( xb) F (a) x [a,b] a
特别, 令x b,
b
f ( x)dx F(b) F(a)
a
牛顿(Newton)—莱布尼茨(Leibniz)公式
又称为微积分基本公式,即
b f ( x)dx F ( x) b F(b) F(a)
lim
x0
1 cos x
e t 2 dt
lim
sin
x
e cos2
x
1
x2
x0
2x
微积分的基本公式-2023年学习资料
![微积分的基本公式-2023年学习资料](https://img.taocdn.com/s3/m/3815bfe7a0c7aa00b52acfc789eb172ded6399c2.png)
不定积分、定积分-牛顿一莱布尼茨公式-Fx=fxdx-微积分基本公式-[fxdx=Fx=Fb-Fa.-fx Cf["dx=Fb-Fa=f5b-a-积分中值定理-拉格朗日中值定理-函数的可微性
2.微积分基本公式-如果f∈C[a,b],则ftdt为fx在[a,b]上-的一个原函数-若已知Fx为fx的 函数,则有-∫fdt=Fx+Co.-令x=a,则0=∫fdt=Fa+C,故C。=-Fa-取x=b,则得到fodufodx=ro-ra
定理-牛顿一莱布尼茨公式-若fx∈C[a,b],Fx为fx在[a,b]上的-一个原函数,则-["fxdx= x"=Fb-Fa.-将定积分的计算与求原数的计算联系起来了
定积分的计算-问题转化为已-知函数的导函-数,求原来函数-的问题.
例5-sin x'=cosx,-π-[2cosxdx=sinx2=-sin 0=1.-问题的关键是如何求一 -函数的原函数,
例6-cnantn-unslan--兀-2-●-sinO=
例7-计算∫1+cos2xdx.-去绝对-值符号如果-是分段函数-解-o+cos2xdx=f2cosdx利用积分-的性质将积-分分成几个-怎么办?方201cos1dx-部分的和的-形式--cd+cd.x-=v2 inx-2sinx=2v2.
定理2-若fx∈C[a,b,则Fx=」ftdt在[a,b]-上可导,且F'=d∫fd1=fwa≤x≤.-由 =「fdt及F'x=fx你会想到什么?
定理-若fx∈C[a,b],则Fx=ftdt,x∈[a,b]-为fx在[a,b]上的一个原函数,-推论1fx∈CI,则fx在I上原函数存在-推论2-基本初等函数在其定义域内原函数存在-推论3-初等函数在其有定义 区间内原函数存在
微积分的思想
![微积分的思想](https://img.taocdn.com/s3/m/fb0faa441fb91a37f111f18583d049649b660e24.png)
1、微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
2、微积分是为了解决变量的瞬时变化率而存在的。
从数学的角度讲,是研究变量在函数中的作用。
从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题。
“变”这个字是微积分最大的奥义,要从哲学的角度来理解数学,而不是单纯的会计算。
所有的数理能力最后都要上升为自身的哲学,这样才能作到天人合一。
3、微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。
此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。
并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。
微积分学基本定理
![微积分学基本定理](https://img.taocdn.com/s3/m/74d6d44b783e0912a3162a2b.png)
(4)性质 : 1) Cf ( x )dx C f ( x )dx 2) f ( x ) g ( x )dx
a b
b
a
f ( x )dx g ( x )dx
a b c
b
3) f ( x )dx
a
b
c
a
f ( x )dx f ( x )dx
x ln x x (7 ) log a xdx ln a (9) cos xdx sin x C
计算不定积分: (1) ( x 3)( x 2)dx; ( x 1)( x 2) ( 2) dx; x cos 2 x ( 3) dx cos x sin x
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
b a
计算定积分的方法: f ( x )dx
aபைடு நூலகம்
b
(1)定义法 ( 2)面积法(曲边梯形面积 ) ( 3)公式法( 微积分基本定理 )F ( x ) f ( x )
/
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
微积分学基本定理
一、问题的提出
变速直线运动中位置函数与速度函数的联系
设某物体作直线运动,已知速度v v ( t ) 是时 t 的一个连续函数,且v ( t ) 0 , 间间隔[T1 , T2 ]上 求物体在这段时间内所经过的路程.
变速直线运动中路程为
T
T2
1
v ( t )dt
另一方面这段路程可表示为 s(T2 ) s(T1 )
通俗讲解微积分
![通俗讲解微积分](https://img.taocdn.com/s3/m/73e5ae99250c844769eae009581b6bd97f19bc9a.png)
通俗讲解微积分
微积分,简单来说,是研究数量变化规律的一个数学分支。
它主要关注的是函数的变化情况,以及如何对变化量进行分析和处理。
比如,驾车时的速度变化、飞行中的高度变化,还有物理、化学、生物、经济等自然界中连续变化的现象,都是微积分关心的内容。
微积分有两个主要分支:微分学和积分学。
微分学研究如何计算函数的导数,也就是函数在某一点处的斜率,用来描述函数在该点处的变化率。
而积分学则研究如何计算函数的积分,即函数的面积,用来表示函数在某一区间内的总和。
微积分建立在实数、函数和极限的基础上,它最重要的思想是用“微元”和“无限逼近”来处理问题。
如果一个事物始终在变化,很难直接研究,但我们可以把它分割成一小块一小块,每一小块就可以看作是常量来处理,最后再把这些小块加起来。
这就是微积分的“无限细分”和“无限求和”的思想。
微积分是数学的一个重要分支,也是许多科学技术领域的基础理论之一。
它使得函数、速度、加速度、曲线的斜率、面积、体积等都可以用一套通用的符号和理论来讨论和计算。
所以,微积分不仅是数学家的工具,也是工程师、物理学家、经济学家等各个领域专业人士的重要武器。
微积分数学概念
![微积分数学概念](https://img.taocdn.com/s3/m/c077fe8d64ce0508763231126edb6f1aff007119.png)
微积分数学概念微积分数学概念1. 什么是微积分?•微积分是数学的一个分支,研究变化率与积分的学科,主要包括微分学和积分学两个部分。
2. 微分学导数•导数是描述函数变化率的概念,可以理解为函数在某一点上的瞬时变化率。
•导数的公式:f′(x)=limΔx→0f(x+Δx)−f(x)Δx导数的应用•导数常用于求函数的极值、判断函数的单调性和凸凹性等问题。
•导数还可以用于描述物理学中的速度、加速度等概念。
微分方程•微分方程是描述函数与其导数之间关系的方程,常用于描述自然界各种变化过程。
•微分方程的求解可以帮助我们了解和预测自然界的规律。
3. 积分学定积分• 定积分是反映函数与坐标轴所围成的曲边梯形的面积的概念。
• 定积分的公式:∫f ba(x )dx 不定积分• 不定积分是求函数的原函数的过程,也称为积分初等法。
• 不定积分的结果常常表示为:∫f (x )dx积分的应用• 积分常用于求解曲线下的面积、求函数的平均值以及解决物理学中的位移、质量和功等问题。
4. 微积分的基本定理• 微积分的基本定理是微积分学中的核心定理之一,将微分与积分联系起来。
• 第一基本定理:∫f b a′(x )dx =f (b )−f (a ) • 第二基本定理:d dx ∫f x a (t )dt =f (x ) 总结微积分是研究变化率与积分的数学学科,其中微分学主要关注函数的变化率和导数应用,积分学则关注函数的面积与定积分应用。
微积分的基本定理将微分与积分联系起来,成为微积分理论的核心。
微积分在自然科学、工程学和经济学等领域有广泛的应用。
5. 高级微积分概念极限•极限是微积分中的重要概念,描述一个数列或者函数在无穷接近某一值时的行为。
•极限的概念可以用于求函数的连续性、收敛性以及无穷级数的求和等问题。
曲线的切线与法线•切线是曲线上某一点的斜率为该点切线斜率的直线。
•法线是与切线垂直的直线,斜率为切线斜率的相反数。
泰勒级数•泰勒级数是一种将函数表示为无穷级数的方法,可以用于在一定范围内近似计算复杂函数的值。
微积分发展简史
![微积分发展简史](https://img.taocdn.com/s3/m/d43a89aed1f34693daef3edd.png)
微积分的产生和发展被誉为“ 3、微积分的产生和发展被誉为“近代技术文明 产生的关键事件之一,它引入了若干极其成功的、 产生的关键事件之一 , 它引入了若干极其成功的 、 对以后许多数学的发展起决定性作用的思想。 对以后许多数学的发展起决定性作用的思想 。 ” 恩 格斯称之为“17世纪自然科学的三大发明之一 世纪自然科学的三大发明之一” 格斯称之为“17世纪自然科学的三大发明之一”。 微积分的建立, 4、微积分的建立,无论是对数学还是对其他科 学以至于技术的发展都产生了巨大的影响, 学以至于技术的发展都产生了巨大的影响,充分显示 了数学对于人的认识发展、 了数学对于人的认识发展、改造世界的能力的巨大促 进作用。 进作用。
二、微积分的萌芽
(1)中国数学家的极限、积分思想 中国数学家的极限、 “割圆术”(魏晋刘徽) 割圆术” 魏晋刘徽 割圆术 一尺之棰,日取其半,万世不竭(战国庄周 一尺之棰,日取其半,万世不竭(战国庄周) 圆周率、球体积、球表面积的研究(祖冲之、祖暅) 圆周率、球体积、球表面积的研究(祖冲之、祖暅)
三、微积分的发展
1、到了十六世纪,有许多科学问题需要解决, 、到了十六世纪,有许多科学问题需要解决, 由于航海、机械制造、军事上的需要, 由于航海、机械制造、军事上的需要,运动的研 究成了自然科学的中心议题, 究成了自然科学的中心议题,于是在数学中开始 研究各种变化过程中的量(变量) 研究各种变化过程中的量(变量)之间的依赖关 变量的引进,形成了数学中的转折点。 系,变量的引进,形成了数学中的转折点。 2、十七世纪的许多著名的数学家、天文学家、 十七世纪的许多著名的数学家、天文学家、 物理学家都为解决问题作了大量的研究工作, 物理学家都为解决问题作了大量的研究工作,如法 国的费尔玛 笛卡儿、罗伯瓦、笛沙格;英国的巴 费尔玛、 国的费尔玛、笛卡儿、罗伯瓦、笛沙格;英国的巴 瓦里士;德国的开普勒;意大利的卡瓦列利 卡瓦列利等 罗、瓦里士;德国的开普勒;意大利的卡瓦列利等 人都提出许多很有建树的理论。 人都提出许多很有建树的理论。为微积分的创立做 出了贡献。 出了贡献。
高等数学(微积分学)教学课件
![高等数学(微积分学)教学课件](https://img.taocdn.com/s3/m/5601cbe04afe04a1b071de5f.png)
三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D
微积分学基本公式
![微积分学基本公式](https://img.taocdn.com/s3/m/ea6e3d44ad02de80d4d8403c.png)
四、1、0; .
1 2、 . 10
b
5.定积分中值定理
如果函数 f ( x ) 在闭区间[a , b] 上连续,
则在积分区间[a , b] 上至少存在一个点
使 a f ( x )dx f ( )(b a ) .
b
,
(a b)
积分中值公式
y
f ( )
y=fห้องสมุดไป่ตู้x)
o
a
b
x
三、原函数存在定理
若函数 f (x) 在 [a, b] 上连续,则变 上限定积分
( x )
x
a
f (t )dt
在区间 [a, b] 上可导,且有
d x ( x) f (t )dt f ( x) dx a a x b
变限积分求导: 问:
d ( x) f (t ) d t ? dx a
d ( x) f (t ) d t ? d x ( x)
1 dx. 2 x
例6
解
求
1
2
1 dx. 2 x
1
1
2
1 1 1 dx ( ) 2 x x 2 2
例7 计算
2 0
1 cos x dx
2
例7 计算
2 0
1 cos x dx
2 2
解:原式 0 sin x dx
sin x dx ( sin x) dx
一. 定积分的定义
设函数 f ( x ) 在[a , b]上有定义,
1. 分割
a x 0 x1 x 2 x n 1 x n b
微积分基础教程
![微积分基础教程](https://img.taocdn.com/s3/m/0cf429c248649b6648d7c1c708a1284ac85005d5.png)
微积分教程【1】微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分的基本介绍微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。
我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。
他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。
因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。
所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。
在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。
就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。
这个概念是成功的。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。
微分学
微分学的基本概念是导数。导数是从速度问题和切线问题抽象出来的数学概念。牛顿从苹果下落时越落越快的现象受到启发,希望用数学工具来刻画这一事实。若用s=s(t)表示物体的运动规律,即物体运动中所走路程s与时间t的关系,那么物体在t=t0时的瞬时速度为v(t0)= ,并记v(t0)=s′(t0),并称之为路程s关于时间t的导数或变化率 ,也可记v(t0)=()|t=t0。而物体运动的加速度 a(t)=v′(t)=s″(t)=()。导数作为一个数学工具无论在理论上还是实际应用中,都起着基础而重要的作用。例如在求极大、极小值问题中的应用。 定积分概念
南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年。 特别是13世纪40年代到14世纪初,在主要领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。 中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了。
编辑本段微积分的基本内容
研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论,导数,微分,偏微分等。 积分学的主要内容包括:定积分,不定积分,黎曼积分,曲线曲面积分等。 微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。
发展
直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,後来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。 柯西中值定理
任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、柯西…… 欧氏ቤተ መጻሕፍቲ ባይዱ何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。
牛顿
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 牛顿-莱布尼茨公式
微积分学的创立争议
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。 不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。 其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。 应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。 拉格朗日中值定理
编辑本段中国古代数学中微积分的萌芽
微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系 。最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追溯到古希腊的阿基米德都作出了各自的贡献。对于这方面的工作,古代中国毫不逊色于西方,微积分思想在古代中国早有萌芽,甚至是古希腊数学不能比拟的。
微积分思想
微积分思想虽然可追溯古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究。 数书九章
编辑本段微积分学的建立
古代
从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。
十七世纪
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。
客观价值
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
极限思想
公元前7世纪老庄哲学中就有无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。刘徽公元263年首创的割圆术求圆面积和方锥体积,求得 圆周率约等于3 .1416,他的极限思想和无穷小方法,是世界古代极限思想的深刻体现。
微积分学的简介
极限思想
极限的思想方法可追溯到古代,3世纪,中国数学家刘徽创立的割圆术用圆内接正九十六边形的面积近似代替圆面积,求出圆周率π的近似值3.141024,并指出:“割之弥细,所失弥少 ,割之又割,以至不可割,则与圆合体而无所失矣”。刘徽对面积的深刻认识和他的割圆术方法,正是极限思想的具体体现 。数列极限是函数极限的基础, 一个数列an如果当n无限增大时,an与某一实数无限接近,就称之为收敛数列,a为数列的极限,记作例如,数列的极限为0。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
积分学
积分学的基本概念是一元函数的不定积分和定积分。主要内容包括积分的性质、计算,以及在理论和实际中的应用。不定积分概念是为解决求导和微分的逆运算而提出来的。如果对每一x∈I ,有f(x)=F′(x),则称F(x)为f(x)的一个原函数,f(x)的全体原函数叫做不定积分,记为,因此,如果F(x)是 f(x)的一个原函数,则=F(x)+C,其中C为任意常数。定积分概念的产生来源于计算平面上曲边形的面积和物理学中诸如求变力所作的功等物理量的问题。解决这些问题的基本思想是用有限代替无限;基本方法是在对定义域[a,b]进行划分后,构造一个特殊形式的和式,它的极限就是所要求的量。具体地说,设f(x)为定义在[a,b]上的函数,任意分划区间[a,b]:a=x0<x1<…<xn=b,记,||Δ||= ,任取 xi ∈Δxi,如果有一实数I,有下式成立 : ,则称I为f(x)在[a,b]上的定积分,记为I=f(x)dx。当f(x)≥0时,定积分的几何意义是表示由x=a,x=b,y=0和y=f(x)所围曲边形的面积。定积分除了可求平面图形的面积外,在物理方面的应用主要有解微分方程的初值问题和“微元求和”。 联系微分学和积分学的基本公式是:若f(x)在[a,b]上连续,F(x)是f(x)的原函数,则f(x)dx=F(b)-F(a)。通常称之为牛顿-莱布尼兹公式。因此,计算定积分实际上就是求原函数,也即求不定积分。但即使f(x)为初等函数,计算不定积分的问题也不能完全得到解决,所以要考虑定积分的近似计算,常用的方法有梯形法和抛物线法。 微积分学是微分学和积分学的总称。