典型环节(或系统)的频率特性测量
实验三 典型环节的频率特性测量
姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号实验三典型环节(系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据所测得频率特性,作出伯德图。
二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成比例环节、积分环节、惯性环节及二阶系统的频率特性曲线测试。
三.实验步骤1.熟悉实验设备上的信号源,掌握改变正弦波信号幅值和频率的方法。
2.利用实验设备完成比例环节、积分环节、惯性环节和二阶系统开环频率特性曲线的测试。
3.根据测得的频率特性曲线(或数据)求取各自的传递函数。
4.分析实验结果,完成实验报告。
四.实验线路及原理(一)实验原理对于稳定的线性定常系统或环节,当输入端加入一正弦信号时,它的稳态输出时一与输入信号同频率的正弦信号,但其幅值和相位将随输入信号频率的改变而改变,即:即相频特性即幅频特性,)()()(,)()()(sin )(])(sin[)()(ωωωωωφωωωωωωωj G t j G t j G Aj G A A tA t r j G t j G A t c ∠=-∠+====∠+=只要改变输入信号的频率,就可以测出输出信号与输入信号的幅值比)(ωj G 和它的相位差)(ωφ,不断改变输入信号的频率,就可测得被测环节的幅频特性和相频特性。
(二)实验线路1.比例(P)环节的模拟电路 比例环节的传递函数为:K s U s U i O =)()(,取ωj s =代入,得G(jw)=k, A(w)=k, Φ(w)=0°其模拟电路和阶跃响应,分别如图1.1.2,实验参数取R 0=100k ,R 1=200k ,R=10k 。
2.积分(I)环节的模拟电路 积分环节的传递函数为:Tss U s U i O 1)()(=其模拟电路,如图1.2.2所示,实验参数取R 0=100k ,C =1uF ,R=10k 。
自动控制原理3第三节典型环节的频率特性
左图是不同阻尼系数情况下的 对数幅频特性和对数相频特性 图。上图是不同阻尼系数情况 下的对数幅频特性实际曲线与 渐近线之间的误差曲线。
1 2T 1 T 2 T 5 T 10 T
1 5T
Saturday, November 05, 2016
15
微分环节的频率特性
⒌ 微分环节的频率特性: 微分环节有三种:纯微分、一阶微分和二阶微分。传递函 数分别为: G( s) s
05, 2016
12
振荡环节的波德图
2 T ( ) tg 相频特性: 1 T 2 2
1
几个特征点: 0, ( ) 0;
1 , ( ) ; , ( ) 。 T 2
由图可见:
K 10, T 1, 0.3 10 G ( j ) 2 s 0.6s 1 1 o T
1
幅频特性为: 相频特性为:
A( )
(1 T 2 2 )2 (2T )2 2 T ( ) tg 1 1 T 2 2
L( ) 20 log A( ) 20 log (1 T 2 2 ) 2 (2 T ) 2 对数幅频特性为:
低频段渐近线: T 1时,L( ) 0 高频段渐近线: T 1时, L( ) 20 log (T 2 2 ) 2 40 log T 1 两渐进线的交点 o 称为转折频率。斜率为-40dB/Dec。 T Saturday, November
1 2
T
时,无谐振峰值。当
M p A( p )
1 2
1 0.707时, p 0 。 2
时,有谐振峰值。
1 2 1 2
1 当 0 , A(0 ) , 。 L ( ) 20 lg 2 0 2
南京理工大学控制工程基础实验报告
《控制工程基础》实验报告姓名欧宇涵 914000720206周竹青 914000720215 学院教育实验学院指导老师蔡晨晓南京理工大学自动化学院2017年1月实验1:典型环节的模拟研究一、实验目的与要求:1、学习构建典型环节的模拟电路;2、研究阻、容参数对典型环节阶跃响应的影响;3、学习典型环节阶跃响应的测量方法,并计算其典型环节的传递函数。
二、实验内容:完成比例环节、积分环节、比例积分环节、惯性环节的电路模拟实验,并研究参数变化对其阶跃响应特性的影响。
三、实验步骤与方法(1)比例环节图1-1 比例环节模拟电路图比例环节的传递函数为:K s U s U i O =)()(,其中12R RK =,参数取R 2=200K ,R 1=100K 。
步骤: 1、连接好实验台,按上图接好线。
2、调节阶跃信号幅值(用万用表测),此处以1V 为例。
调节完成后恢复初始。
3、Ui 接阶跃信号、Uo 接IN 采集信号。
4、打开上端软件,设置采集速率为“1800uS”,取消“自动采集”选项。
5、点击上端软件“开始”按键,随后向上拨动阶跃信号开关,采集数据如下图。
图1-2 比例环节阶跃响应(2)积分环节图1-3 积分环节模拟电路图积分环节的传递函数为:ST V V I I O 1-=,其中T I =RC ,参数取R=100K ,C=0.1µf 。
步骤:同比例环节,采集数据如下图。
图1-4 积分环节阶跃响应(3)微分环节图1-5 微分环节模拟电路图200KRV IVoC2CR 1V IVo200K微分环节的传递函数为:K S T S T V V D D I O +-=1,其中 T D =R 1C 、K=12R R。
参数取:R 1=100K ,R 2=200K ,C=1µf 。
步骤:同比例环节,采集数据如下图。
图1-6 微分环节阶跃响应(4)惯性环节图1-7 惯性环节模拟电路图惯性环节的传递函数为:1+-=TS K V V I O ,其中2T R C =,21RK R =-。
典型环节和系统频率特性的测量
实验报告课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:___典型环节和系统频率特性的测量___实验类型:________________同组学生姓名:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七、实验数据分析 八、实验结果或结论一、实验目的1.了解典型环节和系统的频率特性曲线的测试方法; 2.根据实验求得的频率特性曲线求取传递函数。
二、实验原理1.系统(环节)的频率特性设G(S)为一最小相位系统(环节)的传递函数。
如在它的输入端施加一幅值为X m 、频率为ω的正弦信号,则系统的稳态输出为)sin()()sin(ϕωωϕω+=+=t j G Xm t Y y m由式①得出系统输出,输入信号的幅值比相位差)()(ωωj G Xmj G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。
2.频率特性的测试方法 2.1 李沙育图形法测试 2.1.1幅频特性的测试 由于 mmm m X Y X Y j G 22)(==ω 改变输入信号的频率,即可测出相应的幅值比,并计算mm X YA L 22log 20)(log 20)(==ωω (dB )其测试框图如下所示:图5-1 幅频特性的测试图(李沙育图形法)注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。
2.1.2相频特性的测试图5-2 相频特性的测试图(李沙育图形法)令系统(环节)的输入信号为:t X t X m ωsin )(= (5-1) 则其输出为 )sin()(φω+=t Y t Y m (5-2)对应的李沙育图形如图5-2所示。
若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(5-2)得 )sin()0(φm Y Y = 于是有 mm Y Y Y Y 2)0(2sin )0(sin )(11--==ωφ (5-3) 同理可得mX X 2)0(2sin )(1-=ωφ (5-4) 其中:)0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。
自动控制原理实验指导
要求:电路图要画,其他波形图不用。
电阻电容参数要写实验一和三是2课时实验,实验二是4课时的。
可打印,但是要注意格式,后期结果要手写实验一 典型环节的电路模拟与软件仿真研究一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。
2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。
二.实验内容1.设计各种典型环节的模拟电路。
2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。
三.实验线路及步骤1.比例(P)环节的传递函数、方块图、模拟电路和阶跃响应 比例环节的传递函数为:K s U s U i O =)()( 其方块图、模拟电路和阶跃响应,分别如图1.1.1、图1.1.2和图1.1.3所示,于是01R R K =,实验参数取R 0=100k ,R 1=200k ,R=10k 。
图1.1.2R 1P+u iR 0-++RR-+u ou o t图1.1.3t图1.1.1KU i sU o s2.积分(I)环节的传递函数、方块图、模拟电路和阶跃响应 积分环节的传递函数为:Tss U s U i O 1)()(= 其方块图、模拟电路和阶跃响应,分别如图1.2.1、图1.2.2和图1.2.3所示,于是C R T 0=,实验参数取R 0=100k ,C =1uF ,R=10k 。
3.比例积分(PI)环节的传递函数、方块图、模拟电路和阶跃响应 比例积分环节的传递函数为:TsK U U i O 1+=其方块图、模拟电路和阶跃响应,分别如图1.3.1、图1.3.2和图1.3.3所示,于是1R R K =,C R T 0= 实验参数取R 0=200k ,R 1=200k ,C =1uF ,R=10k 。
图1.2.2C I+u iR 0-++RR-+u oTs 图1.2.11U i sU o s图1.2.3u o tt图1.3.3u o ttK Ts图1.3.11U o sU i s图1.3.2PI+u iR 0-R 1++CRR-+u o4.比例微分(PD)环节的传递函数、方块图、模拟电路和阶跃响应 比例微分环节的传递函数为:)1(Ts K U U iO+= 其方块图和模拟电路分别如图1.4.1、图1.4.2所示。
自控理论实验实验指导书(LABVIEW)
目录一.自动控制理论实验指导1.概述 (1)2.实验一典型环节的电路模拟和软件仿真研究 (5)3.实验二典型系统动态性能和稳定性分三典型环节(或系统)的析 (12)4.实验频率特性测量 (16)5.实验四线性系统串联校正 (21)6.实验五典型非线性环节的静态特性 (26)7.实验六非线性系统相平面法 (31)8.实验七非线性系统描述函数法 (37)9.实验八极点配置全状态反馈控制 (42)10.实验九采样控制系统动态性能和稳定性分析的混合仿真研究 (49)11.实验十采样控制系统串联校正的混合仿真研究 (53)二.自动控制理论对象实验指导1.实验一直流电机转速控制实验 (57)2.实验二温度控制实验 (60)3.实验三水箱液位控制实验 (62)三.自动控制理论软件说明1.概述 (64)2.安装指南及系统要求 (67)3.功能使用说明 (69)4.使用实例 (79)概述一.实验系统功能特点1.系统可以按教学需要组合,满足“自动控制原理”课程初级和高级实验的需要。
只配备ACT-I实验箱,则实验时另需配备示波器,且只能完成部分基本实验。
要完成和软件仿真、混合仿真有关的实验必须配备上位机(包含相应软件)及USB2.0通讯线。
2.ACT-I实验箱内含有实验必要的电源、信号发生器以及非线性和高阶电模拟单元,可根据教学实验需要进行灵活组合,构成各种典型环节和系统。
此外,ACT-I实验箱内还可含有数据处理单元,用于数据采集、输出以及和上位机的通讯。
3.配备PC微机作操作台时,将高效率支持“自动控制原理”的教学实验。
系统提供界面友好、功能丰富的上位机软件。
PC微机在实验中,除了满足软件仿真需要外,又可成为测试所需的虚拟仪器、测试信号发生器以及具有很强柔性的数字控制器。
4.系统的硬件、软件设计,充分考虑了开放型、研究型实验的需要。
除了指导书所提供的10个实验外,还可自行设计实验。
二.系统构成实验系统由上位PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线等组成。
新版自动控制理论实验课程教学大纲.答案
《自动控制理论》实验教学大纲课程名称:自动控制理论课程性质:非独立设课使用教材:自编课程编号:面向专业:自动化课程学分:考核方法:成绩是考核学习效果的重要手段,实验成绩按学生的实验态度,独立动手能力和实验报告综合评定,以20%的比例计入本门课程的总成绩。
实验课总成绩由平时成绩(20%)、实验理论考试成绩(40%)、实验操作考试成绩(40%)三部分组成,满分为100分。
实验理论考试内容包含实验原理、实验操作方法、实验现象解析、实验结果评价、实验方案设计等。
考试题型以填空、判断、选择、问答为主,同时可结合课程特点设计其他题型。
实验操作考试根据课程特点设计若干个考试内容,由学生抽签定题。
平时成绩考核满分为20分,平时成绩= 平时各次实验得分总和÷实验次数(≤20分)。
每次实验得分计算办法为:实验报告满分10分(其中未交实验报告或不合格者0分,合格6分,良好8分,优秀10分);实验操作满分10分(其中旷课或不合格者0分,合格6分,良好8分,优秀10分)。
撰写人:任鸟飞审核人:胡皓课程简介:自动控制理论是电气工程及其自动化专业最主要的专业基础必修课。
通过本课程的各个教学环节的实践,要求学生能熟练利用模拟电路搭建需要的控制系统、熟练使用虚拟示波器测试系统的各项性能指标,并能根据性能指标的变化分析参数对系统的影响。
实验过程中要求学生熟悉自动控制理论中相关的知识点,可以在教师预设的实验前提下自己设计实验方案,完成实验任务。
教学大纲要求总学时80,其中理论教学68学时、实验12学时,实验个数6个。
9采样控制系统的分析√4选做10采样控制系统的动态校正√4选做合计实验一典型环节的电路模拟一、实验类型:综合性实验二、实验目的:1.熟悉THBCC-1型实验平台及“THBCC-1”软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
三、实验内容与要求:1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.画出各典型环节的实验电路图,并注明参数。
《自动控制原理》实验指导书
目录实验一典型环节的电路模拟 (1)实验二典型二阶系统动态性能和稳定性分析 (3)实验三典型环节(或系统)的频率特性测量 (5)实验四线性系统串联校正 (7)实验五MATLAB控制系统数学模型仿真 (11)实验六SIMULINK环境下典型环节阶跃响应仿真及分析 (14)附录1 ACT-I控制理论实验箱说明 (16)附录2 实验一模拟电路参考及分析 (18)附录3 实验三参考电路及分析 (22)实验一典型环节的电路模拟(设计性)一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。
2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。
二.实验内容1.设计各种典型环节的模拟电路。
2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。
三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。
注意实验接线前必须先将实验箱上电,以对运放仔细调零。
然后断电,再接线。
接线时要注意不同环节、不同测试信号对运放锁零的要求。
在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。
2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
无上位机时,利用实验箱上的信号源单元U2所输出的周期阶跃信号作为环节输入,即连接箱上U2的“阶跃”与环节的输入端(例如对比例环节即图1.1.2的Ui),同时连接U2的“锁零(G)”与运放的锁零G。
然后用示波器观测该环节的输入与输出(例如对比例环节即测试图1.1.2的Ui和Uo)。
注意调节U2的周期阶跃信号的“频率”电位器RP5与“幅值”电位器RP2,以保证观测到完整的阶跃响应过程。
自动控制理论实验指导(新)
⾃动控制理论实验指导(新)《⾃动控制理论》课程实验指导⼀、实验注意事项1、接线前务必熟悉实验线路的原理及实验⽅法。
2、实验接线前必须先断开总电源与各分电源开关,严禁带电接线。
接线完毕,检查⽆误后,才可进⾏实验。
3、实验⾃始⾄终,实验板上要保持整洁,不可随意放置杂物,特别是导电的⼯具和多余的导线等,以免发⽣短路等故障。
4、实验完毕,应及时关闭各电源开关,并及时清理实验板⾯,整理好连接导线并放置到规定的位置。
5、实验前必须充分预习实验指导书。
⼆、实验模拟装置使⽤注意事项1、⽆源阻容元件可供每个运算放⼤器使⽤。
2、运算放⼤器是有源器件,故连在运算放⼤器上的阻容元件只能供本运算放⼤器选⽤。
3、信号幅值不宜过⼤,按指导书中指⽰的幅值。
否则,可能使运算放⼤器处于饱和状态。
三、每次实验内容第⼀次:实验⼆第⼆次:实验三第三次:实验四备注:实验⼀作为实验前的预习及热⾝实验⼀控制系统典型环节的模拟⼀、实验⽬的1)、熟悉数字⽰波器的使⽤⽅法2)、掌握⽤运放组成控制系统典型环节的电⼦电路 3)、测量典型环节的阶跃响应曲线4)、通过实验了解典型环节中参数的变化对输出动态性能的影响⼆、实验仪器1)、THSSC-1实验箱⼀个 2)、数字⽰波器⼀台三、实验原理以运算放⼤器为核⼼元件,由其不同的R-C 输⼊⽹络和反馈⽹络组成的各种典型环节,如图1-1所⽰。
图中Z 1和Z 2为复数阻抗,它们都是由R 、C 构成。
基于图中A 点的电位为虚地,略去流⼊运放的电流,则由图1-1得:由上式可求得由下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1)、⽐例环节⽐例环节的模拟电路如图1-2所⽰:图1-1、运放的反馈连接1u o图1-2 ⽐例环节(1) )(12Z Z u u S G i o =-=2100200)(12===KKZ Z S G2)、惯性环节图1-3、惯性环节3)、积分环节图1-4、积分环节4)、⽐例微分环节(PD ),其接线图如图及阶跃响应如图1-5所⽰。
(完整word版)典型环节的频率特性
第5章辅导频率特性的基本概念给系统输入一个正弦信号为x r(t)=X rm sinωt式中X rm——正弦输入信号的振幅;ω——正弦输入信号的频率。
当系统的运动达到稳态后,比较输出量的稳态分量和输入波形时就可以发现,稳态输出的频率与输入频率相同,但输出量的振幅及相位都与输入量不同。
可以把系统的稳态输出量写成式中的A(ω)和 (ω)分别为复变函数G(jω)的模和幅角。
A(ω)——G(jω)的模,它等于稳态输出量与输入量的振幅比,叫做幅频特性;φ(ω)——G(jω)的幅角,它等于稳态输出量与输入量的相位差,叫做相频特性。
例:电路的输出电压和输入电压的复数比为式中图频率特性的求取方法频率特性一般可以通过如下三种方法得到:1.根据已知系统的微分方程,把输入以正弦函数代入,求其稳态解,取输出稳态分量和输入正弦的复数之比即得;2.根据传递函数来求取; 3.通过实验测得。
线性系统,x r (t)、x c (t)分别为系统的输入和输出,G(s)为系统的传递函数。
输入用正弦函数表示x r (t)=Asin ωt设系统传递函数为(重要结论:对正弦输入而言系统的频率特性可直接由G(j ω)=X c (j ω)/X r (j ω)求得。
只要把线性系统传递函数G(s)中的算子s 换成j ω,就可以得到系统的频率特性G(j ω)。
即ωωj s s G j G ==)()(频率特性的表示方法1. 幅相频率特性设系统(或环节)的传递函数为11011)(a s a s a b s b s b s G n n n n m m m m ++++++=---- 令s=j ω,则其频率特性为)()()()()()()(011011ωωωωωωωjQ P a j a j a b j b j b j G n n n n m m m m +=++++++=---- 其中,P(ω)为G(j ω)的实部,称为实频特性;Q(ω)为G(j ω)的虚部,称为虚频特性。
武汉大学《自动控制原理》实验报告
2016〜2017学年第一学期〈〈自动控制原理》实验报告年级:2014级班号:姓名:He学号:成绩:教师:实验设备及编号:实验同组人名单:实验地点:电气工程学院自动控制原理实验室实验时间:2016年10月目录:实验一典型环节的电路模拟 (3)一、实验目的................................................................. 3..二、实验内容................................................................. 3..三、实验电路图及参数.......................................................... 3.四、实验分析 ................................................................ 1.0五、实验思考题............................................................... 1.1实验二二阶系统的瞬态响应. (12)一、实验目的................................................................. 1.2二、实验设备................................................................. 1.2三、实验电路图及其传递函数................................................... 1.2四、实验结果及相应参数 (14)五、实验分析................................................................. 1.6六、实验思考题............................................................... 1.6实验五典型环节和系统频率特性的测量 (17)一、实验目的................................................................. 1.7二、实验设备................................................................. 1.7三、传递函数•模拟电路图及波特图 ............................................. 1.7四、实验思考题 (22)实验六线性定常系统的申联校正 (24)一、实验目的 (24)二、实验设备 (24)三、实验电路图及其实验结果 (24)四、实验分析 (28)五、实验思考题 (28)实验七单闭环直流调速系统 (29)一、实验目的 (29)二、实验设备 (29)三、P ID参数记录表及其对应图像.............................................. .3.0四、P ID控制参数对直流电机运行的影响 (37)实验一典型环节的电路模拟一、 实验目的1. 熟悉THKKL-B 型模块化自控原理实验系统及“自控原理软件”的使用;2. 熟悉各典型环节的阶跃响应特性及其电路模拟;3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
典型环节的频率特性
率特性曲线如图所示。 振荡环节为相位滞后环节, 最大滞后相角是1800。 当振荡环节传递函数的分子 是常数K时,
0 时, G( j 0) 1 ,
Im
0
r
G
0
1
Re
G( s)
K T 2 s 2 2Ts 1
5-2 典型环节频率特性的绘制
自动控制系统通常由若干环节构成,根据它们的基本特性,可划分
成几种典型环节。本节介绍典型环节频率特性的绘制方法(极坐标图和
伯德图)。
一、典型环节的幅相特性曲线(极坐标图)
以角频率ω 为参变量,根据系统的幅频特性 G( j ) 和相频特性
G( j ) 在复平面 G( j )上绘制出的频率特性叫做幅相特性曲线或频率
18010振荡环节对数相频特性图二阶微分环节的频率特性对数幅频特性20lgdb4020二阶微分环节与振荡节的bode图关于轴对称渐近线的转折频率为渐近特性180相角变化范围是90二阶微分环节的bode图不稳定环节的频率特性是db对数幅频特性和相频特性分别为20lg不稳定惯性环节的bode图对数幅频特性与惯性环节相同
L( ) dB
40 20 0
-20
-40
( )
0.01
0.1
1
10
100
两个图形上下放置(幅
频特性在上,相频特性
在下),且将纵轴对齐, 便于求出同一频率的幅
90o
值和相角的大小,同时
为求取系统相角裕度带
45o
0 -45o -90o 0.01 0.1 1 10 100
来方便。
用伯德图分析系统有如下优点: (1) 将幅频特性和相频特性分别作图,使系统(或环节)
4.2 典型环节的频率特性图
0, G j ; , G j 0 其相频特性为
V G j arctg arctg 90 U 0 其对数幅频特性为 1
L 20 lg G j 20 lg
1
20 lg
4.8所示。
4.2.3 积分环节频率特性图(2)
2
G j arctg
2T 2T arctg 2 2 1 T 1 T
由此可知,振荡环节的对数频率特性不仅与ω有关,而且与ξ有关。根据对数特性计算
公式可知,振荡环节的低频渐近线为零分贝线,高频渐近线为斜率为-40dB/dec的直 1 线,高频渐近线与低频渐近线相交于T 处,对数相频曲线在φ=-90°弯点处是斜 T 对称的。其伯德图如图4.13所示,不同的ξ 值对应的曲线不同。
1 2
G(jω)的轨迹与虚轴交点处的频率就是无阻尼
4.2.5 振荡环节频率特性图(4)
对数幅频特性为
L 20 lg G j 20 lg
对数相频特性为
1 T 2T
2 2
1
2
20 lg 1 T
2 2
2T
惯性环节的对数幅频特性曲线为折线,在低频段,渐近线为横坐标轴(零分贝线), 在高频段,渐近线为斜率为-20dB/dec,与横坐标轴交于 1 的直线。折点在T 1 T T 处,称ωT为转折(转角)频率。 惯性环节的对数相频特性曲线根据对数相频特性来改变ω,逐点求出φ(ω),然后作图 与对数相频特性图上。对数相频特性曲线在φ=-45°弯点处是斜对称的。
4.2.5 振荡环节频率特性图(5)
4.2.6 一阶微分环节频率特性图(1)
实验四典型环节和系统频率特性的测量
实验四 典型环节和系统频率特性的测量一、实验目的1.了解典型环节和系统的频率特性曲线的测试方法;2.根据实验求得的频率特性曲线求取相应的传递函数。
二、实验设备同实验一三、实验内容1.惯性环节的频率特性测试;2.二阶系统频率特性测试;3.无源滞后—超前校正网络的频率特性测试;4.由实验测得的频率特性曲线,求取相应的传递函数;5.用软件仿真的方法,求取惯性环节和二阶系统的频率特性。
四、实验原理设G(S)为一最小相位系统(环节)的传递函数。
如在它的输入端施加一幅值为Xm 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(ϕωωϕω+=+=t j G Xm t Y y m ①由式①得出系统输出,输入信号的幅值比 )()(ωωj G Xmj G Xm Xm Ym == ② 显然,)(ωj G 是输入X(t)频率的函数,故称其为幅频特性。
如用db (分贝)表示幅频值的大小,则式②可改写为XmYm j G Lg L lg 20)(20)(==ωω ③ 在实验时,只需改变输入信号频率ω的大小(幅值不变),就能测得相应输出信号的幅值Ym ,代入上式,就可计算出该频率下的对数幅频值。
根据实验作出被测系统(环节)的对数幅频曲线,就能对该系统(环节)的数学模型作出估计。
关于被测环节和系统的模拟电路图,请参见附录。
五、实验步骤1.熟悉实验箱上的“低频信号发生器”,掌握改变正弦波信号幅值和频率的方法。
利用实验箱上的模拟电路单元,设计一个惯性环节(可参考本实验附录的图4-4)的模拟电路。
电路接线无误检查后,接通实验装置的总电源,将直流稳压电源接入实验箱。
2.惯性环节频率特性曲线的测试把“低频函数信号发生器”的输出端与惯性环节的输入端相连,当“低频函数信号发生器”输出一个幅值恒定的正弦信号时,用示波器观测该环节的输入与输出波形的幅值,随着正弦信号频率的不断改变,可测得不同频率时惯性环节输出的增益和相位(可用“李沙育”图形),从而画出环节的频率特性。
自动控制原理--典型环节的频率特性
j 1
0j 1
Im
0
Re
0
积分与微分环节
L(dB) 40
积分环节
0
微分环节
40
( )
90
微分环节
0 90
积分环节
20dB / dec
20dB / dec
6
三、微分环节
传递函数: G s s
频率特性:
G(j)
j
ej
π 2
➢1. 幅频特性 A及相频特性
A ,
A
( )
0
1
T
4
2
L,
0
1
T 3dB
4
20lg 2T 2 1
2
近似曲线 精确曲线
对数幅频特性和相频特性:
L() 20 lg 1 (T )2 () tg1 T
0 L0 0
1 L 20 lg 1 3
T
2
4
L
2
L()(dB) 0 0.1 5
10 15 20
0.2
0.3 0.4
0.6 0.8 1
T
2
34
6 8 10
七、一阶不稳定环节
传递函数: G s 1
Ts 1
➢1. 幅相频率特性
频率特性: G j 1
jT 1
G j
1
jT 1
1
1 T2
T
j1 T2
U
jV
U
1 2
2
V
2
1 2
2
一阶不稳定系统的幅相频
率特性是一个为(-1,j0)
为圆心,0.5为半径的半圆。
180O 90O
Im
1
实验三 典型环节(或系统)的频率特性测量
实验三 典型环节(或系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据实验所得频率特性曲线求取传递函数的方法。
二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成典型二阶系统开环频率特性曲线的测试。
3.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。
三、实验原理及说明1.实验用一阶惯性环节传递函数参数、电路设计及其幅相频率特性曲线:对于1)(+=Ts Ks G 的一阶惯性环节,其幅相频率特性曲线是一个半圆,见图3.1。
取ωj s =代入,得)()(1)(ωϕωωωj e r T j Kj G =+=(3-2-1)在实验所得特性曲线上,从半园的直径(0)r ,可得到环节的放大倍数K ,K =(0)r 。
在特性曲线上取一点k ω,可以确定环节的时间常数T ,kk tg T ωωϕ)(-=。
(3-2-2)实验用一阶惯性环节传递函数为12.01)(+=s s G ,其中参数为R 0=200K Ω,R 1=200K Ω,C=1uF ,参数根据实验要求可以自行搭配,其模拟电路设计参阅下图3.2。
在进行实验连线之前,先将U13单元输入端的100K 可调电阻顺时针旋转到底(即调至最大),使输入电阻R 0的总阻值为200K;其中,R1、C1在U13单元模块上。
U8单元为反相器单元,将U8单元输入端的10K 可调电阻逆时针旋转到底(即调至最小),使输入电阻R 的总值为10K;注明:所有运放单元的+端所接的100K 、10K 电阻均已经内部接好,实验时不需外接。
图3.22.实验用典型二阶系统开环传递函数参数、电路设计及其幅相频率特性曲线:对于由两个惯性环节组成的二阶系统,其开环传递函数为12)1)(1()(2221++=++=Ts s T Ks T s T K s G ξ )1(≥ξ 令上式中 s j ω=,可以得到对应的频率特性 )(22)(12)(ωϕωωξωωj e r T j T Kj G =++-=二阶系统开环传递函数的幅相频率特性曲线,如图所示。
5-2(1) 典型环节的频率特性
A( )
1
2 2 2 2 (1 2 ) 4 2 n n
相频特性
n ( ) arctg 2 1 2 n
2
其中,对于相频特性
2 n 当: n 时, ( ) arctg 2 1 2 n
当: n 时, ( ) 180 arctg
L(ω )
j
ω =∞ ω ωn 0
20 0 φ(ω ) 1 ω =0 180° 0 (b)
[40] ωn ω
ω
( a)
二阶微分环节的频率特性曲线图
8. 延迟环节 (教材P204)
传递函数 G(s)
频率特性
G( j) e j A() e j ( )
e
s
(1) 幅相曲线: (教材P204图5-25) 幅频特性 A(ω)= 1 相频特性 φ(ω) = -ωτ(rad)= - 57.3ωτ (°) (2) 对数频率特性曲线(Bode图): 1) 对数幅频特性 L(ω)=20lgA(ω)= 0 2) 对数相频特性:φ(ω) = -ωτ(rad)=-57.3ωτ(°)
ω →0
0
(a) 微分环节的幅相曲线
(2) 对数频率特性曲线(Bode图):
∵ 对数幅频特性 L(ω)=20lg∣G(jω)∣ = 20lgω 对数相频特性 φ(ω) = 90° ∴ 微分环节的Bode图如图(b)所示。
L(ω)
20
0
20dB/dec 1 10
φ( ω ) 90° 0
ω
ω
(b) 微分环节的Bode图
r n 1 2 2
1 M r A(r ) 2 1 2 2 0 2
显然
对于不同的系统阻尼,振荡环节的谐振峰值Mr,谐振频率ωr不同, 参见教材P195-196分析。
实验四典型环节和系统频率特性的测量
一、实验目的1、了解典型环节系和统的频率特性曲线的测量方法2、根据实验求得的频率特性曲线求取传递函数二 实验设备1、THBDC-1型 控制理论·计算机控制技术实验平台2、PC 机一台(含“THBDC-1”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线三 实验内容(1)惯性环节的频率特性测试R1=R2=100K C=1uF R0=200K闭环传递函数为=)()(0S U S U i 1+TS K =实验记录Bode 图理论计算数据(2)二阶系统OP1,惯性环节,10.2S+1 ;OP2,积分环节,1S 10.1S ;OP3,反相,(-1);25100:()52552X R K G S S S ==+⨯⨯+ ωn=2.236 ζ=1.118250R 10:()502505020X K G S S ==+⨯⨯+ ωn=7.071 ζ=0.3536实验记录波特图 Rx=100K实验记录波特图 Rx=10K仿真波特图 Rx=100K 仿真波特图 Rx=10K校正前观察响应曲线为校正后串联一个惯性装置波特图校正前后对比思考题:1、根据上位机测得的Bode图的幅频特性,就能确定系统(或环节)的相频特性,试问这在什么系统时才能实现?必须在开环二阶系统中,而且只能确定最小相位系统。
2、实验时所获得的性能指标为何与设计时确定的性能指标有偏差?因为在设计时,很多计算采用的近似计算,同时实验时用的电阻元件参数与设计不完全一致。
3.什么是超前校正装置和滞后校正装置,他们各利用矫正装置的什么特性对系统进行校正?答:超前校正装置用于改善系统的动态性能,实现在系统静态性能不受损的前提下,提高系统的动态性能。
通过加入超前校正环节,利用其相位超前特性来增大系统的相位裕度,改变系统的开环频率特性。
一般使校正环节的最大相位超前角出现在系统新的穿越频率点。
而滞后校正装置则通过加入滞后校正环节,使系统的开环增益有较大幅度增加,同时又使校正后的系统动态指标保持原系统的良好状态。
典型环节的频率特性
Im
G
Re
900
0
积分环节的频率响应
频率特性如图所示。由图可知,积分环节的相频特性等于 -900 , 与角频率ω 无关,表明积分环节对正弦输入信号有900的滞后作用;其幅 频特性等于 1 ,是ω 的函数, 当ω 由零变到无穷大时,输出幅值则由 无穷大衰减至零。
(3) 用渐近线表示幅频特性,使作图简单方便;
(4) 横轴(ω 轴)用对数分度,扩展了低频段,同时兼顾 了中、高频段,有利于系统的分析与综合。
(一)放大环节(比例环节) 放大环节的频率特性为 G ( j ) K ( K 0)
其幅频特性是
G( j ) K
对数幅频特性为
20 lg G( j ) 20 lg K
-20
-40
( )
两个图形上下放置(幅
频特性在上,相频特性
在下),且将纵轴对齐, 便于求出同一频率的幅
90o
值和相角的大小,同时
为求取系统相角裕度带
45o
0 -45o -90o 0.01 0.1 1 10 100
来方便。
用伯德图分析系统有如下优点: (1) 将幅频特性和相频特性分别作图,使系统(或环节)
2 2 2
2
1 是一个标准圆方程,其圆心坐标是 ,0 ,半径为 1 。且
当ω 由 0 时, G ( j ) 由 0 90 ,说明惯性环节的频率特 性在G( j ) 平面上是实轴下方半个圆周,如图所示。
2
2
Im
G
0
0.5
0
450
幅频特性和相频特性分别为
典型环节的频率特性
第五章频率域方法典型环节的频率特性用频率法研究控制系统的稳定性和动态响应,是根据系统的开环频率特性进行的,而控制系统的开环频率特性通常是由若干个典型环节的频率特性组成的,如直流电机的传递函数为()(1)mm K G s s T s =+可以将该传递函数分解为三个典型环节的乘积,分别是mK 放大环节:1s积分环节:11m T s +惯性环节:掌握好典型环节的频率特性,就能方便地得出系统的开环频率特性。
一、比例环节(放大环节)幅频特性()A Kω=相频特性()0ϕω︒=对数幅频特性()20lg L Kω=Kj()G s K =幅相特性曲线(K>0)(Nyquist 曲线)对数频率特性曲线(K>1)(Bode 图)典型环节的频率特性20lg K/dBL ϕω2π−ω(j )G Kω=AAKϕ2π−ϕω幅频、相频特性曲线(K>0)二、积分环节1()G s s =幅频特性1()A ωω=相频特性()2πϕω=−j2π−ω=ω∞幅相特性曲线(Nyquist 曲线)1()20lg20lg L ωωω==−对数幅频特性对数幅频特性曲线是斜率为-20分贝/十倍频程的直线,该直线在弧度/秒处与零分贝线相交。
1ω=1(j )j G ωω=AAϕ2π−ϕω幅频、相频特性曲线/(rad/s)ω对数频率特性曲线(Bode 图)20dB/dec−/dBL o /()ϕ三、惯性环节(一阶系统)1()1G s Ts =+幅频特性21()()1A T ωω=+相频特性()arctan T ϕωω=−幅相频特性曲线(Nyquist 曲线)j=1/Tω=ω∞=0ωω1-45︒1(j )1+j G T ωω=Aϕ90︒−ϕω145︒−1TA幅频、相频特性曲线对数频率特性曲线(Bode 图)T ω/dBL o /()ϕ2()20lg ()1L T ωω=−+对数幅频相频特性()arctan T ϕωω=−3(dB)L =−45ϕ︒=−当频率时1T ω=2()20lg ()1L T ωω=−+对数幅频()20lg 20lg 20lg L T Tωωω≈−=−−转折频率:1=Tω当频率时1T ω<()20lg10 (dB)L ω≈=当频率时1T ω>惯性环节(一阶系统)1()1G s Ts =+1(j )1+j G T ωω=对数频率特性曲线(Bode 图)T ω 20dB/dec−对数幅频渐近特性曲线3(dB)−dBL /o /()ϕ四、振荡环节(二阶系统)222()2nn nG s s s ωζωω=++2221()[1()][2()]n n A ωωωζωω=−+22()()arctan 1()n n ζωωϕωωω⎛⎫=− ⎪−⎝⎭/nωωA=0ζ=0.2ζ=0.5ζ=0.7ζ=1ζ/nωωo /()ϕ(0) 1 ()1(2) ()0n A A A ωζ==∞=()0d A d ωω=212m nωωζ=−令,得20<<2ζ⎛⎫ ⎪ ⎪⎝⎭(0)0 ()2 ()=n ϕϕωπϕπ==−∞−21()21m m A A ωζζ==−幅频、相频特性曲线(0, 0)n ζω≥>当时,,当时无峰值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型环节(或系统)的频率特性测量
一·实验目的
1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据实验所得频率特性曲线求取传递函数的方法。
二·实验要求
1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成典型二阶系统开环频率特性曲线的测试。
3.根据测得的频率特性曲线求取各自的传递函数。
4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。
三·实验原理
掌握改变正弦波信号幅值和频率的方法。
利用实验箱上的模拟电路单元,参考本实验附录设计并连接“一阶惯性环节”模拟电路(如用U9+U8连成)或“两个一阶惯性环节串联”的模拟电路(如用U9+U11连成)。
四·实验所用仪器
PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线
五·实验步骤和方法
1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成典型二阶系统开环频率特性曲线的测试。
3.根据测得的频率特性曲线求取各自的传递函数。
4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。
具体步骤:
1.熟悉实验箱上的信号源,掌握改变正弦波信号幅值和频率的方法。
利用实验箱上的模拟电路单元,参考本实验附录设计并连接“一阶惯性环节”模拟电路(如用U9+U8连成)或“两个一阶惯性环节串联”的模拟电路(如用U9+U11连成)。
2.利用实验设备完成一阶惯性环节的频率特性曲线测试。
无上位机时,利用实验箱上的信号源单元U2所输出的正弦波信号作为环节输入,即连接箱上U2的“正弦波”与环节的输入端(例如对一阶惯性环节即图1.5.2的Ui)。
然后用示波器观测该环节的输入与输出(例如对一阶惯性环节即测试图1.5.2的Ui和Uo)。
注意调节U2的正弦波信号的“频率”电位器RP5与“幅值”电位器RP6,测取不同频率时环节输出的增益和相移(测相移可用“李沙育”图形),从而画出环节的频率特性。
有上位机时,必须在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。
为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。
仍以一阶惯性环节为例,此时将Ui连到实验箱 U3单元的O1或O2(D/A通道的输出端,这个是通过上位机选择其中的一路输出),将Uo连到实验箱 U3单元的I1(A/D通道的输入端),然后再将你选择的D/A输出通道测试信号O1(如果选择的是O1)连接到这组A/D输入的另一采集输入端I2,然后连接设备与上位机的USB通信线。
接线完成,
经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。
界面上的操作步骤如下:
①选择任一D/A 输出通道,如“O1”,将其作为环节输入,接到环节输入Ui 端,再将其作为原始测试信号接到A/D 输入的I2(便于观看虚拟示波器发出的原始信号),将环节的输出端Uo 接到A/D 输入通道I1。
②完成上面的硬件接线后,检查USB 连线和实验箱电源,然后打开LabVIEW 软件上位机界面程序。
③进入实验界面后,先对频率特性的测试信号进行设置:“幅值”为5(可以根据实验结果波形来调整),“测试信号”为正弦波。
④完成实验设置,先点击LabVIEW 运行按钮“RUN ”运行界面程序,按照上面的步骤③设置好信号后,点击“下载数据”按钮,将设置的测试信号发送到数据采集系统。
然后点击实验界面右下角的“Start ”按钮来启动频率特性测试。
测试程序将会从低频率计算到高频,界面右下角有个测试进度条,它将显示测试的进度。
最后测试出来频率特性的Bode Plot 、Nyquist Plot 将在相应的图形控件中显示出来,在同一界面中我们可以同时看到频率特性的两种显示模式:一种是伯德图“Bode Plot ”,它包括幅频特性和相频特性;另一种模式就是乃奎斯特图“Nyquist Plot ”,又称极坐标图。
⑤按实验报告需要,将图形结果保存为位图文件,操作方法参阅软件使用说明书 3.利用实验设备完成典型二阶系统开环频率特性曲线的测试。
具体操作方法参阅步骤2。
4.参考附录的提示,根据测得的频率特性曲线(或数据)求取各自的传递函数。
6
附录:
1对于取s =(ωj G C =0.1uF 2线:
)(s G (j G
3.2.1r K =k r ω)(其中故有 k
k k tg r r T φωωξ2
1
1)()0(2+=
(3—3)
如已测得二阶环节的幅相频率特性,则(0)r 、k ω、k φ和()k r ω均可从实验曲线得到,于是可按式(3—1)、(3—2)和(3—3)计算K 、T 、ξ,并可根据计算所得T 、ξ 求取T 1和T 2
1(2
1-+=ξξT T 1(22--=ξξT T
实验用典型二阶系统开环传递函数为:
1
3.002.01
)11.0)(12.0(1)()(2++=++=
s s s s s H s G
其电路设计参阅图3.2.2。
3.对数幅频特性和对数相频特性
图3.2.2
上述幅相频率特性也可表达为对数幅频特性和对数相频特性,图3.3.1和图3.3.2分别给出上述一阶惯性环节和二阶环节的对数幅频特性和对数相频特性:
注意:此时横轴 采用了以10为底的对数坐标,纵轴则分别以分贝和度为单位。
六·实验注意事项
在实验过程中,要听从老师的指导,严格按照实验步骤进行,不能任意更改,不熟悉的仪器设备,应先请老师知道后使用,切勿随意乱动。
实验室如有问题发生,应首先用自己学过的知识,独立思考加以解决,努力培养独立分析问题和解决问题的能力,如自己不能解决可与指导老师共同讨论研究,提出解决问题的方法。
七·实验预习要求
每次实验前必须详细预习实验讲义,明了实验目的、原理方法及操作步骤,并在记录本上拟出简单的实验原理、使用方法及操作室的注意事项。
八·实验报告要求
实验进行时,必须随时把观察到的现象和实验数据,如实地记录在实验报告上,不得记在散页纸上,要养成良好的做原始记录的习惯。